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ABSTRACT

This paper studies the problem of data-specific neural representations, aiming for
compact, flexible, and modality-agnostic storage of individual visual data using
neural networks. Our approach considers a visual datum as a set of discrete ob-
servations of an underlying continuous signal, thus requiring models capable of
capturing the inherent structure of the signal. For this purpose, we investigate
state-space models (SSMs), which are well-suited for modeling latent signal dy-
namics. We first explore the appealing properties of SSMs for data-specific neural
representation and then present a novel framework that integrates SSMs into the
representation pipeline. The proposed framework achieved compact representa-
tions and strong reconstruction performance across a range of visual data formats,
suggesting the potential of SSMs for data-specific neural representations.

1 INTRODUCTION

Recent years have witnessed growing interest in overfitting a neural network to a single visual datum
such as image (Dupont et al.,|2021} |Striimpler et al.,[2022), video (Chen et al., [2021} [Mentzer et al.}
2022), or 3D instance (Martin-Brualla et al., 2021} [Zhang et al.l [2020). This data-specific neural
representation paradigm, prevalent in implicit neural representations (INRs) (Sitzmann et al., 2020)
and neural compression (Ballé et al.,[2016; (Cheng et al.,|2020), aims to directly encode a datum into
an embedding or the weights of a compact neural model. Such a paradigm not only serves as an
effective data compression method but also offers a standardized data format that can accommodate
various modalities for future neural network training (Dupont et al., [2022)), with some approaches
further enabling downstream applications such as spatial/temporal super-resolution (Chen et al.|
2022b)), denoising (Xu et al.,2022), and in/outpainting (Skorokhodov et al.,[2021; |Chen et al., 2023)).

The central objective of the data-specific neural representations is to represent a single datum with
minimal parameter complexity and maximal reconstruction quality. One of the effective strategies to
achieve this comes from the recognition that visual data are essentially arrays of pixels sampled at
discrete intervals from continuous signals (Sitzmann et al., 2020; | Xu et al.,|2022; Tancik et al., 2020;
Saragadam et al.,[2023)). The core idea behind this approach is to project input data onto a set of
established basis functions and only save their coefficients, so that the coefficients reconstruct not only
the input but also the continuous signal from which the input is sampled. Although this concept has
served as a fundamental principle for effective compression and reconstruction of visual data (Cooley
et al.l [1969; |Richardsonl 201 1)), modern approaches to data-specific neural representation do not take
it into account due to the lack of well-established neural network architectures that incorporate the
concept; they have instead focused merely on coordinate-to-RGB mapping (Martin-Brualla et al.|
2021;[Strimpler et al., 2022)), bit-level quantization (Xu et al., 2018};|Gordon et al.| | 2023)) or improving
the capacity of conventional neural networks to implicitly manage input redundancies (Zhou et al.,
2018} |Li et al.,2018).

Recently, the rise of state-space models (SSMs) has opened a new pathway to this challenge, as
SSMs provide a framework for modeling continuous signals in a way that aligns with the objectives
of compact neural representations. To be specific, the hidden state of SSM was initially designed
to represent the coefficients that reconstruct observed data using a set of orthogonal polynomial
bases (Gu et al.|[2020;2022b)), which generalizes to the traditional compression algorithms. Although
the design of SSMs has become more implicit (Gu et al.,2021b; |Smith et al., [2022; |Gu et al.| [2021a),
such that their hidden states no longer explicitly represent coefficients of such continuous bases, they
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still retain the desirable properties necessary for effective signal modeling (Gu et al., 2021b} |Guo
et al.,[2025; |Raol |1987;|Rao & Arunl[1992), so it is worth exploring their applications.

Driven by this motivation, we explore the potential for incorporating SSMs within data-specific
neural representations. We investigate the effectiveness of SSMs in compressing input data and
capturing underlying signal structures, and empirically demonstrate their benefits in enhancing the
reconstruction quality. However, a naive application of SSMs presents key challenges: (1) they
primarily operate on 1D sequence inputs, necessitating unnatural scanning for multi-dimensional
data, and (2) they inherently preserve input sequence length, which makes them unsuitable for an
effective compression method. To address these limitations, we propose structured state-space kernel
(S3K), which distills the expressive power of SSMs into convolutional kernels. We design the kernel
parameters in a way that the convolution output matches the hidden state representation of SSMs,
effectively preserving their reconstruction capability. Through seamless integration with convolution,
it naturally processes multi-dimensional inputs while inherently enabling expressive downsampling.
In summary, our contribution is three-fold as follows:

* We for the first time investigate the integration of state-space models (SSMs) into data-specific
neural representation frameworks, providing a theoretical background that explains their potential
benefits in improving both expressive power and efficiency.

* We introduce S3K, an SSM-derived convolutional kernel that inherits the expressive power of
SSMs while mitigating their limitations for multi-dimensional processing and downsampling.

* Our framework shows promising results across diverse visual data reconstruction tasks—images
(Kodak (Kodakl |{1993)), CLIC2020 (Toderici et al.,[2020)), videos (Bunny (Roosendaall, [2008)),
UVG (Mercat et al., 2020), DAVIS (Perazzi et al.| 2016)), and 3D objects (Objaverse (Deitke
et al.| 2023))—highlighting its potential for advancing data-specific neural representations.

2  PRELIMINARY: STATE-SPACE MODEL

SSM is a function that maps a 1D input signal ¢(z) to a 1D output signal y(x) of the same length
through the latent state h(z) € C" based on the following linear differential equation:

B (z) = Ah(z) + Bo(z), )

y(z) = Ch(x),
where A € CNV*N is the state transition matrix, and B € C" and C € C¥ are projection parameters.
Solving the linear differential equation (1)) to explicitly express A yields [ﬂ

h(z) = / e ABg(r)dr € CV, ()
0
where each hy(x) € C corresponds to:

() = /O;c @ TABg(r)dr = <¢(7—)7e(m—r)AkB> = <¢(T),fk:(7'7$)>[07x]- 3)

[0,7]

Here, (-, )[4, 2, 15 @ complex function space inner product in the given domain [z, x5]. Intuitively,
Eq. (3) tells that the k-th element of the hidden state hj(z) is a projection of the input ¢(7),<,
onto the function £;. |Gu et al.| (2020; 2021b} 2022bjja) have established that through appropriate
parameterization of the matrix A, {£;} can serve as a set of basis functions, which enable the
model to effectively capture and retain key information from the entire sequence history up to
the current position x. This ability to project input signals onto a learned basis makes SSMs a
natural fit for compression, since such a capability to model signal representation becomes beneficial.
Various ways to parametrize A have been explored: HiPPO (Gu et al., 2020), diagonal plus low
rank (Gu et al.,|2021a), and diagonal (Gupta et al.,[2022; |Gu et al.,[2022a). Among these, using a
diagonal parameterization of A has gained popularity for its easier formulation while maintaining
expressivity (Smith et al.| 2022} |Gu & Daol [2023).

'See Appendix for details.
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3 EXPLORING SSMS FOR DATA-SPECIFIC NEURAL REPRESENTATIONS

This section delves into advantages and proper architecture designs of data-specific neural representa-
tions using SSMs. First, we examine how SSMs encode input data and highlight their effectiveness
in data-specific neural representation. Then, through an extensive experimental analysis, we identify
the key characteristics of network architectures incorporating SSMs for this purpose.

3.1 WHAT DO SSMS ENCODE?

To understand the operational principles of SSMs and interpret their features, we bring up a classical
signal processing task, sinusoid problem, which aims at estimating parameters of sinusoidal signals
that make up the input signal. Given an input function ¢(t) that takes 1D coordinate ¢ € [0, L], we
are interested in finding 6,,(¢) and ¢,, such that

N
G(t) =Y cpe’ ), “
n=1

where ¢?(!) is the n-th sinusoidal basis and c,, is its coefficient. Note that this form generalizes
to various sinusoidal transformation methods, e.g., setting 6,,(t) = —27nt/L leads to the choice
of bases used in discrete Fourier transform (Cooley et al., [1969). Under a proper choice of 6, (),
estimating the parameter c,, that approximates the input signal ¢(¢) offers an effective method for
compression.

Interestingly, the SSM formulation allows the input signal to be decomposed into a sinusoidal form:

Theorem 3.1. Ler A be diagonalizable over C with non-zero distinct eigenvalues {\;}. Given A, B,
and the hidden state h computed by Eq. , there exists a function f : (A, B) — F € CN*N with
which one can decompose the input function ¢(t) as a linear combination of complex exponentials:

N
G(t) =Y enetnE-0), )
n=1

where c,, is the n-th element of f(A,B)h.

The conclusion of the theorem implies that the SSM parameters A and B inherently capture signal
characteristics of the input, as well as the hidden state h. This highlights the unique capability of
SSMs: they are particularly favorable for reconstructing the input since they encode the input function
¢(t) itself, unlike traditional data-specific neural representation frameworks that were originally
designed to capture specific patterns or semantics.

To verify the effectiveness of SSMs in the context of compact data-specific neural representation,
we conduct input reconstruction experiments where the input is compressed into an embedding and
then reconstructed by a lightweight decoder, which allows us to directly assess how well the encoder
captures and retains the information of the input in a compact form. To this end, we first design
a simple encoder-decoder architecture that can naturally incorporate various SSMs (Fig. [I). The
encoder consists of an SSM block computing the output signal by Eq. (I)) and a single convolutional
layer for downsampling the signal, while the decoder is composed of a deconvolutional layer (Noh
et al., [2015)) for upsampling. Note that the SSM block is attached directly onto the raw input and that
the downsampling operation of the encoder is essential for compression due to the length-preserving
nature of SSMs (Sec. 2. We consider the established SSM architectures, S4 (Gu et al, [202Ta),
S4D (Gu et al., [2022a), SAND (Nguyen et al., 2022), S5 (Smith et al.|[2022)) and Mamba (Gu & Dao,
2023)), as candidates for the SSM block.

For evaluation, we train and evaluate this baseline architecture coupled with the diverse SSMs on
1K randomly sampled images from CIFAR-100 (Krizhevsky et al.,2009). Each model is trained for
300 epochs on each image, adhering to the prevailing practice in data-specific neural representations
that focuses on optimizing a lightweight model to facilitate overfitting on a single sample (Dupont
et al.| [2021};|Chen et al.,|2021)). Since the SSMs are designed to operate on 1D sequences (except for
S4ND (Nguyen et al.| 2022)), we preprocess the input images by flattening the 32 x 32 pixel grid
before passing it through the SSMs.
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Figure 2: Encoder variants incorporating SSMs for image reconstruction

We report experimental results using the baseline architecture in the ‘Baseline’ column of Table[T}
For comparison, we adopt a Transformer (Vaswani et al., |2017) in place of the SSM block, as
it is a widely used architecture for data-specific representation (Yan et al., [2024; Mentzer et al.,
2022; |Liu et al.| 2023; [Lu et al., 2021)) and has demonstrated strong performance. ‘Transformer’
indicates a single multi-head attention layer used in this context. The results show that, under the
baseline architecture, every SSM consistently outperforms the transformer in reconstruction quality.
This finding is not trivial, particularly considering that transformers are widely recognized for their
superior performance when operating on short token sequences (Gu & Dao} [2023)). This suggests that
for input reconstruction, the transformer’s ability to compute semantic relationships between tokens
is less beneficial than in other tasks, while the input function modeling property of SSMs proves to
be more advantageous, as discussed in Sec. |Z[

3.2 EXPLORING ARCHITECTURES INCORPORATING SSMS

To explore encoder architectures that better leverage SSMs, we experiment with several design
variants. Given our focus on evaluating how well the encoder compresses the input into an embedding,
we maintain a fixed decoder architecture across all configurations. We first evaluate a stacked
architecture where SSM and convolutional layers alternate to form a deep network (Fig. 2(a)),
and observe consistent performance drop for SSM models (Table[Ifa)). We hypothesize that this
decline stems from the way SSMs encode input features (Sec. EEksince SSMs project the input
onto implicitly parameterized basis functions and stacking them results in multiple layers of such
projections, repeated projection amplifies artifacts and limits the achievable reconstruction rate,
analogous to generation loss from information theory (Coverj,|1999).

To address this, we introduce an ‘Image pyramid’ variant (Fig. 2(b)), where SSMs are applied at
multiple resolutions of the input. This approach improves performance (Table[T(b)), as it enables the
use of representations across different scales and increases model capacity without having to stack
SSM blocks. While Mamba (Gu & Dao, |2023)) shows a slight drop in this setting, the overall trend
confirms the benefit of incorporating SSMs across multiple resolutions.

We further explore a ‘Laplacian pyramid’ variant (Fig. 2(c)), a widely used decomposition method in
traditional compression techniques (Burt & Adelson, 1987} |Richardson, [2011). Since a Laplacian
pyramid introduces less redundancy across scales than the ‘Image pyramid’ variant, the separate SSM
blocks can be more effectively utilized. Results in Table[T[c) show consistent gains, with SSM-based
models benefitting the most.

From these image reconstruction experiments, we outline key insights on incorporating SSMs:
(1) Stacking SSMs in the encoding process does not yield effective results, (2) attaching SSMs to
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Figure 4: SSM block output of Image pyramid

Figure 3: Feature map visualizations of three (top) and Laplacian pyramid (bottom) variants.
encoder variants explored in Scc@ (a), (b) The rightmost column shows correlation matrix
and (c) correspond to each variant in Fig.El between these maps.

downsampled images to provide intermediate multi-scale features proves advantageous, (3) employing
Laplacian pyramid decomposition further enhances performance.

4 PROPOSED METHOD

This section presents our method for data-specific neural representations using SSMs. We introduce
our novel module, structured state-space kernel, which addresses the two major limitations of applying
SSMs to neural representations of visual data: (1) their design for one-dimensional signals, which
does not align directly with visual data, and (2) their inability to compress input sequences due to their
length-preserving nature, which typically necessitates additional components for downsampling. Our
module overcomes these challenges by leveraging structured kernels derived from SSMs, enabling
efficient encoding and reconstruction of visual data.

4.1 STRUCTURED STATE-SPACE KERNEL

To implement the continuous-time dynamics of SSMs on a discrete sequence, the state update of
Eq. () is often approximated on discretized intervals using a step size parameter A. For instance,
one can apply the hidden state update between h(z;) and h(x;_1) using the Euler method:

h(l’l) ~ h(l’ifl) + Ahl(.’ﬂifl)
= h(zi—1) + A(AR(zi-1) + Bo(x;))
= Ah(l‘l_l) + Bqﬁ(xz) (6)

Depending on the choice of the discretization method and A, the way A and B are constructed may
vary. Eq. (6) can be expressed as a convolution, where the hidden states evolve according to:

ho1=0, ho=Ah_1+B¢y=Bg¢y, hi=Ahy+B¢p =AB¢+ B,
hp—1=A""Bgo+ A" ?B¢y + -+ ABor_» + Bor_y
=[A"'BA" B --- ABB][¢g ¢ o1, @)
where we denote h(z;) and ¢(x;) as h; and ¢;, respectively, for brevity. Given that the last hidden
state is the projection of the entire sequence onto the basis functions defined by A and B (Sec.[2), some
previous work (Gu et al.} 2020} 2022b)) have demonstrated that the input signal can be reconstructed

solely from the last hidden state. Inspired by this idea, we employ hr_; for downsampling, as
it effectively compresses the input into a compact representation while allowing for an efficient

operation by skipping the computation of intermediate hidden states, i.e., {hq, ..., h;_2}. Once we
construct the convolutional kernel K so that
K—[A''B AL?B ... AB B]eCN<LxC, @®)

we can convolve this kernel to obtain the compressed input. We refer to this kernel as structured
state-space kernel (S3K), as it is factorized by leveraging the state transition matrix A and the



Under review as a conference paper at ICLR 2026

projection matrix B. In practice, we adopt the diagonal parameterization of A (Gu et al., 20224}
Gupta et al.}[2022)) to ease the computation of the power terms and adopt multi-input multi-output
(MIMO) framework (Smith et al.l 2022) by letting B € CV*¢ to handle C' channels of input
sequence simultaneously. The convolution using this structured kernel acts as a lossy compression
mechanism, theoretically allowing the reconstruction of the original input signal using the learned
parameters.

Theorem 4.1. Let A be diagonalizable over C with non-zero distinct eigenvalues {\;}, and A be
the step size used for the discretization of A. Given the final hidden state h € CV after applying
S3K, there exists a function R : (A, B, h) — H € C**¥ with which one can reconstruct the input
sequence as:

R(A,B, h) [eNEA=FN] 15 . ®

Il
o

This finding further supports the interpretation of S3K as a lossy compression mechanism, where
the transformed representation retains sufficient information to reconstruct the original input signal
through the learned state-space parameters.

4.2 EXTENSION TO MULTI-DIMENSIONAL S3K

We extend S3K to multiple dimensions via outer products of multiple independent 1D S3Ks. This
follows naturally from the definition of nD basis functions as outer products of 1D basis functions
in continuous space (Cheney, |1986; [Nguyen et al.| 2022). The resulting nD kernel K now has
dimensions (L"), L) ... ' L") N, C), where {L(V},_; ... ,, are spatial dimensions of the kernel,
and IV and C represent output and input channel dimensions, respectively. This formulation enables
nD convolution operations on multi-dimensional inputs using structured kernels, akin to the traditional
convolution.

4.3 ENHANCING EXPRESSIVITY

While the structured kernel theoretically finds effective basis functions and their corresponding
coefficients that represent the input data, practical implementation reveals limited expressivity due
to the small number of learnable parameters. To address this, we introduce several modifications to
enhance the power of our model as follows.

¢ Input-adaptive B: Instead of using a fixed kernel, we adopt an adaptive mechanism (Chen et al.,
2020; |Gu & Daol [2023)) where the kernel parameters depend on the input, allowing dynamic
adjustments to diverse signals.

* Real-valued SSM parameters: To improve numerical stability and expressivity, we follow the real
parameterization of A and B, which has shown strong empirical performance in Mamba (Gu &
Dao, 2023).

¢ Subsequent 1 x 1 convolution layer: We integrate a 1 x 1 convolution layer to further enhance
the representation capacity while allowing the state size N to differ from the output channel size,
providing greater flexibility in model architecture design.

These modifications refine S3K into a flexible neural network module with stronger representation
capacity, allowing S3K to be effectively integrated into data-specific neural representation frameworks.
Additional implementation details can be found in Appendix

4.4 MODEL ARCHITECTURE

We illustrate the architecture of our final model in Fig.[5] We follow the design choices of the last
encoder variant in Sec. [3.2]using multi-scale signals decomposed by Laplacian pyramid (Fig. 2(c)),
and attach an S3K convolution layer, instead of an SSM block and the following convolutional
layer, to each level of the Laplacian pyramid. We make two key modifications to complete our
model: (1) replacing the intermediate MLP blocks with inverted bottleneck layers (Liu et al.,[2022),
a more advanced module that has shown superior performance across various domains (Woo et al.,
2023} |Chen et al.| [2023; Zhao et al.,|2024), and (2) using SiLU (Elfwing et al.,[2018)) activation and
RMSNorm (Zhang & Sennrich, [2019) that have been frequently used in SSMs (Gu & Dao) 2023}
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Figure 5: Structure and operation of the proposed LPNet-S3K architecture

Table 2: Comparison between different architectures Table 3: Comparison with the existing NeRV
on Kodak, CLIC2020, and Objaverse. Results re- methods on Bunny with different model sizes.

ported in PSNR/MS-SSIM. Results reported in PSNR.
Method 2D images 3D points Model size 035M 0.75M  1.5M  3.0M
Kodak CLIC2020  Objaverse HNeRV (Chen etal.|2023)  30.15 3281 3557 37.43
ConvNeXt (Liu et al.|2022})  25.99/0.8830 24.39/0.8280  17.17/0.7536 DNeRV (Zhao etal.||2023) ~ 30.15  33.30 3522 38.09
LPNet-Conv 27.44/0.9132  25.41/0.8505 17.67/0.7815 DS-NeRV (Yan et al.[2024) 3120  33.82  36.44 38.65
LPNet-Mamba 27.51/0.9227  26.16/0.8694  17.74/0.7732 SNeRV (Kim et al.[[2024b)  30.88  33.25 36.76 39.64
LPNet-S3K (Ours) 28.09/0.9331 26.33/0.8692  18.34/0.8492 Ours-S 3293 3574 37.83 39.99

Nguyen et al.,|2022; [Smith et al., 2022). We call this network Laplacian Pyramid Network with S3K
(LPNet-S3K) for ease of reference.

5 EXPERIMENTS

To evaluate the effectiveness of the proposed LPNet-S3K architecture, we overfit the network to
individual visual inputs across diverse data formats, including image, video, and 3D objects. We
first validate the efficacy of the LPNet and S3K architectures in the context of data-specific neural
representations by evaluating their performance on images and 3D objects. Then, we evaluate
our model on video INR benchmarks (NeRV), demonstrating its efficacy on the standard literature
benchmarks.

Datasets. We evaluate our models on standard image and video reconstruction benchmarks. For im-
ages, we use Kodak (Kodak,|1993)) and CLIC2020 (Toderici et al.,2020), consisting of high-resolution
photographs. For videos, we follow common NeRV benchmarks, including Bunny (Roosendaall
2008), UVG (Mercat et al., 2020), and DAVIS (Pont-Tuset et al.,[2017). For 3D data, we randomly
sample 1K furniture objects from Objaverse (Deitke et al.,[2023). To enable compatibility with our
framework, we voxelize each point cloud into a binary voxel grid, forming a cube shaped tensor that
encodes the object’s geometry. We describe details of each dataset in Appendix[A.8.T]

Evaluation metrics. We adhere to the standard evaluation protocols, reporting Peak Signal-to-Noise
Ratio (PSNR, in dB) and/or Multi-Scale Structural Similarity Index Measure (MS-SSIM) (Wang
et al.,[2003)) as fidelity metrics across all reconstruction tasks.

Implementation details. For images and 3D objects, we adopt a simple setup by attaching multiple
2D or 3D deconvolutional layers (Noh et al.| [2015)) on top of LPNet-S3K to reconstruct the input.
For videos, we replace the convolutional encoders of HNeRV (Chen et al., 2023), SNeRV (Kim!
et al., 2024b), and PNeRV-L (Zhao et al.| 2024} with LPNet-S3K, denoted as ‘Ours-H’, ‘Ours-S’ and
‘Ours-P’, respectively. Additional implementation details are provided in Appendix [A-8.2]

5.1 QUANTITATIVE COMPARISONS

Images and 3D objects. Quantitative results are reported in Table[2] To validate the effectiveness
of LPNet (Sec. @), the proposed baseline architecture, we construct a ConvNeXt (Liu et al., 2022)
variant that follows the same configuration of LPNet, as ConvNeXt is a widely adopted encoder in
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Table 4: Comparison with the existing NeRV methods on UVG. Table 5: Decoding speed
“*’ indicates results reproduced by official codebases. comparison on UVG

Size Beauty Bosp. Honey. Jockey Ready. Shake. Yacht Avg.
3.0M 3358 3473 3896 3204 2574 3457 2926 3270

Decoding Speed

Method - PSNR o rvid () FPS (1)

34M 3412 3565 39.22 3372 2822 3480 2974 33.64 HNeRV  32.70 1.74 344.83
33M 3418 3556 39.80 3151 2594 3530 3027 3322 Ours-H ~ 32.79 1.74 344.83
30M 3397 3522 3956 3286 27.10 3504 2940 33.31 PNeRV  33.22 1.99 301.10
3.0M 3376 3566 3844 3378 2657 3511 29.65 3328 Ours-P 3435 1.99 301.10
3.0M 3404 3632 39.51 31.80 2792 3554 3047 33.66 SNeRV ~ 33.28 10.08 59.52
33M 3422 3654 3871 3540 2931 3585 30.50 34.36 Ours-S  33.66 10.08 59.52

Table 6: Comparison with the existing NeRV methods on DAVIS

Size  Bike-packing Blackswan BMX-trees Breakdance Camel Car-rndabt Car-shdw Cows Dance-twirl Dog  Avg.

3.0M 30.55 30.35 29.98 3045 26.71 28.61 3111 24.60 28.60 31.04  29.20
3.4M 30.24 30.92 29.63 30.88 27.38 29.35 31.95 24.88 29.13 3132 29.57
3.3M 28.57 29.17 28.77 29.67 27.89 28.76 31.02 24.39 28.16 3095 28.74
3.0M - 32.55 29.76 32.21 27.26 29.48 35.88 25.08 28.79 33.29 -

3.0M 3329 33.83 31.65 31.40 28.68 31.27 35.79 25.14 3041 34.11 31.56
3.0M 34.33 34.58 31.72 33.86 30.04 32.35 36.69 26.47 30.25 3321 33.86
33M 32.15 34.17 3248 33.15 29.04 32.38 32.35 25.94 30.94 3397 3225

Ground Truth LPNet-S3K (Ours) LPNet-Mamba LPNet-Conv ConvNeXt

b
1

PSNR:22.64 | MS-SSIM: 0.99 | PSNR:19.03 | MS-SSIM: 0.97 | PSNR:20.00 | MS-SSIM: 0.98 | PSNR:21.80 | MS-SSIM: 0.98

Figure 6: Reconstruction results on images (Kodak, CLIC2020) and voxelized points (Objaverse)

Ground Truth Ours-S (3.0M) SNeRV (3.0M)

Figure 7: Reconstruction results on a DAVIS video

the literature on data-specific neural representations (Chen et al} 2023} [Zhao et al}, 2023}, 2024} [Kim
2024b)). For a fair comparison with ConvNeXt, we integrate standard convolutional layers




Under review as a conference paper at ICLR 2026

into LPNet, denoted as LPNet-Conv. The performance gap between ConvNeXt and LPNet-Conv
in Table 2] highlights the superiority of the LPNet architecture. We then compare LPNet-Conv and
LPNet-S3K to assess the contribution of S3K convolution; LPNet-S3K outperformed LPNet-Conv
across all benchmarks as shown in the table, underscoring the benefits of SSMs for data-specific
neural representations. To assess the distinct advantage of S3K, we also experiment with Mamba (Gu
& Dao, [2023) as an alternative SSM (LPNet-Mamba). Specifically, we switch the S3K convolutions
with Mamba followed by a standard convolutional layer. When comparing the two, LPNet-S3K
consistently outperforms LPNet-Mamba, showing its effectiveness as a compression-specialized
SSM. Due to space constraints, additional ablation studies are provided in Appendix [A.8.3] It is
worth noting that the approach introduced by LPNet and S3K is orthogonal to prevalent techniques in
data-specific neural representations, such as bit quantization (Kim et al.,|2024a} |[Ladune et al.| 2023}
Damodaran et al., [2023)) or learning image priors from large-scale datasets (Ball€ et al., 2016; 2018;
Cheng et al.| [2020; |Striimpler et al., 2022; |Catania & Allegra, [2023). This distinction highlights
the potential complementarity of our framework: we believe that integrating LPNet-S3K with these
existing techniques could further enhance performance and offer new insights into the design of
compact and effective data-specific neural representations.

NeRYV benchmarks. We evaluate our method on standard NeRV benchmarks, with results shown
in Table 3] (Bunny), Table | and [5] (UVG), and Table 6| (DAVIS). We include convolution-based NeRV
models as our baselines, following |Yan et al.[(2024) and |Kim et al.|(2024b). Additional comparisons
to MLP-based methods are provided in Appendix [A.8.4] On Bunny, our method ranks the best across
all model sizes. On UVG, our method outperforms previous arts and even surpasses models of larger
sizes: Ours-S achieves 33.66 PSNR with only 3.0M parameters, exceeding the performance of bigger
models like DNeRV and PNeRV. It is noteworthy that our method enhances the performance while
leaving the decoder part unchanged, ensuring the inference cost remains the same (Table[5). This
aspect offers a meaningful advantage in NeRV, since video decoding speed is critical for its real-time
streaming applications. On DAVIS, our model ranks either first or second across various videos,
surpassing most prior methods. All results are obtained by employing existing decoders, indicating
that the performance gains are entirely from our SSM-based encoder; this also implies even greater
potential of our method with a dedicated decoder design.

5.2 QUALITATIVE ANALYSIS

We present qualitative comparisons on images and 3D objects in Fig. [6l showing reconstruction
results on Kodak (Kodak, [1993), CLIC2020 (Toderici et al., |2020), and Objaverse (Deitke et al.,
2023)). Across all datasets, our model consistently preserves finer details, such as high-frequency
textures in the background (first row) or legible text on signage (second row), and underlying structure
of 3D geometry (third row). We provide video reconstruction results in Fig.|7] Our model shows
superior performance despite its smaller model size compared to PNeRV and DNeRYV, and effectively
preserves fine details, such as a person’s hand or typographies on a t-shirt. Additional qualitative
results are provided in Appendix Sec.[A.8.3]

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present the first attempt to link SSMs to data-specific neural representations. To
this end, we explore network architectures for effective SSM integration and analyze how different
architectures suit the characteristics of SSMs. As a result, we propose S3K, which harnesses the
expressiveness of SSMs while enabling natural multi-dimensional data processing and downsampling.
These results are theoretically supported and together lead to a novel and powerful data-specific
neural representation framework. Our framework achieves strong performance across diverse visual
data formats, including images, videos and 3D objects, and remains superior on challenging NeRV
benchmarks despite not being designed for NeRV.

In the following, we outline potential directions to improve and extend our framework.
1. Designing a dedicated decoder: This work focuses primarily on designing the SSM-based encoder,

while employing a simple upsampling decoder or decoders from other methods. While our results
demonstrate that the encoder alone significantly contributes to the performance improvements,



Under review as a conference paper at ICLR 2026

a decoder tailored to the characteristics of the SSM encoded features may further improve the
performance of our model.

2. Reducing encoding complexity: Constructing an input-sized kernel using state-space model
parameters leads to substantial computational overhead: about 20x more memory and 4 X more
FLOPs than a plain convolution. While effective, this approach may limit scalability. More
efficient alternatives—such as avoiding explicit kernel construction through mathematically
equivalent formulations (Nguyen et al.,[2022};|Gu et al.,20214a), or employing hardware-optimized
implementations (Gu & Dao, |2023)—could alleviate this burden.

3. Application to autoencoders: Although our method is proposed for data-specific neural net-
works, its compressive property can be exploited to produce compressive representation beyond
individual inputs. Note that modern autoencoders used for generative modeling often rely on
convolution-based architectures (Black Forest Labs| 2023 Rombach et al., [2022)) or signal pro-
cessing methods (Agarwal et al.| 2025). S3K, which aligns closely with both convolution and
signal processing principles, could enable compressive autoencoders that encode inputs using
fewer tokens.
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A APPENDIX

This material provides proofs for the theorems in the main paper (i.e., Theorem 4.1 and Theorem
5.1), and additional details omitted in the manuscript due to the space constraint.

A.1 RELATED WORK

State-space models. SSMs are a family of sequence-to-sequence models that embeds historical data
in state-space representation, using differential equations that involve hidden states and sequential
inputs. HiPPO (Gu et al.l[2020), an early state-space model, treats an input sequence as samples taken
from a continuous function. This function is then approximated using a predefined set of orthogonal
polynomials, with their coefficients being dynamically updated by the incoming sequential inputs.
LSSL (Gu et al.| 2021b) generalizes HiPPO by replacing HiPPO parameters into learnable ones,
while still retaining its ability to continuously remember and store the history of observed tokens.
It has developed into S4 (Gu et al.,|[2021aj2022a; |[Nguyen et al.| |2022)) and S5 (Smith et al.|[2022)),
which addresses technical inefficiencies of the previous work. Recently, Mamba (Gu & Dao), [2023))
has been introduced as a state-space model that adapts its parameters based on the input sequence.
Although originally designed for sequential inputs, this model has inspired various adaptations across
different visual perception tasks, including images (Zhu et al.| 2024aj |[Hu et al.| 2024} Ruan &
Xiang| [2024; |Zhu et al.| [2024b; |[Nguyen et al., 2022}, videos (Li et al., [2025; [Yang et al., 2024}
Chen et al.||2024; |Li et al.| [2024)), and 3D scenes (Liang et al., [2024} Xing et al.,|2024). Although
these efforts extend SSMs to multi-dimensional inputs, they primarily target sequence modeling
tasks such as classification or sequence-to-sequence translation. In contrast, our work investigates
SSMs as compact representations through compression of input data, a perspective that has received
comparatively less attention.

Implicit neural representations. INRs aim at constructing a model that effectively captures
continuous signals, including 3D scenes (Park et al.,[2019; Mildenhall et al., 202 1)), images (Striimpler
et al., 2022; |Guo et al., |2023) and videos (Zhang et al., 2021} |Chen et al.| [2021). INR typically
represents a continuous signal by parameterizing a field, which involves mapping between the
coordinate space and the signal space. The emergence of INRs has rapidly advanced the field of
data-specific neural representations, offering promising avenues for efficient compression (Striimpler,
et al.| [2022), continuous signal modeling (Martin-Brualla et al., 2021} |Chen et al., [2022a), and
task-specific adaptation (Pumarola et al., 2021} |Chen et al., [2021). Given this shared objective of
data-specific modeling, we evaluate our method on a standard INR benchmark, highlighting its
potential as a new architectural direction within the INR paradigm.

Neural compression. This line of work enables neural networks to learn compact representations of
images and videos by incorporating advanced techniques such as entropy modeling (Ballé et al.,[2018];
Cheng et al.| 2020) or quantization (Yang et al,[2020aib). Early methods introduce an autoencoder-
style architecture (Ballé et al.l 2016; Mentzer et al., 2018)), where the input is encoded into a
compressed latent vector and subsequently reconstructed by the decoder. Our method adopts a similar
encoder-decoder formulation while introducing state-space models (SSMs) as a new architectural
component for learning compact representations, highlighting the unexplored potential of SSMs in
neural compression.

A.2 SOLVING THE LINEAR DIFFERENTIAL EQUATION

We solve the linear differential equation of the state-space model (Eq. (I))), and derive its solution in
the form of Eq. (2). As the derivation in this section depends on the original state-space formulation,
we first restate Eq. (I) from the main paper for reference:

h'(z) = Ah(z) + Bo(z). (10)
We start by solving a homogeneous first-order matrix ordinary differential equation (ODE), h}, (z) =
Ahy,(z), which is a standard matrix ODE. Its solution is h, (7) = eA%C, where C € C¥ is a constant

vector determined by initial conditions. Allowing the constant C' to vary with z, i.e., C' := u(x),
derives the particular solution of the form h(z) = eA%u(z). Plugging this to Eq. yields:

%6’*%(96) = Ah(z) + Bo(z) (v
= Ae*u(z) + A/ (2) = Ae*u(z) + Bo(x), 12

—_—
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and canceling the terms gives:

e (z) = Bo(x) (13)
= u'(z) = e " B(2) (14)
u(z :/ e ATBo(1)dr + C'. (15)

For practical implementation, since we set h(0) = w(0) = 0, we can set C’ = 0. Thus, h(z) =

eA%u(x) becomes:
h(z) = eA%u(z) (16)
= A” / e ATBo(1)dr (17)
0
= / e ABg(1)dr, (18)
0

which matches the target expression (Eq. (2)).

A.3 PROOF FOR THEOREM 3.1

Theorem 3.1. Ler A be diagonalizable over C with non-zero distinct eigenvalues {\;}. Given A, B,
and the hidden state h computed by Eq. , there exists a function f : (A, B) — F € CN*N with
which one can decompose the input function ¢(t) as a linear combination of complex exponentials:

N
)= cpern @D, (19)
where c,, is the n-th element of f(A,B)h.

Proof. Since A is diagonalizable, we can write

&(r,L) = elL-T)AB (20)
= Ve(L-1AV-1B, (21
for some matrix V€ CV*¥ and a diagonal matrix A € CV*N_ Let b := V~!B, so that
by
by
v iB=| . |. (22)
bn
Since eL=7A g diagonal,
e(L*T))\l bl
(L—T))\Qb
e
L= Ay = 2, (23)
e(LfT;/\N bN
and thus, multiplying V yields:
e(L_T))‘l bl
(L*T))\gb
€ 2
Vell=MAp = v _ (24)
e(L—Ti)xN bN

N L—7)A,
anl Ulne( 7—) nbn

N (L=7)Any,
—1 U2n€ n
| : (25)

N L)
anl UNne( T) nbn
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where v;; is the (4, j)-th element of the matrix V. Hence, the & (7, ) from Eq. can be expressed
as:

N
gk(Ta L) = Z 'Ukne(L_T)A"bvu (26)
n=1
N —
= dgpen (LT (27)
n=1

for some constant dy,,. Hence, it becomes natural to choose sinusoidal bases ein() — eAn(L—1) and
express the input function ¢(t) as:

N —
Z cpern(L—t), (28)
n=1

Note that {e*» (L=t} consists of complex exponentials with N distinct frequencies, which ensures
their linear independence (Lang| [2012)). Since this property allows them to serve as valid basis
functions, we can obtain orthonormal basis functions {¢,,(¢)} that span the same functional space as

{ern (L=} Let the change-of-basis matrix from {1/, (t)} to {e*»(L=1)} defined as P:

wl(t) eM(L—t)
bl | |wED
. = ) . (29)
Y (t) e (L—1)
Then, & from Eq. can be rephrased to:
6)\1([/77’)
e}\z(LfT)
E(r,L) =[dkn dr2 -+ din] ) : (30)
e)\N(L—T)
Y1(7)
P2 (7)
=[dpy drz --- dpn]P : (31)
YN (T)
N
=" Genthn(7), (32)
n=1
where gp,, is the inner product between [dr1 dig2 -+ din] and n-th column of P. Sim-
ilarly, we can express ¢(t) from Eq. li with different bases, i.e., Egzlmnwn(t), where
[mi mg -+ mpy] = [c1 c2 --- cn]|P. Then, plugging ¢(t) = Zgzlmnzbn(t) into
Eq. (@) gives:
N
hie = () mnthn(7), & (7, L))o,z (33)
n=1
N N
= M (n(7), Y grton (7)) 0,11 (34)
n=1 7j=1
my
N WQ
= MG = G Gz - Ten) | (35)
n=1 .
MN.
_ o =T_
=[r1 Gk2 - GNP T, (36)
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wherec=[c; ¢ --- cN]T.
Leth:=[hy hy --- hy]" and G := [g;;]. Stacking Eq. yields:

h=GP ¢ & ©=(GP )'h & c=(GPT)'h, 37)
which enables us to rewrite ¢(t) by plugging c to Eq. . O

A.4 PROOF FOR THEOREM 4.1

Theorem 4.1. Let A be diagonalizable over C with non-zero distinct eigenvalues {\;}, and A be
the step size used for the discretization of A. Given the final hidden state h € CV after applying
S3K, there exists a function R : (A, B, h) — H € C**¥ with which one can reconstruct the input
sequence as:
R(A,B,h) [eMEATRN], 15 N (38)
k=1,2,...,L

)

Proof. LetT = LA = x_. Note that

T
h = / eT=DABg(7)dr. (39)
0
The diagonalizability of A gives:
e TA = VATV (40)
Let V!B := B have no zero elements, then
h:=V~1h (41)
T ~
= / AT B¢(r)dr (42)
0
flk T A (T—71)
=0 i= =— = et o(T)dr 43)
B 0

Note that our goal is to recover ¢(7) from h. This can be accomplished by finding the dual basis
function { fr(7)} of the basis function {e**(T=7)} for k € {1,2,--- , N'}. The dual basis function
fx(7) satisfies

T
/0 eAi(T_T)fj (T)dT = 6ij> (44)

where d;; is the Kronecker delta. It is worth to note that having f(7) leads to the expression of ¢(7)
as:

N
&) = enfulr), (45)
k=1

which can be easily shown when plugging Eq. (@3] to Eq. (43). Thus, our problem is now converted

to finding the dual basis { f;} that corresponds to {e**(T=7)}. We start from expressing f;(7) as a
linear combination of e+ (T=7):
N
£i(r) =Y 2T (46)
k=1
for some 2. Plugging Eq. (#6) to Eq. {#4) gives:
T N
/ eMi(T=m) Z zjpe T dr 47)
0 k=1
N T
= Z zjk/ QAT =) g7 — 5, (48)
k=1 0
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If we let the matrix Z := {z;.} and G = {g;1.} = {%}, directly solving the integral yields:
N e()‘z+>\k)T — 1
=1 i k
Hence, we obtain Z = G 1. According to Eq. ,
e/\l (T*T)
eAg(T—T)
f(r)=G™! , (50)
e)\]\j(’f*‘l’)’
and plugging this to Eq. (43)) gives:
e)\l (T*’T)
e}\f_)(T—T)
o(r)=cf(r)=c"G™1 | (51)
e)\N(:TfT)
C1
where c = | © | . If we put everything together,
cN
e)\l(T—T)
e)\g (T*T)
¢(r)=c"G™! , (52)
e)xN(.T—T)
ex\l(T—T)
B V-lh TGfl er2(T—7)
= (y=8) N (53)
e/\N(T—T)

We abused element-wise division operation here for simplicity. Evaluating ¢(7) at 7 €
{0,A,2A,--- (L — 1)A} completes the proof. O

A.5 SSM FOR 1D SIGNAL RECONSTRUCTION

As a natural extension of the reconstruction experiment in Sec.[3.2] we conduct additional studies
on 1D signal reconstruction to further validate the effectiveness of SSM-based architectures in
capturing signals. We follow the similar experimental setup as described in Sec. with the primary
modifications being the use of 1D convolutional layers in place of 2D ones and adjustments to the
input dimensionality. Specifically, we convert input images into 1D signals by flattening them in a
zig-zag manner, transforming the input shape from (3,32, 32) to (3, 1024). The kernel size of the
convolution is maintained to 8, resulting in an encoded embedding that is one-eighth the length of
the input. For clarity, we illustrate the modified baseline architecture and its variants in Fig.[AT|and

Fig. respectively.

The results of the experiment are demonstrated in Table[AT] We find the similar tendency we have
observed in Sec.[3.2] which suggests that SSMs, when placed in an appropriate reconstruction setting,
hold strong potential in signal reconstruction as implied in Sec.

A.6 PARAMETER COUNT ANALYSIS

As discussed in Sec.[4.3] the direct application of S3K convolution suffers from limited expressivity,
primarily due to an insufficient parameter budget that constrains the network’s representational
capacity. Table presents how each modification contributes to the parameter count of the 2D
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Table A1: Performance (PSNR) of different architec-
tures incorporating various SSMs for the 1D signal

Encodi Decod: . . .
e el task. (a), (b), and (c) indicate the encoder variants
" illustrated in Fig.
Input 2 Reconstructed
signal o Hconv(3888) o signal
G024 | & o (3,1024) SSM Block PSNR

Baseline (a) (b) (©)
Signal embedding Transformer (Vaswani et alJ2017) | 28.09  27.98 2727  27.47
®128 S4 (Gu et al| 2021 2081 2843 2866 | 3120

u et al.| a) by X g .
. . . S4D (Gu et al.|[2022a) 2899 2624 2773 2994
Figure Al: Baseline architecture for 1D S4ND (Nguyen ct al.][2022} 2098  28.17 2852 3105
. . S5 (Smith et al.] 2022} 2893 2639 2881 2898
signal reconstruction Mamba (Gu & Dao|[2023} 3062 2678 2730 | 3073

gl g
g 2 g 1 1 1
o (=X 3
o o 2 1x1 conv | [1x1 conv | [ 1x1 conv |5 1x1 conv | | 1x1 conv | | 1x1 conv
(] [} T ~< 1 Y .
=~ =~ 3 SSM block| |SSM block [[ssM block g o [SSM block][sSM block] [sSM block] [ssm block
o o,
By - — zla 1 L —
(8,512) ~ (8,256) (8, 128) (8,1024) ~ (8,512)  (8,256)  (8,128)
(a) Stacked (b) Signal pyramid (c) Laplacian pyramid

Figure A2: Encoder variants incorporating SSMs for 1D signal reconstruction
Table A2: Parameter count comparison on different variants of S3K 2D convolution.

subsequent  Adaptive Adaptive  Real C=3,D=16,

Method I leom B A AB # param K—=5N=16
Conv2d(C,D,K) - - - - CDK? + D 3088
X X X X 6N +4NC 288
v X X X 6N +4NC + (N +1)D 560
S3KConv2d v v/ X X 8N +2NK + (N +1)D 656
(C,N,D,K) v v/ v/ X S8N+2NK+ K+ (N+1)D 664
v v/ X v/ 8N +2NK + (N +1)D 624
v v v v  6N+2NK+ K+ (N+1)D 632

convolution using S3K. Following the standard convolutional network notation, Conv2d(C, D, K)
denotes a 2D convolutional layer that transforms an input with C' channels into D output channels
using a kernel of size K. Similarly, S3KConv2d(C, N, D, K) performs the same transformation but
introduces an intermediate state of size N to model the structured state-space dynamics. The primary
contributor to the high parameter count in standard convolutional networks is the C DK ? term, which
involves the multiplication of four factors and grows rapidly with channel and kernel size. In contrast,
S3K layers are designed with more compact parameterization, where the largest terms involve only
two multiplicative factors, resulting in significantly fewer parameters. Among all the architectural
modifications, the most significant increase in parameter count arises from the subsequent 1 x 1
convolution, which projects the N-dimensional latent state into the desired size of output feature. On
the other hand, the adaptivity of state-space parameters also introduces a relatively modest parameter
increase, though the exact impact depends on the choice of state size N.

A.7 MODEL IMPLEMENTATION DETAILS

This section provides additional implementation details that were omitted from the main paper due to
space constraints.

A.7.1 INITIALIZATION OF A AND B

We mainly follow the initialization scheme introduced in S5 (Smith et al., [2022)) and Mamba (Gu &
Dao| [2023)). For complex initialization of A and B for ablation, we follow HiPPO initialization of A
and use eigenvectors V from diagonalization of A for initialization of B, as done in S5 (Smith et al.|
2022). For real implementation, we set A, the N diagonal elements of A, be A,, = —(n+ 1), and
employ normal initialization for B.
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A.7.2 OPERATIONAL DETAILS OF S3KCONV2D LAYER

We elaborate on operational details of S3KConv2d layer, which naturally extends to S3K convolutions
for N-dimensional inputs.

S3KConv2d layer takes the same arguments of the ordinary convolutional layer: input channel
dimension C},, output channel dimension Cyy, and kernel size (K, K). For simplicity, we assume
trivial settings for stride, padding, and dilation. Let the input X, € RB*CoxHoxWo ‘then we first
project input to have C' channel dimension by 1 x 1 convolution: X € REX¢xHoxWo  Now we
construct a kernel for each spatial dimension. For clearer explanation, we focus on the input X,, €
REBXCxK1xKa “which represents the local window extracted during convolution. The following
operations are applied in parallel across all such windows as the kernel slides over the input. Note
that in Mamba (Gu & Dao) 2023)), a linear layer is applied to the length-L input sequence to obtain
the input-adaptive B of length L. Since the kernel of i-th dimension needs to be a length-K; 1D
kernel, we apply linear layer to the other spatial dimension. Specifically, let BI(;())J- (din, dou) be the
linear projection layer that transforms the channel dimension from di, to dy to produce B, B
used to construct the i-th dimension S3K 1D kernel. Then, we set (diy, dow) = (K2, N) fori =1
and (K, N) for i = 2, so that we obtain B(?) ¢ REXCxKixN yith A() ¢ RN and step size
A ¢ RN we discretize A and B using zero-order hold (ZOH) method:

K(l) _ 6A<i)A(i), E(Z) _ (A(L))—l(A(z)K(Z) _ I)B(z)’ (54)
and compute the kernel as in Eq. . Since we have kernel K(?) € REXCxKi e can take outer
product of these kernels to construct 2D kernel K € REXCXNxK1xKz2 ‘and apply this kernel to the
input X ,,:

Xz(l?ut) c RBXNX1X17 where (Xq(lj)m))bn = Z Z Z((Xw)[b,c,khkz])K[b,c,mlﬁ,kz]' (55)
C k‘g kl

We also incorporate gating mechanisms (Gu et al., [2022a; [Nguyen et al.| 2022} |Gu & Daol 2023
and residual connections for complete implementation, as they have proven effective and are widely
adopted as standard components in SSM block designs. Specifically, we project the initial input X to
have N channels: X,oq € REXNXHXW ‘and 2D average pool with the same kernel size (K1, K5) and

the stride to produce the tensor Xr(e(;m), matching the output size of the convolution. A SiLU (Elfwing

et al.,|2018) activation is applied to this residual tensor, which is then used to gate the convolution

output via element-wise multiplication. Finally, we add Xr(e(;m) back to the gated output to complete

the residual connection.

A.8 EXPERIMENT DETAILS

This section provides additional experiment details that were omitted from the main paper due to
space constraints.

A.8.1 DATASETS

Kodak, CLIC2020. The Kodak dataset (Kodak, |[1993) is a set of 24 natural photographs of
resolution 512 x 768. The CLIC2020 (Toderici et al.| 2020) dataset includes 41 images of varying
resolutions, allowing side lengths up to 2048 pixels. Both datasets are commonly used for image
compression tasks, as they contain rich high-frequency details and complex scenes.

Bunny, UVG, DAVIS. Bunny (Roosendaal, [2008)) is a 132-frame, animated short film, while
UVG (Mercat et al.,|2020) is a long 1080p video dataset comprising sequences of 300 or 600 frames.
Both are widely used benchmarks for video compression. DAVIS (Huang et al.l 2017) is a densely
annotated featuring short 1080p video clips, commonly used for video segmentation. Since NeRV
benchmarks often include a subset of DAVIS, we follow this convention and select the following
video clips; ‘bike-packing’, ‘blackswan’, ‘bmx-trees’, ‘breakdance’, ‘camel’, ‘car-roundabout’,
‘car-shadow’, ‘cows’, ‘dance-twirl’, and ‘dog’.
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Table A3: Implementation details of the experiments from Sec.

Dataset Encoder Enc. strides Decoder Dec. strides Feature dims. Le?;?emg

ConvNeXt [16,4,2,2] ConvTranspose2D [4,4,4,2,2] [64,64,64,16] le-2

Kodak LPNet-Conv [16, 4,2, 2] ConvTranspose2D [4,4,4,2,2] [64,64,64,16] 3e-2
LPNet-Mamba  [32, 2, 2, 2] ConvTranspose2D [4,4,4,2,2] [64,64,64,16] le-2

LPNet-S3K [32,2,2,2] ConvTranspose2D [4,4,4,2,2] [64,64, 64, 16] 2e-2

ConvNeXt [4,4,2] ConvTranspose2D 4,2,2,2] [64, 64, 64, 16] le-2

cLIC2020 LPNet-Conv [4,4,2] ConvTranspose2D [4,2,2,2]  [64, 64, 64, 16] 5e-3
LPNet-Mamba [8,2,2] ConvTranspose2D 4,2,2,2] [64, 64, 64, 16] le-2
LPNet-S3K [8,2,2] ConvTranspose2D [4,2,2,2] [64, 64, 64, 16] 1.6e-2

ConvNeXt 2,2,2,2] ConvTranspose3D 2,2,2,2] [64, 64, 64, 16] 3e-3

Obiaverse LPNet-Conv [2,2,2,2] ConvTranspose3D [2,2,2,2] [64, 64, 64, 16] 3e-3
) LPNet-Mamba [4,2,2] ConvTranspose3D 2,2,2,2] [64, 64, 64, 16] 4e-3
LPNet-S3K [4,2,2] ConvTranspose3D 2,2,2,2] [64, 64, 64, 16] 3e-3

Bunny LPNet-S3K [5,4,4,2,2] SNeRV (Kim et al.|2024b)  [5,4,4,2,2] [64, 64,64, 16] 3e-4
LPNet-S3K [10,8, 3, 2] HNeRV (Chen et al.|2023)  [5,4,4,3,2] [64, 64,64, 16] 2e-4

UVG LPNet-S3K [10,8, 3, 2] SNeRV (Kim et al.[[2024b)  [5,4,4,3,2] [64, 64,64, 16] 2e-4
LPNet-S3K [10,8,3,2] PNeRV-L (Zhao et al.|[2024) - - 2e-4

DAVIS LPNet-S3K [10,8, 3, 2] SNeRV Kim et al.|(2024b)  [5,4,4,3,2] [64, 64, 64, 16] 2e-4
LPNet-S3K [10, 8, 3, 2] PNeRV-L|Zhao et al.[(2024) - - 2e-4

Objaverse. Objaverse is a large-scale dataset containing over 800K web-crawled 3D objects,
which covers a wide range of functional categories and geometric variations. As one of the largest
publicly available collections of 3D assets, it is often used for 3D understanding, neural rendering,
shape reconstruction, and vision-language grounding. In our work, we take the 1K 3D objects from
‘Furnitures’ subset, which consists of everyday household items such as sofas, chairs, and tables. We
voxelize each furniture object to have a binary grid of size 323 (approximately 33K voxels), where
the voxel occupancy encodes the object’s structure.

A.8.2 IMPLEMENTATION DETAILS

We provide detailed implementation configurations in Table [A3] Since the decoder architecture
remains consistent across all experiments, we list the different experimental variants under the
‘Encoder’ column. The ‘Enc. strides’ column specifies the strides applied at each encoder stage,
indicating the spatial downsampling factor between successive layers. Analogously, ‘Dec. strides’
indicates the upsampling factor at each decoder stage. PNeRV (Zhao et al., 2024)) does not employ
conventional upsampling methods such as deconvolution (Noh et al.,|2015)) or pixelshuffle (Shi et al.
2016)), thus we do not specify its decoder strides. We observe that SSM-based encoders perform better
when the first encoder layer uses a larger kernel size, while standard convolution-based encoders tend
to perform well with comparably more uniform stride settings across layers. Accordingly, we use a
larger stride in the first encoder layer for SSM-based models to match this behavior. The ‘Feature
dims.” column specifies the channel width at each encoder stage, which is kept consistent across all
experiments. Since each model has different characteristics, we observe that they require distinct
learning rates to achieve optimal performance. Therefore, we carefully search across a range of
learning rates for each dataset and report the best results.

A.8.3 ABLATION STUDIES

We present an ablation study in Table to evaluate the impact of the architectural modifications
introduced in Sec. .3 and Sec. f.4] In addition, we evaluate an alternative design inspired by
Mamba (Gu & Dao}, 2023)), where the step size A is made input-adaptive. The results show that each
proposed component contributes positively to performance, except for the adaptive A: performance
drops significantly from 36.92 to 36.26 when A is made input-dependent. We hypothesize that
this is due to a mismatch between the objective of input-selectivity, a primary reason for adopting
adaptive A, and input reconstruction. Since input reconstruction demands uniform attention across
all regions of the input for accurate reconstruction, the input selectivity introduced by adaptive A may
be less effective than in other tasks. We also find that the complex initialization of A and B (Smith
et al.} 2022) is equally helpful, aligning with observations in Mamba (Gu & Dao, [2023) that such
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Table A4: Ablation study of LPNet-S3K components on the Bunny dataset. We employ HNeRV (Chen
et al.| 2023) decoder for the experiment.

subsequent Adaptive Adaptive  Inverted Real SiLU RMS

1 x 1 conv. B A Bottleneck A,B act. norm PSNR
X X X X X X X 36.37
v X X X X X X 36.67
v v X X X X X 36.92
v v v X X X X 36.26
v v X 4 X X X 36.94
v v X v X v v 37.03
v v X v v X X 36.92
v v X v v v X 36.99
v v X v v v v 37.04

initialization of A is aids in processing continuous inputs. However, for performance optimization in
terms of speed, we stick to the real parametrization.

A.8.4 COMPARISON TO MLP-BASED METHODS

LPNet-S3K is yet inapplicable to coordinate-to-rgb mapping methods (i.e., MLP-based methods) such
as|Liu et al.|(2024)); [Sitzmann et al.[(2020) (images) or |Kwan et al.|(2024)); [Kim et al.|(2022)) (videos),
categorizing itself as a convolution-based neural representation, in contrast to other mainstream neural
representation MLP-based neural representation (coordinate-based, INR). Hence, we have compared
our methods only with convolution-based methods in Sec.[5.1] as it has been a standard practice to
compare models within the same family (Kim et al., 2024bj |Yan et al., [2024; [Kim et al., 2022; Shin
et al.,|2024)), due to their fundamentally different characteristics which are illustrated in Table E}
Fig.[A3|also exhibits their differences clearly: convolution-based models offer very fast decoding
speed while sacrificing their reconstruction quality. On the other hand, MLP-based methods in general
show higher fidelity, but have slower decoding speed, which limits their real-time application. Unlike
the prevailing NeRV trend of trading decoding speed for higher reconstruction quality, LPNet-S3K
serves as a fidelity enhancer for convolution-based models without adding inference cost.

We also provide a comparison with MLP-based image neural representation, FINER (Liu et al.|[2024)
in Table[A6] FINER shows better fidelity compared to LPNet-S3K, but requires much more time and
memory for training. On the other hand, LPNet-S3K shows greater efficiency, while underperforming
in terms of reconstruction quality.
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Figure A3: Reconstruction quality and decod-
ing speed trade-off in modern NeRV models.
We collect models of 0.02-0.03bpp on a 600-
frame UVG video, which occupy 300 epochs
to train. FPS is measured with NVIDIA
A6000ada GPU.

Table AS: Comparison between MLP-based meth-
ods and convolution-based methods

recon.  decoding
Type quality speed Examples
SIREN (Sitzmann et al.[[2020
FINER (Ciu et al.|[2024]
MLP-based . HiNeRV (Kwan et al.[[2024]
(INR) high — low NeRV (Chen et al.| 2021
NVP (Kim et al.][2027]
C3 (Kim et al.[|2024a
HNeRYV (Chen et al.||[2023)
DNeRV (Zhao et al.|[2023)
Convolution . PNeRV (Zhao et al.[|2024)
low high
-based

DS-NeRV (Yan et al.;[2024
SNeRV l 2024b
Ours

Table A6: Comparison between LPNet-S3K to FINER.

Method Epochs Num params Training time (s/epoch) Memory (MB) Kodak CLIC
LPNet-S3K 300 150K 0.05 35210 28.09 26.33
FINER (Liu et al.] 2024} 300 199K 0.4 4106 28.68 27.12

A.8.5 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results in Fig.[A4] (Kodak), Fig.[A5] (CLIC2020), Fig.[A6] (Obja-

verse), and Fig. [A7AT2](DAVIS).

10
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Ground Truth LPNet-S3K (Ours) LPNet-Mamba LPNet-Conv ConvNeXt

i

. . - LT -
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Figure A4: Reconstruction results on the Kodak dataset
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Figure AS: Reconstruction results on the CLIC2020 dataset
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Ground Truth LPNet-S3K (Ours) LPNet-Mamba LPNet-Conv ConvNeXt

PSNR:23.95 | MS-SSIM: 0.99  PSNR:22.54 | MS-SSIM: 0.98  PSNR:21.88 | MS-SSIM: 0.98  PSNR:21.53 | MS-SSIM: 0.98

PSNR:24.04 | MS-SSIM: 1.00  PSNR:22.83 | MS-SSIM: 1.00  PSNR:21.26 | MS-SSIM: 0.97  PSNR:19.36 | MS-SSIM: 0.96

PSNR:22.91 | MS-SSIM: 0.99  PSNR:22.99 | MS-SSIM: 0.99  PSNR:21.92 | MS-SSIM: 0.98  PSNR:20.19 | MS-SSIM: 0.96

PSNR:23.22 | MS-SSIM: 0.99  PSNR:23.00 | MS-SSIM: 0.99  PSNR:23.39 | MS-SSIM: 0.99  PSNR:20.91 | MS-SSIM: 0.97

Figure A6: Reconstruction results on the Objaverse dataset. For clearer comparison, we present the
difference visualization under each reconstruction result.
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Figure A7: Reconstruction results on ‘blackswan’ from the DAVIS dataset
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Figure A8: Reconstruction results on ‘camel’ from the DAVIS dataset

Figure A9: Reconstruction results on ‘car-roundabout’ from the DAVIS dataset
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Figure A10: Reconstruction results on ‘car-shadow’ from the DAVIS dataset

Ground Truth Ours-S (3.0M) SNeRV (3.0M)

Figure A11: Reconstruction results on ‘cow’ from the DAVIS dataset
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Figure A12: Reconstruction results on ‘dance-twirl’ from the DAVIS dataset
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