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ABSTRACT

Spatial navigation in biological agents relies on the interplay between allothetic
(visual, olfactory, auditory, . . . ) and idiothetic (proprioception, linear and angular
velocity, . . . ) signals. How to combine and exploit these two streams of informa-
tion, which vastly differ in terms of availability and reliability, is a crucial issue.
In the context of a new two–dimensional continuous environment we developed,
we propose a direct-inverse model of environment dynamics to fuse image and
action related signals, allowing reconstruction of the action relating the two suc-
cessive images, as well as prediction of the new image from its current value and
the action. The definition of those models naturally leads to the proposal of a min-
imalistic recurrent architecture, called Resetting Path Integrator (RPI), that can
easily and reliably be trained to keep track of its position relative to its starting
point during a sequence of movements. RPI updates its internal state using the
(possibly noisy) self-motion signal, and occasionally resets it when the image sig-
nal is present. Notably, the internal state of this minimal model exhibits strong
correlation with position in the environment due to the direct-inverse models, is
stable across long trajectories through resetting, and allows for disambiguation of
visually confusing positions in the environment through integration of past move-
ment, making it a prime candidate for a cognitive map. Our architecture is com-
pared to off-the-shelf LSTM networks on identical tasks, and consistently shows
better performance while also offering more interpretable internal dynamics and
higher-quality representations.

1 CONTEXT

The Path Integration task. Path Integration (PI), a task in which an agent has to integrate infor-
mation about a sequence of movements to keep track of the distance between its current and initial
positions, has been extensively studied both in rodents (Etienne & Jeffery, 2004; McNaughton et al.,
2006), and in artificial systems (Arleo et al., 2000; Banino et al., 2018; Zhao et al., 2020), and is
thought by many to be an essential ingredient in the elaboration of cognitive maps (Tolman, 1948;
Redish & Touretzky, 1997), that is, internal representations of the spatial structure of an environment
capable of supporting navigation tasks (Golledge, 2003). Path Integration is particularly relevant
from the point of view of representation learning as it relies on the interplay between qualitatively
different inputs, a subject known as multi-modal learning and recently reviewed by Summaira et al.
(2021). Those inputs can be broadly categorized into two groups. On the one hand, idiothetic
signals, such as velocity (Kropff et al., 2015), head direction (Taube et al., 1990), memory of past
trajectories (Cooper et al., 2001) or reafferent copies of motor signals (Iacoboni et al., 2001), which
are generated by the agent itself. On the other hand, allothetic cues, e.g. provided by vision (Etienne
et al., 1996), olfaction or ”whisking” in mice (Deschênes et al., 2012) are intrinsically related to the
external environment.

The simplest solution to implement PI would be an integrator network that takes as inputs proprio-
ception signals, or, equivalently, the agent’s time-dependent velocity. While the theory of integrator
networks and the representations that emerge have been well studied (Seung, 1996; Fanthomme
& Monasson, 2021), such a solution suffers from two major limitations. First, the accumulation
of errors across the trajectory, either coming from imperfect sensor information or from imperfect
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integration, would make it unsuitable to represent Path Integration on arbitrarily long trajectories.
Second, even if integration could be done without any error, representations constructed from pro-
prioceptive information only would depend on the sequence of relative movements, and would be
inadequate to the establishment of allocentric cognitive maps.

It is therefore crucial to understand how allothetic cues can be fused with self-motion information to
achieve accurate PI, and to provide appropriate support for representations informative about the ab-
solute position of the animal in its environment. This question has already been addressed in several
works. Uria et al. (2020) introduced multiple recurrent neural networks (RNN) to build sophisti-
cated 3D cognitive maps, with a variety of neurons displaying sensory-correlate features analogous
to the ones encountered in cortical and hippocampal cell populations. Bicanski & Burgess (2018)
proposed a model for the interactions between multiple brain areas concurring to the production of
high-level spatial representations. In the field of robotics, Simultaneous Localization And Mapping
systems based on Deep Learning are an active topic of research and show promising performance in
key benchmarks of 3D navigation (Gupta et al., 2019; Zhang et al., 2020; Chaplot et al., 2020).

The objective of the present work is to address the issue of PI in the simplest possible setup, from
the environment and network points of view, allowing for both good performance and interpretabil-
ity. While our goal is not to provide a state-of-the-art method, e.g. directly applicable to robotics,
we believe that such conceptual and (over)simplified approaches are valuable to help answer open
questions about PI, such as its supervised or unsupervised nature, and its relevance to RL. In addi-
tion, the discrepancies between the representations built by our network and its natural biological
counterparts may shed light on the additional functional and structural constraints acting on the
latter.

The environment, associated sensors, and PI loss. In order to study PI in a simple and con-
trolled setting, we developed a continuous 2–dimensional environment, which follows the basis of
the OpenAI Gym specification (Brockman et al., 2016) to allow other researchers to reuse it in their
experiments. This environment, detailed in Appendix A and Figure 1 includes a certain number of
colored markers, which will act as landmarks to allow the agent to determine its absolute position. It
also includes walls, which will impede some movements and restrict visibility. Movement and per-
ception in this environment corresponds to a top-down perspective, similar to what could be found
in a Pac-Man game, centered on the current position of the agent. This setup is limited compared
to real three-dimensional environments, such as the ones based on Minecraft (Johnson et al., 2016)
or Doom (Wydmuch et al., 2018). However, the resulting simulations are much faster and easier to
run, and our framework is convenient for the study of sensor fusion. In addition, primates could be
trained and monitored while performing a similar task, with eyes fixated on a screen displaying the
environment and moving via a joystick; this would provide a direct comparison between artificial
agents and biological ones and allow for a better understanding of both (Yang & Wang, 2020).

The two sensors that we want our agent to combine are: 1) a noisy copy of the action are ≡ atr+εu,
where u is a unit Gaussian vector, and ε the level of noise. This reafferent action represents the
proprioceptive signal, in that it does not depend on the state of the environment; 2) a retinal signal
s, which represents the allocentric information, and depends on the position of the agent (Figure 1,
Right).

This retinal state mimics, to some degree, the activity of a biological retina such as the one of our
hypothetical monkey: an array1 of Difference of Gaussians retinal cells is centered on the position
of the agent; the activity of each cell is computed by summing over the currently visible landmarks
the activity they each elicit, which depends on their distances to the center of the cell receptive field.
More details on the retina, notably on the optimal linear decoding of position from the activity can be
found in Appendix B. For this sensor, we consider two possible types of errors: (1) the retina receives
no information, similar to what would happen if the screen flickers or the animal closes its eyes;
(2) the retinal state is correct, but at some point along the visual processing pipeline the obtained
representation is ”shuffled” between neurons. This second type of errors is meant to represent a form
of temporal multiplexing (Akam & Kullmann, 2014) in the corresponding population. Depending
on time steps, cells participate in the visual processing pipeline, or in other cognitive tasks; in the
latter case, we would expect the population activity to have similar distribution across neurons, but
no correlation with the visual representation, which is here achieved through reshuffling.

1In practice, we use three superimposed arrays, one for each RGB color channel, see Appendix B.
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Figure 1: Presentation of our top-down perspective, two–dimensional continuous environment. Left:
At each time step, the agent moves between positions rt and rt+1 by performing an action atr

t . The
image it perceives through its retina, now centered on the new position rt+1, is modified accord-
ingly, as the ”landmarks” now occupy different positions with respect to the center of the retinal
array. Right: Each neuron in the retinal array has an associated receptive field of the ”Difference
of Gaussians” type (for clarity, we represent only two); depending on the position of the landmark
with respect to its receptive field, each neuron will be more or less activated, generating the ”retinal
state” that we will consider in the following as the ”observation” received from the environment

Figure 2: Shared structure of the models of Path Integration. The signals coming from the allocentric
and proprioceptive sensors (respectively, the retinal activity and the reafferent action) are encoded
through a first set of Neural Networks, before being used as inputs to a Recurrent Neural Network,
whose output will be the predicted total displacement.

Based on these sensory signals, the agent has to estimate the displacements ∆rt from its starting
point at all times t, see output of the PI network in Figure 2. We quantify the PI error along a
trajectory of T steps through the loss

LPI =

T∑
t=1

〈(
∆rt −

t∑
k=1

atr
k

)2〉
, (1)

where 〈·〉 represents the average over trajectories.

Network architectures. Since our PI task requires propagation of information from one time step
to the next, it is not suitable for Multi-Layer Perceptron types of networks, which hold no mem-
ory of the previously received inputs, but can be handled with a Recurrent Neural Network (RNN).
In the following we will consider two broad categories of RNNs, with variable architectures and
training procedures: (1) off-the-shelf Long Short-Term Memory modules (Hochreiter & Schmid-
huber, 1997); (2) a minimal RNN based on the idea of direct-inverse environment models defined
in Section 2, which we call the Resetting Path Integrator (RPI) and introduce in Section 3. Precise
architectures are presented in Appendix C, and a sketch of the common structure shared by all our
networks is presented in Figure 2.

A natural approach to multimodal PI consists in simply concatenating non-recurrent encodings of
action and visual inputs, and feeding the resulting joint representation to a Recurrent Neural Net-
work trained on the PI loss (1). However, as reported in the following, these initial attempts yielded
unsatisfying solutions that 1) failed to perform resetting (see Section 3) when an image was avail-
able, and 2) had internal states in the RNN that were correlated only with displacement from the
start of the trajectory, and not with the absolute position in the environment. In order to foster
the emergence of allocentric representations of the environment, we now introduce the concept of
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direct–inverse models, and their associated losses. Direct–inverse models impose strong relation-
ships between proprioceptive and visual signals, and as we shall see, lead to a natural approach to
performing PI using those two qualitatively distinct streams of information.

2 DIRECT-INVERSE ENVIRONMENT MODELS

Evidence for internal models of environments has been found both in mammals (Ito, 2018) and in
humans (Wolpert et al., 1998), notably within the Purkinje Cells of the Cerebellum, and have been
hypothesized to be relevant for a wide range of motor (Wolpert & Miall, 1996; Kawato, 1999) and
reasoning (Merfeld et al., 1999) behaviors. They have also been studied in the field of Reinforcement
Learning, notably by Anderson et al. (2015), who showed that prediction of environment dynamics
is an efficient pretraining step, by Pathak et al. (2017), who used the error in this model as a form
of ”curiosity” signal to encourage exploration, Corneil et al. (2018), who built a tabular model of
an environment for use in an explicitly model-based planning algorithm, and Ha & Schmidhuber
(2018), who used an internal model to allow the agent to learn from trajectories it ”dreams” rather
than from direct interaction with the environment, a formalism that could explain the observed
coordinated replays of place and grid cells in rats (Ólafsdóttir et al., 2016).

These models can be formalized using the vocabulary of Partially Observable Markov Decision
Processes (Sutton & Barto, 1998) used in Reinforcement Learning: the ”hidden” state of the en-
vironment is the agent’s absolute position; the observation is the retinal signal s (see Section 1 for
details), the ”action” atr

t at time t is the displacement in the environment from time t to t+12. Mod-
els of the environment are defined on transition tuples τ = (st,a

tr
t , st+1)

3 and aim at predicting
one of its components from the other two:

• the direct model D estimates the next state from the current one and the action:

D : (st,at) 7→ st+1. (2)

• the inverse model I estimates the action that relates two states:

I : (st, st+1) 7→ at, (3)

where 〈·〉 represents the average over transition tuples. In practice, this approach would be highly in-
efficient and noise-sensitive in the case where the observed states are of high dimension but contain
little relevant information (e.g. images). It is often preferable to construct these models on represen-
tations, obtained for example via a Convolutional Network V; similarly, we introduce a Multi-Layer
Perceptron (MLP) P that will map the two-dimensional action at to a vector of the same dimen-
sion as the representation V(st); the resulting computation graph is presented in Figure 3, and the
detailed architecture of the individual modules can be found in Appendix C.

To train these models we introduce two loss functions, computed from transition tuples:

LD(V,P,D) =
〈[
V(st+1)−D

(
V(st),P(at)

)]2〉
, (4)

LI(V, I) =
〈[
at − I

(
V(st+1),V(st)

)]2〉
. (5)

It should be noted that training the direct model D alone using the loss LD of eqn (4) results in a
trivial representation scheme in which all observations are mapped to the null vector 0. The inverse
model I can be independently trained, but will generate irregular representations. When training D
and I all together, the direct loss acts as a regularization, while the inverse loss breaks the symmetry
required to converge to the trivial direct model. This yields a spatially structured representation of
states, on which the direct operator acts non-trivially. More details on these representations can be
found in Appendix D.

2The action could be considered a part of the observation, and the ”partial observability” comes from the
noise on these two as described in Section 1

3We do not include a reward signal as these experiments aim at mimicking ”free foraging”, in which the
agent randomly explores an environment without explicit incentive to do so. The influence of a reward on
representations will be the subject of a follow-up study.
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Figure 3: Overview of the direct-inverse model architecture, in which operators acting on internal
representations aim at reproducing the dynamics of an environment. Dotted arrows indicate that the
module they come from is trained to output the quantity they point towards (eqs. 4, 5).

3 RESETTING PATH INTEGRATOR FROM DIRECT-INVERSE MODELS

The direct and inverse models can straightforwardly be combined to create a RNN capable of Path
Integration, which we will call Resetting Path Integrator (RPI) in the following, and which is sum-
marized in Figure 4. The internal state H is initialized with two concatenated copies of the initial
observation 4:

H0 =
(
V(s0) ; V(s0)

)
. (6)

Then, at each time step, the internal state is updated using the direct model D

Ht+1 ≡
(
ht+1 ; V(s0)

)
=
(
D(ht,P(at)) ; V(s0)

)
, (7)

and the displacement ∆rt is computed by applying the inverse model I between the updated and
non-updated versions of the initial observation:

∆rt = I(ht,V(s0)). (8)

While this approach suffers a priori from the same accumulation of errors as the direct movement in-
tegration, it also allows for an additional resetting mechanism, which was hypothesized by Prescott
(1996) as a sufficient mechanism for spatial navigation: at any time-step, the agent could use the
current visual observation to ”correct” its internal state by disregarding the result of the direct model
D. To allow for this, as well as partial resetting5, we introduce a gating network G that maps the
current visual observation st6 to a scalar between 0 (no resetting) and 1 (full resetting) that is used
to interpolate between the proposed new state and the representation of the current observation,
yielding the revised version of the update eqn (7):

Ht+1 =
(
G ◦ V(st)D(ht,P(at)) + [1− G ◦ V(st)]V(st+1) ; V(s0)

)
. (9)

Of course, if reliable images were always available, the optimal solution would correspond to G = 0
at all times, that is, to resetting at every time step and never using the direct model. In standard
situations, where reliable visual information may be lacking, the recurrent nature of the network
will allow for correct performance in-between resetting steps by keeping the internal state close to
what the agent would observe from the environment. We therefore expect the internal state of the
network to strongly depend on the current value of the position, but not on the trajectory used to
get there7, hence being a valid candidate for a cognitive map. More subtly, if the visual information

4The second copy, which will not be modified by the network dynamics, is used as explicit ”memory” of
the starting point and is essential to observe resetting (see Section 4 and Appendix E for more details).

5Another possible approach could have been to enforce total resetting by using G as a probability to choose
the visual state, and to train this gate with a Reinforce-like algorithm. This setting seems less biologically
relevant than ours and we did not investigate it further.

6Formally, this network could also take the current state Ht as input, but in practice this made the training
more unstable without any noticeable improvement in performance.

7In time steps where strong resetting occurs (G ∼ 0), this statement is true since the state is exactly the
representation of the current observation.
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Figure 4: Minimal model for a Resetting Path Integrator, based on a Direct-Inverse model of envi-
ronment dynamics. We assume that the agent is able to see correctly on the first step of the trajectory,
and to keep a stable memory of this initial observation; this initial state is then updated by either us-
ing the direct model and the encoded reafferent action, or the new visual representation (resetting);
the choice between those two behaviors is determined by the gating module G.

received is ambiguous, e.g. the local set of landmarks seen by the retina is the same as in another
part of the environment, see Section 4.2, we expect that the internal state should be able to lift the
ambiguity in the observations through integration of previous motion, bridging the gap between
regions of reliable visual information, a phenomenon which we actually observe in experiments.

To combine the direct-inverse and PI losses, training is done on their weighted sum

Ltot(V,P,D, I,G) = αPILPI(V,P,D, I,G) + αDLD(V,P,D) + αILI(V, I) (10)

computed on random trajectories (see Appendix C for more details on the parameters).

4 RESULTS

In this section, we will analyze both the performance and the representations that emerge in networks
trained on Path Integration loss of eqn. (1), using the environment layout represented in Figure 5,
by looking at five different metrics. First, the average path integration error, computed (1) on short
trajectories (T = 5), during which no image is presented to the network and (2) on long trajectories
(T = 100) with images available every five steps. We expect short and long-term errors to be of the
same order of magnitude in the case of a network that can perform resetting, while the latter will
be much larger than the former if no resetting behavior has been learned. Then, the average (over
neurons) of the coefficient of determinations R2

i for the linear regression of the absolute the activity
of individual neurons i participating to (3) the visual representation or (4) the internal state from the
absolute position, and (5) of the (internal-state) neuron i from the relative displacement within the
trajectory. These individualR2

i scores are found to be close to 1, either for the absolute or the relative
positions, indicating whether neuron i is carrying allocentric or egocentric representation. Notice
that R2 ∼ 0 would not mean that the neuron state would not convey any positional information, but
that the latter would not be accessible to a linear decoder.

We will compare these five metrics under different training conditions: a ”vanilla” LSTM model and
our RPI model, trained on the PI loss in eqn. (1) only; an ”improved” LSTM model8 and our RPI
model, trained end-to-end with the direct/inverse losses9.

4.1 PERFORMANCE OF PATH INTEGRATORS AND NATURE OF REPRESENTATIONS

The results on the five metrics obtained in the snake-path environment of Figure 5 are reported in
Table 1; a similar experiment carried out in a more complicated layout is presented in Appendix G.
Four conclusions can be drawn from those results: (1) Both recurrent structures (LSTM and RPI) are
able to learn resetting behaviors, yielding similar short and long-term errors, see Figures 5 and 6;
(2) Training with Direct and Inverse losses (as regularization) is necessary for the emergence of
resetting; (3) Our RPI model yields internal states with much higher positional tuning than LSTMs;

8Several variants of LSTM were considered with varying degrees of success, see Appendix E for details.
9Using these losses only for pretraining is possible, but leads to catastrophic forgetting, see Appendix F.
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Resetting Path Integrator Long Short Term Memory

All losses No model losses Vanilla Improved
Error (short) 0.021 ± 0.017 0.033 ± 0.025 0.014 ± 0.011 0.027 ± 0.018
Error (long) 0.026 ± 0.022 0.43 ± 0.36 0.16 ± 0.15 0.056 ± 0.038
R2 (visual) 0.99 ± 0.048 0.11 ± 0.091 0.33 ± 0.18 0.96 ± 0.085

R2 (PI, absolute) 0.98 ± 0.053 0.33 ± 0.08 0.3 ± 0.097 0.57 ± 0.22
R2 (PI, relative) 0.35 ± 0.077 0.82 ± 0.11 0.77 ± 0.21 0.34 ± 0.14

Table 1: Comparison between our Resetting Path Integrator model and standard LSTM in the
SnakePath environment. When trained without the model losses, both architectures fail to establish
a proper resetting strategy, leading to higher error rates when tested on long trajectories (T = 100)
than on short ones (T = 5), and the internal state during PI is a linear function of displacement
along the trajectory, rather than of absolute position in the environment as is the case when model
losses are used. Errors bars were estimated from 20 realizations of the training which differ both by
initialization of the network weights, and drawn training trajectories.
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Figure 5: Example of Path Integration trajectory Left: Crosses represent the true position of the
agent, while stars represent the one evaluated through Path Integration; black circles are placed
around the positions at which an image was provided; time along the trajectory is represented by
the color of the symbols. Top right: logarithm of the value of the resetting gate as a function of
time along the trajectory. Bottom right: error between the true and reconstructed position. Vertical
dashed lines indicate the time-steps at which the image was available to the network and not cor-
rupted. In this example, actions are not drawn from the ”free foraging” random policy but chosen to
force exploration of the entire environment to better evaluate generalization at long distances, and
reafferent actions are exact, so that errors are due only to the network itself.

(4) Representations depend on absolute position in networks that perform resetting, and on relative
position along the trajectory in networks that do not (see Appendix H for details).

Despite RPIs being less expressive than their LSTM counterparts, they do not seem to achieve
significantly worse performance (although more hyperparameter optimization would be required to
confirm this statement). In addition, RPIs converge to solutions that are more easily interpretable,
both in terms of tuning to the absolute position (illustrated by the higher R2 scores), and of gating
dynamics, see Figure 5. In Appendix I, we show that the value of the gate in a trained RPI is directly
related to the cognitive mechanism of resetting, with the strength of resetting increasing when the
training conditions incorporate more noise in the proprioceptive signals, as well as when the visual
representations are more and more perturbed. In LSTMs, however, the reset and input gates are
only weakly correlated with resetting, and instead might contribute to the computation of the direct
model, see Appendix J for details.
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Figure 6: Path Integration errors achieved by our Resetting Path Integrator, with occasionally avail-
able retinal images (orange) and without images (blue). A: the reafferent action (proprioceptive
signal) is exactly equal to the true one. B: a small amplitude Gaussian noise ε is added to the
reafferent action. Dashed vertical lines indicate steps at which images were presented, kept equal
across 512 trajectories for each of the 8 networks used in the averaging. The qualitative agreement
between those two plots, as well as results from Appendix I, suggest that our procedure is robust to
small reafference errors, which have the same effect as direct model errors.

4.2 DISAMBIGUATION OF AMBIGUOUS ENVIRONMENT BY RPI REPRESENTATIONS

Next, we considered a highly ambiguous situation where two rooms, located at the opposite ends of
the environment, are designed to provide strictly identical visual cues. In that case, inverse models
of the full environment give very large reconstruction errors when either of the images are located
within one of these rooms.10

However, training a Resetting Path Integrator on this environment in an end-to-end fashion remains
possible, as shown in Appendix K. The resulting networks exhibit three important properties: 1) the
internal states observed during Path Integration are different in the two ambiguous rooms, as illus-
trated in Figure 7; 2) the PI error does not show any noticeable increase when the agent enters one
of the ambiguous rooms, see Supplementary Figure 18; 3) the resetting mechanism is not triggered
for images coming from the ambiguous rooms, as illustrated in Supplementary Figure 19.

The last observation was to be expected: as visual representations are identical between the two
rooms, performing a resetting would, on average, result in a loss of spatial information with respect
to keeping the state updated through the direct model. The first and second observations are non-
trivial. To correctly perform Path Integration in the ambiguous rooms, our RPI network created
new states, differing from those coming from the visual cues, that aim at bridging the gaps between
”visually informative” regions. These networks have therefore managed to construct a representation
of absolute position in the environment that does not rely only on local landmarks, but also draws
from proprioceptive information and effectively fuses these sensors; intuitively, the Path Integrator
is able to differentiate between two visually identical rooms by remembering how it got there, a
highly desirable property for cognitive maps.

5 CONCLUSION

Results. In this study, we have demonstrated how a Recurrent Neural Network can be used to con-
struct a cognitive map of a continuous spatial environment, by fusing unreliable proprioceptive and
intermittently available external inputs through the task of Path Integration. We examined several
ways of performing this fusion, using either off-the-shelf LSTM networks, or our proposed Resetting
Path Integrator model, based on direct-inverse models of the environment dynamics, and including a
single, scalar gating mechanism allowing for resetting (clearing) the internal state of the network and
replacing it with an external signal. While all studied architectures and training procedures manage

10If we train and test only on images coming from adjacent rooms, an inverse model can perform well as there
is no couple of images that would correspond to two different reconstructed positions. The resulting direct–
inverse models are however not suitable for Path Integration without retraining, as their long-range performance
is severely limited by the ambiguous rooms.
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Figure 7: Comparison between representative neurons in the visual module V (top row) and the
internal state h observed during Path Integration (bottom row) as a function of position within our
ambiguous environment. The ”dynamic” representation constructed during PI lifts the ambiguity
between the two opposite rooms of the middle row, which contain the same landmark and are sur-
rounded by identical rooms. Each column represents the normalized activation of a single neuron.

to perform Path Integration on short trajectories, only those regularized through the addition of the
direct-inverse losses learned to efficiently use resetting and achieved similar error levels on very long
and on short trajectories, thus overcoming error accumulation. The idea of incorporating high-level
knowledge about desirable aspects of the internal states dynamics through regularization is close to
the one of Haviv et al. (2019). We observe that the internal neural states are qualitatively different
between path-integrator networks that learn resetting and those that do not: while the former are
very close to linear functions of the absolute position in the environment, the latter are closer to lin-
ear functions of the displacement along the trajectory, see Table 1. This subtle difference is crucial,
and implies that only networks capable of resetting have learned a ”cognitive map” (Tolman, 1948;
Spiers & Barry, 2015), which could a priori be transferred towards other spatially structured tasks.

Future directions. Contrary to previous works on PI in artificial agents that used highly spatially-
structured inputs, relying on hypothesis about the existence of either place cells (for example in
Arleo et al. (2000); Banino et al. (2018)) or grid cells (Zhao et al., 2020), our approach does not
make such assumptions, and is, to our knowledge, the first one to allow for study of the emergence of
these representations during training. Our simplistic environment setup did not result in emergence
of either of those types of cells, but instead on a ”top-down” map, which accurately depicts the
Euclidean (by opposition to topological) structure of the environment. In other words, positions that
are close in the layout (viewed from above) are close also in the map, though they could be far from
each other in terms of ”minimum number of steps”, e.g. when separated by a wall that would need
to be walked around. It is then a logical next step to move towards more realistic environments,
using real first-person view, and allowing for rotations and translations, e.g. Malmo (Johnson et al.,
2016) or VizDoom (Wydmuch et al., 2018), whose interplay might be responsible for the particular
coding scheme of place and grid cells (Harsh et al., 2020; Benna & Fusi, 2020).

Another major direction of research concerns the role of Path Integration as an end-goal: while it is
assumed that such a task can be used to generate high-quality cognitive maps (as confirmed by our
study), there is no evidence that this task is ever performed ”intentionally”. Preliminary experiments
show that the recurrent representations constructed by the networks can be used for Reinforcement
Learning tasks, such as goal-oriented navigation (moving towards a specific position in the envi-
ronment), much more efficiently than through direct training. This result was to be expected, since
representation learning is known to be a limiting factor in RL (Anderson et al., 2015). In a follow-
up study, we will focus on incorporating the Path Integration loss (as well as the direct and inverse
losses) as regularization terms in the policy learning algorithm; this approach is similar to the Intrin-
sic Curiosity Module of Pathak et al. (2017), in which the model errors were used as an exploration
incentive, as well as zero-shot learning through environment models (Ha & Schmidhuber, 2018).
All those methods can a priori be used at the same time.

Combining those two directions of research, making both tasks and environments more realistic, in
particular close to what can be studied in live animals, will be key to understanding the intricacies
of cognitive maps and of their relation to behavior.
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A THE CONTINUOUS GRIDWORLD ENVIRONMENT

All experiments presented in this article were performed using the GridWorld environment class,
defined in the environment.py file. While this environment is neither particularly efficient to run,
as it is coded in pure python, nor very expressive, it still allows for a wide variety of interesting
situations and is performant enough to not be an unreasonable bottleneck in most situations. It also
follows the basic specifications of the OpenAi Gym framework, which makes it easy to extend it
and test basic Reinforcement Learning tasks such as goal-driven navigation.

While we do not provide level editors or tools to procedurally generate new layouts, they can be
added by hand in the environment register, under a new key corresponding to the map name, as a
dictionary containing the following attributes:

• the number of rooms in the environment;
• a list containing the position of the room centers in the surrounding environment (the envi-

ronment can be rescaled as a whole when instantiated, so it is easier to assume all rooms to
be of size 1× 1);11

• a list of room exits, such that the i-th component is a list containing all exits from room i.
An exit is defined as a room edge (either vertical or horizontal) that is connected to another
room edge, and the link between coordinates in the two rooms is established by giving the
coordinates of the same physical point in the two rooms (the center of the common room
edge);

• a list of possible item layouts, detailing what items are visible (and at which position from
the room center) within each room, allowing us to simulate visual occlusion, or even special
effects (such as switching the light off when the agent is in a particular room). All items
are point-like light emitters, and only differ through their color.

Given the connection graph of the rooms and the item layout, the GridWorld class can be used
to generate trajectories from sequences of actions, as well as to generate a human-interpretable
rendering of the arrangement of rooms and items which can be used as a basis for more involved plots
(most notably, trajectories and value of neuron activity as a function of position in the environment).

The inputs to the network, which we refer to simply as images, are obtained from a list of rooms and
positions within these rooms, by using a retina of the type described in Appendix B.

We provide several environments and layouts, some of which were used only for preliminary tests
but which we retain for the sake of completeness.

B RETINA

Individual retinal fields We begin by introducing the Difference of Gaussians retinal neurons
(Dayan & Abbott, 2001): their receptive fields have a center c, two widths (σ+, σ−), and their
activity g when a single visual cue is present at distance δr from the center is a difference of Gaus-
sians:

g(r = c+ δr) =
A√
2πσ+

exp
− δr2

2σ2
+ − B√

2πσ−
exp
− δr2

2σ2
− (11)

When two or more visual cues are presented in the image, the activation of the neurons will be the
sum of the activations for each individual object.

Retinal array We will consider as retina a square array of these retinal fields (see Figure 8), all
with A = B for simplicity. The value of A is determined so that, on average over the position of a

11While this environment is designed to be used for 2–dimensional spatial navigation, we consider the room
centers to have three components; the first two are the (x, y) coordinates which can be modified by our two-
dimensional actions, while the third one can be used to lift ambiguity between two rooms that would be located
at the same position but would differ in another way meaningful for the environment (for example, to change
the environment after the agent visits a particular room). This functionality is not used in the experiments
presented in this study.
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Figure 8: Example of retina: a regular square lattice of Difference of Gaussians fields. We describe
as the ”area of effect” of the retina the zone in which an object would contributes to the activity
vector of the retina as a whole above some arbitrary threshold, e.g. 10−2.

single object within a square room of width 1, the average norm of the retina activity vector is equal
to 1. For experiments, we will use an array of 642 = 4096 cells; for the values of the two widths,
we choose (σ+ = 0.4, σ− = 0.5).

Color retina In order to be able to differentiate between two objects, we associate to each a
”color”, i.e. a vector in [0, 1]3. This color is perceived by the retina in the following way: there
are three ”copies” of our retina, one for each color ”channel”; the object activates each ”channel”
proportionately to the object’s value in that color. This makes it so that each position r in the
environments corresponds to one image i of size (3, 64, 64) for the 64× 64–retinas that we use.

Optimal linear reconstruction of an arbitrary function of position Let us consider the family
of functions {(g1(r), g2(r), . . . gn(r)}, where gi(r) describes the activation of neuron i when a cue
is located at position r. A linear model of an arbitrary function f (of the cue position) from the state
of our retina can be written as a linear combination of those functions:

f̂(r) =
∑
i

αf,igi(r) (12)

The associated reconstruction error on a domain D ⊂ R2 can then be written:

E(αf ) =

∫
D

[∑
i

αf,igi(r)− f(r)
]2

=

∫
D

∑
i,j

αf,iαf,jgi(r)gj(r)− 2f(r)
∑
i

αf,igi(r) + f(r)2


=
∑
i,j

αf,iαf,j

∫
D
gi(r)gj(r)− 2

∑
i

αf,i

∫
D
f(r)gi(r) +

∫
D
f(r)2

:=
∑
i,j

αf,iαf,jIij − 2
∑
i

αf,ihf,i + C

(13)

The minimum of this loss with respect to the parameters αf satisfy:

∀i, ∂E
∂αf,i

= 2

∑
j

Iijαf,j − hf,i

 = 0 (14)

and therefore the optimal linear decoder is obtained as αf = I−1f hf .

Numerical approximation of the integrals over D are easily obtained by averaging over measures on
a grid lattice, up to some numerical precision limitations. This decoding is not particularly fast since
determining I is computationally expensive.
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Figure 9: Reconstruction error on a grid with 100 subdivisions on x and y as a function of position,
represented as a heatmap. On the left, the reconstruction error of the optimal linear decoder shows
clear geometric patterns related to the geometry of the underlying array of cells. On the right, the
reconstruction error for a ”deep” 3-layer ReLU network. While the highest observed error is higher
for this deep network, the error on all points except the corners is much lower than for the linear
network. Additionally, the geometric patterns are not observed in that case.

Figure 10: Computation diagram for a LSTM cell, as implemented in Paszke et al. (2019).

Expected optimal performance When the environment consists in a single room, containing a
single object, we can easily reconstruct the relative position of the object with respect to the center
of the retina using either the direct linear solving of the previous paragraph or gradient descent on
a more parametrized structure, e.g. a dense or convolutional neural network. This experiment gives
us an idea of the maximum performance that can be expected from any inverse model based on our
retina.

When using a 642 array spanning [−0.5, 0.5] and reconstructing the position of an object placed
arbitrarily in [−1, 1], the Root Mean Square error for the optimal linear reconstruction is around
10−2, with clear geometric patterns in the errors, while the 3-Layers ReLU network achieves a
performance closer to 10−3 by seemingly ”smoothing” the aforementioned error patterns. These
results are presented in Figure 9.

C NETWORK ARCHITECTURES AND TRAINING HYPERPARAMETERS

C.1 ARCHITECTURES

The exact architectures used in our implementations are as follows:
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• the convolutional networks V used to obtain the visual representations are:

1. Input image with 3 channels, size 64× 64 (from the retina)
2. Convolution with 16 filters, kernel size of 5, stride of 3, padding of 2
3. Convolution with 32 filters, kernel size of 5, stride of 5, padding of 2
4. Flatten layer
5. Dense layer with 512 outputs
6. Dense layer with 512 outputs

• the action encoding networks P are:

1. Input layer of size 2
2. ReLU layer with 256 outputs
3. Linear layer with 512 outputs

• the direct model networks D are:

1. Input layer of size 1024 (concatenation of representation and action encoding)
2. ReLU layer with 512 outputs
3. Linear layer with 512 outputs

• the inverse model networks D are:

1. Input layer of size 1024 (concatenation of two representations)
2. ReLU layer with 256 outputs
3. Linear layer with 2 outputs

• the gating networks G are:

1. Input layer of size 512 (visual representation)
2. ReLU layer with 128 outputs
3. ReLU layer with 64 outputs
4. Sigmoid layer with 1 output

It should be noted that our Recurrent Path Integrator models have number of parameters of the same
order of magnitude as the off-the-shelf implementations of LSTM that we used (see Figure 10).

C.2 TRAINING

In all experiments we present, the PI losses are computed on batches of 32 trajectories of length
40, with actions drawn from a two-dimensional uncorrelated Gaussian of standard deviation 1/2 and
starting point chosen randomly at any position in any non-ambiguous room. The direct and inverse
losses are computed on batches of 512 transitions, for which starting points and actions are chosen
in the same way as for PI.

The relative weights in the total loss are 10 times higher for the direct inverse losses than for the PI
loss as the former are smaller (these hyperparameters have not been optimized)

Training consists in 4000 steps of computing the losses, and performing one step of Adam opti-
mization with uniform learning rates of 10−3 except for the forward model which is at 10−4 (no
hyperparameter optimization was lead on these either). In most cases, losses only evolve marginally
after the first hundreds of epochs.

We emphasize that since the environment, starting positions and actions are both continuous and
random, no trajectory is ever seen twice by the network, so overfitting is not a concern (rather, we
hope that the network meaningfull interpolates between what it has previously seen). However,
we train the networks on a single environment, and the question of the capacity–resolution tradeoff
(how the precision of PI is modified when several environments are learned at the same time) remains
unaddressed in the present study and a meaningful future direction.
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Figure 11: Comparison between representations obtained after training the Direct-Inverse Model
module in our environment. Each panel represents the normalized activation of a single neuron in
the visual representation V(s), obtained at the end of the visual processing module, represented as
a function of position within the environment through a color code presented on the right scale. The
activities are of the same order of magnitude in all cases. When optimizing only the inverse loss (eq.
5), see panel (a), the representations can be spatially irregular; the introduction of the direct loss (eq.
4) smooths out the activities, see panel (b). This effect is quantified in Table 2.

Table 2: Comparison of the inverse model performance and the representation regularity between
models trained with or without the direct loss. The addition of the direct loss shifts the distribution
of R2 scores between neuron activities and spatial position towards one, meaning it made some
neuron activities closer to linear functions of position, which we argue is a desirable property in
order to obtain transferable representations. While this shift is noticeable, it does not come with
any appreciable change in inverse model performance. Means and deviations computed across 8
realizations.

Error (training) Error (generalization) R2 (visual)
Without direct 0.017 ± 0.01 1.6 ± 0.77 0.95 ± 0.089

With direct 0.015 ± 0.0091 1.6 ± 0.75 0.83 ± 0.19

D INTERACTIONS BETWEEN DIRECT AND INVERSE LOSSES

As mentioned in the main text, training the inverse model without the direct one is possible, but the
other way around is not as training in that case converges to a trivial solution where the representation
module V and the direct model D always output 0. When training with both losses, we observe a
slight but noticeable smoothing of the representations, as illustrated in Figure 11 and Table 2. This
improvement in regularity does not however translate into any measurable difference in performance
of the inverse model: the representations are made simpler by the direct loss (as expected when
adding a regularization term), but they do not carry any more positional information. It should be
noted that while ”generalization” errors (computed on any couple of images, even if they can not
be reached in a single transition and hence were never part of a transition tuple used in training) are
large, the difference in position predicted remains qualitatively relevant (just with a lower precision).

E LSTM VARIANTS

In this section, we present our attempts at improving the performance of the ”vanilla” LSTM ar-
chitecture. Beyond basic hyperparameter tuning (no extensive optimization has been led due to
prohibitive computational costs), we mostly considered modifications on initialization, and archi-
tecture:
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Figure 12: Computation diagram for the hybrid path integrator structure.

• the standard architecture corresponds to simply using a LSTM (see Figure 10) as the RNN
in the computational graph of Figure 2. We considered two training schemes with this
architecture:

– the ”vanilla” scheme trains this network from scratch on the PI loss. It yields good
integration properties, but fails to learn resetting behaviors (results presented in main
paper).

– the ”pretrained” scheme initializes the ”encoders” (both for the image and the action)
using the ones of a Resetting Path Integrator trained with all losses (since they exhibit
the cleanest representations). The results are very similar to the ”vanilla” scheme.

• the ”hybrid” solutions have the computation diagram of Figure 12, which corresponds to
using the LSTM only to update the internal state, replacing the combination of the direct
model D and gating module G. This architecture has the advantage of explicitly using
the initial representation as a form of ”anchor”, which seems in practice to help training
converge to resetting behaviors. We considered several training schemes using this archi-
tecture:

– the ”default” scheme trains this network from scratch on the PI loss, yields similar
result to vanilla LSTM.

– the ”pretrained” initializes the ”encoders” (both for the image and the action) using the
ones of a Resetting Path Integrator trained with all losses; it reliably achieves resetting,
but also has lower precision on short trajectories.

– the ”scratch” scheme does not do any initialization, but adds a ”direct” module (same
architecture as the ones of our Resetting Path Integrator), defines the direct and inverse
losses using it and the I module that outputs the displacement, and uses those losses
as regularization. This scheme often manages to find resetting solutions, but requires
more care in hyperparameter tuning to converge properly to a resetting solution.

– the ”improved” scheme is similar to scratch, but also initializes the encoders. This
scheme is included in the main text, and it reliably achieves resetting.

In Table 3, we present results for the aforementioned architecture that were not included in the main
text, Table 1. It should be noted that even schemes that yield solutions that exhibit resetting do not
necessarily have higher levels of positional tuning, which we argue still makes them less convincing
candidates for transferable cognitive maps than our Resetting Path Integrator model.

F CURRICULUM LEARNING AND CATASTROPHIC FORGETTING

In this section, we consider the case in which the direct-inverse model of the environment is trained
first, using transition tuples, without any consideration of Path Integration.

After this initial pretraining, we introduce those weights into the full Resetting Path Integrator net-
work, and consider three different ways of training the PI task:

• A: we optimize only the weights of the resetting gate G, and use only the Path Integration
Loss.

• B: we optimize all weights in the network, including those that were initialized from the
pretraining, still using only the Path Integration Loss.
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Table 3: Comparison between the different LSTM variants we considered on the SnakePath environ-
ment, in terms of both errors and representation correlation with position, see main text for details.
Means and errors computed on 8 realizations.

Standard Hybrid

Pretrained Default Pretrained Scratch
Error (short) 0.01 ± 0.0064 0.013 ± 0.0086 0.034 ± 0.02 0.022 ± 0.014
Error (long) 0.091 ± 0.088 0.11 ± 0.099 0.043 ± 0.026 0.042 ± 0.03
R2 (visual) 0.46 ± 0.2 0.63 ± 0.24 0.91 ± 0.14 0.94 ± 0.11

R2 (PI, absolute) 0.27 ± 0.11 0.29 ± 0.11 0.63 ± 0.19 0.58 ± 0.21
R2 (PI, relative) 0.69 ± 0.26 0.72 ± 0.24 0.24 ± 0.092 0.34 ± 0.14

Figure 13: Evolution of the different losses when training a Resetting Path Integrator, whose visual,
direct and inverse modules were pretrained using transition tuples from the environment, in the three
different protocols described in the text.

• C: we optimize all weights in the network, but do Gradient Descent on a sum of all losses
(Path Integration, direct and inverse), as we would in end-to-end training.

The results are presented in Figure 13, and show that while the final level of Path Integration error is
close between the different protocols, retraining all parameters of the model on the Path Integration
loss only (protocol B) produces noticeable deterioration in the quality of the Direct-Inverse model,
an example of the catastrophic forgetting phenomenon (Kirkpatrick et al., 2017). Independently of
the choice of loss on which Gradient Descent is performed, optimizing on the parameters of the
Direct-Inverse model produces much more chaotic evolution of the loss.

G ERRORS AND SPATIAL CORRELATIONS ON THE DOUBLEDONUT
ENVIRONMENT

We present in Table 1 the values of errors and spatial correlations measured in networks trained on a
second environment layout, slightly different from the one used in the main text, and which we call
DoubleDonut. This environment has the general structure of its ambiguous variant (represented in
Figure 18), except that the objects in the left- and right-most rooms of the middle row are different
in the case of the non-ambiguous version that we consider here. The conclusions of this study are
identical to the ones presented in the main text.

H REPRESENTATIONS IN ABSOLUTE AND RELATIVE COORDINATES

In order to complement the R2 values presented in main text Table 1, we report the value of neuron
activations (in the internal state, observed during Path Integration) as a function of absolute posi-
tion in the environment (Figure 14) and as a function of position within the trajectory (Figure 15)
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Table 4: Comparison between our Resetting Path Integrator model and standard LSTM in the Dou-
bleDonut environment. As was the case in the SnakePath environment, models trained without the
direct-inverse losses fail to learn how to perform resetting and show lower levels of spatial structure
in their representations.

Resetting Path Integrator Long Short Term Memory

All losses No model losses Vanilla Improved
Error (short) 0.026 ± 0.019 0.035 ± 0.026 0.015 ± 0.0086 0.032 ± 0.019
Error (long) 0.032 ± 0.023 0.46 ± 0.41 0.15 ± 0.14 0.051 ± 0.033
R2 (visual) 0.97 ± 0.068 0.16 ± 0.12 0.36 ± 0.16 0.91 ± 0.13

R2 (PI, absolute) 0.96 ± 0.073 0.29 ± 0.063 0.27 ± 0.086 0.68 ± 0.19
R2 (PI, relative) 0.34 ± 0.058 0.85 ± 0.14 0.74 ± 0.22 0.26 ± 0.083

Figure 14: Activity of four representative neurons in the internal state population of an RPI trained
with (left) or without (right) the model losses, as a function of absolute position in the environment.
Only the ones trained with those losses (and performing resetting) are close to a linear function of
absolute position.

for our Resetting Path Integrator model, trained with or without the direct–inverse losses (and con-
sequently, respectively displaying resetting or not). We find that non-resetting representations are
linear functions of displacement, as expected from an integrator network (see Fanthomme & Monas-
son (2021)), while resetting representations are linear functions of absolute position, which makes
them much more relevant as cognitive maps. Interestingly, we note that (for the resetting network
on the left of Figure 15), points that correspond to ”extreme” displacements seem more correlated
with trajectory coordinate than points with small trajectory coordinates; this is to be expected since
extreme displacement points necessarily lie on the edge of our environment (to get a displacement
of −3 in the x direction, the agent necessarily started on the right side of the environment and fin-
ished on the left side), so that for those points trajectory coordinates and absolute coordinates are
correlated.

I GATING STRENGTH IN A RESETTING PATH INTEGRATOR

While all training conditions we investigated lead to resetting behaviors, the mean value of the
gating obtained from images of the environment was observed to vary drastically, from 10−1 to
10−3, while the level of Path Integration errors remained mostly unchanged. Our understanding for
this phenomenon is the following: the minimum level of achievable error is the same for all training
conditions, and related to the limitations of the retinal array detailed in Appendix B; therefore, the
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Figure 15: Activity of four representative neurons in the internal state population of an RPI trained
with (left) or without (right) the model losses, as a function of position along the trajectories. Only
the ones trained without those losses (and not performing resetting) are close to a linear function of
position within the trajectory.

Figure 16: Cumulative distribution function of the natural logarithm of the reset gate g across the
environment in different conditions. A: Varying the level of noise ε in the reafferent action dur-
ing training. As expected, high levels of noise favor strong resettings, hence lower values of g.
B: Varying the level of perturbation p, defined as the fraction of neurons in the representation that
were randomly reshuffled, at test time. As representations are increasingly perturbed, they become
less similar to ones that come from the environment, and we expect the network to reset its state
less strongly as the expected benefit from such a resetting decreases. Both panels present results
aggregated across 16 different realizations of the PI training.

network can accumulate errors (coming either from imperfect reafference or imperfect integration)
for a certain number of time-steps without any noticeable effect. In the limit case where the direct
model performs perfectly and reafference is exact, no resetting is ever necessary. A direct way to
limit the accuracy of the direct model is to add noise to the reafferent action during training, and
our hypothesis is that as this noise increases the value of the resetting gate will get closer to 0,
meaning that the resettings will be stronger and ”keep less memory” of the state before resetting.
This hypothesis is confirmed by Figure 16A. Additionally, we expect that if, at test time, we present
the gating module G with increasingly perturbed representations, the value of the reset gate will
increase until no resetting happens (g = 1) if the image is completely shuffled.12 This situation is
represented in Figure 16B.
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Figure 17: Activity of four representative neurons in the ”reset” and ”input” gates, as a function
of time, aggregated across 128 trajectories in which images are always presented at the same time-
steps.
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J INTERNAL GATES IN AN LSTM NETWORK

Averaged across a large number of trajectories, the values of the input and reset internal gates at
each neuron show, to a varying extent, the behavior that was to be expected from the gate names: the
reset gate neurons are inhibited when an image is presented (meaning that the previous internal state
is suppressed), while the input gate neurons are activated (meaning that the current input contributes
more to the internal state update). We present in Figure 17 a few representative neurons in both
populations. Given the high variability that is observed in the reset and input gates, we expect that
those two subnetworks contribute not only to the resetting, but also to the computation of the direct
model.

K RESETTING IN THE CASE OF AMBIGUOUS DOUBLEDONUT

In this section, we consider the same end-to-end training procedure as in the main article, but apply it
to a more complex environment comprised of 16 rooms, two of which (the left-most and right-most
of the middle row) provide the agent with identical visual cues, creating an ambiguity where two
different positions in the global environment correspond to the same images. This ambiguity is still
such that inverse model is unambiguously defined (since there are no positions in the environment
that could be reached in a single transition from both ambiguous rooms), and the forward model too
as long as we choose the start position in ny non-ambiguous rooms (because otherwise, the same
initial state and the same action could lead to two different new states, one for each room). As shown
in Figure 18, the Resetting Path Integrator models still manage to perform reasonably well despite
this ambiguity by creating new representations, distinct from the visual ones, as shown in Figure 7,
and not performing resetting when the image comes from one of the ambiguous rooms, see Figure
19.

12We did not present the networks with partial shufflings of the representations at any stage in the training,
only unperturbed or fully shuffled.
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Figure 18: Example of Path Integration trajectory on the Ambiguous DoubleDonut environment.
The network does not exhibit any particular drop in performance upon entering either of the am-
biguous rooms, suggesting that the internal state it constructed during Path Integration lifted the
ambiguity that is present in the visual cues. It still remains notable that no resetting is performed if
the visual cue, even unperturbed, comes from an ambiguous room, a phenomenon further illustrated
in Figure 19.
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Figure 19: Value of the natural logarithm of the resetting gate g as a function of position, averaged
across 8 realizations of the training. As expected, resetting happens at least partially at every position
in the environment, except within the two rooms that have ambiguous visual cues.
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