

000 EXPLORING STATE-SPACE MODELS 001 002 FOR DATA-SPECIFIC NEURAL REPRESENTATIONS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 This paper studies the problem of data-specific neural representations, aiming for
012 compact, flexible, and modality-agnostic storage of individual visual data using
013 neural networks. Our approach considers a visual datum as a set of discrete ob-
014 servations of an underlying continuous signal, thus requiring models capable of
015 capturing the inherent structure of the signal. For this purpose, we investigate
016 state-space models (SSMs), which are well-suited for modeling latent signal dy-
017 namics. We first explore the appealing properties of SSMs for data-specific neural
018 representation and then present a novel framework that integrates SSMs into the
019 representation pipeline. The proposed framework achieved compact representa-
020 tions and strong reconstruction performance across a range of visual data formats,
021 suggesting the potential of SSMs for data-specific neural representations.

023 1 INTRODUCTION

025 Recent years have witnessed growing interest in overfitting a neural network to a single visual datum
026 such as image (Dupont et al., 2021; Strümpler et al., 2022), video (Chen et al., 2021; Mentzer et al.,
027 2022), or 3D instance (Martin-Brualla et al., 2021; Zhang et al., 2020). This *data-specific neural*
028 *representation* paradigm, prevalent in implicit neural representations (INRs) (Sitzmann et al., 2020)
029 and neural compression (Ballé et al., 2016; Cheng et al., 2020), aims to directly encode a datum into
030 an embedding or the weights of a compact neural model. Such a paradigm not only serves as an
031 effective data compression method but also offers a standardized data format that can accommodate
032 various modalities for future neural network training (Dupont et al., 2022), with some approaches
033 further enabling downstream applications such as spatial/temporal super-resolution (Chen et al.,
034 2022b), denoising (Xu et al., 2022), and in/outpainting (Skorokhodov et al., 2021; Chen et al., 2023).

035 The central objective of the data-specific neural representations is to represent a single datum with
036 minimal parameter complexity and maximal reconstruction quality. One of the effective strategies to
037 achieve this comes from the recognition that visual data are essentially arrays of pixels sampled at
038 discrete intervals from continuous signals (Sitzmann et al., 2020; Xu et al., 2022; Tancik et al., 2020;
039 Saragadam et al., 2023). The core idea behind this approach is to project input data onto a set of
040 established basis functions and only save their coefficients, so that the coefficients reconstruct not only
041 the input but also the continuous signal from which the input is sampled. Although this concept has
042 served as a fundamental principle for effective compression and reconstruction of visual data (Cooley
043 et al., 1969; Richardson, 2011), modern approaches to data-specific neural representation do not take
044 it into account due to the lack of well-established neural network architectures that incorporate the
045 concept; they have instead focused merely on coordinate-to-RGB mapping (Martin-Brualla et al.,
046 2021; Strümpler et al., 2022), bit-level quantization (Xu et al., 2018; Gordon et al., 2023) or improving
047 the capacity of conventional neural networks to implicitly manage input redundancies (Zhou et al.,
2018; Li et al., 2018).

048 Recently, the rise of state-space models (SSMs) has opened a new pathway to this challenge, as
049 SSMs provide a framework for modeling continuous signals in a way that aligns with the objectives
050 of compact neural representations. To be specific, the hidden state of SSM was initially designed
051 to represent the coefficients that reconstruct observed data using a set of orthogonal polynomial
052 bases (Gu et al., 2020; 2022b), which generalizes to the traditional compression algorithms. Although
053 the design of SSMs has become more implicit (Gu et al., 2021b; Smith et al., 2022; Gu et al., 2021a),
such that their hidden states no longer explicitly represent coefficients of such continuous bases, they

054 still retain the desirable properties necessary for effective signal modeling (Gu et al., 2021b; Gu
 055 et al., 2025; Rao, 1987; Rao & Arun, 1992), so it is worth exploring their applications.
 056

057 Driven by this motivation, we explore the potential for incorporating SSMs within data-specific
 058 neural representations. We investigate the effectiveness of SSMs in compressing input data and
 059 capturing underlying signal structures, and empirically demonstrate their benefits in enhancing the
 060 reconstruction quality. However, a naïve application of SSMs presents key challenges: (1) they
 061 primarily operate on 1D sequence inputs, necessitating unnatural scanning for multi-dimensional
 062 data, and (2) they inherently preserve input sequence length, which makes them unsuitable for an
 063 effective compression method. To address these limitations, we propose *structured state-space kernel*
 064 (S3K), which distills the expressive power of SSMs into convolutional kernels. We design the kernel
 065 parameters in a way that the convolution output matches the hidden state representation of SSMs,
 066 effectively preserving their reconstruction capability. Through seamless integration with convolution,
 067 it naturally processes multi-dimensional inputs while inherently enabling expressive downsampling.
 In summary, our contribution is three-fold as follows:

- 068 • We for the first time investigate the integration of state-space models (SSMs) into data-specific
 069 neural representation frameworks, providing a theoretical background that explains their potential
 070 benefits in improving both expressive power and efficiency.
- 071 • We introduce S3K, an SSM-derived convolutional kernel that inherits the expressive power of
 072 SSMs while mitigating their limitations for multi-dimensional processing and downsampling.
- 073 • Our framework shows promising results across diverse visual data reconstruction tasks—images
 074 (Kodak (Kodak, 1993), CLIC2020 (Toderici et al., 2020)), videos (Bunny (Roosendaal, 2008),
 075 UVG (Mercat et al., 2020), DAVIS (Perazzi et al., 2016)), and 3D objects (Objaverse (Deitke
 076 et al., 2023))—highlighting its potential for advancing data-specific neural representations.

079 2 PRELIMINARY: STATE-SPACE MODEL

080 SSM is a function that maps a 1D input signal $\phi(x)$ to a 1D output signal $y(x)$ of the same length
 081 through the latent state $h(x) \in \mathbb{C}^N$ based on the following linear differential equation:
 082

$$083 \begin{aligned} h'(x) &= \mathbf{A}h(x) + \mathbf{B}\phi(x), \\ 084 y(x) &= \mathbf{C}h(x), \end{aligned} \tag{1}$$

085 where $\mathbf{A} \in \mathbb{C}^{N \times N}$ is the state transition matrix, and $\mathbf{B} \in \mathbb{C}^N$ and $\mathbf{C} \in \mathbb{C}^N$ are projection parameters.
 086 Solving the linear differential equation (1) to explicitly express h yields ¹:

$$087 h(x) = \int_0^x e^{(x-\tau)\mathbf{A}} \mathbf{B} \phi(\tau) d\tau \in \mathbb{C}^N, \tag{2}$$

088 where each $h_k(x) \in \mathbb{C}$ corresponds to:

$$089 h_k(x) = \int_0^x e^{(x-\tau)\mathbf{A}_k} \mathbf{B} \phi(\tau) d\tau = \left\langle \phi(\tau), \overline{e^{(x-\tau)\mathbf{A}_k} \mathbf{B}} \right\rangle_{[0,x]} := \langle \phi(\tau), \xi_k(\tau, x) \rangle_{[0,x]}. \tag{3}$$

090 Here, $\langle \cdot, \cdot \rangle_{[x_1, x_2]}$ is a complex function space inner product in the given domain $[x_1, x_2]$. Intuitively,
 091 Eq. (3) tells that the k -th element of the hidden state $h_k(x)$ is a projection of the input $\phi(\tau)_{\tau \leq x}$
 092 onto the function ξ_k . Gu et al. (2020; 2021b; 2022b;a) have established that through appropriate
 093 parameterization of the matrix \mathbf{A} , $\{\xi_k\}$ can serve as a set of basis functions, which enable the
 094 model to effectively capture and retain key information from the entire sequence history up to
 095 the current position x . This ability to project input signals onto a learned basis makes SSMs a
 096 natural fit for compression, since such a capability to model signal representation becomes beneficial.
 097 Various ways to parametrize \mathbf{A} have been explored: HiPPO (Gu et al., 2020), diagonal plus low
 098 rank (Gu et al., 2021a), and diagonal (Gupta et al., 2022; Gu et al., 2022a). Among these, using a
 099 diagonal parameterization of \mathbf{A} has gained popularity for its easier formulation while maintaining
 100 expressivity (Smith et al., 2022; Gu & Dao, 2023).

101 ¹See Appendix A.2 for details.

108

3 EXPLORING SSMs FOR DATA-SPECIFIC NEURAL REPRESENTATIONS

109

110 This section delves into advantages and proper architecture designs of data-specific neural representations
111 using SSMs. First, we examine how SSMs encode input data and highlight their effectiveness
112 in data-specific neural representation. Then, through an extensive experimental analysis, we identify
113 the key characteristics of network architectures incorporating SSMs for this purpose.

114

3.1 WHAT DO SSMs ENCODE?

115

117 To understand the operational principles of SSMs and interpret their features, we bring up a classical
118 signal processing task, *sinusoid problem*, which aims at estimating parameters of sinusoidal signals
119 that make up the input signal. Given an input function $\phi(t)$ that takes 1D coordinate $t \in [0, L]$, we
120 are interested in finding $\theta_n(t)$ and c_n such that

121
$$\phi(t) = \sum_{n=1}^N c_n e^{i\theta_n(t)}, \quad (4)$$
122
123

124 where $e^{i\theta_n(t)}$ is the n -th sinusoidal basis and c_n is its coefficient. Note that this form generalizes
125 to various sinusoidal transformation methods, *e.g.*, setting $\theta_n(t) = -2\pi nt/L$ leads to the choice
126 of bases used in discrete Fourier transform (Cooley et al., 1969). Under a proper choice of $\theta_n(t)$,
127 estimating the parameter c_n that approximates the input signal $\phi(t)$ offers an effective method for
128 compression.

129 Interestingly, the SSM formulation allows the input signal to be decomposed into a sinusoidal form:

130 **Theorem 3.1.** *Let \mathbf{A} be diagonalizable over \mathbb{C} with non-zero distinct eigenvalues $\{\lambda_i\}$. Given \mathbf{A} , \mathbf{B} ,
131 and the hidden state h computed by Eq. (2), there exists a function $f : (\mathbf{A}, \mathbf{B}) \mapsto \mathbf{F} \in \mathbb{C}^{N \times N}$ with
132 which one can decompose the input function $\phi(t)$ as a linear combination of complex exponentials:*

133
$$\phi(t) = \sum_{n=1}^N c_n \overline{e^{\lambda_n(L-t)}}, \quad (5)$$
134
135

136 where c_n is the n -th element of $f(\mathbf{A}, \mathbf{B})\bar{h}$.

137 The conclusion of the theorem implies that the SSM parameters \mathbf{A} and \mathbf{B} inherently capture signal
138 characteristics of the input, as well as the hidden state h . This highlights the unique capability of
139 SSMs: they are particularly favorable for reconstructing the input since they encode the input function
140 $\phi(t)$ itself, unlike traditional data-specific neural representation frameworks that were originally
141 designed to capture specific patterns or semantics.

142 To verify the effectiveness of SSMs in the context of compact data-specific neural representation,
143 we conduct input reconstruction experiments where the input is compressed into an embedding and
144 then reconstructed by a lightweight decoder, which allows us to directly assess how well the encoder
145 captures and retains the information of the input in a compact form. To this end, we first design
146 a simple encoder-decoder architecture that can naturally incorporate various SSMs (Fig. 1). The
147 encoder consists of an SSM block computing the output signal by Eq. (1) and a single convolutional
148 layer for downsampling the signal, while the decoder is composed of a deconvolutional layer (Noh
149 et al., 2015) for upsampling. Note that the SSM block is attached directly onto the raw input and that
150 the downsampling operation of the encoder is essential for compression due to the length-preserving
151 nature of SSMs (Sec. 2). We consider the established SSM architectures, S4 (Gu et al., 2021a),
152 S4D (Gu et al., 2022a), S4ND (Nguyen et al., 2022), S5 (Smith et al., 2022) and Mamba (Gu & Dao,
153 2023), as candidates for the SSM block.

154 For evaluation, we train and evaluate this baseline architecture coupled with the diverse SSMs on
155 1K randomly sampled images from CIFAR-100 (Krizhevsky et al., 2009). Each model is trained for
156 300 epochs on each image, adhering to the prevailing practice in data-specific neural representations
157 that focuses on optimizing a lightweight model to facilitate overfitting on a single sample (Dupont
158 et al., 2021; Chen et al., 2021). Since the SSMs are designed to operate on 1D sequences (except for
159 S4ND (Nguyen et al., 2022)), we preprocess the input images by flattening the 32×32 pixel grid
160 before passing it through the SSMs.

Figure 1: Baseline architecture incorporating SSMs for image reconstruction

Table 1: Image reconstruction quality in PSNR of different architectures incorporating various SSMs. (a), (b), and (c) indicate the encoder variants shown in Fig. 2.

SSM Block	Baseline	(a)	(b)	(c)
Transformer (Vaswani et al., 2017)	24.75	24.87	23.96	24.67
S4 (Gu et al., 2021a)	25.79	24.65	24.68	25.82
S4D (Gu et al., 2022a)	25.49	24.99	25.48	26.06
S4ND (Nguyen et al., 2022)	26.00	25.25	25.75	26.61
S5 (Smith et al., 2022)	25.76	24.84	24.90	26.44
Mamba (Gu & Dao, 2023)	24.90	24.82	24.78	26.58

Figure 2: Encoder variants incorporating SSMs for image reconstruction

We report experimental results using the baseline architecture in the ‘Baseline’ column of Table 1. For comparison, we adopt a Transformer (Vaswani et al., 2017) in place of the SSM block, as it is a widely used architecture for data-specific representation (Yan et al., 2024; Mentzer et al., 2022; Liu et al., 2023; Lu et al., 2021) and has demonstrated strong performance. ‘Transformer’ indicates a single multi-head attention layer used in this context. The results show that, under the baseline architecture, every SSM consistently outperforms the transformer in reconstruction quality. This finding is *not* trivial, particularly considering that transformers are widely recognized for their superior performance when operating on short token sequences (Gu & Dao, 2023). This suggests that for input reconstruction, the transformer’s ability to compute semantic relationships between tokens is less beneficial than in other tasks, while the input function modeling property of SSMs proves to be more advantageous, as discussed in Sec. 2.

3.2 EXPLORING ARCHITECTURES INCORPORATING SSMs

To explore encoder architectures that better leverage SSMs, we experiment with several design variants. Given our focus on evaluating how well the encoder compresses the input into an embedding, we maintain a fixed decoder architecture across all configurations. We first evaluate a stacked architecture where SSM and convolutional layers alternate to form a deep network (Fig. 2(a)), and observe consistent performance drop for SSM models (Table 1(a)). We hypothesize that this decline stems from the way SSMs encode input features (Sec. 3.1): since SSMs project the input onto implicitly parameterized basis functions and stacking them results in multiple layers of such projections, repeated projection amplifies artifacts and limits the achievable reconstruction rate, analogous to generation loss from information theory (Cover, 1999). Figure 3 supports this explanation: the feature maps from stacked SSM layers show clear block-like artifacts, and these distortions persist into the reconstructed output. The consistency between feature-level and output-level artifacts aligns with our hypothesis that stacking SSM projections accumulates errors, ultimately limiting the achievable reconstruction quality.

To address this, we introduce an ‘Image pyramid’ variant (Fig. 2(b)), where SSMs are applied at multiple resolutions of the input. This approach improves performance (Table 1(b)), as it enables the use of representations across different scales and increases model capacity without having to stack SSM blocks. While Mamba (Gu & Dao, 2023) shows a slight drop in this setting, the overall trend confirms the benefit of incorporating SSMs across multiple resolutions.

We further explore a ‘Laplacian pyramid’ variant (Fig. 2(c)), a widely used decomposition method in traditional compression techniques (Burt & Adelson, 1987; Richardson, 2011). Since a Laplacian pyramid introduces less redundancy across scales than the ‘Image pyramid’ variant, the separate SSM blocks can be more effectively utilized. Fig. 4 illustrates this claim: the outputs of SSM blocks in the ‘Laplacian pyramid’ variant differ meaningfully across scales, whereas those from the ‘Image

Figure 3: Feature map visualizations of three encoder variants explored in Sec 3.2. (a), (b) and (c) correspond to each variant in Fig. 2.

Figure 4: SSM block output of Image pyramid (top) and Laplacian pyramid (bottom) variants. The rightmost column shows correlation matrix between these maps.

pyramid’ variant exhibit noticeable redundancy. Results in Table 1(c) show consistent gains, with SSM-based models benefitting the most.

From these image reconstruction experiments, we outline key insights on incorporating SSMs: (1) Stacking SSMs in the encoding process does not yield effective results, (2) attaching SSMs to downsampled images to provide intermediate multi-scale features proves advantageous, (3) employing Laplacian pyramid decomposition further enhances performance.

4 PROPOSED METHOD

This section presents our method for data-specific neural representations using SSMs. We introduce our novel module, structured state-space kernel, which addresses the two major limitations of applying SSMs to neural representations of visual data: (1) their design for one-dimensional signals, which does not align directly with visual data, and (2) their inability to compress input sequences due to their length-preserving nature, which typically necessitates additional components for downsampling. Our module overcomes these challenges by leveraging structured kernels derived from SSMs, enabling efficient encoding and reconstruction of visual data.

4.1 STRUCTURED STATE-SPACE KERNEL

To implement the continuous-time dynamics of SSMs on a discrete sequence, the state update of Eq. (1) is often approximated on discretized intervals using a step size parameter Δ . For instance, one can apply the hidden state update between $h(x_i)$ and $h(x_{i-1})$ using the Euler method:

$$\begin{aligned}
 h(x_i) &\approx h(x_{i-1}) + \Delta h'(x_{i-1}) \\
 &= h(x_{i-1}) + \Delta(\mathbf{A}h(x_{i-1}) + \mathbf{B}\phi(x_i)) \\
 &:= \bar{\mathbf{A}}h(x_{i-1}) + \bar{\mathbf{B}}\phi(x_i).
 \end{aligned} \tag{6}$$

Depending on the choice of the discretization method and Δ , the way $\bar{\mathbf{A}}$ and $\bar{\mathbf{B}}$ are constructed may vary. Eq. (6) can be expressed as a convolution, where the hidden states evolve according to:

$$\begin{aligned}
 h_{-1} &= 0, \quad h_0 = \bar{\mathbf{A}}h_{-1} + \bar{\mathbf{B}}\phi_0 = \bar{\mathbf{B}}\phi_0, \quad h_1 = \bar{\mathbf{A}}h_0 + \bar{\mathbf{B}}\phi_1 = \bar{\mathbf{A}}\bar{\mathbf{B}}\phi_0 + \bar{\mathbf{B}}\phi_1, \quad \dots \\
 h_{L-1} &= \bar{\mathbf{A}}^{L-1}\bar{\mathbf{B}}\phi_0 + \bar{\mathbf{A}}^{L-2}\bar{\mathbf{B}}\phi_1 + \dots + \bar{\mathbf{A}}\bar{\mathbf{B}}\phi_{L-2} + \bar{\mathbf{B}}\phi_{L-1} \\
 &= [\bar{\mathbf{A}}^{L-1}\bar{\mathbf{B}} \ \bar{\mathbf{A}}^{L-2}\bar{\mathbf{B}} \ \dots \ \bar{\mathbf{A}}\bar{\mathbf{B}} \ \bar{\mathbf{B}}] [\phi_0 \ \phi_1 \ \dots \ \phi_{L-1}]^\top,
 \end{aligned} \tag{7}$$

where we denote $h(x_i)$ and $\phi(x_i)$ as h_i and ϕ_i , respectively, for brevity. Given that the last hidden state is the projection of the entire sequence onto the basis functions defined by \mathbf{A} and \mathbf{B} (Sec. 2), some previous work (Gu et al., 2020; 2022b) have demonstrated that the input signal can be reconstructed solely from the last hidden state. Inspired by this idea, we employ h_{L-1} for downsampling, as it effectively compresses the input into a compact representation while allowing for an efficient

270 operation by skipping the computation of intermediate hidden states, *i.e.*, $\{h_0, \dots, h_{L-2}\}$. Once we
271 construct the convolutional kernel \mathbf{K} so that

$$272 \quad \mathbf{K} = [\bar{\mathbf{A}}^{L-1}\bar{\mathbf{B}} \quad \bar{\mathbf{A}}^{L-2}\bar{\mathbf{B}} \quad \dots \quad \bar{\mathbf{A}}\bar{\mathbf{B}} \quad \bar{\mathbf{B}}] \in \mathbb{C}^{N \times L \times C}, \quad (8)$$

274 we can convolve this kernel to obtain the compressed input. We refer to this kernel as *structured*
275 *state-space kernel* (S3K), as it is factorized by leveraging the state transition matrix $\bar{\mathbf{A}}$ and the
276 projection matrix $\bar{\mathbf{B}}$. In practice, we adopt the diagonal parameterization of \mathbf{A} (Gu et al., 2022a;
277 Gupta et al., 2022) to ease the computation of the power terms and adopt multi-input multi-output
278 (MIMO) framework (Smith et al., 2022) by letting $\bar{\mathbf{B}} \in \mathbb{C}^{N \times C}$ to handle C channels of input
279 sequence simultaneously. The convolution using this structured kernel acts as a lossy compression
280 mechanism, theoretically allowing the reconstruction of the original input signal using the learned
281 parameters.

282 **Theorem 4.1.** *Let \mathbf{A} be diagonalizable over \mathbb{C} with non-zero distinct eigenvalues $\{\lambda_i\}$, and Δ be*
283 *the step size used for the discretization of \mathbf{A} . Given the final hidden state $h \in \mathbb{C}^N$ after applying*
284 *S3K, there exists a function $R : (\mathbf{A}, \mathbf{B}, h) \mapsto \mathbf{H} \in \mathbb{C}^{1 \times N}$ with which one can reconstruct the input*
285 *sequence as:*

$$286 \quad R(\mathbf{A}, \mathbf{B}, h) [e^{\lambda_i(L\Delta - k\Delta)}]_{\substack{i=1,2,\dots,N \\ k=1,2,\dots,L}}. \quad (9)$$

288 This finding further supports the interpretation of S3K as a lossy compression mechanism, where
289 the transformed representation retains sufficient information to reconstruct the original input signal
290 through the learned state-space parameters.

291 4.2 EXTENSION TO MULTI-DIMENSIONAL S3K

293 We extend S3K to multiple dimensions via outer products of multiple independent 1D S3Ks. This
294 follows naturally from the definition of n D basis functions as outer products of 1D basis functions
295 in continuous space (Cheney, 1986; Nguyen et al., 2022). The resulting n D kernel \mathbf{K} now has
296 dimensions $(L^{(1)}, L^{(2)}, \dots, L^{(n)}, N, C)$, where $\{L^{(i)}\}_{i=1,\dots,n}$ are spatial dimensions of the kernel,
297 and N and C represent output and input channel dimensions, respectively. This formulation enables
298 n D convolution operations on multi-dimensional inputs using structured kernels, akin to the traditional
299 convolution.

301 4.3 ENHANCING EXPRESSIVITY

303 While the structured kernel theoretically finds effective basis functions and their corresponding
304 coefficients that represent the input data, practical implementation reveals limited expressivity due
305 to the small number of learnable parameters. To address this, we introduce several modifications to
306 enhance the power of our model as follows.

- 307 • **Input-adaptive \mathbf{B} :** Instead of using a fixed kernel, we adopt an adaptive mechanism (Chen et al.,
308 2020; Gu & Dao, 2023) where the kernel parameters depend on the input, allowing dynamic
309 adjustments to diverse signals.
- 310 • **Real-valued SSM parameters:** To improve numerical stability and expressivity, we follow the real
311 parameterization of \mathbf{A} and \mathbf{B} , which has shown strong empirical performance in Mamba (Gu &
312 Dao, 2023).
- 313 • **Subsequent 1×1 convolution layer:** We integrate a 1×1 convolution layer to further enhance
314 the representation capacity while allowing the state size N to differ from the output channel size,
315 providing greater flexibility in model architecture design.

317 These modifications refine S3K into a flexible neural network module with stronger representation
318 capacity, allowing S3K to be effectively integrated into data-specific neural representation frameworks.
319 Additional implementation details can be found in Appendix A.7.

321 4.4 MODEL ARCHITECTURE

323 We illustrate the architecture of our final model in Fig. 5. We follow the design choices of the last
encoder variant in Sec. 3.2 using multi-scale signals decomposed by Laplacian pyramid (Fig. 2(c)),

Figure 5: Structure and operation of the proposed LPNet-S3K architecture

and attach an S3K convolution layer, instead of an SSM block and the following convolutional layer, to each level of the Laplacian pyramid. We make two key modifications to complete our model: (1) replacing the intermediate MLP blocks with *inverted bottleneck* layers (Liu et al., 2022), a more advanced module that has shown superior performance across various domains (Woo et al., 2023; Chen et al., 2023; Zhao et al., 2024), and (2) using SiLU (Elfwing et al., 2018) activation and RMSNorm (Zhang & Sennrich, 2019) that have been frequently used in SSMs (Gu & Dao, 2023; Nguyen et al., 2022; Smith et al., 2022). We call this network *Laplacian Pyramid Network with S3K* (LPNet-S3K) for ease of reference.

5 EXPERIMENTS

To evaluate the effectiveness of the proposed LPNet-S3K architecture, we overfit the network to individual visual inputs across diverse data formats, including image, video, and 3D objects. We first validate the efficacy of the LPNet and S3K architectures in the context of data-specific neural representations by evaluating their performance on images and 3D objects. Then, we evaluate our model on video INR benchmarks (NeRV), demonstrating its efficacy on the standard literature benchmarks.

Datasets. We evaluate our models on standard image and video reconstruction benchmarks. For images, we use Kodak (Kodak, 1993) and CLIC2020 (Toderici et al., 2020), consisting of high-resolution photographs. For videos, we follow common NeRV benchmarks, including Bunny (Roosendaal, 2008), UVG (Mercat et al., 2020), and DAVIS (Pont-Tuset et al., 2017). For 3D data, we randomly sample 1K furniture objects from Objaverse (Deitke et al., 2023). To enable compatibility with our framework, we voxelize each point cloud into a binary voxel grid, forming a cube shaped tensor that encodes the object’s geometry. We describe details of each dataset in Appendix A.8.1.

Evaluation metrics. We adhere to the standard evaluation protocols, reporting Peak Signal-to-Noise Ratio (PSNR, in dB) and/or Multi-Scale Structural Similarity Index Measure (MS-SSIM) (Wang et al., 2003) as fidelity metrics across all reconstruction tasks.

Implementation details. For images and 3D objects, we adopt a simple setup by attaching multiple 2D or 3D deconvolutional layers (Noh et al., 2015) on top of LPNet-S3K to reconstruct the input. For videos, we replace the convolutional encoders of HNeRV (Chen et al., 2023), SNeRV (Kim et al., 2024b), and PNeRV-L (Zhao et al., 2024) with LPNet-S3K, denoted as ‘Ours-H’, ‘Ours-S’ and ‘Ours-P’, respectively. Additional implementation details are provided in Appendix A.8.2.

5.1 QUANTITATIVE COMPARISONS

Images and 3D objects. Quantitative results are reported in Table 2. To validate the effectiveness of LPNet (Sec. 4.4), the proposed baseline architecture, we construct a ConvNeXt (Liu et al., 2022) variant that follows the same configuration of LPNet, as ConvNeXt is a widely adopted encoder in the literature on data-specific neural representations (Chen et al., 2023; Zhao et al., 2023; 2024; Kim et al., 2024b). For a fair comparison with ConvNeXt, we integrate standard convolutional layers into LPNet, denoted as LPNet-Conv. The performance gap between ConvNeXt and LPNet-Conv

Figure 6: Compression results on Bunny (left) and UVG (right).

Table 2: Comparison between different architectures on Kodak, CLIC2020, and Objaverse. Results reported in PSNR/MS-SSIM.

Method	2D images		3D points
	Kodak	CLIC2020	Objaverse
ConvNeXt (Liu et al., 2022)	25.99/0.8830	24.39/0.8280	17.17/0.7536
LPNet-Conv	27.44/0.9132	25.41/0.8505	17.67/0.7815
LPNet-Mamba	27.51/0.9227	26.16/ 0.8694	17.74/0.7732
Ours-S3K (Ours)	28.09/0.9331	26.33/ <u>0.8692</u>	18.34/0.8492

Table 3: Comparison with the existing NeRV methods on Bunny with different model sizes. Results reported in PSNR.

Model size	0.35M	0.75M	1.5M	3.0M
HNeRV (Chen et al., 2023)	30.15	32.81	35.57	37.43
DNeRV (Zhao et al., 2023)	30.15	33.30	35.22	38.09
DS-NeRV (Yan et al., 2024)	<u>31.20</u>	<u>33.82</u>	36.44	38.65
SNeRV (Kim et al., 2024b)	30.88	33.25	36.76	39.64
Ours-S	32.93	35.74	37.83	39.99

Table 4: Comparison with the existing NeRV methods on UVG.
* indicates results reproduced by official codebases.

Method	Size	Beauty	Bosp.	Honey.	Jockey	Ready.	Shake.	Yacht	Avg.
HNeRV (Chen et al., 2023)	3.0M	33.58	34.73	38.96	32.04	25.74	34.57	29.26	32.70
*DNeRV (Zhao et al., 2023)	3.4M	34.12	35.65	39.22	33.72	28.22	34.80	29.74	33.64
*PNeRV (Zhao et al., 2024)	3.3M	34.18	35.56	39.80	31.51	25.94	35.30	30.27	33.22
DS-NeRV (Yan et al., 2024)	3.0M	33.97	35.22	<u>39.56</u>	32.86	27.10	35.04	29.40	33.31
*SNeRV (Kim et al., 2024b)	3.0M	33.76	35.66	38.44	<u>33.78</u>	26.57	35.11	29.65	33.28
Ours-S	3.0M	34.04	<u>36.32</u>	39.51	31.80	27.92	<u>35.54</u>	<u>30.47</u>	33.66
Ours-P	3.3M	34.22	36.54	38.71	35.40	29.31	35.85	30.50	34.36

Table 5: Decoding speed comparison on UVG

Method	PSNR	Decoding Speed sec/vid (↓)	FPS (↑)
HNeRV	32.70	1.74	344.83
Ours-H	32.79	1.74	344.83
PNeRV	33.22	1.99	301.10
Ours-P	34.35	1.99	301.10
SNeRV	33.28	10.08	59.52
Ours-S	33.66	10.08	59.52

Table 6: Comparison with the existing NeRV methods on DAVIS

Method	Size	Bike-packing	Blackswan	BMX-trees	Breakdance	Camel	Car-rndabt	Car-shdw	Cows	Dance-twirl	Dog	Avg.
HNeRV (Chen et al., 2023)	3.0M	30.55	30.35	29.98	30.45	26.71	28.61	31.11	24.60	28.60	31.04	29.20
DNeRV (Zhao et al., 2023)	3.4M	30.24	30.92	29.63	30.88	27.38	29.35	31.95	24.88	29.13	31.32	29.57
*PNeRV (Zhao et al., 2024)	3.3M	28.57	29.17	28.77	29.67	27.89	28.76	31.02	24.39	28.16	30.95	28.74
DS-NeRV (Yan et al., 2024)	3.0M	-	32.55	29.76	32.21	27.26	29.48	35.88	25.08	28.79	33.29	-
SNeRV (Kim et al., 2024b)	3.0M	33.29	33.83	31.65	31.40	28.68	31.27	35.79	25.14	<u>30.41</u>	34.11	31.56
Ours-S	3.0M	34.33	34.58	<u>31.72</u>	33.86	30.04	<u>32.35</u>	36.69	26.47	30.25	33.21	33.86
Ours-P	3.3M	32.15	<u>34.17</u>	32.48	<u>33.15</u>	29.04	32.38	<u>32.35</u>	25.94	30.94	33.97	<u>32.25</u>

in Table 2 highlights the superiority of the LPNet architecture. We then compare LPNet-Conv and LPNet-S3K to assess the contribution of S3K convolution; LPNet-S3K outperformed LPNet-Conv across all benchmarks as shown in the table, underscoring the benefits of SSMs for data-specific neural representations. To assess the distinct advantage of S3K, we also experiment with Mamba (Gu & Dao, 2023) as an alternative SSM (LPNet-Mamba). Specifically, we switch the S3K convolutions with Mamba followed by a standard convolutional layer. When comparing the two, LPNet-S3K consistently outperforms LPNet-Mamba, showing its effectiveness as a compression-specialized SSM. Due to space constraints, additional ablation studies are provided in Appendix A.8.3. It is worth noting that the approach introduced by LPNet and S3K is orthogonal to prevalent techniques in data-specific neural representations, such as bit quantization (Kim et al., 2024a; Laduné et al., 2023; Damodaran et al., 2023) or learning image priors from large-scale datasets (Ballé et al., 2016; 2018; Cheng et al., 2020; Strümpler et al., 2022; Catania & Allegra, 2023). This distinction highlights the potential complementarity of our framework: we believe that integrating LPNet-S3K with these existing techniques could further enhance performance and offer new insights into the design of compact and effective data-specific neural representations.

NeRV benchmarks. We evaluate our method on standard NeRV benchmarks, with results shown in Table 3 (Bunny), Table 4 and 5 (UVG), and Table 6 (DAVIS). We include convolution-based NeRV

Figure 7: Reconstruction results on images (Kodak, CLIC2020) and voxelized points (Objaverse)

Figure 8: Reconstruction results on a DAVIS video

models as our baselines, following Yan et al. (2024) and Kim et al. (2024b). Additional comparisons to MLP-based methods are provided in Appendix A.8.4. On Bunny, our method ranks the best across all model sizes. On UVG, our method outperforms previous arts and even surpasses models of larger sizes: Ours-S achieves 33.66 PSNR with only 3.0M parameters, exceeding the performance of bigger models like DNeRV and PNeRV. It is noteworthy that our method enhances the performance *while leaving the decoder part unchanged*, ensuring the inference cost remains the same (Table 5). This aspect offers a meaningful advantage in NeRV, since video decoding speed is critical for its real-time streaming applications. On DAVIS, our model ranks either first or second across various videos, surpassing most prior methods. All results are obtained by employing existing decoders, indicating that the performance gains are entirely from our SSM-based encoder; this also implies even greater potential of our method with a dedicated decoder design.

5.2 QUALITATIVE ANALYSIS

We present qualitative comparisons on images and 3D objects in Fig. 7, showing reconstruction results on Kodak (Kodak, 1993), CLIC2020 (Toderici et al., 2020), and Objaverse (Deitke et al., 2023). Across all datasets, our model consistently preserves finer details, such as high-frequency textures in the background (first row) or legible text on signage (second row), and underlying structure

486 of 3D geometry (third row). We provide video reconstruction results in Fig. 8. Our model shows
 487 superior performance despite its smaller model size compared to PNerV and DNeRV, and effectively
 488 preserves fine details, such as a person’s hand or typographies on a t-shirt. Additional qualitative
 489 results are provided in Appendix Sec. A.8.5.
 490

491 6 CONCLUSION AND FUTURE DIRECTIONS

492 In this paper, we present the first attempt to link SSMs to data-specific neural representations. To
 493 this end, we explore network architectures for effective SSM integration and analyze how different
 494 architectures suit the characteristics of SSMs. As a result, we propose S3K, which harnesses the
 495 expressiveness of SSMs while enabling natural multi-dimensional data processing and downsampling.
 496 These results are theoretically supported and together lead to a novel and powerful data-specific
 497 neural representation framework. Our framework achieves strong performance across diverse visual
 498 data formats, including images, videos and 3D objects, and remains superior on challenging NeRV
 499 benchmarks despite not being designed for NeRV.
 500

501 In the following, we outline potential directions to improve and extend our framework.
 502

- 503 1. *Designing a dedicated decoder*: This work focuses primarily on designing the SSM-based encoder,
 504 while employing a simple upsampling decoder or decoders from other methods. While our results
 505 demonstrate that the encoder alone significantly contributes to the performance improvements,
 506 a decoder tailored to the characteristics of the SSM encoded features may further improve the
 507 performance of our model.
- 508 2. *Reducing encoding complexity*: Constructing an input-sized kernel using state-space model
 509 parameters leads to substantial computational overhead: about $20\times$ more memory and $4\times$ more
 510 FLOPs than a plain convolution. While effective, this approach may limit scalability. More
 511 efficient alternatives—such as avoiding explicit kernel construction through mathematically
 512 equivalent formulations (Nguyen et al., 2022; Gu et al., 2021a), or employing hardware-optimized
 513 implementations (Gu & Dao, 2023)—could alleviate this burden.
- 514 3. *Application to autoencoders*: Although our method is proposed for data-specific neural net-
 515 works, its compressive property can be exploited to produce compressive representation beyond
 516 individual inputs. Note that modern autoencoders used for generative modeling often rely on
 517 convolution-based architectures (Black Forest Labs, 2023; Rombach et al., 2022) or signal pro-
 518 cessing methods (Agarwal et al., 2025). S3K, which aligns closely with both convolution and
 519 signal processing principles, could enable compressive autoencoders that encode inputs using
 520 fewer tokens.

521 REFERENCES

522 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
 523 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
 524 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025. 10

525 Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression.
 526 *arXiv preprint arXiv:1611.01704*, 2016. 1, 8

527 Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
 528 image compression with a scale hyperprior. *arXiv preprint arXiv:1802.01436*, 2018. 8, 1

529 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2023. 10

530 Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In *Readings in*
 531 *computer vision*, pp. 671–679. Elsevier, 1987. 4

532 Lorenzo Catania and Dario Allegra. Nif: A fast implicit image compression with bottleneck layers
 533 and modulated sinusoidal activations. In *Proceedings of the 31st ACM International Conference*
 534 *on Multimedia*, pp. 9022–9031, 2023. 8

535 Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensororf: Tensorial radiance fields.
 536 In *European conference on computer vision*, pp. 333–350. Springer, 2022a. 1

540 Guo Chen, Yifei Huang, Jilan Xu, Baoqi Pei, Zhe Chen, Zhiqi Li, Jiahao Wang, Kunchang Li, Tong
 541 Lu, and Limin Wang. Video mamba suite: State space model as a versatile alternative for video
 542 understanding. *arXiv preprint arXiv:2403.09626*, 2024. 1

543

544 Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav Shrivastava. Nerv: Neural
 545 representations for videos. *Advances in Neural Information Processing Systems*, 34:21557–21568,
 546 2021. 1, 3, 10

547 Hao Chen, Matthew Gwilliam, Ser-Nam Lim, and Abhinav Shrivastava. Hnerv: A hybrid neural
 548 representation for videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 549 *Pattern Recognition*, pp. 10270–10279, 2023. 1, 7, 8, 9, 10

550

551 Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
 552 convolution: Attention over convolution kernels. In *Proceedings of the IEEE/CVF conference on*
 553 *computer vision and pattern recognition*, pp. 11030–11039, 2020. 6

554 Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vudit Goel, Zhangyang Wang, Humphrey
 555 Shi, and Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous
 556 space-time super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 557 *Pattern Recognition*, pp. 2047–2057, 2022b. 1

558 E Ward Cheney. *Multivariate approximation theory: Selected topics*. SIAM, 1986. 6

559

560 Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
 561 discretized gaussian mixture likelihoods and attention modules. In *Proceedings of the IEEE/CVF*
 562 *conference on computer vision and pattern recognition*, pp. 7939–7948, 2020. 1, 8

563 J Cooley, P Lewis, and P Welch. The finite fourier transform. *IEEE Transactions on audio and*
 564 *electroacoustics*, 17(2):77–85, 1969. 1, 3

565

566 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999. 4

567

568 Bharath Bhushan Damodaran, Muhammet Balcilar, Franck Galpin, and Pierre Hellier. Rqat-inr:
 569 Improved implicit neural image compression. In *2023 Data Compression Conference (DCC)*, pp.
 570 208–217. IEEE, 2023. 8

571

572 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
 573 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated
 574 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 pp. 13142–13153, 2023. 2, 7, 9

575

576 Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin:
 577 Compression with implicit neural representations. *arXiv preprint arXiv:2103.03123*, 2021. 1, 3

578

579 Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to
 580 functa: Your data point is a function and you can treat it like one. *arXiv preprint arXiv:2201.12204*,
 581 2022. 1

582

583 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
 584 function approximation in reinforcement learning. *Neural networks*, 107:3–11, 2018. 7

585

586 Cameron Gordon, Shin-Fang Chng, Lachlan MacDonald, and Simon Lucey. On quantizing implicit
 587 neural representations. In *Proceedings of the IEEE/CVF Winter Conference on Applications of*
 588 *Computer Vision*, pp. 341–350, 2023. 1

589

590 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 591 *preprint arXiv:2312.00752*, 2023. 2, 3, 4, 6, 7, 8, 10, 1

592

593 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
 594 with optimal polynomial projections. *Advances in neural information processing systems*, 33:
 595 1474–1487, 2020. 1, 2, 5

596

597 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 598 state spaces. *arXiv preprint arXiv:2111.00396*, 2021a. 1, 2, 3, 4, 10, 6

594 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
595 Combining recurrent, convolutional, and continuous-time models with linear state space layers.
596 *Advances in neural information processing systems*, 34:572–585, 2021b. 1, 2

597 Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
598 of diagonal state space models. *Advances in Neural Information Processing Systems*, 35:35971–
599 35983, 2022a. 2, 3, 4, 6, 1, 7

600 Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your hippo:
601 State space models with generalized orthogonal basis projections. *arXiv preprint arXiv:2206.12037*,
602 2022b. 1, 2, 5

603 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
604 baseline for image restoration with state-space model. In *European Conference on Computer
605 Vision*, pp. 222–241. Springer, 2025. 2

606 Zongyu Guo, Gergely Flamich, Jiajun He, Zhibo Chen, and José Miguel Hernández-Lobato. Com-
607 pression with bayesian implicit neural representations. *Advances in Neural Information Processing
608 Systems*, 36:1938–1956, 2023. 1

609 Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
610 state spaces. *Advances in Neural Information Processing Systems*, 35:22982–22994, 2022. 2, 6

611 Vincent Tao Hu, Stefan Andreas Bauma, Ming Gui, Olga Grebenkova, Pingchuan Ma, Johannes Fis-
612 cher, and Bjorn Ommer. Zigma: Zigzag mamba diffusion model. *arXiv preprint arXiv:2403.13802*,
613 2024. 1

614 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
615 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern
616 recognition*, pp. 4700–4708, 2017. 7

617 Hyunjik Kim, Matthias Bauer, Lucas Theis, Jonathan Richard Schwarz, and Emilien Dupont. C3:
618 High-performance and low-complexity neural compression from a single image or video. In
619 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
620 9347–9358, 2024a. 8, 10

621 Jina Kim, Jihoo Lee, and Je-Won Kang. Snerv: Spectra-preserving neural representation for video.
622 In *European Conference on Computer Vision*, pp. 332–348. Springer, 2024b. 7, 8, 9, 10

623 Subin Kim, Sihyun Yu, Jaeho Lee, and Jinwoo Shin. Scalable neural video representations with
624 learnable positional features. *Advances in Neural Information Processing Systems*, 35:12718–
625 12731, 2022. 9, 10

626 Eastman Kodak. Kodak lossless true color image suite (photocd pcd0992). *URL http://r0k.
627 us/graphics/kodak*, 6:2, 1993. 2, 7, 9

628 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
629 3

630 Ho Man Kwan, Ge Gao, Fan Zhang, Andrew Gower, and David Bull. Hinerv: Video compression with
631 hierarchical encoding-based neural representation. *Advances in Neural Information Processing
632 Systems*, 36, 2024. 9, 10

633 Théo Ladune, Pierrick Philippe, Félix Henry, Gordon Clare, and Thomas Leguay. Cool-chic:
634 Coordinate-based low complexity hierarchical image codec. In *Proceedings of the IEEE/CVF
635 International Conference on Computer Vision*, pp. 13515–13522, 2023. 8

636 Serge Lang. *Algebra*, volume 211. Springer Science & Business Media, 2012. 3

637 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
638 for domain generalization. In *AAAI*, 2018. 1

639 Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
640 State space model for efficient video understanding. In *European Conference on Computer Vision*,
641 pp. 237–255. Springer, 2025. 1

648 Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
 649 multi-dimensional data. In *European Conference on Computer Vision*, pp. 75–92. Springer, 2024.
 650 1

651 Dingkang Liang, Xin Zhou, Wei Xu, Xingkui Zhu, Zhikang Zou, Xiaoqing Ye, Xiao Tan, and
 652 Xiang Bai. Pointmamba: A simple state space model for point cloud analysis. *arXiv preprint*
 653 *arXiv:2402.10739*, 2024. 1

654 Jinming Liu, Heming Sun, and Jiro Katto. Learned image compression with mixed transformer-
 655 cnn architectures. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 656 *recognition*, pp. 14388–14397, 2023. 4

657 Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng, Zhan Ma, Yanwen Guo, and Xun Cao.
 658 Finer: Flexible spectral-bias tuning in implicit neural representation by variable-periodic activa-
 659 tion functions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 660 *Recognition*, pp. 2713–2722, 2024. 9, 10

661 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 662 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and*
 663 *pattern recognition*, pp. 11976–11986, 2022. 7, 8

664 Ming Lu, Peiyao Guo, Huiqing Shi, Chunlong Cao, and Zhan Ma. Transformer-based image
 665 compression. *arXiv preprint arXiv:2111.06707*, 2021. 4

666 Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
 667 and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.
 668 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7210–
 669 7219, 2021. 1

670 Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool. Condi-
 671 tional probability models for deep image compression. In *Proceedings of the IEEE Conference on*
 672 *Computer Vision and Pattern Recognition*, pp. 4394–4402, 2018. 1

673 Fabian Mentzer, George Toderici, David Minnen, Sung-Jin Hwang, Sergi Caelles, Mario Lucic, and
 674 Eirikur Agustsson. Vct: A video compression transformer. *arXiv preprint arXiv:2206.07307*, 2022.
 675 1, 4

676 Alexandre Mercat, Marko Viitanen, and Jarno Vanne. Uvg dataset: 50/120fps 4k sequences for video
 677 codec analysis and development. In *Proceedings of the 11th ACM Multimedia Systems Conference*,
 678 pp. 297–302, 2020. 2, 7

679 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 680 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 681 *of the ACM*, 65(1):99–106, 2021. 1

682 Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
 683 Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
 684 *Advances in neural information processing systems*, 35:2846–2861, 2022. 3, 4, 6, 7, 10, 1

685 Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for semantic
 686 segmentation. In *ICCV*, 2015. 3, 7, 8

687 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF:
 688 Learning continuous signed distance functions for shape representation. In *Proceedings of the*
 689 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 165–174, 2019. 1

690 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
 691 Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation.
 692 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 724–732,
 693 2016. 2

694 Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and
 695 Luc Van Gool. The 2017 davis challenge on video object segmentation. *arXiv preprint*
 696 *arXiv:1704.00675*, 2017. 7

702 Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
 703 radiance fields for dynamic scenes. In *Proceedings of the IEEE/CVF conference on computer*
 704 *vision and pattern recognition*, pp. 10318–10327, 2021. 1

705 B Rao. Sensitivity analysis of state space methods in spectrum estimation. In *ICASSP'87. IEEE*
 706 *International Conference on Acoustics, Speech, and Signal Processing*, volume 12, pp. 1517–1520.
 707 IEEE, 1987. 2

708 Bhaskar D Rao and KS Arun. Model based processing of signals: A state space approach. *Proceedings*
 709 *of the IEEE*, 80(2):283–309, 1992. 2

710 Iain E Richardson. *The H. 264 advanced video compression standard*. John Wiley & Sons, 2011. 1, 4

711 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 712 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 713 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022. 10

714 Ton Roosendaal. Big buck bunny. In *ACM SIGGRAPH ASIA 2008 computer animation festival*, pp.
 715 62–62. 2008. 2, 7

716 Jiacheng Ruan and Suncheng Xiang. Vm-unet: Vision mamba unet for medical image segmentation.
 717 *arXiv preprint arXiv:2402.02491*, 2024. 1

718 Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
 719 and Richard G Baraniuk. Wire: Wavelet implicit neural representations. In *Proceedings of the*
 720 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18507–18516, 2023. 1

721 Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
 722 Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
 723 sub-pixel convolutional neural network. In *Proceedings of the IEEE conference on computer vision*
 724 *and pattern recognition*, pp. 1874–1883, 2016. 8

725 Seungjun Shin, Suji Kim, and Dokwan Oh. Efficient neural video representation with temporally
 726 coherent modulation. In *European Conference on Computer Vision*. Springer, 2024. 9

727 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
 728 plicit neural representations with periodic activation functions. *Advances in neural information*
 729 *processing systems*, 33:7462–7473, 2020. 1, 9, 10

730 Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous
 731 images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 732 pp. 10753–10764, 2021. 1

733 Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
 734 sequence modeling. *arXiv preprint arXiv:2208.04933*, 2022. 1, 2, 3, 4, 6, 7, 8

735 Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural
 736 representations for image compression. In *European Conference on Computer Vision*, pp. 74–91.
 737 Springer, 2022. 1, 8

738 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 739 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 740 high frequency functions in low dimensional domains. *Advances in neural information processing*
 741 *systems*, 33:7537–7547, 2020. 1

742 George Toderici, Wenzhe Shi, Radu Timofte, Lucas Theis, Johannes Balle, Eirikur Agustsson, Nick
 743 Johnston, and Fabian Mentzer. Workshop and challenge on learned image compression (clic2020).
 744 In *CVPR*, 2020. 2, 7, 9

745 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 746 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017. 4, 6

747 Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
 748 assessment. In *The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers*, 2003,
 749 volume 2, pp. 1398–1402. Ieee, 2003. 7

756 Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
 757 Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
 758 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16133–
 759 16142, 2023. 7

760 Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu. Segmamba: Long-range sequential
 761 modeling mamba for 3d medical image segmentation. In *International Conference on Medical
 762 Image Computing and Computer-Assisted Intervention*, pp. 578–588. Springer, 2024. 1

763

764 Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. Signal processing for
 765 implicit neural representations. *Advances in Neural Information Processing Systems*, 35:13404–
 766 13418, 2022. 1

767

768 Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin, and Hongkai Xiong. Deep neural network
 769 compression with single and multiple level quantization. In *Proceedings of the AAAI conference
 770 on artificial intelligence*, volume 32, 2018. 1

771

772 Hao Yan, Zhihui Ke, Xiaobo Zhou, Tie Qiu, Xidong Shi, and Dadong Jiang. Ds-nerv: Implicit neural
 773 video representation with decomposed static and dynamic codes. In *Proceedings of the IEEE/CVF
 774 Conference on Computer Vision and Pattern Recognition*, pp. 23019–23029, 2024. 4, 8, 9, 10

775

776 Yibo Yang, Robert Bamler, and Stephan Mandt. Improving inference for neural image compression.
 777 *Advances in Neural Information Processing Systems*, 33:573–584, 2020a. 1

778

779 Yibo Yang, Robert Bamler, and Stephan Mandt. Variational bayesian quantization. In *International
 780 Conference on Machine Learning*, pp. 10670–10680. PMLR, 2020b. 1

781

782 Yijun Yang, Zhaohu Xing, and Lei Zhu. Vivim: a video vision mamba for medical video object
 783 segmentation. *arXiv preprint arXiv:2401.14168*, 2024. 1

784

785 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural
 786 Information Processing Systems*, 32, 2019. 7

787

788 Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving
 789 neural radiance fields. *arXiv preprint arXiv:2010.07492*, 2020. 1

790

791 Yunfan Zhang, Ties Van Rozendaal, Johann Brehmer, Markus Nagel, and Taco Cohen. Implicit
 792 neural video compression. *arXiv preprint arXiv:2112.11312*, 2021. 1

793

794 Qi Zhao, M Salman Asif, and Zhan Ma. Dnerv: Modeling inherent dynamics via difference neural
 795 representation for videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 796 Pattern Recognition*, pp. 2031–2040, 2023. 7, 8, 10

797

798 Qi Zhao, M Salman Asif, and Zhan Ma. Pnerv: Enhancing spatial consistency via pyramidal neural
 799 representation for videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 800 Pattern Recognition*, pp. 19103–19112, 2024. 7, 8, 10

801

802 Lei Zhou, Chunlei Cai, Yue Gao, Sanbao Su, and Junmin Wu. Variational autoencoder for low
 803 bit-rate image compression. In *Proceedings of the IEEE conference on computer vision and pattern
 804 recognition workshops*, pp. 2617–2620, 2018. 1

805

806 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
 807 mamba: Efficient visual representation learning with bidirectional state space model. *arXiv preprint
 808 arXiv:2401.09417*, 2024a. 1

809

810 Qinfeng Zhu, Yuanzhi Cai, Yuan Fang, Yihan Yang, Cheng Chen, Lei Fan, and Anh Nguyen. Samba:
 811 Semantic segmentation of remotely sensed images with state space model. *Helios*, 10(19), 2024b.
 812 1

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

810 A APPENDIX
811812 This material provides proofs for the theorems in the main paper (*i.e.*, Theorem 4.1 and Theorem
813 5.1), and additional details omitted in the manuscript due to the space constraint.
814815 A.1 RELATED WORK
816817 **State-space models.** SSMs are a family of sequence-to-sequence models that embeds historical data
818 in state-space representation, using differential equations that involve hidden states and sequential
819 inputs. HiPPO (Gu et al., 2020), an early state-space model, treats an input sequence as samples taken
820 from a continuous function. This function is then approximated using a predefined set of orthogonal
821 polynomials, with their coefficients being dynamically updated by the incoming sequential inputs.
822 LSSL (Gu et al., 2021b) generalizes HiPPO by replacing HiPPO parameters into learnable ones,
823 while still retaining its ability to continuously remember and store the history of observed tokens.
824 It has developed into S4 (Gu et al., 2021a; 2022a; Nguyen et al., 2022) and S5 (Smith et al., 2022),
825 which addresses technical inefficiencies of the previous work. Recently, Mamba (Gu & Dao, 2023)
826 has been introduced as a state-space model that adapts its parameters based on the input sequence.
827 Although originally designed for sequential inputs, this model has inspired various adaptations across
828 different visual perception tasks, including images (Zhu et al., 2024a; Hu et al., 2024; Ruan &
829 Xiang, 2024; Zhu et al., 2024b; Nguyen et al., 2022), videos (Li et al., 2025; Yang et al., 2024;
830 Chen et al., 2024; Li et al., 2024), and 3D scenes (Liang et al., 2024; Xing et al., 2024). Although
831 these efforts extend SSMs to multi-dimensional inputs, they primarily target sequence modeling
832 tasks such as classification or sequence-to-sequence translation. In contrast, our work investigates
833 SSMs as compact representations through compression of input data, a perspective that has received
834 comparatively less attention.
835836 **Implicit neural representations.** INRs aim at constructing a model that effectively captures
837 continuous signals, including 3D scenes (Park et al., 2019; Mildenhall et al., 2021), images (Strümpler
838 et al., 2022; Guo et al., 2023) and videos (Zhang et al., 2021; Chen et al., 2021). INR typically
839 represents a continuous signal by parameterizing a field, which involves mapping between the
840 coordinate space and the signal space. The emergence of INRs has rapidly advanced the field of
841 data-specific neural representations, offering promising avenues for efficient compression (Strümpler
842 et al., 2022), continuous signal modeling (Martin-Brualla et al., 2021; Chen et al., 2022a), and
843 task-specific adaptation (Pumarola et al., 2021; Chen et al., 2021). Given this shared objective of
844 data-specific modeling, we evaluate our method on a standard INR benchmark, highlighting its
845 potential as a new architectural direction within the INR paradigm.
846847 **Neural compression.** This line of work enables neural networks to learn compact representations of
848 images and videos by incorporating advanced techniques such as entropy modeling (Ballé et al., 2018;
849 Cheng et al., 2020) or quantization (Yang et al., 2020a;b). Early methods introduce an autoencoder-
850 style architecture (Ballé et al., 2016; Mentzer et al., 2018), where the input is encoded into a
851 compressed latent vector and subsequently reconstructed by the decoder. Our method adopts a similar
852 encoder-decoder formulation while introducing state-space models (SSMs) as a new architectural
853 component for learning compact representations, highlighting the unexplored potential of SSMs in
854 neural compression.
855856 A.2 SOLVING THE LINEAR DIFFERENTIAL EQUATION
857858 We solve the linear differential equation of the state-space model (Eq. (1)), and derive its solution in
859 the form of Eq. (2). As the derivation in this section depends on the original state-space formulation,
860 we first restate Eq. (1) from the main paper for reference:
861

862
$$h'(x) = \mathbf{A}h(x) + \mathbf{B}\phi(x). \quad (10)$$

863 We start by solving a homogeneous first-order matrix ordinary differential equation (ODE), $h'_h(x) =$
864 $\mathbf{A}h_h(x)$, which is a standard matrix ODE. Its solution is $h_h(x) = e^{\mathbf{A}x}C$, where $C \in \mathbb{C}^N$ is a constant
865 vector determined by initial conditions. Allowing the constant C to vary with x , *i.e.*, $C := u(x)$,
866 derives the particular solution of the form $h(x) = e^{\mathbf{A}x}u(x)$. Plugging this to Eq. (10) yields:
867

868
$$\frac{d}{dx}e^{\mathbf{A}x}u(x) = \mathbf{A}h(x) + \mathbf{B}\phi(x) \quad (11)$$

869
$$\Rightarrow \mathbf{A}e^{\mathbf{A}x}u(x) + e^{\mathbf{A}x}u'(x) = \mathbf{A}e^{\mathbf{A}x}u(x) + \mathbf{B}\phi(x), \quad (12)$$

864 and canceling the terms gives:
 865

$$e^{\mathbf{A}x}u'(x) = \mathbf{B}\phi(x) \quad (13)$$

$$\Rightarrow u'(x) = e^{-\mathbf{A}x}\mathbf{B}\phi(x) \quad (14)$$

$$\Rightarrow u(x) = \int_0^x e^{-\mathbf{A}\tau}\mathbf{B}\phi(\tau)d\tau + C'. \quad (15)$$

870 For practical implementation, since we set $h(0) = u(0) = 0$, we can set $C' = 0$. Thus, $h(x) =$
 871 $e^{\mathbf{A}x}u(x)$ becomes:
 872

$$h(x) = e^{\mathbf{A}x}u(x) \quad (16)$$

$$= e^{\mathbf{A}x} \int_0^x e^{-\mathbf{A}\tau}\mathbf{B}\phi(\tau)d\tau \quad (17)$$

$$= \int_0^x e^{(x-\tau)\mathbf{A}}\mathbf{B}\phi(\tau)d\tau, \quad (18)$$

873 which matches the target expression (Eq. (2)).
 874

875 A.3 PROOF FOR THEOREM 3.1

876 **Theorem 3.1.** *Let \mathbf{A} be diagonalizable over \mathbb{C} with non-zero distinct eigenvalues $\{\lambda_i\}$. Given \mathbf{A} , \mathbf{B} ,
 877 and the hidden state h computed by Eq. (2), there exists a function $f : (\mathbf{A}, \mathbf{B}) \mapsto \mathbf{F} \in \mathbb{C}^{N \times N}$ with
 878 which one can decompose the input function $\phi(t)$ as a linear combination of complex exponentials:*

$$\phi(t) = \sum_{n=1}^N c_n \overline{e^{\lambda_n(L-t)}}, \quad (19)$$

879 where c_n is the n -th element of $f(\mathbf{A}, \mathbf{B})\bar{h}$.
 880

881 *Proof.* Since \mathbf{A} is diagonalizable, we can write

$$\xi(\tau, L) = \overline{e^{(L-\tau)\mathbf{A}\mathbf{B}}} \quad (20)$$

$$= \overline{\mathbf{V}e^{(L-\tau)\mathbf{A}\mathbf{V}^{-1}\mathbf{B}}}, \quad (21)$$

882 for some matrix $\mathbf{V} \in \mathbb{C}^{N \times N}$ and a diagonal matrix $\mathbf{\Lambda} \in \mathbb{C}^{N \times N}$. Let $\mathbf{b} := \mathbf{V}^{-1}\mathbf{B}$, so that

$$\mathbf{V}^{-1}\mathbf{B} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix}. \quad (22)$$

883 Since $e^{(L-\tau)\mathbf{\Lambda}}$ is diagonal,

$$e^{(L-\tau)\mathbf{\Lambda}}\mathbf{b} = \begin{bmatrix} e^{(L-\tau)\lambda_1}b_1 \\ e^{(L-\tau)\lambda_2}b_2 \\ \vdots \\ e^{(L-\tau)\lambda_N}b_N \end{bmatrix}, \quad (23)$$

884 and thus, multiplying \mathbf{V} yields:

$$\mathbf{V}e^{(L-\tau)\mathbf{\Lambda}}\mathbf{b} = \mathbf{V} \begin{bmatrix} e^{(L-\tau)\lambda_1}b_1 \\ e^{(L-\tau)\lambda_2}b_2 \\ \vdots \\ e^{(L-\tau)\lambda_N}b_N \end{bmatrix} \quad (24)$$

$$= \begin{bmatrix} \sum_{n=1}^N v_{1n}e^{(L-\tau)\lambda_n}b_n \\ \sum_{n=1}^N v_{2n}e^{(L-\tau)\lambda_n}b_n \\ \vdots \\ \sum_{n=1}^N v_{Nn}e^{(L-\tau)\lambda_n}b_n \end{bmatrix}, \quad (25)$$

918 where v_{ij} is the (i, j) -th element of the matrix \mathbf{V} . Hence, the $\xi_k(\tau, x)$ from Eq. (20) can be expressed
919 as:
920

$$921 \quad \xi_k(\tau, L) = \sum_{n=1}^N v_{kn} e^{(L-\tau)\lambda_n} b_n, \quad (26)$$

$$924 \quad := \sum_{n=1}^N d_{kn} \overline{e^{\lambda_n(L-\tau)}} \quad (27)$$

926 for some constant d_{kn} . Hence, it becomes natural to choose sinusoidal bases $e^{i\theta_n(t)} = \overline{e^{\lambda_n(L-t)}}$ and
927 express the input function $\phi(t)$ as:
928

$$929 \quad \sum_{n=1}^N c_n \overline{e^{\lambda_n(L-t)}}. \quad (28)$$

931 Note that $\{\overline{e^{\lambda_n(L-t)}}\}$ consists of complex exponentials with N distinct frequencies, which ensures
932 their linear independence (Lang, 2012). Since this property allows them to serve as valid basis
933 functions, we can obtain orthonormal basis functions $\{\psi_n(t)\}$ that span the same functional space as
934 $\{\overline{e^{\lambda_n(L-t)}}\}$. Let the change-of-basis matrix from $\{\psi_n(t)\}$ to $\{\overline{e^{\lambda_n(L-t)}}\}$ defined as \mathbf{P} :
935

$$936 \quad \mathbf{P} \begin{bmatrix} \psi_1(t) \\ \psi_2(t) \\ \vdots \\ \psi_N(t) \end{bmatrix} = \begin{bmatrix} \overline{e^{\lambda_1(L-t)}} \\ \overline{e^{\lambda_2(L-t)}} \\ \vdots \\ \overline{e^{\lambda_N(L-t)}} \end{bmatrix}. \quad (29)$$

941 Then, ξ_k from Eq. (27) can be rephrased to:
942

$$943 \quad \xi_k(\tau, L) = [d_{k1} \quad d_{k2} \quad \cdots \quad d_{kN}] \begin{bmatrix} \overline{e^{\lambda_1(L-\tau)}} \\ \overline{e^{\lambda_2(L-\tau)}} \\ \vdots \\ \overline{e^{\lambda_N(L-\tau)}} \end{bmatrix}. \quad (30)$$

$$948 \quad = [d_{k1} \quad d_{k2} \quad \cdots \quad d_{kN}] \mathbf{P} \begin{bmatrix} \psi_1(\tau) \\ \psi_2(\tau) \\ \vdots \\ \psi_N(\tau) \end{bmatrix} \quad (31)$$

$$953 \quad := \sum_{n=1}^N g_{kn} \psi_n(\tau), \quad (32)$$

956 where g_{kn} is the inner product between $[d_{k1} \quad d_{k2} \quad \cdots \quad d_{kN}]$ and n -th column of \mathbf{P} . Similarly,
957 we can express $\phi(t)$ from Eq. (28) with different bases, i.e., $\sum_{n=1}^N m_n \psi_n(t)$, where
958 $[m_1 \quad m_2 \quad \cdots \quad m_N] = [c_1 \quad c_2 \quad \cdots \quad c_N] \mathbf{P}$. Then, plugging $\phi(t) = \sum_{n=1}^N m_n \psi_n(t)$ into
959 Eq. (3) gives:
960

$$961 \quad h_k = \left\langle \sum_{n=1}^N m_n \psi_n(\tau), \xi_k(\tau, L) \right\rangle_{[0, L]} \quad (33)$$

$$964 \quad = \sum_{n=1}^N \overline{m_n} \langle \psi_n(\tau), \sum_{j=1}^N g_{kj} \psi_n(\tau) \rangle_{[0, L]} \quad (34)$$

$$967 \quad = \sum_{n=1}^N \overline{m_n g_{kn}} = [\overline{g_{k1}} \quad \overline{g_{k2}} \quad \cdots \quad \overline{g_{kN}}] \begin{bmatrix} \overline{m_1} \\ \overline{m_2} \\ \vdots \\ \overline{m_N} \end{bmatrix} \quad (35)$$

$$971 \quad = [\overline{g_{k1}} \quad \overline{g_{k2}} \quad \cdots \quad \overline{g_{kN}}] \mathbf{P}^T \overline{\mathbf{c}}, \quad (36)$$

972 where $\mathbf{c} = [c_1 \ c_2 \ \cdots \ c_N]^T$.
 973

974 Let $\mathbf{h} := [h_1 \ h_2 \ \cdots \ h_N]^T$ and $\overline{\mathbf{G}} := [\overline{g_{ij}}]$. Stacking Eq. (36) yields:
 975

$$976 \quad \mathbf{h} = \overline{\mathbf{G}} \mathbf{P}^T \overline{\mathbf{c}} \quad \Leftrightarrow \quad \overline{\mathbf{c}} = (\overline{\mathbf{G}} \mathbf{P}^T)^{-1} \mathbf{h} \quad \Leftrightarrow \quad \mathbf{c} = (\mathbf{G} \mathbf{P}^T)^{-1} \overline{\mathbf{h}}, \quad (37)$$

977 which enables us to rewrite $\phi(t)$ by plugging \mathbf{c} to Eq. (28). \square
 978

979 A.4 PROOF FOR THEOREM 4.1
 980

981 **Theorem 4.1.** *Let \mathbf{A} be diagonalizable over \mathbb{C} with non-zero distinct eigenvalues $\{\lambda_i\}$, and Δ be
 982 the step size used for the discretization of \mathbf{A} . Given the final hidden state $h \in \mathbb{C}^N$ after applying
 983 S3K, there exists a function $R : (\mathbf{A}, \mathbf{B}, h) \mapsto \mathbf{H} \in \mathbb{C}^{1 \times N}$ with which one can reconstruct the input
 984 sequence as:*

$$985 \quad R(\mathbf{A}, \mathbf{B}, h) \left[e^{\lambda_i(L\Delta - k\Delta)} \right]_{\substack{i=1,2,\dots,N \\ k=1,2,\dots,L}}. \quad (38)$$

987 *Proof.* Let $T = L\Delta = x_{L-1}$. Note that
 988

$$989 \quad h = \int_0^T e^{(T-\tau)\mathbf{A}} \mathbf{B} \phi(\tau) d\tau. \quad (39)$$

991 The diagonalizability of \mathbf{A} gives:
 992

$$993 \quad e^{(x-\tau)\mathbf{A}} = \mathbf{V} e^{\mathbf{A}(x-\tau)} \mathbf{V}^{-1}. \quad (40)$$

995 Let $\mathbf{V}^{-1} \mathbf{B} := \tilde{\mathbf{B}}$ have no zero elements, then

$$996 \quad \tilde{\mathbf{h}} := \mathbf{V}^{-1} h \quad (41)$$

$$998 \quad = \int_0^T e^{\mathbf{A}(T-\tau)} \tilde{\mathbf{B}} \phi(\tau) d\tau \quad (42)$$

$$1000 \quad \Rightarrow c_k := \frac{\tilde{\mathbf{h}}_k}{\tilde{\mathbf{B}}_k} = \int_0^T e^{\lambda_k(T-\tau)} \phi(\tau) d\tau \quad (43)$$

1003 Note that our goal is to recover $\phi(\tau)$ from h . This can be accomplished by finding the *dual basis*
 1004 *function* $\{f_k(\tau)\}$ of the basis function $\{e^{\lambda_k(T-\tau)}\}$ for $k \in \{1, 2, \dots, N\}$. The dual basis function
 1005 $f_k(\tau)$ satisfies

$$1006 \quad \int_0^T e^{\lambda_i(T-\tau)} f_j(\tau) d\tau = \delta_{ij}, \quad (44)$$

1008 where δ_{ij} is the Kronecker delta. It is worth to note that having $f_k(\tau)$ leads to the expression of $\phi(\tau)$
 1009 as:

$$1010 \quad \phi(\tau) = \sum_{k=1}^N c_k f_k(\tau), \quad (45)$$

1012 which can be easily shown when plugging Eq. (45) to Eq. (43). Thus, our problem is now converted
 1013 to finding the dual basis $\{f_k\}$ that corresponds to $\{e^{\lambda_k(T-\tau)}\}$. We start from expressing $f_j(\tau)$ as a
 1014 linear combination of $e^{\lambda_k(T-\tau)}$:

$$1016 \quad f_j(\tau) = \sum_{k=1}^N z_{jk} e^{\lambda_k(T-\tau)} \quad (46)$$

1019 for some z_{jk} . Plugging Eq. (46) to Eq. (44) gives:
 1020

$$1021 \quad \int_0^T e^{\lambda_i(T-\tau)} \sum_{k=1}^N z_{jk} e^{\lambda_k(T-\tau)} d\tau \quad (47)$$

$$1024 \quad = \sum_{k=1}^N z_{jk} \int_0^T e^{(\lambda_i + \lambda_k)(T-\tau)} d\tau = \delta_{ij} \quad (48)$$

1026 If we let the matrix $\mathbf{Z} := \{z_{ik}\}$ and $\mathbf{G} = \{g_{ik}\} = \{\frac{e^{(\lambda_i + \lambda_k)T} - 1}{\lambda_i + \lambda_k}\}$, directly solving the integral yields:
 1027

$$1028 \sum_{k=1}^N z_{jk} \frac{e^{(\lambda_i + \lambda_k)T} - 1}{\lambda_i + \lambda_k} = \delta_{ij} \iff \mathbf{Z}\mathbf{G} = \mathbf{I}. \quad (49)$$

1029
 1030

1031 Hence, we obtain $\mathbf{Z} = \mathbf{G}^{-1}$. According to Eq. (46),

$$1032 \mathbf{f}(\tau) = \mathbf{G}^{-1} \begin{bmatrix} e^{\lambda_1(T-\tau)} \\ e^{\lambda_2(T-\tau)} \\ \vdots \\ e^{\lambda_N(T-\tau)} \end{bmatrix} \quad (50)$$

1033
 1034
 1035
 1036
 1037

1038 and plugging this to Eq. (45) gives:

$$1039 \phi(\tau) = \mathbf{c}^T \mathbf{f}(\tau) = \mathbf{c}^T \mathbf{G}^{-1} \begin{bmatrix} e^{\lambda_1(T-\tau)} \\ e^{\lambda_2(T-\tau)} \\ \vdots \\ e^{\lambda_N(T-\tau)} \end{bmatrix} \quad (51)$$

1040
 1041
 1042
 1043

1044 where $\mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_N \end{bmatrix}$. If we put everything together,

1045
 1046
 1047

$$1048 \phi(\tau) = \mathbf{c}^T \mathbf{G}^{-1} \begin{bmatrix} e^{\lambda_1(T-\tau)} \\ e^{\lambda_2(T-\tau)} \\ \vdots \\ e^{\lambda_N(T-\tau)} \end{bmatrix} \quad (52)$$

1049
 1050
 1051
 1052
 1053

$$1054 = \left(\frac{\mathbf{V}^{-1} \mathbf{h}}{\mathbf{V}^{-1} \mathbf{B}} \right)^T \mathbf{G}^{-1} \begin{bmatrix} e^{\lambda_1(T-\tau)} \\ e^{\lambda_2(T-\tau)} \\ \vdots \\ e^{\lambda_N(T-\tau)} \end{bmatrix}. \quad (53)$$

1055
 1056
 1057
 1058

1059 We abused element-wise division operation here for simplicity. Evaluating $\phi(\tau)$ at $\tau \in \{0, \Delta, 2\Delta, \dots, (L-1)\Delta\}$ completes the proof. \square
 1060

1061 A.5 SSM FOR 1D SIGNAL RECONSTRUCTION

1063 As a natural extension of the reconstruction experiment in Sec. 3.2, we conduct additional studies
 1064 on 1D signal reconstruction to further validate the effectiveness of SSM-based architectures in
 1065 capturing signals. We follow the similar experimental setup as described in Sec. 3.2, with the primary
 1066 modifications being the use of 1D convolutional layers in place of 2D ones and adjustments to the
 1067 input dimensionality. Specifically, we convert input images into 1D signals by flattening them in a
 1068 zig-zag manner, transforming the input shape from $(3, 32, 32)$ to $(3, 1024)$. The kernel size of the
 1069 convolution is maintained to 8, resulting in an encoded embedding that is one-eighth the length of
 1070 the input. For clarity, we illustrate the modified baseline architecture and its variants in Fig. A1 and
 1071 Fig. A2, respectively.

1072 The results of the experiment are demonstrated in Table A1. We find the similar tendency we have
 1073 observed in Sec. 3.2, which suggests that SSMs, when placed in an appropriate reconstruction setting,
 1074 hold strong potential in signal reconstruction as implied in Sec. 3.1.

1075

1076 A.6 PARAMETER COUNT ANALYSIS

1077

1078 As discussed in Sec. 4.3, the direct application of S3K convolution suffers from limited expressivity,
 1079 primarily due to an insufficient parameter budget that constrains the network’s representational
 capacity. Table A2 presents how each modification contributes to the parameter count of the 2D

Figure A1: Baseline architecture for 1D signal reconstruction

Figure A2: Encoder variants incorporating SSMs for 1D signal reconstruction

Table A2: Parameter count comparison on different variants of S3K 2D convolution.

Method	subsequent 1×1 conv.	Adaptive \mathbf{B}	Adaptive Δ	Real \mathbf{A}, \mathbf{B}	# param	$C = 3, D = 16,$ $K = 5, N = 16$
Conv2d(C, D, K)	-	-	-	-	$CDK^2 + D$	3088
	✗	✗	✗	✗	$6N + 4NC$	288
	✓	✗	✗	✗	$6N + 4NC + (N + 1)D$	560
S3KConv2d (C, N, D, K)	✓	✓	✗	✗	$8N + 2NK + (N + 1)D$	656
	✓	✓	✓	✗	$8N + 2NK + K + (N + 1)D$	664
	✓	✓	✗	✓	$8N + 2NK + (N + 1)D$	624
	✓	✓	✓	✓	$6N + 2NK + K + (N + 1)D$	632

convolution using S3K. Following the standard convolutional network notation, $\text{Conv2d}(C, D, K)$ denotes a 2D convolutional layer that transforms an input with C channels into D output channels using a kernel of size K . Similarly, $\text{S3KConv2d}(C, N, D, K)$ performs the same transformation but introduces an intermediate state of size N to model the structured state-space dynamics. The primary contributor to the high parameter count in standard convolutional networks is the CDK^2 term, which involves the multiplication of four factors and grows rapidly with channel and kernel size. In contrast, S3K layers are designed with more compact parameterization, where the largest terms involve only two multiplicative factors, resulting in significantly fewer parameters. Among all the architectural modifications, the most significant increase in parameter count arises from the subsequent 1×1 convolution, which projects the N -dimensional latent state into the desired size of output feature. On the other hand, the adaptivity of state-space parameters also introduces a relatively modest parameter increase, though the exact impact depends on the choice of state size N .

A.7 MODEL IMPLEMENTATION DETAILS

This section provides additional implementation details that were omitted from the main paper due to space constraints.

A.7.1 INITIALIZATION OF \mathbf{A} AND \mathbf{B}

We mainly follow the initialization scheme introduced in S5 (Smith et al., 2022) and Mamba (Gu & Dao, 2023). For complex initialization of \mathbf{A} and \mathbf{B} for ablation, we follow HiPPO initialization of \mathbf{A} and use eigenvectors \mathbf{V} from diagonalization of \mathbf{A} for initialization of \mathbf{B} , as done in S5 (Smith et al., 2022). For real implementation, we set \mathbf{A} , the N diagonal elements of \mathbf{A} , to $\mathbf{A}_n = -(n + 1)$, and employ normal initialization for \mathbf{B} .

1134 A.7.2 OPERATIONAL DETAILS OF S3KCONV2D LAYER
11351136 We elaborate on operational details of S3KConv2d layer, which naturally extends to S3K convolutions
1137 for N -dimensional inputs.1138 S3KConv2d layer takes the same arguments of the ordinary convolutional layer: input channel
1139 dimension C_{in} , output channel dimension C_{out} , and kernel size (K_1, K_2) . For simplicity, we assume
1140 trivial settings for stride, padding, and dilation. Let the input $X_0 \in \mathbb{R}^{B \times C_0 \times H_0 \times W_0}$, then we first
1141 project input to have C channel dimension by 1×1 convolution: $X \in \mathbb{R}^{B \times C \times H_0 \times W_0}$. Now we
1142 construct a kernel for each spatial dimension. For clearer explanation, we focus on the input $X_w \in$
1143 $\mathbb{R}^{B \times C \times K_1 \times K_2}$, which represents the local window extracted during convolution. The following
1144 operations are applied in parallel across all such windows as the kernel slides over the input. Note
1145 that in Mamba (Gu & Dao, 2023), a linear layer is applied to the length- L input sequence to obtain
1146 the input-adaptive \mathbf{B} of length L . Since the kernel of i -th dimension needs to be a length- K_i 1D
1147 kernel, we apply linear layer to the other spatial dimension. Specifically, let $\mathbf{B}_{\text{proj}}^{(i)}(d_{\text{in}}, d_{\text{out}})$ be the
1148 linear projection layer that transforms the channel dimension from d_{in} to d_{out} to produce $\mathbf{B}^{(i)}$, \mathbf{B}
1149 used to construct the i -th dimension S3K 1D kernel. Then, we set $(d_{\text{in}}, d_{\text{out}}) = (K_2, N)$ for $i = 1$
1150 and (K_1, N) for $i = 2$, so that we obtain $\mathbf{B}^{(i)} \in \mathbb{R}^{B \times C \times K_i \times N}$. With $\Lambda^{(i)} \in \mathbb{R}^N$ and step size
1151 $\Delta^{(i)} \in \mathbb{R}^N$, we discretize $\Lambda^{(i)}$ and $\mathbf{B}^{(i)}$ using zero-order hold (ZOH) method:
1152

1153
$$\bar{\Lambda}^{(i)} = e^{\Lambda^{(i)} \Delta^{(i)}}, \quad \bar{\mathbf{B}}^{(i)} = (\Lambda^{(i)})^{-1}(\Delta^{(i)} \bar{\Lambda}^{(i)} - \mathbf{I})\mathbf{B}^{(i)}, \quad (54)$$

1154

1155 and compute the kernel as in Eq. (7). Since we have kernel $\mathbf{K}^{(i)} \in \mathbb{R}^{B \times C \times K_i}$, we can take outer
1156 product of these kernels to construct 2D kernel $\mathbf{K} \in \mathbb{R}^{B \times C \times N \times K_1 \times K_2}$, and apply this kernel to the
1157 input X_w :

1158
$$X_w^{(\text{out})} \in \mathbb{R}^{B \times N \times 1 \times 1}, \quad \text{where } (X_w^{(\text{out})})_{bn} = \sum_c \sum_{k_2} \sum_{k_1} ((X_w)_{[b,c,k_1,k_2]}) \mathbf{K}_{[b,c,n,k_1,k_2]}. \quad (55)$$

1159
1160

1161 We also incorporate gating mechanisms (Gu et al., 2022a; Nguyen et al., 2022; Gu & Dao, 2023)
1162 and residual connections for complete implementation, as they have proven effective and are widely
1163 adopted as standard components in SSM block designs. Specifically, we project the initial input X_0 to
1164 have N channels: $X_{\text{res}} \in \mathbb{R}^{B \times N \times H \times W}$, and 2D average pool with the same kernel size (K_1, K_2) and
1165 the stride to produce the tensor $X_{\text{res}}^{(\text{out})}$, matching the output size of the convolution. A SiLU (Elfwing
1166 et al., 2018) activation is applied to this residual tensor, which is then used to gate the convolution
1167 output via element-wise multiplication. Finally, we add $X_{\text{res}}^{(\text{out})}$ back to the gated output to complete
1168 the residual connection.
11691170 A.8 EXPERIMENT DETAILS
11711172 This section provides additional experiment details that were omitted from the main paper due to
1173 space constraints.
11741175 A.8.1 DATASETS
11761177 **Kodak, CLIC2020.** The Kodak dataset (Kodak, 1993) is a set of 24 natural photographs of
1178 resolution 512×768 . The CLIC2020 (Toderici et al., 2020) dataset includes 41 images of varying
1179 resolutions, allowing side lengths up to 2048 pixels. Both datasets are commonly used for image
1180 compression tasks, as they contain rich high-frequency details and complex scenes.
11811182 **Bunny, UVG, DAVIS.** Bunny (Roosendaal, 2008) is a 132-frame, animated short film, while
1183 UVG (Mercat et al., 2020) is a long 1080p video dataset comprising sequences of 300 or 600 frames.
1184 Both are widely used benchmarks for video compression. DAVIS (Huang et al., 2017) is a densely
1185 annotated featuring short 1080p video clips, commonly used for video segmentation. Since NeRV
1186 benchmarks often include a subset of DAVIS, we follow this convention and select the following
1187 video clips; ‘bike-packing’, ‘blackswan’, ‘bmx-trees’, ‘breakdance’, ‘camel’, ‘car-roundabout’,
1188 ‘car-shadow’, ‘cows’, ‘dance-twirl’, and ‘dog’.
1189

1188
1189
1190 Table A3: Implementation details of the experiments from Sec. 5
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

Dataset	Encoder	Enc. strides	Decoder	Dec. strides	Feature dims.	Learning rate
Kodak	ConvNeXt	[16, 4, 2, 2]	ConvTranspose2D	[4, 4, 4, 2, 2]	[64, 64, 64, 16]	1e-2
	LPNet-Conv	[16, 4, 2, 2]	ConvTranspose2D	[4, 4, 4, 2, 2]	[64, 64, 64, 16]	3e-2
	LPNet-Mamba	[32, 2, 2, 2]	ConvTranspose2D	[4, 4, 4, 2, 2]	[64, 64, 64, 16]	1e-2
	LPNet-S3K	[32, 2, 2, 2]	ConvTranspose2D	[4, 4, 4, 2, 2]	[64, 64, 64, 16]	2e-2
CLIC2020	ConvNeXt	[4, 4, 2]	ConvTranspose2D	[4, 2, 2, 2]	[64, 64, 64, 16]	1e-2
	LPNet-Conv	[4, 4, 2]	ConvTranspose2D	[4, 2, 2, 2]	[64, 64, 64, 16]	5e-3
	LPNet-Mamba	[8, 2, 2]	ConvTranspose2D	[4, 2, 2, 2]	[64, 64, 64, 16]	1e-2
	LPNet-S3K	[8, 2, 2]	ConvTranspose2D	[4, 2, 2, 2]	[64, 64, 64, 16]	1.6e-2
Objaverse	ConvNeXt	[2, 2, 2, 2]	ConvTranspose3D	[2, 2, 2, 2]	[64, 64, 64, 16]	3e-3
	LPNet-Conv	[2, 2, 2, 2]	ConvTranspose3D	[2, 2, 2, 2]	[64, 64, 64, 16]	3e-3
	LPNet-Mamba	[4, 2, 2]	ConvTranspose3D	[2, 2, 2, 2]	[64, 64, 64, 16]	4e-3
	LPNet-S3K	[4, 2, 2]	ConvTranspose3D	[2, 2, 2, 2]	[64, 64, 64, 16]	3e-3
Bunny	LPNet-S3K	[5, 4, 4, 2, 2]	SNeRV (Kim et al., 2024b)	[5, 4, 4, 2, 2]	[64, 64, 64, 16]	3e-4
UVG	LPNet-S3K	[10, 8, 3, 2]	HNeRV (Chen et al., 2023)	[5, 4, 4, 3, 2]	[64, 64, 64, 16]	2e-4
	LPNet-S3K	[10, 8, 3, 2]	SNeRV (Kim et al., 2024b)	[5, 4, 4, 3, 2]	[64, 64, 64, 16]	2e-4
	LPNet-S3K	[10, 8, 3, 2]	PNeRV-L (Zhao et al., 2024)	-	-	2e-4
DAVIS	LPNet-S3K	[10, 8, 3, 2]	SNeRV Kim et al. (2024b)	[5, 4, 4, 3, 2]	[64, 64, 64, 16]	2e-4
	LPNet-S3K	[10, 8, 3, 2]	PNeRV-L Zhao et al. (2024)	-	-	2e-4

Objaverse. Objaverse is a large-scale dataset containing over 800K web-crawled 3D objects, which covers a wide range of functional categories and geometric variations. As one of the largest publicly available collections of 3D assets, it is often used for 3D understanding, neural rendering, shape reconstruction, and vision-language grounding. In our work, we take the 1K 3D objects from ‘*Furnitures*’ subset, which consists of everyday household items such as sofas, chairs, and tables. We voxelize each furniture object to have a binary grid of size 32^3 (approximately 33K voxels), where the voxel occupancy encodes the object’s structure.

A.8.2 IMPLEMENTATION DETAILS

We provide detailed implementation configurations in Table A3. Since the decoder architecture remains consistent across all experiments, we list the different experimental variants under the ‘Encoder’ column. The ‘Enc. strides’ column specifies the strides applied at each encoder stage, indicating the spatial downsampling factor between successive layers. Analogously, ‘Dec. strides’ indicates the upsampling factor at each decoder stage. PNeRV (Zhao et al., 2024) does not employ conventional upsampling methods such as deconvolution (Noh et al., 2015) or pixelshuffle (Shi et al., 2016), thus we do not specify its decoder strides. We observe that SSM-based encoders perform better when the first encoder layer uses a larger kernel size, while standard convolution-based encoders tend to perform well with comparably more uniform stride settings across layers. Accordingly, we use a larger stride in the first encoder layer for SSM-based models to match this behavior. The ‘Feature dims.’ column specifies the channel width at each encoder stage, which is kept consistent across all experiments. Since each model has different characteristics, we observe that they require distinct learning rates to achieve optimal performance. Therefore, we carefully search across a range of learning rates for each dataset and report the best results.

A.8.3 ABLATION STUDIES

We present an ablation study in Table A4 to evaluate the impact of the architectural modifications introduced in Sec. 4.3 and Sec. 4.4. In addition, we evaluate an alternative design inspired by Mamba (Gu & Dao, 2023), where the step size Δ is made input-adaptive. The results show that each proposed component contributes positively to performance, except for the adaptive Δ : performance drops significantly from 36.92 to 36.26 when Δ is made input-dependent. We hypothesize that this is due to a mismatch between the objective of input-selectivity, a primary reason for adopting adaptive Δ , and input reconstruction. Since input reconstruction demands uniform attention across all regions of the input for accurate reconstruction, the input selectivity introduced by adaptive Δ may be less effective than in other tasks. We also find that the complex initialization of \mathbf{A} and \mathbf{B} (Smith et al., 2022) is equally helpful, aligning with observations in Mamba (Gu & Dao, 2023) that such

1242 Table A4: Ablation study of LPNet-S3K components on the Bunny dataset. We employ HNeRV (Chen
 1243 et al., 2023) decoder for the experiment.

1245	subsequent 1 × 1 conv.	Adaptive B	Adaptive Δ	Inverted Bottleneck	Real A, B	SiLU act.	RMS norm	PSNR
1247	✗	✗	✗	✗	✗	✗	✗	36.37
1248	✓	✗	✗	✗	✗	✗	✗	36.67
1249	✓	✓	✗	✗	✗	✗	✗	36.92
1250	✓	✓	✓	✗	✗	✗	✗	36.26
1251	✓	✓	✗	✓	✗	✓	✓	36.94
1252	✓	✓	✗	✓	✓	✗	✗	37.03
1253	✓	✓	✗	✓	✓	✓	✗	36.92
1254	✓	✓	✗	✓	✓	✓	✓	36.99
								37.04

1255 Table A5: Ablation of state
 1256 size on the Bunny dataset.

1257 Table A6: Ablation of state
 1258 size on the Kodak dataset.

1259 Table A7: Ablation of state
 1260 size on the Objaverse dataset.

1261 state size	PSNR
1262 16	36.74
32	36.88
64	37.03
128	36.92

1263 state size	PSNR
4	27.65
8	27.98
16	28.09
32	28.04

1264 state size	PSNR
8	17.56
16	17.98
32	18.34
64	18.29

1265 initialization of \mathbf{A} is aids in processing continuous inputs. However, for performance optimization in
 1266 terms of speed, we stick to the real parametrization.

1267 We also provide thorough ablations on state size of S3K layers in Table A5-A7. We use a state size
 1268 of 8 (images), 32 (3D data), 64 (videos), and apply the same state size across all S3K layers for
 1269 each setting. Empirically, increasing the state size in the first S3K layer meaningfully enhances the
 1270 performance, likely because this layer is the primary opportunity to capture high-frequency spatial
 1271 details and a larger state size helps preserve this. In contrast, increasing the state size in later layers
 1272 yields only marginal gains. For simplicity and consistency, we adopt the first layer’s optimal state
 1273 size for all layers. In our experiments, performance improves as the state size increases but begins
 1274 to saturate once the state size is sufficiently large relative to the signal complexity. In practice, this
 1275 occurs around 8 for images, around 32 for 3D data, and around 64 for videos—values we therefore use
 1276 throughout the model.

1277 A.8.4 COMPARISON TO MLP-BASED METHODS

1278 LPNet-S3K is yet inapplicable to coordinate-to-rgb mapping methods (*i.e.*, MLP-based methods) such
 1279 as Liu et al. (2024); Sitzmann et al. (2020) (images) or Kwan et al. (2024); Kim et al. (2022) (videos),
 1280 categorizing itself as a *convolution-based* neural representation, in contrast to other mainstream neural
 1281 representation *MLP-based* neural representation (coordinate-based, INR). Hence, we have compared
 1282 our methods only with convolution-based methods in Sec. 5.1, as it has been a standard practice to
 1283 compare models within the same family (Kim et al., 2024b; Yan et al., 2024; Kim et al., 2022; Shin
 1284 et al., 2024), due to their fundamentally different characteristics which are illustrated in Table A8.
 1285 Fig. A3 also exhibits their differences clearly: convolution-based models offer very fast decoding
 1286 speed while sacrificing their reconstruction quality. On the other hand, MLP-based methods in general
 1287 show higher fidelity, but have slower decoding speed, which limits their real-time application. Unlike
 1288 the prevailing NeRV trend of trading decoding speed for higher reconstruction quality, LPNet-S3K
 1289 serves as a fidelity enhancer for convolution-based models without adding inference cost.

1290 We also provide a comparison with MLP-based image neural representation, FINER (Liu et al., 2024)
 1291 in Table A9. FINER shows better fidelity compared to LPNet-S3K, but requires much more time and
 1292 memory for training. On the other hand, LPNet-S3K shows greater efficiency, while underperforming
 1293 in terms of reconstruction quality.

1294

1295

Figure A3: Reconstruction quality and decoding speed trade-off in modern NeRV models. We collect models of 0.02-0.03bpp on a 600-frame UVG video, which occupy 300 epochs to train. FPS is measured with NVIDIA A6000ada GPU.

Table A8: Comparison between MLP-based methods and convolution-based methods

Type	recon. quality	decoding speed	Examples
MLP-based (INR)	high	low	SIREN (Sitzmann et al., 2020) FINER (Liu et al., 2024) HiNeRV (Kwan et al., 2024) NeRV (Chen et al., 2021) NVP (Kim et al., 2022) C3 (Kim et al., 2024a)
Convolution-based	low	high	HNeRV (Chen et al., 2023) DNeRV (Zhao et al., 2023) PNeRV (Zhao et al., 2024) DS-NeRV (Yan et al., 2024) SNeRV (Kim et al., 2024b) Ours

Table A9: Comparison between LPNet-S3K to FINER.

Method	Epochs	Num params	Training time (s/epoch)	Memory (MB)	Kodak	CLIC
LPNet-S3K	300	150K	0.05	35210	28.09	26.33
FINER (Liu et al., 2024)	300	199K	0.4	4106	28.68	27.12

A.8.5 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results in Fig. A4 (Kodak), Fig. A5 (CLIC2020), Fig. A6 (Objaverse), and Fig. A7-A12 (DAVIS).

Figure A4: Reconstruction results on the Kodak dataset

Figure A5: Reconstruction results on the CLIC2020 dataset

Figure A7: Reconstruction results on ‘blackswan’ from the DAVIS dataset

Figure A8: Reconstruction results on ‘camel’ from the DAVIS dataset

Figure A9: Reconstruction results on ‘car-roundabout’ from the DAVIS dataset

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

Figure A10: Reconstruction results on ‘car-shadow’ from the DAVIS dataset

1527

1528

1529

1530

1531

1532

Figure A11: Reconstruction results on ‘cow’ from the DAVIS dataset

1545

1546

1547

1548

1549

1550

1551

Figure A12: Reconstruction results on ‘dance-twirl’ from the DAVIS dataset

1563

1564

1565