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Abstract

Sparse autoencoders (SAEs) are designed to extract interpretable features from1

language models by enforcing a sparsity constraint. Ideally, training an SAE would2

yield latents that are both sparse and semantically meaningful. However, many3

SAE latents activate frequently (i.e., are dense), raising concerns that they may4

be undesirable artifacts of the training procedure. In this work, we systematically5

investigate the geometry, function, and origin of dense latents and show that they6

are not only persistent but often reflect meaningful model representations. We first7

demonstrate that dense latents tend to form antipodal pairs that reconstruct specific8

directions in the residual stream, and that ablating their subspace suppresses the9

emergence of new dense features in retrained SAEs—suggesting that high density10

features are an intrinsic property of the residual space. We then introduce a11

taxonomy of dense latents, identifying classes tied to position tracking, context12

binding, entropy regulation, letter-specific output signals, part-of-speech, and13

principal component reconstruction. Finally, we analyze how these features evolve14

across layers, revealing a shift from structural features in early layers, to semantic15

features in mid layers, and finally to output-oriented signals in the last layers of the16

model. Our findings indicate that dense latents serve functional roles in language17

model computation and should not be dismissed as training noise.18

1 Introduction19

Sparse autoencoders (SAEs) are an unsupervised method for extracting interpretable features from20

language models [1, 2, 3]. They address the challenge of polysemanticity, where individual neurons21

activate in semantically diverse contexts that defy a single explanation [4, 5]. SAEs are trained to22

reconstruct the activations of a language model under a sparsity constraint applied to a bottleneck23

layer, ensuring that only a small subset of latents are active at a time.1 This method effectively24

recovers interpretable features in a variety of models, including Claude 3 Sonnet [6] and GPT-4 [7].25

Ideally, a trained SAE would yield a large set of interpretable and sparsely activating latents. In26

practice, however, SAEs exhibit a substantial fraction of densely activating latents, activating on27

10% to 50% of tokens [8, 9]. These dense latents are challenging to interpret based solely on their28

activation patterns. It remains unclear whether they arise as an optimization by-product, or if they29

instead capture inherently dense signals present in the model’s residual stream [10, 11].30

In this work, we investigate several properties of dense SAE latents and the residual stream subspaces31

they span, uncovering evidence that these latents track meaningful residual stream information. First,32

we observe that when retraining an SAE on model activations with the dense latent space ablated,33

virtually no dense latents are learned—dense latents reflect an intrinsic property of the residual stream34

rather than a training artifact. We then study the geometry of dense latents and observe that they tend35

to form antipodal pairs, effectively reconstructing specific subspace directions.36

1We use “latent” to refer to an entry in the SAE’s sparse hidden layer.
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We then examine the Gemma Scope suite of SAEs [12] across layers to propose a taxonomy of dense37

latents. We identify latents whose activations encode positional information, latents reconstructing a38

subspace of the residual stream linked to entropy regulation [13, 14], latents tracking high level shifts39

in the text, latents encoding letter-specific output signals, latents tracking parts of speech, and latents40

reconstructing the first residual stream principal component direction. We additionally examine how41

these dense latents transform across layers, finding that there is a pronounced increase in the number42

of dense latents just before the unembedding, as well as a shift from structural signals in early layers43

(e.g., position tracking) to output-oriented signals at the end. Our findings provide evidence that44

dense SAE latents reflect inherently dense mechanistic functions within language models.45

2 Background46

SAEs. Sparse autoencoders (SAEs) are trained to reconstruct a language model’s activations47

x ∈ Rdmodel while imposing a sparsity constraint [15, 2]. This computation can be represented as:48

f(x) := σ(Wencx+ benc),

x̂(f) := Wdecf + bdec,

where f(x) ∈ Rdsae is a sparse, non-negative vector of latents, with dsae ≫ dmodel, and σ is a49

non-linear activation function. SAEs are typically trained to minimize the L2 distance between the50

original activation and its reconstruction ∥x− x̂(f(x))∥22 while a sparsity constraint is imposed on51

f by adding a sparsity-related loss component or via specific activation functions. We denote the52

encoder and decoder weights of the latent at index i as W(i)
enc and W

(i)
dec, respectively. Unless noted53

otherwise, we use “dense” to refer to latents with an activation frequency larger than 0.1.54

Experimental Setup. We focus our investigation on the Gemma Scope SAEs [12] trained on55

Gemma 2 2B [16], which use a JumpReLU activation function [9]. We additionally train TopK56

SAEs [7] on 1B tokens of the OpenWebText corpus [17] for our experiments in §3.1.2 Activation57

densities for Gemma Scope latents are from Neuronpedia [18], while densities for our TopK SAEs are58

computed over 100M tokens from the C4 Corpus [19]. Full experimental details are in Appendix B.59

3 General Properties of Dense Latents60

We begin by examining structural properties of dense SAE latents, finding that they arise from a61

specific residual stream subspace (§3.1), and that they tend to cluster in antipodal pairs (§3.2).62

3.1 Dense Latents Reflect Intrinsic Properties of the Residual Stream63

To determine whether dense SAE latents arise from the training procedure or reflect an intrinsic64

property of the residual-stream subspace they reconstruct, we perform a targeted ablation experiment.65

We identify the subspace spanned by the dense latents of an SAE trained on layer 25 of Gemma 2 2B,66

then train a new SAE on activations in which this subspace has been zero-ablated. For comparison,67

we also select an equally sized set of non-dense latents and train a third SAE after ablating their68

subspace. We repeat this for two dictionary sizes (dsae = 16384 and 32768).69

Figure 1a shows the resulting distributions of latent activation densities. In both dictionary sizes,70

ablating the dense-latent subspace (teal) yields much fewer high-density latents than the original SAE71

(blue) and the non-dense ablation (orange). This result implies that densely activating latents are not72

mere training artifacts but instead track a dense residual-stream subspace whose presence drives the73

emergence of dense latents. As additional evidence that dense latents are not training artifacts, in74

Appendix A.2 we show that longer training does not reduce the number of dense latents.75

3.2 Dense Latents Cluster in Antipodal Pairs76

We now examine the geometry of dense latents and observe that they tend to form antipodal pairs.77

That is, as shown in Figure 1b, there exist many pairs of two dense latents that have nearly opposite78

2We choose TopK for its reliable training and competitive reconstruction–sparsity trade-off.
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Figure 1: General Properties of Dense SAE Latents. (a) Ablating the dense-latent subspace (teal)
reduces high-density latents compared to the original (blue) and sparse-latent ablations (orange). (b)
Encoder cosine similarity between the top 50 latents with highest density. (c) Dense latents exhibit
high antipodality score: they form pairs that reconstruct specific residual stream directions.

decoder vectors (we find a similar result for encoder vectors). This suggests that the SAE allocates79

two latents in the dictionary to represent a 1-dimensional line.80

To quantify whether this phenomenon is specific to dense latents, we introduce an antipodality score81

si for a latent i. We first compute the pairwise cosine similarities between the latent’s weights (both82

encoder and decoder) and those of all other latents. Then, we compute the maximum product of83

encoder and decoder cosine similarity across all pairs (i, j) for all i ̸= j. Formally, we have84

si := max
j ̸=i

(
sim

(
W(i)

enc,W
(j)
enc

)
· sim

(
W

(i)
dec,W

(j)
dec

))
, (1)

where sim(u, v) denotes the cosine similarity between vectors u and v. This score reflects the extent85

to which latent i forms an antipodal pairing with another latent: high values of si indicate that there86

is another latent j with both encoder and decoder weights nearly opposite in direction to those of i.387

As shown in Figure 1c, si and the activation density of latent i are strongly positively correlated.88

The majority of dense latents–particularly those with an activation frequency exceeding 0.3–exhibit89

pairwise scores greater than 0.9, supporting our conclusions above. We provide density-antipodality90

visualizations for additional SAEs in Appendix A.1, showing that this trend holds consistently across91

SAE architectures (JumpReLU and TopK), models (GPT-2 and Gemma), and layers.92

4 Taxonomy93

Having established that dense latents are persistent and geometrically structured, we now investigate94

their interpretability. We identify classes of dense latents based on the model signals they represent:95

• Position latents (§4.1) fire based on token position relative to structural boundaries (start of96

sentence, paragraph or context) and appear early in the network.97

• Context-binding latents (§4.2) represent context-dependent semantic content and exhibit coherent98

chunk-level activations, potentially representing high-level ideas within the context.99

• Nullspace latents (§4.3) track components of the residual stream that have minimal impact on next100

token prediction. They instead regulate prediction entropy.101

• Alphabet latents (§4.4) promote broad sets of tokens sharing an initial character.102

• Meaningful-word latents (§4.5) have activations related to the token part-of-speech tag.103

• PCA latents (§4.6) lie almost completely within the first PCA components of the activation space.104

4.1 Position Latents105

We first identify a class of dense latents whose activations track the current token’s position relative106

to specific text boundaries. Context-tracking latents track token position w.r.t. the BOS token,107

3Although high values of s could be produced by two nearly identical latents, retaining such a pair would be
redundant–a scenario we do not observe. Evidence for this is provided in Appendix A.4.
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Figure 2: An overview of our taxonomy of dense latents, for every layer. See Appendix E.1 for
how we created this plot.

paragraph-tracking latents track token position w.r.t. a paragraph start, and sentence-tracking108

latents track token position w.r.t. a sentence beginning. Context-position latents are similar to109

“position neurons” from prior work [20]; the other categories are to the best of our knowledge novel.110

To find these latents systematically, we use Spearman’s rank correlation coefficent ρ. For each dense111

latent, we capture the projections4 of the residual stream activations onto its decoder vector for 5000112

1024-token-long contexts. We find ρ between this projection and the distance from the last period,113

the last newline, and the beginning of the input. These boundaries act as proxies for “beginning of114

sentence”, “beginning of paragraph” and “beginning of context”, respectively.115

Figure 2 shows the resulting trends: sentence-tracking and paragraph-tracking latents are prominent116

before layer 10, while context-position tracking latents are present throughout the model. Figure 13117

shows ρ for all latents across layers. We can clearly see groups of outlier latents for each category,118

and thus classify latents as belonging to that category if |ρ| > 0.4. Indeed, examples in Appendix E.2119

confirm that the identified outlier latents have position-tracking behavior. Notably, Appendix E.2120

also shows that paragraph-tracking latents are agnostic to artificially adding formatting newlines,121

suggesting that this direction in the model tracks true semantic paragraph breaks. Thus, our “distance122

to new line objective” is just a proxy. We also note that latents with high ρ with periods also have123

high ρ with newlines, since newlines and periods are correlated in text. In Figure 15, we thus show124

the ρ for sentence-tracking vs. paragraph-tracking across all dense latents.125

At a higher level, it makes sense that the model represents these features in a dense way: positional126

information is always relevant to the model’s predictions (e.g., it must track how far it is in a sentence127

to correctly predict a period), so the model might store this representation in a consistent direction in128

every hidden state, which is then learned by the SAE.129

4.2 Context-Binding Latents130

We next identify a class of dense latents that encode different semantic concepts depending on context.131

Unlike interpretable sparse SAE latents typically associated with fixed meanings, such as the “Golden132

Gate Bridge” feature in Claude [6], these dense latents appear to bind to the main ideas of the context.133

We first observe that some dense latents, particularly in middle layers, activate on long consecutive134

“chunks” of tokens.5 Examining the activations of such latents and attempting to explain them with135

an LLM (see Appendix E.5), we notice empirically that such latents fire on highly specific concepts136

within a context, but the concepts vary across contexts. One possible interpretation is that these latents137

represent general but abstract, difficult-to-interpret properties. However, we also observe that within138

an antipodal pair, the active latent often switches when the main topic or entity in the text changes139

4We use the projection of the residual stream rather than the JumpRELU activations of these latents since we
hypothesize that the direction itself encodes the positional information, regardless of whether the magnitude
exceeds the learned JumpRELU threshold.

5While positional latents also exhibit consecutive activations, here we refer to non-positional latents whose
activations cannot be explained by position alone.
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Steer to Feature 1: The US government has also provided $1.5 million in emergency 
food assistance to Syrian refugees in Lebanon, and $1.5 million in emergency health 
assistance to Syrian refugees in Jordan… 
LLM Judge: Feature 1

Steer to Feature 2: The US ambassador said the US government is working with the 
Lebanese government to help the country address the COVID-19 pandemic. 
“We are working with the Lebanese government to help them address the COVID-19 
pandemic," she said… 
LLM Judge: Feature 2

Steer to Feature 2: The company is now searching for a buyer, and it’s not clear if the 
company will be able to find one. The company has been in talks with a number of 
potential buyers, but it’s not clear if any of them will be able to close the deal. The 
company is also in talks with the state of New Jersey, which is trying to help the 
company find a buyer… 
LLM Judge: Feature 2

Steer to Feature 1: The casino is currently owned by the Revel Entertainment Group, 
which is a subsidiary of the Revel Hotel Group. The hotel group is owned by the same 
company that owns the Trump Taj Mahal. The Taj Mahal is the only other casino in 
Atlantic City that is still open…  
LLM Judge: Feature 1

Figure 3: Context-Binding Latents. Activation patterns of layer 12 antipodal pair 7541 (blue, feature
1) and 2009 (red, feature 2). In the first context, they seem to be tracking “casino facts” vs “looking
for a buyer”, while in the second context, they seem to be tracking “healthcare” vs “press conference”.
Their corresponding completions are in line with the concepts they activated on.
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Figure 4: Fraction of correct flips
when steering, for all latent pairs
that have at least one latent f > 0.2,
and ≥ 40 flips. Points are sized by
number of flips.

Layer Latent Pair In-context Out-of-context
12 (14906, 14599) 0.051 0.717
12 (2291, 13295) 0.028 0.760
12 (7541, 2009) 0.043 0.711
13 (3517, 46) 0.036 0.742
13 (15275, 11449) 0.029 0.704
13 (12613, 7655) 0.028 0.531
14 (11575, 2411) 0.047 0.798
14 (8515, 15297) 0.041 0.603
14 (6699, 1802) 0.037 0.678
16 (2889, 8811) 0.024 0.665
17 (10495, 491) 0.051 0.669

Table 1: Fraction of “unclear” judgements using in-context
examples versus out-of-context examples, for the highest-
scoring latents by flips.

(Figure 3, Appendix E.3). This raises the hypothesis that such directions act as a “registers” in the140

residual stream for tracking the active concept, rather than simply representing generic properties.141

We thus perform a steering experiment to find the causal effect of these directions. For each antipodal142

pair (F1, F2), we prompt Gemma 2 2B with input text from the RedPajama dataset [21] and generate143

completions without steering, steering to F1, and steering to F2. An LLM judge [22] is then asked144

whether each completion is more in line with activating examples (from the input context) of F1 or145

F2, or unclear. Further details of the methodology are in Appendix E.4.146

Since the unsteered generation may already favor F1 or F2, we quantify steering success by the147

fraction of flips from the unsteered judgement that align correctly with the steering direction. For148

several mid-layer latent pairs, steering reliably shifts completions toward the specific concept149

previously associated with the latent in that context. However, when judged against out-of-context150

examples, the rate of unclear judgements rises sharply. While difficult to rule out the possibility that151

these directions encode “general uninterpretable” features, the specificity of the steered generation152

in bringing up context-related ideas (Figure 3) suggests that these latents could bind to concepts153

in a context-dependent, rather than globally consistent, way.154

Previous works have uncovered “binding mechanisms” that help the model keep track of in-context155

associations between entities [23, 24]. While our findings do not directly prove such a mechanism,156

they raise the possibility that dense subspaces may play a similar functional role, distinguishing157
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Figure 5: Nullspace Latents. (a) A small fraction of latents concentrate norm in the final 10 singular
directions of WU, with high-density latents overrepresented in this group. (b) A pair of such latents
correlates strongly with model output entropy. (c) Ablating this pair lowers entropy; the effect
substantially decreases when RMSNorm scaling is frozen.

the currently active semantic concept. Further work could explore the circuits [25] involving such158

subspaces, and challenge the assumption of globally monosemantic directions.159

4.3 Nullspace Latents160

Previous work has identified a WU quasi-nullspace–the subspace spanned by the last singular vectors161

of the unembedding matrix WU–which accounts for a substantial portion of the residual stream’s162

norm, yet has little direct impact on next-token prediction [14]. Since this subspace carries high norm,163

we hypothesize that some dense SAE latents are allocated specifically to reconstruct it.164

To test this, we compute the singular value decomposition WU = UΣVT. Then, we study the165

composition of an SAE latent i’s encoder weight with the space spanned by the last k left singular166

vectors U−k, . . . ,U−1 of WU by computing the fraction ρk of the norm of its encoder weight W(i)
enc167

that lies in this subspace:168

αk =

∑k
j=1 U

T
−jW

(i)
enc

∥W(i)
enc∥

. (2)

A histogram of α10 for the SAE trained at layer 25 of Gemma 2 2B (Figure 5a) shows that 99.6% of169

latents have α10 < 0.2. We designate those with α10 > 0.2 as nullspace-aligned. Interestingly, 75%170

of them are high-density, and account for 40% of the high-density latents in the SAE.171

Unlike other dense latents, nullspace-aligned latents are hard to interpret via their token-level172

activation patterns. Additionally, the tokens they promote are typically uninterpretable “under-trained”173

tokens [26]. Motivated by prior work linking the WU nullspace to an RMSNorm-based [27] entropy174

regulation mechanism [13], we investigate whether these latents encode this internal computation.175

To test whether these latents causally influence output entropy, we ablate the residual stream along176

each latent’s decoder direction by setting its value to the corresponding decoder bias, thereby removing177

information in that direction. We then measure the change in per-token entropy of the model’s output178

distribution. Figure 5b reports the entropy change for all latents with α10 > 0.3 (one per antipodal179

pair to avoid redundancy), compared to a control group of 50 randomly selected latents.6180

We find that some nullspace latents produce much larger entropy shifts than the random baseline,181

indicating that they encode signals relevant to entropy modulation. In particular, latent 14325 has182

a disproportionate impact on output entropy. To test whether this signal is used by the model in183

conjunction with RMSNorm scaling (as in [13]), we repeat the ablation while freezing the RMSNorm184

scaling coefficient. Figure 5c shows that the entropy change diminishes under this intervention,185

suggesting that the model uses this direction to modulate entropy via RMSNorm. Furthermore,186

Figure 6 shows that the combined activation of the antipodal pair formed by latents 13748 and 14325187

is strongly correlated with output entropy, further supporting this interpretation.188

While these results highlight the functional role of specific nullspace latents in entropy regulation, not189

all latents in this subspace behave similarly. Some exhibit negligible impact on entropy when ablated.190

6The entropy changes for the random latents are aggregated into a single boxplot.
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Figure 6: Entropy Correlation.
A pair WU nullspace-aligned
correlates strongly with model
output entropy.

Index Letter Density Metric Top Tokens
15287 R 0.16 0.98 _RI, _rb, getR, _ri, _r, _RS, R, _RR
13531 M 0.15 0.97 _MM, _m, MM, _mM, _mm, _mf, _ms, mM
30 T 0.16 0.99 _TT, _TC, TT, TC, _tc, _TG, _TS, _TD
1761 D 0.14 0.98 _DD, _D, _DS, _DP, _DT, DD, DP, DS, _Ds
7342 I 0.13 0.91 IB, i, IC, İ, IE, IH, IP, _IW, IR, IW
2651 U 0.11 0.93 _UA, U, _UT, UU, _U, _UF, _UD, UE, UA
4664 C 0.14 0.93 _getC, _CC, getC, _c, setC, CC, Cs, _Cs

357 B(+R) 0.006 0.91 _BR, _Br, Br, BR, _Bra, _br, Bra, br
12114 S(+L) 0.006 0.95 _SL, SL, _sl, _Sl, sl, Sl, _Slide
14857 C(+U) 0.006 0.91 _Cur, _cur, Cur, _CUR, cur, CUR, _Kur

Table 2: Examples of Alphabet Latents. Latents from layer 25
of Gemma 2 2B that promote or suppress tokens sharing an initial
letter. “Metric” is the fraction of top 100 affected tokens starting
with that letter.
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Figure 7: Meaningful-Word Latents. (Left) AUCs of predicting feature firing, from whether the
POS tag is within the specific category. “Meaning word” and “noun/propernoun” are good predictors,
while other categories like “verb” are less predictive. (Middle) Example of L2: pair 15089 (blue),
13092 (red) firing pattens on a document, where 15089 fires on “meaning-heavy” words while 13092
fires on proper nouns and functional words (the, in, a). (Right) Example of L3: 7507 firing patterns,
where it fires selectively on proper nouns.

We speculate that these may track different internal signals–one such candidate is the attention sink191

signal, which has also been associated with the WU nullspace [14]. Overall, these experiments192

provide mechanistic evidence that nullspace latents correspond to internal model computations.193

4.4 Alphabet Latents194

We identify a class of dense latents that selectively boost or suppress large sets of tokens sharing the195

same initial letter. Unlike prior work that linked latents to the current token’s first letter [28], these196

instead relate to the next token’s initial character.197

To discover these latents systematically, we examine each latent’s top 100 positive and negative logit198

contributions by projecting its decoder weights onto the vocabulary space. Then, we collect the199

corresponding tokens, and select latents where either set contains at least 90% of tokens starting with200

the same character (excluding the space character “_”). At layer 25, this procedure yields 114 such201

latents, of which 21 have activation density >0.1, accounting for 20% of all dense latents. These202

latents span a range of antipodality scores and activation densities, but notably appear as high-density203

features only at the model’s final layer. We provide some examples from this layer in Table 2.204

Interestingly, we observe multiple latents for each letter, varying in specificity: some target a broad205

set of short tokens sharing only the first letter (e.g., “b” or “c”), while others focus on longer tokens206

sharing a multi-letter prefix (e.g., “br” or “cu”). We attribute this granularity to feature splitting207

[1] possibly driven by n-gram frequency, which yields latents with differing activation densities.208

These latents illustrate how SAEs dedicate dense units to encode output-specific signals related to209

next-token lexical structure.210
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Figure 8: Layer-wise Dynamics of Dense Latents. (a) Fraction of dense latents (at various density
thresholds) across residual stream SAEs at different layers of Gemma 2 2B. (b) Median principal
angles between dense-latent subspaces, showing a shift in subspace structure from early to late layers.

4.5 Meaningful-Word Latents211

The next class of latents that we investigate are those whose firing can be well predicted by the212

part-of-speech (POS) tag of the token. We create a reduced set of high-level tags from the Brown213

Corpus [29] by combining similar tags (e.g., combining plural and singular forms of nouns),7 and214

capture dense latent activations on 10k sentences (≈ 200k tokens) from the corpus. Then, for each215

latent, we calculate the AUC-ROC of predicting the binary latent activations given the binary vector216

of whether a token is within the high-level POS category. Intuitively, this AUC reflects how well the217

interpretable linguistic category predicts the latent.218

We find that even these high-level groupings are not enough to achieve a high AUC (Figures 7 and 18),219

and propose a further grouping of these tags into “meaningful words”, where a token is considered a220

“meaningful word” if it is one of {nouns, proper nouns, verbs, adjectives, adverbs}. The resulting221

binary-binary predictor has a decent AUC (Figure 7) of ≈ 0.8 for many dense latents in early layers,222

suggesting that the model contains a dense subspace tracking the presence of these meaningful words.223

4.6 PCA Latents224

Since the top principal components (PCs) are a large fraction of the variance of the activations,225

one might expect an SAE to learn dense latents that simply reconstruct this subspace. However, we226

find that this hypothesis is only partly the case: as shown in Figure 19, an antipodal pair of latents227

consistently reconstruct most of the first PC (cosine similarity > 0.75), but other latents do not have228

a large norm percentage in the top PC, even up to the top 5 PC components. The top PC-aligned229

latents are generally not immediately interpretable and do not fall into any of our classes above.230

Interestingly, decreasing or increasing the SAE L0 and dictionary size does not get rid of PC-aligned231

latents nor result in significantly more of them (Figure 20).232

4.7 Layer-wise Dynamics233

As noted in the taxonomy of dense latents above, and visualized in Figure 2, each class of dense latents234

is found in specific layer ranges. Dense latents in early layers have more token-dependent activations235

and track positional information, those in middle layers represent more conceptual directions, and236

those in the final layers are mostly mechanisms that the model uses to control its output. Inspired by237

these observations, in this section we further examine layer-wise characteristics of dense latents.238

Number of Dense Latents. First, we study how the number of dense latents changes across239

different layers of the model. Figure 8a illustrates the fraction of latents exceeding density thresholds240

of 0.05, 0.1, 0.2, and 0.3 at each layer. In the early layers (0-4), we observe transient spikes in latents241

just above the 0.05 and 0.1 thresholds. These latents are largely the part-of-speech related latents in242

§4.5. The absence of similar spikes at the 0.2 and 0.3 thresholds suggest that these early fluctuations243

arise from SAE training variability rather than fundamental differences in the information encoded at244

different points of the model’s residual stream. Across the middle layers (5–23), the fraction of dense245

latents is remarkably stable for all thresholds. Finally, the model’s last two layers exhibit an increase246

in the number of dense latents, indicating a final emergence of dense features prior to unembedding.247

7See Table 4 in Appendix E.6 for our full mapping.
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Consistency of the Dense Subspace. We next ask whether the subspace spanned by dense latents248

remains stable across layers or varies over the model. For each pair of layers, we compute the249

principal angles between the subspaces defined by latents with density > 0.2, then take the median250

angle as a summary statistic: values near 0° indicate largely overlapping subspaces, while values251

near 90° indicate dissimilarity. Figure 8c visualizes these median angles for every layer pair of252

Gemma 2 2B.8 Three clusters emerge. Layers 0-4 share a common dense subspace (low angles).253

This shifts in the middle of the model (layers 10–22), where a new stable subspace persists (mutually254

low angles). Finally, the last few layers exhibit a pronounced change (large angles relative to earlier255

layers), consistent with the rise of alphabet and nullspace latents before the unembedding.256

5 Related Work257

Sparse Autoencoders. Transformer models are thought to represent features as linear directions258

in activation space [30, 31, 32, 33, 34, 35], with many more features than neurons, leading to259

superposition [36, 5]. Early work explored sparse dictionary learning to interpret these representations260

[37, 38, 39, 40]. More recently, sparse autoencoders (SAEs; 41) have emerged as a scalable and261

effective implementation of sparse dictionary learning for transformer-based models [15, 1, 2, 42, 9,262

3, 43] that can recover meaningful and causally important features [6, 7, 25].263

Interpreting SAE Latents. As SAEs have gained traction, recent work has focused on interpreting264

the meaning of their latent features [28, 44]. Building on the neuron interpretation methodology265

in [45], several recent works interpret SAE latents systematically with LLMs [6, 46] or automated266

interpretation strategies [47]. A recurring observation across multiple studies are dense latents, which267

activate on more than 10% or even 50% of tokens [8, 9]. Whether these latents reflect meaningful268

internal computations or arise as undesirable artifacts was up until our work an open question [10, 11].269

Dense Language Model Representations. A few prior works identify dense LLM representations:270

two studies [20, 48] identify positional features in LLMs, and another study [13] finds entropy271

directions that are always active. Both of these feature types are in our taxonomy of SAE latents.272

6 Discussion, Limitations & Conclusion273

Our work shows that dense SAE latents discover intrinsically dense features in the underlying274

language model representations. This challenges recent efforts that aim to remove dense latents275

with add-hoc penalties in the SAE loss function [11]. Our results motivate future feature-extraction276

mechanisms that are able to find features that are not necessarily sparse. For example, such techniques277

might include SAE designs that allocate autoencoder capacity for representing dense subspaces,278

approaches that optimize circuit sparsity, or techniques like APD [49] that focus on parameter sparsity.279

Limitations. Although our work identifies some classes of dense latents, we do not claim that all280

dense latents encode interpretable or meaningful signals. We hypothesize that some dense latents are281

a noisy aggregation of sparse features rather than a “true” dense feature, and distinguishing between282

these remains an open challenge. Moreover, dense latents may learn a basis that spans but does283

not align with the set of true dense model representations, since dense latents co-occur extremely284

frequently, and a linear combination of the “true” basis works for reconstruction too.285

Despite consistently observing the antipodality trend across both TopK and JumpReLU SAEs and286

across models (Gemma 2 2B and GPT-2 Small), our interpretability analysis primarily focuses on287

JumpReLU SAEs trained on Gemma-2-2B, using a single dictionary size and sparsity constraint per288

layer. Future work could broaden analysis to more models, SAE architectures, and SAE sparsities.289

Most notably, we have explained less than half of dense SAE features. We view understanding the rest290

of these latents as exciting future work that could provide insight into frequently-active, fundamental291

mechanisms and representations in language models.292

8We find that using a slightly higher density threshold (> 0.2) makes the subspace similarity pattern more
pronounced. The same plot with a lower threshold (> 0.1) is shown in Appendix A.3, showing the same
clustering trend but with reduced overall similarity.
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Figure 9: Additional Antipodality Plots. Antipodality scores vs. activation density for (a) TopK
SAE on GPT-2 (Layer 11), (b) TopK SAE on Gemma 2 2B (Layer 25), and (c) JumpReLU SAE
on Gemma 2 2B (Layer 16). Across all configurations, dense latents tend to have high antipodality
scores.

A Additional Results458

A.1 Antipodal Pairing in Different SAEs459

Figure 9, we report antipodality scores (computed as in Eq. (1)) for dense latents in three additional460

SAEs: two TopK SAEs that we trained on the residual streams of GPT-2 (layer 11) and Gemma 2 2B461

(layer 25), and a JumpReLU SAE from the Gemma Scope suite trained on an earlier layer (16). In462

all cases, we observe the same trend highlighted in Figure 1c: high-density latents cluster at high463

antipodality scores, forming near-antipodal pairs that reconstruct specific directions in residual space.464

A.2 Dense Latents During Training465
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Figure 10: Dense Latents Dur-
ing Training. Dense latent
counts stabilize early in training.

In Figure 10, we visualize the number of dense latents (activation466

frequency > 0.1) over training steps for each SAE configuration467

in our ablation experiment described in §3.1. All curves converge468

within the first ∼100k steps and remain stable throughout training.469

This early plateau suggests that dense latents are not a product of470

late-stage optimization noise, but rather emerge early and persist,471

indicating that they reflect consistent structure in the residual472

stream rather than transient artifacts.473

A.3 Angles Between Residual Stream Subspaces474

In Figure 11, we provide further analysis of the evolution of475

dense latent subspaces across layers. Panel (a) shows the median476

principal angle between the subspaces spanned by latents with477

density > 0.1 at each pair of layers in Gemma 2 2B. These results478

follow the trend observed in Figure 8c (based on a > 0.2 cutoff),479

revealing distinct subspace clusters in the early, middle, and late480

layers. However, the overall similarity between subspaces is lower481

here, reflecting the greater variability introduced by including moderately dense latents (density482

0.1-0.2).483

For comparison, panel (b) reports the same metric computed on subspaces spanned by 100 randomly484

selected non-dense latents per layer. As expected, these subspaces exhibit minimal overlap, with485

median principal angles near 90° across all layer pairs, confirming that the structure observed in the486

dense-latent subspaces is nontrivial.487

A.4 Pairwise Similarity Between Latents’ Weights488

In Figure 11c, we report for each latent i, the maximum-magnitude cosine similarity489

of its encoder and decoder weights with any other latent j. In particular, we show490

sim(W
(i)
enc,W

(j)
enc) and sim(W

(i)
dec,W

(k)
dec), where j = argmaxl ̸=i(| sim(W

(i)
enc,W

(l)
enc)|) and k =491
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Figure 11: Additional Analyses. (a) Median principal angles between dense-latent subspaces (den-
sity>0.1) across layers. (b) Principal angles between randomly selected non-dense latent subspaces.
(c) High antipodality score occurs when encoder and decoder weights are nearly opposite.

argmaxl ̸=i(| sim(W
(i)
dec,W

(l)
dec)|). We find that the antipodality score s approaches 1 only when492

both encoder and decoder similarities are close to −1.493

A.5 Similarity with SAE Bias494

Figure 12: Plot of absolute cosine similarity of all SAE decoder vectors at all layers with that layer’s
decoder bias. We observe a group of dense latents in the upper right corner that have high frequency
and align with the bias.

B Experimental Details495

For the experiment in §3.1, we trained TopK SAEs [7] on the residual stream activations at layer 25 of496

Gemma 2 2B using 1 billion tokens from the OpenWebText corpus [17]. Training followed the default497

configuration of the Sparsify library,9 and experiment tracking was conducted using Weights &498

Biases.10 The ablation experiment on nullspace latents described in §4.3 was performed on a 10k-499

token subset of the C4 corpus [19]. Analyses throughout the paper were conducted using the Gemma500

Scope SAEs [12] with 16k latents trained on the residual stream of Gemma 2 2B. All experiments501

were implemented in PyTorch [50], with model inspection tools from the TransformerLens library502

[51]. Data processing used NumPy [52] and Pandas [53], and figures were generated with Plotly503

[54].504

C Compute Resources Used505

We expect the experiments for training SAEs, capturing SAE activations and generating completions506

with Gemma 2 2B to be able to be run in about 30 A6000 hours. The LLM judging experiments take507

less than USD $20 through OpenRouter with Gemini 2.5 Flash Preview [22].508

9https://github.com/EleutherAI/sparsify
10https://wandb.ai
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D Broader Impact509

Our work focuses on interpreting language models, an important component of building safer and510

more reliable systems. SAEs in particular are a popular technique for understanding language models,511

and through investigating dense latents, we can both better inform SAE design, and better understand512

language model internals.513

We do not foresee any negative impacts of our work.514

E Additional Taxonomy Results515

E.1 Classification of dense latents516

In our taxonomy, we identify dense latents using automated tests. We do not expect these tests to517

be perfect for a variety of reasons—for instance, dense latents not lining up perfectly with the “true”518

feature basis due to learning a linear combination basis, and the fundamental difficulty of designing519

true, causal tests. However, for the purposes of illustration, we choose reasonable cutoffs for each520

test to create Figure 2, listed below.521

• Position latents: Spearman correlation of |ρ| > 0.4 for the relevant text boundary.522

• Context-binding latents: Fraction of successful flips > 0.75.523

• Nullspace latents: > 0.2 of encoder weight in bottom 10 WU singular vector subspace.524

• Alphabet latents: Top 100 or bottom 100 logit contributions contain at least 90% of tokens525

starting with same character.526

• Meaningful-word latents: AUC of using “is meaningful word” to predict “feature fires”527

> 0.75.528

• PC-aligned latents: cosine similarity with top PC > 0.75.529

A few dense latents fall in 2 categories based on our automated tests to find them, with the most530

common clashes being between sentence- and paragraph- tracking (see Appendix E.2), and between531

several categories and meaningful-word latent. For the purposes of illustration, we break ties532

according to the priority (from highest to lowest): {context-tracking, sentence-tracking, alphabet,533

nullspace, context-binding, paragraph-tracking, meaning, PCA} based on our confidence in our534

automated tests.535

E.2 Position latents536
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Figure 13: Position Latents. We identify position latents by computing their Spearman correlation ρ
with relevant text boundaries. We classify a latent as belonging to a certain category when |ρ| > 0.4.
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Figure 14: Examples of position latents in layer 5. Deep blue represents positive projection along
decoder vector, and deep red represents negative. (1) L5:4341 is a sentence-tracking latent, that lights
up consistently on beginnings of sentences. It has strong activations for topic sentences too. (2)
L5:8680 is a paragraph-tracking latent, that lights up on beginnings of paragraphs. (3) L5:8680 is
agnostic to artificially adding formatting newlines, showing it is encoding true paragraph position.
(4) L5:697 is a context-position-tracking latent.
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Figure 15: Spearman correlation for period against Spearman correlation for newline.

The observation in Figure 15 that period-tracking and newline-tracking latents are hard to distinguish537

also relates to our discussion in §6 that because the sparsity incentive is low for these dense latents,538

they may not be perfectly aligned to “true” model dense features, and may instead be a linear539

combination of two related features.540

E.3 Additional examples of context-binding latents541

Figure 16: L13: 15275 (blue) and 11449 (red), which has 81.5% correct flips. In these two examples,
15275 fires on children’s mental health (left) and Dave & Buster’s promotions (right), while 11449
fires on mentions of the podcast (left) and financial measures (right).
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Figure 17: L12: 14906 (blue) and 14599 (red), which has 76.5% correct flips. In these two examples,
14906 fires on descriptions of the game (left), and text or numbers related to sunrise (right), while
14599 fires on the teams and winning/losing (left), and years or locations (right).

E.4 Steering context-binding latents542

Our methodology for steering is as follows:543

1. Prompt Gemma-2-2B with input text from the RedPajama dataset, ending at a natural point544

(after a newline token), with at least 400 tokens.545

2. Capture the activating phrases of F1 and F2 that are at least 5 consecutive tokens long.546

3. Allow Gemma-2-2B to generate a completion without steering, and prompt an LLM (Gemini547

2.5 Flash Preview) to judge whether the completion is more like F1 activating examples, F2548

activating examples, or unclear.549

4. Repeat the above, but steering on the last token during generation, in the direction of F1 and550

F2. Since F1 and F2 are antipodal pairs, we first ablate the subspace spanned by F1 and F2,551

before adding the steering vector, that is fixed at 2x the historical activation of that feature in552

that context.553

E.5 Interpreting context-binding latents554

We attempt to interpret mid-layer latents that exhibit coherent chunk-level activations, by asking an555

LLM judge to generate natural language explanations based on activating examples. When examples556

are drawn from the same context, the explanations are often detailed and specific. However, when557

examples are drawn from different contexts, the explanations become vague or generic (Table 3).558

This drop in specificity across contexts is somewhat expected, since explanations for any SAE feature559

may overfit the context. It is difficult to rule out the possibility that these dense latents represent an560

uninterpretable abstract feature the model learns. However, the causal steering experiment seems561

to cause the relevant specific concepts to be brought up during generation, supporting the “binding”562

hypothesis.563

18



In-context explanations Out-of-context explanations
References to violence, death, or controversial/negative events,
either real or fictional

Discussion of a specific, named concept or entity within a
broader category (e.g., a specific martial art, a specific plant, a
specific architectural movement, a specific medical condition,
a specific search tool)

Mentions of genres, particularly speculative fiction genres (sci-
fi, fantasy, horror)

Lists or enumerations of related items or concepts

References to the Beautiful Creatures book series Identifying or defining a role, title, or specific part of some-
thing

References to past events or states of being, often with a
negative or challenging connotation

Describing a state of being in control, leading, or advancing

Accessing or observing information about others (competitors,
other users, etc.)

References to specific, named entities or concepts within a
larger domain (e.g., a specific TV show, a specific phrase, a
specific team name)

References to famous or noteworthy artworks and their associ-
ated information (artist, price, era, nickname)

Referring to a specific concept or phenomenon by its name or
a descriptive phrase

References to online platforms or marketplaces where user-
generated content, fan-related items, or resale goods are ex-
changed

References to negative or undesirable actions/events/concepts

Trauma and its impact on mental health, particularly in chil-
dren

Describing a specific curriculum, program, or set of agree-
ments/targets

Mentions of the band Greta Van Fleet or their music Referring to a specific action or event that is happening or has
happened

References to totalitarian or authoritarian political ideologies
and systems

References to specific, identifiable entities or concepts (prod-
ucts, organizations, actions, objects, people)

Table 3: LLM (Gemini 2.5 Flash Preview) generated explanations of suspected context-binding
latent L12:7541, given 5 randomly drawn same-context examples vs 5 randomly drawn cross-context
examples. 10 example explanations are shown.

E.6 Meaningful-Word Latents564

In addition to the high-level categories shown in the main body, we found the AUC for several other565

categories, some of which are shown here.
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Figure 18: From left to right, we show the AUCs of predicting latent firing using function words (any
of {’article’, ’prepos’, ’conjunction’, ’det’, ’modal’, ’be’, ’do’, ’have’, ’what’}), articles, prepositions
and conjunctions. These do not do as well as the “meaningful-word” or “noun/propernoun” groupings.

566
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Category Tags

punc . ( ) * – , : “ ” '
quantifier ABL, ABN, ABX, AP, AP$
article AT
be BE, BED, BEDZ, BEG, BEM, BEN, BER, BEZ
conjunction CC, CS
num CD, OD
do DO, DOD, DOZ
det DT, DTI, DTS, DTX, DT$
have HV, HVD, HVG, HVN, HVZ
prepos IN, TO
adj JJ, JJR, JJS, JJT
modal MD
noun NN, NN$, NNS, NNS$, NR, NRS, NR$, UH
propernoun NP, NP$, NPS, NPS$
pronoun PN, PN$, PP$, PP$$, PPL, PPLS, PPO, PPS, PPSS
qual QL, QLP
adv RB, RB$, RBR, RBT, RN, RP
verb VB, VBD, VBG, VBN, VBZ
what WDT, WP$, WPO, WPS, WQL, WRB, EX
unknown NIL

Table 4: Mapping from high-level category to Penn Treebank tags. A trailing $ marks possessive
forms.

E.7 PCA latents567
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Figure 19: (Left) Cosine similarity of dense latents with top principal component. (Right) Fraction
norm of dense latents in top 5 principal components.

16k 32k 65k 262k 524k

0

0.2

0.4

0.6

0.8

L0

A
b
s
o
lu

t
e
 C

o
s
in

e
 S

im
il
a
r
it

y
 w

it
h
 P

C
1

16k 32k 65k 262k 524k 1m

0

0.2

0.4

0.6

0.8

Dictionary Size

A
b
s
o
lu

t
e
 C

o
s
in

e
 S

im
il
a
r
it

y
 w

it
h
 P

C
1

Figure 20: Cosine similarity of dense latents in layer 12 with the top principal component, across
different L0s and SAE dictionary sizes.
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