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Abstract

Sparse autoencoders (SAEs) are designed to extract interpretable features from
language models by enforcing a sparsity constraint. Ideally, training an SAE would
yield latents that are both sparse and semantically meaningful. However, many
SAE latents activate frequently (i.e., are dense), raising concerns that they may
be undesirable artifacts of the training procedure. In this work, we systematically
investigate the geometry, function, and origin of dense latents and show that they
are not only persistent but often reflect meaningful model representations. We first
demonstrate that dense latents tend to form antipodal pairs that reconstruct specific
directions in the residual stream, and that ablating their subspace suppresses the
emergence of new dense features in retrained SAEs—suggesting that high density
features are an intrinsic property of the residual space. We then introduce a
taxonomy of dense latents, identifying classes tied to position tracking, context
binding, entropy regulation, letter-specific output signals, part-of-speech, and
principal component reconstruction. Finally, we analyze how these features evolve
across layers, revealing a shift from structural features in early layers, to semantic
features in mid layers, and finally to output-oriented signals in the last layers of the
model. Our findings indicate that dense latents serve functional roles in language
model computation and should not be dismissed as training noise.

1 Introduction

Sparse autoencoders (SAEs) are an unsupervised method for extracting interpretable features from
language models [Bricken et al., 2023, Huben et al., 2024, Kissane et al., 2024]. They address the
challenge of polysemanticity, where individual neurons activate in semantically diverse contexts that
defy a single explanation [Olah et al., 2017, Elhage et al., 2022]. SAEs are trained to reconstruct the
activations of a language model under a sparsity constraint applied to a bottleneck layer, ensuring
that only a small subset of latents are active at a time.2 This method effectively recovers interpretable
features in a variety of models, including Claude 3 Sonnet [Templeton et al., 2024] and GPT-4 [Gao
et al., 2025].

Ideally, a trained SAE would yield a large set of interpretable and sparsely activating latents. In
practice, however, SAEs exhibit a substantial fraction of densely activating latents, activating on 10%
to 50% of tokens [Cunningham and Conerly, 2024, Rajamanoharan et al., 2024b]. These dense latents

∗Equal contribution. Correspondence to xqsun@mit.edu and stolfoa@ethz.ch.
2We use “latent” to refer to an entry in the SAE’s sparse hidden layer.
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are challenging to interpret based solely on their activation patterns. It remains unclear whether they
arise as an optimization by-product, or if they instead capture inherently dense signals present in the
model’s residual stream [Chen and Batson, 2025, Rajamanoharan et al., 2025].

In this work, we investigate several properties of dense SAE latents and the residual stream subspaces
they span, uncovering evidence that these latents track meaningful residual stream information. First,
we observe that when retraining an SAE on model activations with the dense latent space ablated,
virtually no dense latents are learned—dense latents reflect an intrinsic property of the residual stream
rather than a training artifact. We then study the geometry of dense latents and observe that they tend
to form antipodal pairs, with each pair effectively reconstructing a single direction.

We then examine the Gemma Scope suite of SAEs [Lieberum et al., 2024] across layers to propose
a taxonomy of dense latents. We identify latents whose activations encode positional information,
latents reconstructing a subspace of the residual stream linked to entropy regulation [Stolfo et al.,
2024, Cancedda, 2024], latents tracking high-level shifts in the text, latents encoding letter-specific
output signals, latents tracking parts of speech, and latents reconstructing the first residual stream
principal component direction. We additionally examine how these dense latents transform across
layers, finding that there is a pronounced increase in the number of dense latents just before the
unembedding, as well as a shift from structural signals in early layers (e.g., position tracking) to
output-oriented signals at the end. Our findings provide evidence that dense SAE latents reflect
inherently dense mechanistic functions within language models.

2 Background

SAEs. Sparse autoencoders (SAEs) are trained to reconstruct a language model’s activations
x ∈ Rdmodel while imposing a sparsity constraint [Yun et al., 2021, Huben et al., 2024]. This
computation can be represented as:

f(x) := σ(Wencx+ benc),

x̂(f) := Wdecf + bdec,

where f(x) ∈ Rdsae is a sparse, non-negative vector of latents, with dsae ≫ dmodel, and σ is a
non-linear activation function. SAEs are typically trained to minimize the L2 distance between the
original activation and its reconstruction ∥x− x̂(f(x))∥22 while a sparsity constraint is imposed on
f by adding a sparsity-related loss component or via specific activation functions. We denote the
encoder and decoder weights of the latent at index i as W(i)

enc and W
(i)
dec, respectively. Unless noted

otherwise, we use “dense” to refer to latents with an activation frequency larger than 0.1.

Experimental Setup. We focus our investigation on the Gemma Scope SAEs [Lieberum et al.,
2024] trained on Gemma 2 2B [Gemma Team, 2024], which use a JumpReLU activation function
[Rajamanoharan et al., 2024b]. We additionally train TopK SAEs [Gao et al., 2025] on 1B tokens
of the OpenWebText corpus [Gokaslan and Cohen, 2019] for our experiments in §3.1.3 Activation
densities for Gemma Scope latents are from Neuronpedia [Lin, 2023], while densities for our TopK
SAEs are computed over 100M tokens from the C4 Corpus [Raffel et al., 2020]. Full experimental
details are in Appendix B.

3 General Properties of Dense Latents

We begin by examining structural properties of dense SAE latents, finding that they arise from a
specific residual stream subspace (§3.1), and that they tend to cluster in antipodal pairs (§3.2).

3.1 Dense Latents Reflect Intrinsic Properties of the Residual Stream

To determine whether dense SAE latents arise from the training procedure or reflect an intrinsic
property of the residual-stream subspace they reconstruct, we perform a targeted ablation experiment.
We identify the subspace spanned by the dense latents of an SAE trained on layer 25 of Gemma 2 2B,
then train a new SAE on activations in which this subspace has been zero-ablated. For comparison,

3We choose TopK for its reliable training and competitive reconstruction–sparsity trade-off.
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Figure 1: General Properties of Dense SAE Latents. (a) Ablating the dense-latent subspace (teal)
reduces high-density latents compared to the original (blue) and sparse-latent ablations (orange). (b)
Encoder cosine similarity between the top 50 latents with highest density. (c) Dense latents exhibit
high antipodality score: they form pairs that reconstruct specific residual stream directions.

we also select an equally sized set of non-dense latents and train a third SAE after ablating their
subspace. We repeat this for two dictionary sizes (dsae = 16384 and 32768).

Figure 1a shows the resulting distributions of latent activation densities. In both dictionary sizes,
ablating the dense-latent subspace (teal) yields much fewer high-density latents than the original SAE
(blue) and the non-dense ablation (orange). This result implies that densely activating latents are not
mere training artifacts but instead track a dense residual-stream subspace whose presence drives the
emergence of dense latents. As additional evidence that dense latents are not training artifacts, in Ap-
pendix A.2 we show that longer training does not reduce the number of dense latents. We further repli-
cate this dense-subspace ablation on GPT-2 and LLaMA 3.2 with the same outcome (Appendix A.6).

3.2 Dense Latents Cluster in Antipodal Pairs

We now examine the geometry of dense latents and observe that they tend to form antipodal pairs.
That is, as shown in Figure 1b, there exist many pairs of two dense latents that have nearly opposite
decoder vectors (we find a similar result for encoder vectors). This suggests that the SAE allocates
two latents in the dictionary to represent a 1-dimensional line.

To quantify whether this phenomenon is specific to dense latents, we introduce an antipodality score
si for a latent i. We first compute the pairwise cosine similarities between the latent’s weights (both
encoder and decoder) and those of all other latents. Then, we compute the maximum product of
encoder and decoder cosine similarity across all pairs (i, j) for all i ̸= j. Formally, we have

si := max
j ̸=i

(
sim

(
W(i)

enc,W
(j)
enc

)
· sim

(
W

(i)
dec,W

(j)
dec

))
, (1)
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(a) TopK SAE (b) AbsoluteTopK SAE

Figure 2: AbsoluteTopK SAEs show no antipo-
dality. Allowing the SAE to have both positive
and negative latent activations removes antipodal
dense latents.

where sim(u, v) denotes the cosine similarity
between vectors u and v. This score reflects
the extent to which latent i forms an antipodal
pairing with another latent: high values of si
indicate that there is another latent j with both
encoder and decoder weights nearly opposite in
direction to those of i.4

As shown in Figure 1c, si and the activa-
tion density of latent i are strongly positively
correlated. The majority of dense latents—
particularly those with an activation frequency
exceeding 0.3—exhibit pairwise scores greater
than 0.9, supporting our conclusions above. We
provide density-antipodality visualizations for
additional SAEs in Appendix A.1, showing that this trend holds consistently across SAE architectures
(JumpReLU and TopK), models (GPT-2 and Gemma), and layers.

4Although high values of s could be produced by two nearly identical latents, retaining such a pair would be
redundant–a scenario we do not observe. Evidence for this is provided in Appendix A.4.
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Figure 3: An overview of our taxonomy of dense latents, for every layer. See Appendix E.1 for
how we created this plot.

Additionally, we train an AbsoluteTopK SAE, which allows activations of SAE latents to be negative,
and enforces sparsity by taking the TopK latents with greatest absolute activations. This effectively
allows the same latent direction to be used in both “positive” and “negative” directions for reconstruc-
tion. We compare this to a TopK SAE trained with the same seed, and show that this AbsoluteTopK
activation function eliminates the antipodal dense latents (Figure 2).

4 Taxonomy

Having established that dense latents are persistent and geometrically structured, we now investigate
their interpretability. We identify classes of dense latents based on the model signals they represent:

• Position latents (§4.1) fire based on token position relative to structural boundaries (start of
sentence, paragraph or context) and appear early in the network.

• Context-binding latents (§4.2) represent context-dependent semantic content and exhibit coherent
chunk-level activations, potentially representing high-level ideas within the context.

• Nullspace latents (§4.3) track components of the residual stream that have minimal impact on next
token prediction. They instead regulate prediction entropy.

• Alphabet latents (§4.4) promote broad sets of tokens sharing an initial character.

• Meaningful-word latents (§4.5) have activations related to the token part-of-speech tag.

• PCA latents (§4.6) lie almost completely within the first PCA components of the activation space.

4.1 Position Latents

We first identify a class of dense latents whose activations track the current token’s position relative
to specific text boundaries. Context-tracking latents track token position w.r.t. the BOS token,
paragraph-tracking latents track token position w.r.t. a paragraph start, and sentence-tracking
latents track token position w.r.t. a sentence beginning. Context-position latents are similar to
“position neurons” from prior work [Gurnee et al., 2024]; the other categories are to the best of our
knowledge novel.

To find these latents systematically, we use Spearman’s rank correlation coefficient ρ. For each dense
latent, we capture the projections5 of the residual stream activations onto its decoder vector for 5000
1024-token-long contexts. We find ρ between this projection and the distance from the last period,
the last newline, and the beginning of the input. These boundaries act as proxies for “beginning of
sentence”, “beginning of paragraph”, and “beginning of context”, respectively.

5We use the projection of the residual stream rather than the JumpReLU activations of these latents since we
hypothesize that the direction itself encodes the positional information, regardless of whether the magnitude
exceeds the learned JumpReLU threshold.
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Steer to Feature 1: The US government has also provided $1.5 million in emergency 
food assistance to Syrian refugees in Lebanon, and $1.5 million in emergency health 
assistance to Syrian refugees in Jordan… 
LLM Judge: Feature 1

Steer to Feature 2: The US ambassador said the US government is working with the 
Lebanese government to help the country address the COVID-19 pandemic. 
“We are working with the Lebanese government to help them address the COVID-19 
pandemic," she said… 
LLM Judge: Feature 2

Steer to Feature 2: The company is now searching for a buyer, and it’s not clear if the 
company will be able to find one. The company has been in talks with a number of 
potential buyers, but it’s not clear if any of them will be able to close the deal. The 
company is also in talks with the state of New Jersey, which is trying to help the 
company find a buyer… 
LLM Judge: Feature 2

Steer to Feature 1: The casino is currently owned by the Revel Entertainment Group, 
which is a subsidiary of the Revel Hotel Group. The hotel group is owned by the same 
company that owns the Trump Taj Mahal. The Taj Mahal is the only other casino in 
Atlantic City that is still open…  
LLM Judge: Feature 1

Figure 4: Context-Binding Latents. Activation patterns of layer 12 antipodal pair 7541 (blue, feature
1) and 2009 (red, feature 2). In the first context, they seem to be tracking “casino facts” vs “looking
for a buyer”, while in the second context, they seem to be tracking “healthcare” vs “press conference”.
Their corresponding completions are in line with the concepts they activated on.

Figure 3 shows the resulting trends: sentence-tracking and paragraph-tracking latents are prominent
before layer 10, while context-position tracking latents are present throughout the model. Figure 15
shows ρ for all latents across layers. We can clearly see groups of outlier latents for each category,
and thus classify latents as belonging to that category if |ρ| > 0.4. Indeed, examples in Appendix E.2
confirm that the identified outlier latents have position-tracking behavior. Notably, Appendix E.2
also shows that paragraph-tracking latents are agnostic to artificially adding formatting newlines,
suggesting that this direction in the model tracks true semantic paragraph breaks. Thus, our “distance
to newline objective” is just a proxy. We also note that latents with high ρ with periods also have
high ρ with newlines, since newlines and periods are correlated in text. In Figure 17, we thus show
the ρ for sentence-tracking vs. paragraph-tracking across all dense latents.

At a higher level, it makes sense that the model represents these features in a dense way: positional
information is always relevant to the model’s predictions (e.g., it must track how far it is in a sentence
to correctly predict a period), so the model might store this representation in a consistent direction in
every hidden state, which is then learned by the SAE.

4.2 Context-Binding Latents

We next identify a class of dense latents that encode different semantic concepts depending on context.
Unlike interpretable sparse SAE latents typically associated with fixed meanings, such as the “Golden
Gate Bridge” feature in Claude [Templeton et al., 2024], these dense latents appear to bind to the
main ideas of the context.

We first observe that some dense latents, particularly in middle layers, activate on long consecutive
“chunks” of tokens.6 Examining the activations of such latents, we notice empirically that such latents
fire on highly specific concepts within a context, but the concepts vary across contexts. We generate
explanations of these latents with an LLM and confirm that they seem to be more context-specific
than sparse latents (see Appendix E.3).

One possible interpretation is that these latents represent general but abstract, difficult-to-interpret
properties. However, we also observe that within an antipodal pair, the active latent often switches
when the main topic or entity in the text changes (Figure 4, Appendix E.4). This raises the hypothesis
that such directions act as “registers” in the residual stream for tracking the active concept, rather
than simply representing generic properties.

6While positional latents also exhibit consecutive activations, here we refer to non-positional latents whose
activations cannot be explained by position alone.
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Figure 5: Fraction of correct flips
when steering, for all latent pairs
that have at least one latent f > 0.2,
and ≥ 40 flips. Points are sized by
number of flips.

Layer Latent Pair In-context Out-of-context
12 (14906, 14599) 0.051 0.717
12 (2291, 13295) 0.028 0.760
12 (7541, 2009) 0.043 0.711
13 (3517, 46) 0.036 0.742
13 (15275, 11449) 0.029 0.704
13 (12613, 7655) 0.028 0.531
14 (11575, 2411) 0.047 0.798
14 (8515, 15297) 0.041 0.603
14 (6699, 1802) 0.037 0.678
16 (2889, 8811) 0.024 0.665
17 (10495, 491) 0.051 0.669

Table 1: Fraction of “unclear” judgments using in-context
examples versus out-of-context examples, for the highest-
scoring latents by flips.

We thus perform a steering experiment to find the causal effect of these directions. For each antipodal
pair (F1, F2), we prompt Gemma 2 2B with input text from the RedPajama dataset [Weber et al.,
2024] and generate completions without steering, steering to F1, and steering to F2. An LLM
judge [Gemini Team, 2025] is then asked whether each completion is more in line with activating
examples (from the input context) of F1 or F2, or unclear. Further details of the methodology are in
Appendix E.5.

Since the unsteered generation may already favor F1 or F2, we quantify steering success by the
fraction of flips from the unsteered judgment that align correctly with the steering direction. For
several mid-layer latent pairs, steering reliably shifts completions towards the specific concept
previously associated with the latent in that context (Figure 5). However, when judged against
out-of-context examples, the rate of unclear judgments rises sharply (Table 1). While difficult to
rule out the possibility that these directions encode “general uninterpretable” features, the specificity
of the steered generation in bringing up context-related ideas suggests that these latents could bind
to concepts in a context-dependent, rather than globally consistent, way.

Previous works have uncovered “binding mechanisms” that help the model keep track of in-context
associations between entities [Feng and Steinhardt, 2024, Feng et al., 2024]. While our findings
do not directly prove such a mechanism, they raise the possibility that dense subspaces may play
a similar functional role, distinguishing the currently active semantic concept. Further work could
explore the circuits [Marks et al., 2025] involving such subspaces, and challenge the assumption of
globally monosemantic directions.

4.3 Nullspace Latents

Previous work has identified a WU quasi-nullspace–the subspace spanned by the last singular
vectors of the unembedding matrix WU–which accounts for a substantial portion of the residual
stream’s norm, yet has little direct impact on next-token prediction [Cancedda, 2024]. Since this
subspace carries high norm, we hypothesize that some dense SAE latents are allocated specifically to
reconstruct it.

To test this, we compute the singular value decomposition WU = UΣVT. Then, we study the
composition of an SAE latent i’s encoder weight with the space spanned by the last k left singular
vectors U−k, . . . ,U−1 of WU by computing the fraction ρk of the norm of its encoder weight W(i)

enc

that lies in this subspace:

αk =

∑k
j=1 U

T
−jW

(i)
enc

∥W(i)
enc∥

. (2)

A histogram of α10 for the SAE trained at layer 25 of Gemma 2 2B (Figure 6a) shows that 99.6% of
latents have α10 < 0.2. We designate those with α10 > 0.2 as nullspace-aligned. Interestingly, 75%
of them are high-density, and account for 40% of the high-density latents in the SAE.

Unlike other dense latents, nullspace-aligned latents are hard to interpret via their token-level
activation patterns. Additionally, the tokens they promote are typically uninterpretable “under-trained”
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Figure 6: Nullspace Latents. (a) A small fraction of latents concentrate norm in the final 10 singular
directions of WU, with high-density latents overrepresented in this group. (b) A pair of such latents
correlates strongly with model output entropy. (c) Ablating this pair lowers entropy; the effect
substantially decreases when RMSNorm scaling is frozen.

Figure 7: Entropy Correlation.
A pair WU nullspace-aligned
correlates strongly with model
output entropy.

Index Letter Density Metric Top Tokens
15287 R 0.16 0.98 _RI, _rb, getR, _ri, _r, _RS, R, _RR
13531 M 0.15 0.97 _MM, _m, MM, _mM, _mm, _mf, _ms, mM
30 T 0.16 0.99 _TT, _TC, TT, TC, _tc, _TG, _TS, _TD
1761 D 0.14 0.98 _DD, _D, _DS, _DP, _DT, DD, DP, DS, _Ds
7342 I 0.13 0.91 IB, i, IC, İ, IE, IH, IP, _IW, IR, IW
2651 U 0.11 0.93 _UA, U, _UT, UU, _U, _UF, _UD, UE, UA
4664 C 0.14 0.93 _getC, _CC, getC, _c, setC, CC, Cs, _Cs

357 B(+R) 0.006 0.91 _BR, _Br, Br, BR, _Bra, _br, Bra, br
12114 S(+L) 0.006 0.95 _SL, SL, _sl, _Sl, sl, Sl, _Slide
14857 C(+U) 0.006 0.91 _Cur, _cur, Cur, _CUR, cur, CUR, _Kur

Table 2: Examples of Alphabet Latents. Latents from layer 25
of Gemma 2 2B that promote or suppress tokens sharing an initial
letter. “Metric” is the fraction of top 100 affected tokens starting
with that letter.

tokens [Land and Bartolo, 2024]. Motivated by prior work linking the WU nullspace to an RMSNorm-
based [Zhang and Sennrich, 2019] entropy regulation mechanism [Stolfo et al., 2024], we investigate
whether these latents encode this internal computation.

To test whether these latents causally influence output entropy, we ablate the residual stream along
each latent’s decoder direction by setting its value to the corresponding decoder bias, thereby removing
information in that direction. We then measure the change in per-token entropy of the model’s output
distribution. Figure 6b reports the entropy change for all latents with α10 > 0.3 (one per antipodal
pair to avoid redundancy), compared to a control group of 50 randomly selected latents.7

We find that some nullspace latents produce much larger entropy shifts than the random baseline,
indicating that they encode signals relevant to entropy modulation. In particular, latent 14325 has
a disproportionate impact on output entropy. To test whether this signal is used by the model in
conjunction with RMSNorm scaling (as in Stolfo et al. [2024]), we repeat the ablation while freezing
the RMSNorm scaling coefficient. Figure 6c shows that the entropy change diminishes under this
intervention, suggesting that the model uses this direction to modulate entropy via RMSNorm.
Furthermore, Figure 7 shows that the combined activation of the antipodal pair formed by latents
13748 and 14325 is strongly correlated with output entropy, further supporting this interpretation.

While these results highlight the functional role of specific nullspace latents in entropy regulation, not
all latents in this subspace behave similarly. Some exhibit negligible impact on entropy when ablated.
We speculate that these may track different internal signals–one such candidate is the attention
sink signal, which has also been associated with the WU nullspace [Cancedda, 2024]. Overall,
these experiments provide mechanistic evidence that nullspace latents correspond to internal model
computations.

7The entropy changes for the random latents are aggregated into a single boxplot.
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Figure 8: Meaningful-Word Latents. (Left) AUCs of predicting feature firing, from whether the POS
tag is within the specific category. “Meaningful word” and “noun/propernoun” are good predictors,
while other categories like “verb” are less predictive. (Middle) Example of L2: pair 15089 (blue),
13092 (red) firing patterns on a document, where 15089 fires on “meaning-heavy” words while 13092
fires on proper nouns and functional words (the, in, a). (Right) Example of L3: 7507 firing patterns,
where it fires selectively on proper nouns.

4.4 Alphabet Latents

We identify a class of dense latents that selectively boost or suppress large sets of tokens sharing the
same initial letter. Unlike prior work that linked latents to the current token’s first letter [Chanin et al.,
2024], these instead relate to the next token’s initial character.

To discover these latents systematically, we examine each latent’s top 100 positive and negative logit
contributions by projecting its decoder weights onto the vocabulary space. Then, we collect the
corresponding tokens, and select latents where either set contains at least 90% of tokens starting with
the same character (excluding the space character “_”). At layer 25, this procedure yields 114 such
latents, of which 21 have activation density >0.1, accounting for 20% of all dense latents. These
latents span a range of antipodality scores and activation densities, but notably appear as high-density
features only at the model’s final layer. We provide some examples from this layer in Table 2.

Interestingly, we observe multiple latents for each letter, varying in specificity: some target a broad
set of short tokens sharing only the first letter (e.g., “b” or “c”), while others focus on longer tokens
sharing a multi-letter prefix (e.g., “br” or “cu”). We attribute this granularity to feature splitting
[Bricken et al., 2023] possibly driven by n-gram frequency, which yields latents with differing
activation densities. These latents illustrate how SAEs dedicate dense units to encode output-specific
signals related to next-token lexical structure.

4.5 Meaningful-Word Latents

The next class of latents that we investigate are those whose firing can be well predicted by the
part-of-speech (POS) tag of the token. We create a reduced set of high-level tags from the Brown
Corpus [Francis and Kučera, 1979] by combining similar tags (e.g., combining plural and singular
forms of nouns),8 and capture dense latent activations on 10k sentences (≈ 200k tokens) from the
corpus. Then, for each latent, we calculate the AUC-ROC of predicting the binary latent activations
given the binary vector of whether a token is within the high-level POS category. Intuitively, this
AUC reflects how well the interpretable linguistic category predicts the latent.

We find that even these high-level groupings are not enough to achieve a high AUC (Figures 8 and 20),
and propose a further grouping of these tags into “meaningful words”, where a token is considered a
“meaningful word” if it is one of {nouns, proper nouns, verbs, adjectives, adverbs}. The resulting
binary-binary predictor has a decent AUC (Figure 8) of ≈ 0.8 for many dense latents in early layers,
suggesting that the model contains a dense subspace tracking the presence of these meaningful words.

4.6 PCA Latents

Since the top principal components (PCs) are a large fraction of the variance of the activations,
one might expect an SAE to learn dense latents that simply reconstruct this subspace. However, we

8See Table 3 in Appendix E.6 for our full mapping.
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Figure 9: Layer-wise Dynamics of Dense Latents. (a) Fraction of dense latents (at various density
thresholds) across residual stream SAEs at different layers of Gemma 2 2B. (b) Median principal
angles between dense-latent subspaces, showing a shift in subspace structure from early to late layers.

find that this hypothesis is only partly the case: as shown in Figure 21, an antipodal pair of latents
consistently reconstruct most of the first PC (cosine similarity > 0.75), but other latents do not have
a large norm percentage in the top PC, even up to the top 5 PC components. The top PC-aligned
latents are generally not immediately interpretable and do not fall into any of our classes above.
Interestingly, decreasing or increasing the SAE L0 and dictionary size does not eliminate PC-aligned
latents nor result in significantly more of them (Figure 22).

4.7 Layer-wise Dynamics

As noted in the taxonomy of dense latents above, and visualized in Figure 3, each class of dense latents
is found in specific layer ranges. Dense latents in early layers have more token-dependent activations
and track positional information, those in middle layers represent more conceptual directions, and
those in the final layers are mostly mechanisms that the model uses to control its output. Inspired by
these observations, in this section we further examine layer-wise characteristics of dense latents.

Number of Dense Latents. First, we study how the number of dense latents changes across
different layers of the model. Figure 9a illustrates the fraction of latents exceeding density thresholds
of 0.05, 0.1, 0.2, and 0.3 at each layer. In the early layers (0-4), we observe transient spikes in latents
just above the 0.05 and 0.1 thresholds. These latents are largely the part-of-speech related latents in
§4.5. The absence of similar spikes at the 0.2 and 0.3 thresholds suggest that these early fluctuations
arise from SAE training variability rather than fundamental differences in the information encoded at
different points of the model’s residual stream. Across the middle layers (5–23), the fraction of dense
latents is remarkably stable for all thresholds. Finally, the model’s last two layers exhibit an increase
in the number of dense latents, indicating a final emergence of dense features prior to unembedding.

Consistency of the Dense Subspace. We next ask whether the subspace spanned by dense latents
remains stable across layers or varies over the model. For each pair of layers, we compute the
principal angles between the subspaces defined by latents with density > 0.2, then take the median
angle as a summary statistic: values near 0° indicate largely overlapping subspaces, while values
near 90° indicate dissimilarity. Figure 9c visualizes these median angles for every layer pair of
Gemma 2 2B.9 Three clusters emerge. Layers 0-4 share a common dense subspace (low angles).
This shifts in the middle of the model (layers 10–22), where a new stable subspace persists (mutually
low angles). Finally, the last few layers exhibit a pronounced change (large angles relative to earlier
layers), consistent with the rise of alphabet and nullspace latents before the unembedding.

5 Related Work

Sparse Autoencoders. Transformer models are thought to represent features as linear directions
in activation space [Mikolov et al., 2013, Bolukbasi et al., 2016, Elhage et al., 2021, Nanda et al.,
2023, Park et al., 2024, Olah, 2024], with many more features than neurons, leading to superposition
[Olah et al., 2020, Elhage et al., 2022]. Early work explored sparse dictionary learning to interpret

9We find that using a slightly higher density threshold (0.2) makes the subspace similarity pattern more
pronounced. The same plot with a lower threshold (0.1) is shown in Appendix A.3, showing the same clustering
trend but with reduced overall similarity.
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these representations [Olshausen and Field, 1997, Faruqui et al., 2015, Arora et al., 2018, Zhang
et al., 2021]. More recently, sparse autoencoders (SAEs; Ng et al., 2011) have emerged as a scalable
and effective implementation of sparse dictionary learning for transformer-based models [Yun et al.,
2021, Bricken et al., 2023, Huben et al., 2024, Rajamanoharan et al., 2024a,b, Kissane et al., 2024,
Bussmann et al., 2025] that can recover meaningful and causally important features [Templeton et al.,
2024, Gao et al., 2025, Marks et al., 2025].

Interpreting SAE Latents. As SAEs have gained traction, recent work has focused on interpreting
the meaning of their latent features [Chanin et al., 2024, Leask et al., 2025]. Building on the
neuron interpretation methodology in [Bills et al., 2023], several recent works interpret SAE latents
systematically. Templeton et al. [2024] propose a rubric-based evaluation method in which a language
model (Claude 3 Opus) scores how well a proposed feature description aligns with the contexts
on which the latent activates. Similarly, Paulo et al. [2024] propose a pipeline in which natural
language interpretations for SAE latents are matched with different contexts and used by an LLM
in different tasks that evaluate how good the interpretations are in predicting activating and non-
activating contexts. Other recent efforts explore automated interpretation approaches based on
self-interpretation strategies [Kharlapenko et al., 2024]. A recurring observation across multiple
studies is dense latents, which activate on more than 10% or even 50% of tokens [Cunningham and
Conerly, 2024, Rajamanoharan et al., 2024b]. Chen and Batson [2025] take the 10 most densely
activating latents in a cross-layer Transcoder trained on Claude and attempt to manually interpret
them, finding plausible interpretations (e.g., “activates on commas,” “activates on non-terminal tokens
in multi-token words”) for 6 of the 10 features. In contrast, Rajamanoharan et al. [2025] view dense
latents as an undesired phenomenon and propose a frequency-based regularizer to discourage their
emergence during training. Whether these latents reflect meaningful internal computations or arise as
undesirable artifacts was up until our work an open question.

Dense Language Model Representations. Prior work has also identified dense signals in language
model representations more broadly (i.e., components that encode information consistently across
many tokens). Gurnee et al. [2024] present a taxonomy of universal neurons that appear across
GPT-2 models trained with different seeds. Among these, they identify neurons that encode positional
information. Chughtai and Lau [2024] similarly identify dense positional features in an SAE trained
on GPT-2’s layer 0, though they do not explicitly analyze their activation density. Finally, Stolfo et al.
[2024] describe neurons that regulate model confidence by tracking entropy and connect them to a
component of the residual stream aligned with the quasi-nullspace of the unembedding matrix.

6 Discussion, Limitations & Conclusion

Our work shows that dense SAE latents discover intrinsically dense features in the underlying
language model representations. This challenges recent efforts that aim to remove dense latents
with ad-hoc penalties in the SAE loss function [Rajamanoharan et al., 2025]. Our results motivate
future feature-extraction mechanisms that are able to find features that are not necessarily sparse.
For example, such techniques might include SAE designs that allocate autoencoder capacity for
representing dense subspaces, approaches that optimize circuit sparsity, or techniques like APD
[Braun et al., 2025] that focus on parameter sparsity.

Limitations. Although our work identifies some classes of dense latents, we do not claim that all
dense latents encode interpretable or meaningful signals. We hypothesize that some dense latents are
a noisy aggregation of sparse features rather than a “true” dense feature, and distinguishing between
these remains an open challenge. Moreover, dense latents may learn a basis that spans but does
not align with the set of true dense model representations, since dense latents co-occur extremely
frequently, and a linear combination of the “true” basis works for reconstruction too.

Despite consistently observing the antipodality trend across both TopK and JumpReLU SAEs and
across models (Gemma 2 2B and GPT-2 Small), our interpretability analysis primarily focuses on
JumpReLU SAEs trained on Gemma 2 2B, using a single dictionary size and sparsity constraint per
layer. Future work could broaden analysis to more models, SAE architectures, and SAE sparsities.

Most notably, we have explained less than half of dense SAE features. We view understanding the rest
of these latents as exciting future work that could provide insight into frequently-active, fundamental
mechanisms and representations in language models.
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Figure 10: Additional Antipodality Plots. Antipodality scores vs. activation density for (a) TopK
SAE on GPT-2 (Layer 11), (b) TopK SAE on Gemma 2 2B (Layer 25), and (c) JumpReLU SAE
on Gemma 2 2B (Layer 16). Across all configurations, dense latents tend to have high antipodality
scores.
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Figure 11: Additional Analyses. (a) Median principal angles between dense-latent subspaces (den-
sity>0.1) across layers. (b) Principal angles between randomly selected non-dense latent subspaces.
(c) High antipodality score occurs when encoder and decoder weights are nearly opposite.

A Additional Results

A.1 Antipodal Pairing in Different SAEs

Figure 10, we report antipodality scores (computed as in Eq. (1)) for dense latents in three additional
SAEs: two TopK SAEs that we trained on the residual streams of GPT-2 (layer 11) and Gemma 2 2B
(layer 25), and a JumpReLU SAE from the Gemma Scope suite trained on an earlier layer (16). In
all cases, we observe the same trend highlighted in Figure 1c: high-density latents cluster at high
antipodality scores, forming near-antipodal pairs that reconstruct specific directions in residual space.

A.2 Dense Latents During Training
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Figure 12: Dense Latents Dur-
ing Training. Dense latent
counts stabilize early in training.

In Figure 12, we visualize the number of dense latents (activation
frequency > 0.1) over training steps for each SAE configuration
in our ablation experiment described in §3.1. All curves converge
within the first ∼100k steps and remain stable throughout training.
This early plateau suggests that dense latents are not a product of
late-stage optimization noise, but rather emerge early and persist,
indicating that they reflect consistent structure in the residual
stream rather than transient artifacts.

A.3 Angles Between Residual Stream Subspaces

In Figure 11, we provide further analysis of the evolution of
dense latent subspaces across layers. Panel (a) shows the median
principal angle between the subspaces spanned by latents with
density > 0.1 at each pair of layers in Gemma 2 2B. These results
follow the trend observed in Figure 9c (based on a > 0.2 cutoff),

16



Figure 13: Plot of absolute cosine similarity of all SAE decoder vectors at all layers with that layer’s
decoder bias. We observe a group of dense latents in the upper right corner that have high frequency
and align with the bias.
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Figure 14: Dense-subspace ablations on LLaMA-3.2-1B and GPT-2 Small. For each model’s
final layer we train a baseline SAE (blue), retrain after ablating the subspace spanned by dense
latents (teal), and retrain after ablating an equally sized subspace of non-dense latents (orange). Only
removing the dense-latent subspace collapses the high-density tail.

revealing distinct subspace clusters in the early, middle, and late layers. However, the overall
similarity between subspaces is lower here, reflecting the greater variability introduced by including
moderately dense latents (density 0.1-0.2).

For comparison, panel (b) reports the same metric computed on subspaces spanned by 100 randomly
selected non-dense latents per layer. As expected, these subspaces exhibit minimal overlap, with
median principal angles near 90° across all layer pairs, confirming that the structure observed in the
dense-latent subspaces is nontrivial.

A.4 Pairwise Similarity Between Latents’ Weights

In Figure 11c, we report for each latent i, the maximum-magnitude cosine similarity
of its encoder and decoder weights with any other latent j. In particular, we show
sim(W

(i)
enc,W

(j)
enc) and sim(W

(i)
dec,W

(k)
dec), where j = argmaxl ̸=i(| sim(W

(i)
enc,W

(l)
enc)|) and k =

argmaxl ̸=i(| sim(W
(i)
dec,W

(l)
dec)|). We find that the antipodality score s approaches 1 only when

both encoder and decoder similarities are close to −1.

A.5 Similarity with SAE Bias

To investigate the relationship between dense latents and the SAEs’ bias terms, we compute the cosine
similarity between each SAE decoder vector and the corresponding layer’s decoder bias. Figure 13
shows the absolute cosine similarity for all latents across layers as a function of activation frequency.
We observe a small but distinct group of dense latents (upper-right region) that strongly align with
the bias.
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Figure 15: Position Latents. We identify position latents by computing their Spearman correlation ρ
with relevant text boundaries. We classify a latent as belonging to a certain category when |ρ| > 0.4.

A.6 Additional Dense-latent Subspace Ablations

Figure 14 replicates the dense-subspace ablation from §3.1 on two additional models: LLaMA-3.2-1B
[AI @ Meta, 2024] and GPT-2 Small [Radford et al., 2019]. For each model we (i) train a baseline
SAE, (ii) retrain after zero-ablating the subspace spanned by dense latents, and (iii) retrain after
ablating an equally sized subspace of randomly chosen non-dense latents. All experiments are run
at the final residual-stream layer. In both cases, removing the dense-latent subspace collapses the
high-density tail—yielding almost no dense latents—whereas ablating a sparse subspace leaves the
distribution essentially unchanged. These replications mirror the Gemma 2 2B result and further
support that dense latents reflect an intrinsic residual-stream subspace rather than a training artifact.

B Experimental Details

For the experiment in §3.1, we trained TopK SAEs [Gao et al., 2025] on the residual stream activations
at layer 25 of Gemma 2 2B using 1 billion tokens from the OpenWebText corpus [Gokaslan and
Cohen, 2019]. Training followed the default configuration of the Sparsify library,10 and experiment
tracking was conducted using Weights & Biases.11 The ablation experiment on nullspace latents
described in §4.3 was performed on a 10k-token subset of the C4 corpus [Raffel et al., 2020]. Analyses
throughout the paper were conducted using the Gemma Scope SAEs [Lieberum et al., 2024] with 16k
latents trained on the residual stream of Gemma 2 2B. All experiments were implemented in PyTorch
[Paszke et al., 2019], with model inspection tools from the TransformerLens library [Nanda and
Bloom, 2022]. Data processing used NumPy [Harris et al., 2020] and Pandas [Wes McKinney, 2010],
and figures were generated with Plotly [Plotly Technologies Inc., 2015].

C Compute Resources Used

We expect the experiments for training SAEs, capturing SAE activations and generating completions
with Gemma 2 2B to be able to be run in about 30 A6000 hours. The LLM judging experiments take
less than USD $20 through OpenRouter with Gemini 2.5 Flash Preview [Gemini Team, 2025].

D Broader Impact

Our work focuses on interpreting language models, an important component of building safer and
more reliable systems. SAEs in particular are a popular technique for understanding language models,
and through investigating dense latents, we can both better inform SAE design, and better understand
language model internals.

We do not foresee any negative impacts of our work.

10https://github.com/EleutherAI/sparsify
11https://wandb.ai
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Figure 16: Examples of position latents in layer 5. Deep blue represents positive projection along
decoder vector, and deep red represents negative. (1) L5:4341 is a sentence-tracking latent, that lights
up consistently on beginnings of sentences. It has strong activations for topic sentences too. (2)
L5:8680 is a paragraph-tracking latent, that lights up on beginnings of paragraphs. (3) L5:8680 is
agnostic to artificially adding formatting newlines, showing it is encoding true paragraph position.
(4) L5:697 is a context-position-tracking latent.
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Figure 17: Spearman correlation for period against Spearman correlation for newline.

E Additional Taxonomy Results

E.1 Classification of dense latents

In our taxonomy, we identify dense latents using automated tests. We do not expect these tests to
be perfect for a variety of reasons—for instance, dense latents not lining up perfectly with the “true”
feature basis due to learning a linear combination basis, and the fundamental difficulty of designing
true, causal tests. However, for the purposes of illustration, we choose reasonable cutoffs for each
test to create Figure 3, listed below.

• Position latents: Spearman correlation of |ρ| > 0.4 for the relevant text boundary.

• Context-binding latents: Fraction of successful flips > 0.75.

• Nullspace latents: > 0.2 of encoder weight in bottom 10 WU singular vector subspace.

• Alphabet latents: Top 100 or bottom 100 logit contributions contain at least 90% of tokens
starting with same character.

• Meaningful-word latents: AUC of using “is meaningful word” to predict “feature fires”
> 0.75.

• PC-aligned latents: cosine similarity with top PC > 0.75.

Very few dense latents (3.6% across layers) fall in >1 category based on our automated tests to
find them, with the most common clashes being between sentence- and paragraph- tracking (see
Appendix E.2), and between several categories and meaningful-word latent. For the purposes of
illustration, we break ties according to the priority (from highest to lowest): {context-tracking,
sentence-tracking, alphabet, nullspace, context-binding, paragraph-tracking, meaning, PCA} based
on our confidence in our automated tests.

19



Figure 18: L13: 15275 (blue) and 11449 (red), which has 81.5% correct flips. In these two examples,
15275 fires on children’s mental health (left) and Dave & Buster’s promotions (right), while 11449
fires on mentions of the podcast (left) and financial measures (right).

Figure 19: L12: 14906 (blue) and 14599 (red), which has 76.5% correct flips. In these two examples,
14906 fires on descriptions of the game (left), and text or numbers related to sunrise (right), while
14599 fires on the teams and winning/losing (left), and years or locations (right).

E.2 Position latents

The observation in Figure 17 that period-tracking and newline-tracking latents are hard to distinguish
also relates to our discussion in §6 that because the sparsity incentive is low for these dense latents,
they may not be perfectly aligned to “true” model dense features, and may instead be a linear
combination of two related features.

E.3 Interpreting context-binding latents

We attempt to interpret mid-layer latents that exhibit coherent chunk-level activations in two ways:

1. All-context: Following existing autointerp methods [Paulo et al., 2024], we sample 10
activating and 10 non-activating phrases from an entire corpus and ask an LLM (Gemini 2.5
Flash) to generate an explanation. We repeat this 100 times to generate 100 explanations.

2. In-context: We instead sample 10 activating and 10 non-activating phrases from the same
context. We repeat this 100 times (using 100 different contexts) to generate 100 explanations.

When examples are drawn from the same context, the explanations are specific but highly diverse
across contexts. When examples are drawn from different contexts, the explanations become vague or
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Figure 20: From left to right, we show the AUCs of predicting latent firing using function words (any
of {’article’, ’prepos’, ’conjunction’, ’det’, ’modal’, ’be’, ’do’, ’have’, ’what’}), articles, prepositions
and conjunctions. These do not do as well as the “meaningful-word” or “noun/propernoun” groupings.

Category Tags

punc . ( ) * – , : “ ” '
quantifier ABL, ABN, ABX, AP, AP$
article AT
be BE, BED, BEDZ, BEG, BEM, BEN, BER, BEZ
conjunction CC, CS
num CD, OD
do DO, DOD, DOZ
det DT, DTI, DTS, DTX, DT$
have HV, HVD, HVG, HVN, HVZ
prepos IN, TO
adj JJ, JJR, JJS, JJT
modal MD
noun NN, NN$, NNS, NNS$, NR, NRS, NR$, UH
propernoun NP, NP$, NPS, NPS$
pronoun PN, PN$, PP$, PP$$, PPL, PPLS, PPO, PPS, PPSS
qual QL, QLP
adv RB, RB$, RBR, RBT, RN, RP
verb VB, VBD, VBG, VBN, VBZ
what WDT, WP$, WPO, WPS, WQL, WRB, EX
unknown NIL

Table 3: Mapping from high-level category to Penn Treebank tags. A trailing $ marks possessive
forms.

generic (Table 4). This drop in specificity across contexts is somewhat expected, since explanations
for any latent may overfit the context. However, doing the same for sparse latents (Table 5), we see
that a “good” sparse latent would have similar explanations with both in-context and all-context
examples, aligning with the usual assumption that SAEs learn directions that represent a concept in
the model.

It is difficult to rule out the possibility that these dense latents represent an uninterpretable abstract
feature the model learns. However, the steering experiment seems to cause the relevant specific
concepts to be brought up during generation, supporting the “binding” hypothesis that there are dense
directions that do not represent a fixed concept but rather are used in the model’s computation.

E.4 Additional examples of context-binding latents

We include two additional examples of context-binding latent pairs with high flip score: layer 13
pair (15275, 11449) (Figure 18) and layer 12 pair (14906, 14599) (Figure 19). For each pair, we
show two example contexts where they are active, illustrating how each latent activates on specific
but context-dependent concepts, and that latents in a pair do not co-activate.

E.5 Steering context-binding latents

Our methodology for steering is as follows:

1. Prompt Gemma 2 2B with input text from the RedPajama dataset, ending at a natural point
(after a newline token), with at least 400 tokens.
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Figure 21: (Left) Cosine similarity of dense latents with top principal component. (Right) Fraction
norm of dense latents in top 5 principal components.
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Figure 22: Cosine similarity of dense latents in layer 12 with the top principal component, across
different L0s and SAE dictionary sizes.

2. Capture the activating phrases of F1 and F2 that are at least 5 consecutive tokens long.

3. Allow Gemma 2 2B to generate a completion without steering, and prompt an LLM (Gemini
2.5 Flash Preview) to judge whether the completion is more like F1 activating examples, F2
activating examples, or unclear.

4. Repeat the above, but steering on the last token during generation, in the direction of F1 and
F2. Since F1 and F2 are antipodal pairs, we first ablate the subspace spanned by F1 and F2,
before adding the steering vector, that is fixed at 2x the historical activation of that feature in
that context.

E.6 Meaningful-Word Latents

We provide the mapping from higher-level categories to Penn Treebank tags in Table 3. In addition
to the AUC for the categories shown in the text, we show the AUC for a few other categories in
Figure 20, which seem mostly unrelated to predicting the activations of dense latents.

E.7 PCA latents

Figure 21 reports, layer-by-layer, each dense latent’s cosine similarity to PC1 (left) and the share
of its norm contained in the top-5 PCs (right). As noted, only one antipodal pair per layer strongly
aligns with PC1; most dense latents place little mass in the top PCs. Figure 22 shows that this pattern
is stable under SAE hyperparameters: varying the sparsity target (L0) or dictionary size yields similar
PC1 alignments, neither removing nor proliferating PC-aligned latents.
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Dense latent L12:7541 (f = 0.421)
In-context All-context

Numerical values or categories related to real estate listings,
such as prices, property types, or number of beds

A proper noun or a specific concept/entity within a sentence

Mentions of people, groups, or entities involved in a discus-
sion or action

The beginning of a new clause or phrase, often following a comma,
parenthesis, or other punctuation, or indicating a shift in topic or focus

Mentions of Donna Brazile or political news and commen-
tary, often critical of establishment figures or media outlets

A sequence of words that are part of a proper noun, a title, or a specific
phrase, often capitalized, or a short phrase that acts as a label or identifier
within a larger text.

References to the Niagara Wire publication or its staff and
content

The beginning of a new sentence or clause, often following punctuation
or a line break

Terms and phrases related to the Cybercrime Prevention Act
of 2012 in the Philippines

The detection of numbers, dates, or specific numerical references within
text

References to Barack Obama or his administration The beginning of a new clause or phrase, often following a conjunction,
preposition, or punctuation mark, that introduces additional information
or a new element into the sentence structure

Mentions of specific people, places, or things, or references
to a particular time or event

A proper noun or a common noun that is part of a larger phrase, often
appearing after a preposition or as an object of a verb

Mentions of CSIRO’s internal operations, expertise, and
collaborative efforts

Mentions of specific entities, objects, or concepts within a broader con-
text, often highlighting a particular detail or aspect of the surrounding
text

Nautical vessel chartering and related services The letter ’I’ or ’A’ or ’O’ when it is the first letter of a word or a
standalone word

Mentions of healthcare organizations, roles, or initiatives
related to health and human services

A token or sequence of tokens that is part of a larger, multi-word proper
noun, compound noun, or specific phrase, where the preceding context
helps to complete the meaning of the highlighted part.

Dense latent L12:2009 (f = 0.319)
In-context All-context

Punctuation marks, numbers, or single letters that are not
part of a larger word

Code, symbols, or foreign language phrases

Mentions of events, dates, or outcomes related to the life of
Stéphanie of Monaco

The continuation of a word or phrase across a line break or other format-
ting boundary

Mentions of the St. John’s Red Storm basketball team, their
coach Mike Jarvis, or their player Hatten

Short, common words or symbols that are often part of a larger phrase
or structure, but do not carry significant meaning on their own

Reporting on COVID-19 cases and related news The beginning of a new sentence or clause, often following a period,
comma, or other punctuation, or a line break

Scientific citation formatting and punctuation Punctuation marks, prepositions, and conjunctions that connect different
parts of a sentence or list

The beginning of a new clause or sentence The beginning of a new word or token that is not preceded by a space

References to students or pupils in an educational context The detection of a word or phrase that is part of a larger, well-known
entity or common expression, where the detected part is not the beginning
of the entity or expression

Biographical details and life events of a character, includ-
ing family, career, and personal status, often presented in a
chronological or list-like format

Mentions of specific people, places, or entities, or phrases that introduce
or refer to them

Specific references to the current or a past UN General As-
sembly session, or to the UN Secretary General and his staff

The beginning of a new sentence or phrase, often following punctuation
or a line break, or the start of a new section within a document

Mentions of specific dates, years, or numbers in a historical
or official context

Mentions of specific words or phrases that are part of a larger list or
enumeration, often found in titles, bullet points, or structured content

Table 4: Sampled explanations of dense latents L12:7541 and L12:2009, using in-context examples
versus all-context examples. The in-context explanations are highly specific and diverse, while the
all-context explanations are vague.

23



Sparse latent L12:10356 (f = 8.90× 10−4)
In-context All-context

Years in the 2010s or 2020s, often following a movie title
and sometimes preceded by "HBO" or "HBO Max"

A two-digit year following a month or day, or as part of a date range

The number "1" in a four-digit year, specifically in the 2010s
decade

The last two digits of a four-digit year

The year 2019 in dates or as a standalone year The last two digits of a four-digit year

The digit ’1’ when it is part of a four-digit year that starts
with ’20’ and is followed by a two-digit number, typically
representing a day or a time, or a forward slash.

The second digit of a year in the 21st century

The first digit of a two-digit year in a citation The last two digits of a four-digit year

The first two digits of a four-digit year The last two digits of a year in the 21st century

The release year of a movie title The last two digits of a four-digit year

Mentions of the "Product of the Year" award followed by a
specific year

The last two digits of a year in a date

The year 2022 in date formats A four-digit year in the 21st century, specifically between 2010 and 2024

The third digit of a four-digit year, specifically when the year
is 2013, often found in movie titles or release dates

The last two digits of a four-digit year, typically in the 2000s

Sparse latent L12:800 (f = 7.30× 10−4)
In-context All-context

Mentions of the South Ossetian conflict, including locations,
people, and related events

Mentions of people’s names or titles, often followed by their statements
or actions

References to a specific person named Sarah, including pos-
sessive forms and direct address

Mentions of a person or entity speaking or being referenced

Mentions of reports, analyses, or statements made by indi-
viduals or groups

A proper noun or pronoun that is the subject of a sentence or clause, or a
proper noun that is the object of a verb or preposition

Mentions of individuals or organizations involved in mine
clearance or humanitarian aid

Mentions of people or organizations, often in attribution or as subjects
of actions

Mentions of the author Tom Bissell, often in relation to his
work or statements

Mentions of proper nouns, often names of people or organizations, that
are split across a line break

Mentions of "Dicko" as a proper noun, often followed by a
verb or punctuation, indicating a new clause or action related
to the person.

Mentions of people speaking or being quoted

Mentions of Alan Waller, Earl Spencer’s former head of
security

Proper nouns or pronouns referring to people or organizations, often
followed by a verb

Mentions of people or organizations as subjects or possessive
entities

Mentions of a person’s name followed by a verb of speaking or a refer-
ence to that person

Attributions of statements or opinions to individuals or
groups, often experts, in news or analytical contexts

A proper noun or pronoun that is the subject of a sentence or clause

Mentions of Sonny Dykes, a football coach, or his last name,
often in the context of his statements or actions

Mentions of people or organizations as subjects or agents of actions

Table 5: Sampled explanations of sparse latents L12:10356 and L2:800, using in-context and all-
context examples. While the in-context explanations still tend to be more specific, they still center
around a similar theme as the all-context explanations, and it is plausible that L12:10356 is a “date”
feature and L12:800 is a “proper noun” feature.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we claim that we examine the geometry of high frequency latents,
taxonomize high frequency latents, and examine their distribution across layers, all of which
we do in the paper (we link to these specific sections in the introduction).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have an extensive limitations section in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include experimental details sufficient to reproduce the experiments in the
main body (all of which use open source models). We provide additional experiment details
in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to upload our code by the supplementary materials deadline.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Justification: As described in the experimental details section, we include experimental
details sufficient to reproduce the experiments in the main body (all of which use open
source models). We provide additional experiment details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because we are providing a taxonomy of different SAE latents, statistical
significance in most of our experiments does not make sense.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix C for a discussion of the compute used for our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies in every respect with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix D for a discussion of our paper’s broader impact, which we
overall believe to be very positive.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use and cite the open source Gemma models and GemmaScope SAEs.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not do research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not do research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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