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ABSTRACT

As a neural network’s depth increases, it can achieve high generalization per-
formance. However, training deep networks is challenging due to gradient and
signal propagation issues. To address these challenges, extensive theoretical re-
search and various methods have been introduced. Despite these advances, effec-
tive weight initialization methods for tanh neural networks remain underexplored.
This paper presents a novel weight initialization method for Neural Networks with
tanh activation function. Based on an analysis of the fixed points of the function
tanh(ax), our proposed method aims to determine values of a that mitigate acti-
vation saturations. A series of experiments on various classification datasets and
Physics-Informed Neural Networks demonstrate that the proposed method out-
performs Xavier initialization methods (with or without normalization) in terms
of robustness to network size variations, data efficiency, and convergence speed.

1 INTRODUCTION

Deep learning has enabled substantial advancements in state-of-the-art performance across vari-
ous domains (LeCun et al., 2015; He et al., 2016). In general, the expressivity of neural networks
increases exponentially with depth (Poole et al., 2016; Raghu et al., 2017), enabling high generaliza-
tion performance. However, deeper networks often face challenges such as vanishing or exploding
gradients and poor signal propagation (Bengio et al., 1993). These challenges have driven the de-
velopment of effective weight initialization methods tailored to various activation functions. Xavier
initialization (Glorot & Bengio, 2010) ensures signals stay in the non-saturated region for sigmoid
and hyperbolic tangent activations, while He initialization (He et al., 2015) maintains stable variance
for ReLU networks. Especially in ReLU neural networks, several weight initialization methods have
been proposed to mitigate the dying ReLU problem, which hinders signal propagation in deep net-
works (Lu et al., 2019; Lee et al., 2024). However, to the best of our knowledge, research on initial-
ization methods that are robust to the size of tanh networks remains underexplored. Tanh networks
commonly use Xavier initialization (Raissi et al., 2019; Jagtap et al., 2022; Rathore et al., 2024) and
are widely applied in various domains, such as Physics-Informed Neural Networks (PINNs) (Raissi
et al., 2019) and Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986), with performance
often dependent on model size and initialization randomness (Liu et al., 2022).

The main contribution of this paper is the proposal of a simple weight initialization method for Feed-
Forward Neural Networks (FFNNs) with tanh activation function. The proposed method is data-
efficient and demonstrates robustness to variations in network size. It reduces the dependency on
normalization techniques such as Batch Normalization (Ioffe, 2015) and Layer Normalization (Ba,
2016). As a result, it reduces the requirement for extensive hyperparameter tuning, such as the num-
ber of hidden layers and units, and avoids normalization computational overhead. The theoretical
foundation for this approach is based on the fixed point of the function tanh(ax). We investigate
the performance of the proposed method on two tasks: classification and Physics-Informed Neu-
ral Networks (PINNs). For classification tasks, we assess the method’s performance across various
FFNN sizes using datasets including MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100. The
results demonstrated improved validation accuracy and loss compared to Xavier initialization with
Batch Normalization (BN) or Layer Normalization (LN). For PINNs, the method exhibits robust-
ness across diverse network sizes and demonstrates its effectiveness in solving a wide range of PDE
problems. Notably, for both tasks, the proposed method outperforms Xavier initialization in terms
of data efficiency, achieving improved performance even with limited data.
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Contributions. Our contributions can be summarised as follows:

• We identify the conditions under which activation values remain non-vanishing as the depth
of the neural network increases, using a fixed-point analysis (Section 3.1 and 3.2).

• We propose a novel weight initialization method for tanh neural networks that is robust to
variations in network size and demonstrates high data efficiency (Section 3.2 and 3.3).

• We experimentally show that the proposed method is more robust to network size variations
on image benchmarks and PINNs (Section 4).

• We experimentally show that the proposed method is more data-efficient than Xavier ini-
tialization, with or without normalization, on image benchmarks and PINNs (Section 4).

2 RELATED WORKS

The expressivity of neural networks grows exponentially with depth, resulting in improved general-
ization performance (Poole et al., 2016; Raghu et al., 2017). Weight initialization is crucial for train-
ing deep networks effectively (Saxe et al., 2014; Mishkin & Matas, 2016). Xavier (Glorot & Bengio,
2010) and He He et al. (2015) initialization are common initialization methods typically used with
tanh and ReLU activation functions, respectively. Various initialization methods have been proposed
to facilitate the training of deeper ReLU neural networks (Lu et al., 2019; Bachlechner et al., 2021;
Zhao et al., 2022; Lee et al., 2024). In contrast, research on weight initialization for neural networks
using tanh activation remains limited. Despite this, tanh neural networks have gained popularity in
recent years, particularly in applications such as physics-informed neural networks (PINNs), where
their performance can be sensitive to the randomness of initialization methods.

PINNs have shown promising results in solving forward, inverse, and multiphysics problems aris-
ing in science and engineering. (Lu et al., 2021; Karniadakis et al., 2021; Cuomo et al., 2022b;a;
Yin et al., 2021; Wu et al., 2023; Hanna et al., 2022; Bararnia & Esmaeilpour, 2022; Shukla et al.,
2020; Zhu et al., 2024; Hosseini et al., 2023; Mao et al., 2020). PINNs approximate solutions to
partial differential equations (PDEs) using neural networks. They are trained by minimizing a loss
function, typically the sum of least-squares, which incorporates the residual of PDEs, boundary con-
ditions, and initial conditions. This loss is usually minimized using gradient-based optimizers such
as Adam (Kingma, 2014), L-BFGS (Liu & Nocedal, 1989), or a combination of both. Universal ap-
proximation theories (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991; Park et al., 2020; Guliyev
& Ismailov, 2018b; Shen et al., 2022; Guliyev & Ismailov, 2018a; Maiorov & Pinkus, 1999; Yarot-
sky, 2017; Gripenberg, 2003) guarantee the capability and performance of neural networks as an
approximation of the analytic solution to PDE. However, PINNs still face challenges in accuracy,
stability, computational complexity, and tuning optimal hyperparameters of loss terms.

To alleviate these issues, many authors have introduced enhanced versions of PINNs: (1) the self-
adaptive loss balanced PINNs (lbPINNs) that automatically adjust the hyperparameters of loss terms
during the training process (Xiang et al., 2022), (2) the Bayesian PINNs (B-PINNs) that are spe-
cialized to deal with forward and inverse nonlinear problems with noisy data (Yang et al., 2021),
(3) Rectified PINNs (RPINNs) that are trained with the gradient information from the numerical
solution by the multigrid method and designed for solving stationary PDEs (Peng et al., 2022),
(4) Auxiliary Pinns (A-PINNs) that effectively handle integro-differential equations (Yuan et al.,
2022), (5) conservative PINNs (cPINNs) and exetended PINNs (XPINNs) that adopt the domain
decomposition technique (Jagtap et al., 2020; Jagtap & Karniadakis, 2020), (6) parrel PINNs that
reduces the computational cost of cPINNs and XPINNs (Shukla et al., 2021), (7) gradient-enhanced
PINNs (gPINNs) that use the gradient of the PDE loss term with respect to the network inputs (Yu
et al., 2022).

While these advancements address various challenges in PINNs, activation functions, and their ini-
tialization strategies remain crucial for achieving optimal performance. The tanh activation function
is known to perform well in PINNs (Raissi et al., 2019), as detailed experimental results provided
in Appendix C.2. Xavier initialization is commonly used as the standard choice for tanh networks
in existing studies (Jin et al., 2021; Son et al., 2023; Yao et al., 2023; Gnanasambandam et al.,
2023; Song et al., 2024). However, our experimental results indicate that the effectiveness of Xavier
initialization decreases as network size increases. Moreover, performance improvements achieved
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(a) Xavier Initialization (b) Proposed Initialization

Figure 1: Difference between maximum and minimum activation values at each layer when prop-
agating 3, 000 input data through a 10, 000-layer tanh FFNN, using Xavier initialization (left) and
the proposed initialization (right). Experiments were conducted on networks with 10, 000 hidden
layers, each having the same number of nodes: 16, 32, 64, or 128.

through Batch Normalization or Layer Normalization are limited, and the method demonstrates sen-
sitivity to the amount of training data, particularly with smaller datasets. Although there has been a
recent result on an initialization method for PINNs, the method relies on transfer learning (Tarbiyati
& Nemati Saray, 2023). Thus, we propose a weight initialization method that is robust across vary-
ing network sizes, achieves high data efficiency, and reduces reliance on both transfer learning and
normalization techniques.

3 PROPOSED WEIGHT INITIALIZATION METHOD

In this section, we discuss the proposed weight initialization method. Section 3.1 introduces the
theoretical motivation behind the method. Section 3.2 presents how to derive the initial weight
matrix that satisfies the conditions outlined in Section 3.1. Finally, in Section 3.3, we suggest the
optimal hyperparameter σz in the proposed method.

3.1 THEORETICAL MOTIVATION

Experimental results in Figure 1 reveal that when Xavier initialization is employed in FFNNs with
tanh activation, the distribution of activation values tends to cluster around zero in deeper layers.
This vanishing of activation values can hinder the training process due to a discrepancy between the
activation values and the desired output. However, theoretically preventing this phenomenon is not
straightforward. In this section, we provide a theoretical analysis based on a fixed point of tanh(ax)
to bypass the phenomenon. Before giving the theoretical foundations, consider the basic results for
a tanh activation function. Recall that x∗ is a fixed point of a function f if x∗ belongs to both the
domain and the codomain of f , and f(x∗) = x∗.
Lemma 1. For a fixed a > 0 define the function ϕa : R → R given as

ϕa(x) := tanh(ax).

Then, there exists a fixed point x∗. Furthermore,

(1) if 0 < a ≤ 1, then ϕ has a unique fixed point x∗ = 0.

(2) if a > 1, then ϕ has three distinct fixed points: x∗ = −ξa, 0, ξa such that ξa > 0.

Proof. The proof is detailed in in Appendix A.1.

The function tanh(x) satisfies tanh(x) < x for all x > 0. However, according to Lemma 1, the
behavior of tanh(ax) changes when a > 1. When x > ξa, the inequality tanh(ax) < x holds.
When x < ξa, the inequality tanh(ax) > x is satisfied. At x = ξa, the equality tanh(ax) = x
holds. In Lemma 2, we address the convergence properties of iteratively applying tanh(ax) for any
x > 0.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Lemma 2. For a given initial value x0 > 0 define

xn+1 = ϕa(xn), n = 0, 1, 2, . . . .

Then {xn}∞n=1 converges regardless of the positive initial value x0 > 0. Moreover,

(1) if 0 < a ≤ 1, then xn → 0 as n → ∞.

(2) if a > 1, then xn → ξa as n → ∞.

Proof. The proof is detailed in Appendix A.2.

According to Lemma 2, for a > 1 and x0 > ξa > 0, the sequence {xn} satisfies tanh(axn) >
tanh(axn+1) > ξa for all n ∈ N. Similarly, when 0 < x0 < ξa, the sequence satisfies tanh(axn) <
tanh(axn+1) < ξa for all n ∈ N. Given a > 1 and x0 < 0, the sequence converges to −ξa as
n → ∞ due to the odd symmetry of tanh(ax). Therefore, when a > 1, for an arbitrary initial value
x0 > 0 or x0 < 0, the sequence {xn} converges to ξa or −ξa, respectively, as n → ∞.

Note that the parameter a in Lemma 2 does not change across all iterations. In Propositions 3 and
Corollary 4, we address cases where the value of a varies with each iteration.
Proposition 3. Let {an}∞n=1 be a positive real sequence, i.e., an > 0 for all n ∈ N, such that only
finitely many elements are greater than 1. Suppose that {Φm}∞m=1 is a sequence of functions defined
as for each m ∈ N

Φm = ϕam
◦ ϕam−1

◦ · · · ◦ ϕa1
.

Then for any x ∈ R
lim

m→∞
Φm(x) = 0.

Proof. The proof is detailed in Appendix A.3.

Corollary 4. Let ϵ > 0 be given. Suppose that {an}∞n=1 be a positive real sequence such that only
finitely many elements are lower than 1 + ϵ. Then for any x ∈ R \ {0}

lim
m→∞

|Φm(x)| ≥ ξ1+ϵ

Proof. The proof is detailed in Appendix A.4.

Based on Proposition 3 and Corollary 4, if there exists a sufficiently large N such that all elements
an for n ≥ N are either less than 1 or greater than 1 + ϵ, then for any x0 ∈ R \ {0}, the sequence
either converges to 0 or satisfies |Φm(x0)| ≥ ξ1+ϵ as m → ∞, respectively. This result implies that
if the sequence {Φm}Mm=1 is finite, an for N ≤ n ≤ M , where N is an arbitrarily chosen index
close to M , significantly influence the values of ΦM (x0).

3.2 THE DERIVATION OF THE PROPOSED WEIGHT INITIALIZATION METHOD

Remark Based on the theoretical motivations discussed in the previous section, we propose a weight
initialization method that satisfies the following conditions during the initial forward pass:
(i) It avoids the phenomenon where activation values cluster around zero in deeper layers.
(ii) It ensures that the distribution of activation values in deeper layers is approximately normal.

Notation Consider a feedforward neural network with L layers. The network processes K training
samples, denoted as pairs {(xi,yi)}Ki=1, where xi ∈ RNx is training input and yi ∈ RNy is its
corresponding output. The iterative computation at each layer ℓ is defined as follows:

xℓ = tanh(Wℓxℓ−1 + bℓ) ∈ RNℓ for all ℓ = 1, . . . , L,

where Wℓ ∈ RNℓ×Nℓ−1 is the weight matrix, bℓ ∈ RNℓ is the bias, and tanh(·) is an element-wise
activation hyperbolic tangent function.

Signal Propagation Analysis We present a simplified analysis of signal propagation in FFNNs with
the tanh activation function. For notational convenience, it is assumed that all hidden layers, as well
as the input and output layers, have a dimension of n, i.e., Nℓ = n for all ℓ. Given an arbitrary input
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(a) Same dimension (b) Varying dimensions

Figure 2: Difference between maximum and minimum activation values at each layer when propa-
gating 3, 000 input data through a 10, 000-layer tanh FFNN, using the proposed initialization with
α set to 0.04, 0.085, 0.15, and 0.5. Network with 10, 000 hidden layers, each with 32 nodes (left),
and a network with alternating hidden layers of 64 and 32 nodes (right).

vector x = (x1, . . . , xn), the first layer activation x1 = tanh(W1x) can be expressed component-
wise as:

x1
i = tanh

(
w1

i1x1 + · · ·+ w1
inxn

)
= tanh

((
w1

ii +

n∑
j=1
j ̸=i

w1
ijxj

xi

)
xi

)
, for i = 1, . . . , n.

For the k + 1-th layer, i = 1, . . . , n, this expression can be generalized as:

xk+1
i = tanh

(
ak+1
i xk

i

)
, where ak+1

i = wk+1
ii +

n∑
j=1
j ̸=i

wk+1
ij xk

j

xk
i

. (1)

The equation 1 follows the form of tanh(ax), as discussed in Section 3.2. According to Lemma 2,
when a > 1, for an arbitrary initial value x0 > 0 or x0 < 0, the sequence {xk} defined by
xk+1 = tanh(axk) converges to ξa or −ξa, respectively, as k → ∞. This result indicates that the
sequence converges to the fixed point ξa regardless of the initial value x0. From the perspective
of signal propagation in tanh-based FFNNs, this ensures that the activation values do not vanish as
the network depth increases. Furthermore, by Proposition 3, if aki ≤ 1 for all N ≤ k ≤ L, where
N is an arbitrarily chosen index close to L, the value of xL

i approaches zero. Therefore, to satisfy
condition (i), aki remains close to 1, and the inequality aki ≤ 1 does not hold for all N ≤ k ≤ L.

Proposed Weight Initialization The proposed initial weight matrix is defined as Wℓ = Dℓ+Zℓ ∈
RNℓ×Nℓ−1 , where Dℓ

i,j = 1 if i ≡ j (mod Nℓ−1), 0 otherwise (Examples of Dℓ are provided
in Appendix D). The noise matrix Zℓ is drawn from N (0, σ2

z), where σz is set to α/
√
N ℓ−1 with

α = 0.085. Then ak+1
i follows the distribution:

ak+1
i ∼ N

(
1, σ2

z + σ2
z

n∑
j=1
j ̸=i

(
xk
j

xk
i

)2
)
. (2)

According to Equation 2, ak+1
i follows a Gaussian distribution with a mean of 1. Additionally,

if xk
i becomes small relative to other elements in xk, the variance of the distribution 2 increases.

Consequently, the probability that the absolute value of xk+1
i exceeds that of xk

i becomes higher.
Figure 1 (b) shows that activation values maintain consistent scales in deeper layers.

3.3 PREVENTING ACTIVATION SATURATION VIA APPROPRIATE σz TUNING

In this section, we determine the appropriate value of α in σz = α/
√
Nℓ−1 that satisfies condi-

tion (ii). Condition (ii) is motivated by normalization methods (Ioffe, 2015; Ba, 2016). Firstly,
we experimentally investigated the impact of σz on the scale of the activation values. As shown in
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Figure 3: The activation values in the 1000th layer, with 32 nodes per hidden layer, were analyzed
using the proposed weight initialization method with σz values of 0.0003, 0.015, 0.3, and 3. The
analysis was conducted on 3000 input samples uniformly distributed within the range [−1, 1].

Figure 2, increasing σz = α/
√

Nℓ−1 broadens the activation range in each layer, while decreasing
σz narrows it.

When σz is Large Setting σz to a large value can lead to saturation. If σz is too large, Equation (2)
implies that the likelihood of aki deviating significantly from 1 increases. This increases the likeli-
hood of activation values being bounded by ξ1+ϵ in sufficiently deep layers, as stated in Corollary 4.
Consequently, in deeper layers, activation values are less likely to approach zero and tend to saturate
toward specific values. Please refer to the Figure 3 for the cases where σz = 0.3 and 3.

When σz is Small If σz is too small, Equation 2 implies that the distribution of aki has a standard
deviation close to zero. Consequently, xk+1

i can be approximated as the result of applying tanh(x)
to xi > 0 repeatedly for a finite number of iterations, k. Since tanh′(x) decreases for x ≥ 0, the
values resulting from finite iterations eventually saturate. Plese refer to the Figure 3 when σz =
0.0003.

For these reasons, we experimentally determined an optimal σz that balances between being too
large or too small. As shown in Figure 3, σz = 0.015 maintains an approximately normal activation
distribution without collapse. Additional experimental results are provided in Appendix B.1. Con-
sidering the number of hidden layer nodes, we set σz = α/

√
N ℓ−1 with α = 0.085. Experimental

results for solving the Burgers’ equation using PINNs with varying σz are provided in Appendix C.3.

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate the proposed weight initializa-
tion method. In Section 4.1, we evaluate the performance of FFNNs with tanh activation func-
tion on benchmark datasets. In Section 4.2, we solve PDEs using Physics-Informed Neural Net-
works (PINNs). Both experiments evaluated the proposed method’s robustness to network size and
dataset efficiency.

Table 1: Validation accuracy and loss are presented for FFNNs with varying numbers of
nodes (2, 8, 32, 128, 512), each with 20 hidden layers using tanh activation function. All models
were trained for 20 epochs, and the highest average accuracy and lowest average loss, computed
from 10 runs, are presented. The better-performing method is highlighted in bold when comparing
different initialization methods under the same experimental settings.

Dataset Method 2 Nodes 8 Nodes 32 Nodes 128 Nodes 512 Nodes

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

MNIST Xavier 49.78 1.632 68 0.958 91.67 0.277 95.45 0.154 97.35 0.087
Proposed 62.82 1.185 77.95 0.706 92.51 0.255 96.12 0.134 97.96 0.067

FMNIST Xavier 42.89 1.559 68.55 0.890 81.03 0.533 86.20 0.389 88.28 0.331
Proposed 51.65 1.324 71.31 0.777 83.06 0.475 87.12 0.359 88.59 0.323

CIFAR-10 Xavier 32.82 1.921 43.51 1.608 48.62 1.473 47.58 1.510 51.71 1.369
Proposed 38.16 1.780 47.04 1.505 48.80 1.463 48.51 1.471 52.21 1.359

CIFAR-100 Xavier 10.87 4.065 18.53 3.619 23.71 3.301 23.83 3.324 17.72 3.672
Proposed 15.22 3.818 23.07 3.350 24.93 3.237 24.91 3.240 22.80 3.435
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Table 2: Validation accuracy and loss are presented for FFNNs with varying numbers of lay-
ers (3, 10, 50, 100), each with 64 number of nodes using the tanh activation function. All models
were trained for 40 epochs, and the highest average accuracy and lowest average loss, computed
from 10 runs, are presented.

Dataset Method 3 Layers 10 Layers 50 Layers 100 Layers

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

MNIST Xavier 95.98 0.130 96.55 0.112 96.57 0.123 94.08 0.194
Proposed 96.32 0.123 97.04 0.102 96.72 0.109 96.06 0.132

FMNIST Xavier 85.91 0.401 88.73 0.319 87.72 0.344 83.41 0.463
Proposed 86.51 0.379 89.42 0.305 88.51 0.324 86.01 0.382

CIFAR-10 Xavier 42.91 1.643 48.39 1.468 47.87 1.474 46.71 1.503
Proposed 45.05 1.588 48.41 1.458 48.71 1.461 48.96 1.437

CIFAR-100 Xavier 19.10 3.628 22.73 3.400 24.27 3.283 20.32 3.515
Proposed 19.30 3.609 23.83 3.309 25.07 3.190 24.41 3.234

4.1 CLASSIFICATION TASK

Experimental Setting To evaluate the effectiveness of the proposed weight initialization method,
we conduct experiments on the MNIST, Fashion MNIST (FMNIST), CIFAR-10, and CIFAR-
100 (Krizhevsky & Hinton, 2009) datasets with the Adam optimizer. All experiments are conducted
with a batch size of 64 and a learning rate of 0.0001. Fifteen percent of the total dataset is allo-
cated for validation. The experiments were conducted in TensorFlow without skip connections and
learning rate decay in any of the experiments.

Width Independence in Classification Task We evaluate the proposed weight initialization method
in training tanh FFNNs, focusing on its robustness to variations in network width. Five tanh FFNNs
are designed, each with 20 hidden layers, and with 2, 8, 32, 128, and 512 nodes per hidden layer,
respectively. In Table 1, for both the MNIST, Fashion MNIST and CIFAR-10 datasets, the network
with 512 nodes achieves the highest accuracy and lowest loss when the proposed method is em-
ployed. However, for the CIFAR-100 dataset, the network with 32 nodes yields the highest accuracy
and lowest loss when employing the proposed method. In summary, the Proposed method demon-
strates robustness to variations in the number of nodes in tanh FFNNs. Detailed experimental results
are provided in Appendix B.2.

Depth Independence in Classification Task The expressivity of neural networks is known to in-
crease exponentially with depth, enabling strong generalization performance (Poole et al., 2016;
Raghu et al., 2017). To evaluate the robustness of the proposed weight initialization method to vari-
ations in network depth, we conduct experiments on deep FFNNs with tanh activation functions.
Specifically, we construct four tanh FFNNs, each with 64 nodes per hidden layer and 3, 10, 50,
or 100 hidden layers. respectively. In Table 2, for both the MNIST and Fashion MNIST datasets,
the network with 10 hidden layers achieves the highest accuracy and lowest loss when our pro-
posed method is employed. Both initialization methods showed lower performance in networks
with 3 layers compared to those with more layers. Moreover, for complex datasets like CIFAR-10
and CIFAR-100, the proposed method demonstrated improved performance when training deeper
networks.

(a) MNIST (b) Fashion MNIST (c) CIFAR10 (d) CIFAR100

Figure 4: Validation accuracy for a tanh FFNN with 50 hidden layers (32 nodes each). Xavier + BN
and Xavier + LN represent Xavier initialization with Batch Normalization or Layer Normalization
applied every 5 layers, respectively.
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Table 3: Validation accuracy and loss for a 10-layer FFNN (64 nodes per layer) trained on datasets
of sizes 10, 20, 30, 50, and 100. Results show the highest average accuracy and lowest average loss
over 5 runs after 100 epochs.

Dataset Method 10 20 30 50 100

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

MNIST

Xavier 31.13 2.281 35.03 2.078 45.05 1.771 58.45 1.227 64.02 1.139
Xavier + BN 22.46 2.267 33.73 2.053 37.13 2.042 39.78 1.944 57.51 1.464
Xavier + LN 28.52 2.411 41.54 1.796 41.94 1.886 54.97 1.362 65.11 1.093
Proposed 37.32 2.204 46.79 1.656 48.60 1.645 61.54 1.131 68.44 1.043

FMNIST

Xavier 36.16 2.320 41.69 1.814 53.86 1.459 64.53 1.140 63.58 1.048
Xavier + BN 35.44 2.136 38.58 1.925 40.16 1.819 53.93 1.728 59.78 1.237
Xavier + LN 34.94 2.362 37.90 1.793 53.27 1.470 59.50 1.198 62.01 1.073
Proposed 37.31 2.217 49.25 1.651 55.19 1.372 66.14 1.057 67.58 0.914

Normalization Methods Xavier initialization is known to cause vanishing gradients and activation
problems in deeper networks. These issues are known to be mitigated by employing Batch Normal-
ization (BN) or Layer Normalization (LN) in the network. Therefore, we compared the proposed
method with Xavier, Xavier with BN, and Xavier with LN. To validate the effectiveness of normal-
ization, we conducted experiments using a sufficiently deep neural network with 50 hidden layers.
As shown in Figure 4, for datasets with relatively fewer features, such as MNIST and FMNIST,
Xavier with normalization converges faster than Xavier. However, for feature-rich datasets like
CIFAR-10 and CIFAR-100, the accuracy of Xavier with normalization is lower than that of Xavier.
Normalization typically incurs a 30% computational overhead, and additional hyperparameter tun-
ing is required to determine which layers should apply normalization. In contrast, the proposed
method achieves the best performance among all four approaches across all datasets, without the
need for normalization.

Dataset Efficiency in Classification Task Based on the results in Table 2, we evaluated data effi-
ciency on a network with 50 hidden layers, each containing 64 nodes, where Xavier showed strong
performance. As shown in Table 3, the highest average accuracy and lowest average loss over 5
runs after 100 epochs are presented for datasets containing 10, 20, 30, 50, and 100 samples. The
proposed method achieved the best performance across all sample sizes.

Non-uniform Hidden Layer Dimensions We validate the performance of the proposed initializa-
tion in networks where hidden layer dimensions are not uniform. As shown in Figure 5, the network
consists of 60 hidden layers, where the number of nodes alternates between 32 and 16 in each layer.
We demonstrate improved performance in terms of both loss and accuracy across all epochs on
the MNIST and CIFAR-10 datasets. Additionally, Appendix B.3 presents experiments on networks
with larger differences in the number of nodes. Motivated by these results, Appendix B.3 explores
autoencoders with significant variations in hidden layer dimensions.

(a) MNIST Accuracy (b) MNIST Loss (c) CIFAR10 Accuracy (d) CIFAR10 Loss

Figure 5: Validation accuracy and loss for a tanh FFNN with 60 hidden layers, where the number of
nodes alternates between 32 and 16 across layers, repeated 30 times. The model was trained for 20
epochs on the MNIST and CIFAR-10 datasets.

4.2 PHYSICS-INFORMED NEURAL NETWORKS

Xavier initialization is the most commonly employed method for training PINNs (Jin et al., 2021;
Son et al., 2023; Yao et al., 2023; Gnanasambandam et al., 2023). In this section, we experimentally

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

show that the proposed method is more robust to variations in network size and achieves better data
efficiency compared to Xavier initialization with or without normalization methods.

Experimental Setting All experiments on Physics-Informed Neural Networks (PINNs) use full-
batch training with a learning rate of 0.001. In this section, we solve the Allen-Cahn, Burgers,
Diffusion, and Poisson equations using a tanh FFNN-based PINN with 20,000 collocation points.
Details on the PDEs are provided in Appendix C.1.

Network Size Independence in PINNs We construct eight tanh FFNNs, each with 16 nodes per
hidden layer and 5, 10, 20, 30, 40, 50, 60, or 80 hidden layers. As shown in Table 4, for the Allen-
Cahn and Burgers’ equations, Xavier+BN and Xavier+LN achieve the lowest loss at a network
depth of 30. However, their loss gradually increases as the depth grows. In contrast, the proposed
method achieves the lowest loss at depths of 50 and 60, respectively, maintaining strong learning
performance even in deeper networks. For the Diffusion and Poisson equations, Xavier+LN achieves
the lowest loss at depths of 5 and 10, respectively. While all methods show increasing loss as network
depth increases, the proposed method consistently maintains lower loss in deeper networks. Similar
results are observed with 32 nodes, double the previous size. Across all tested network sizes and
PDEs, the proposed method consistently achieves the lowest loss.

Table 4: A PINN loss is presented for FFNNs with varying numbers of lay-
ers (5, 10, 20, 30, 40, 50, 60, 80) using the tanh activation function. The top table shows results with
16 nodes per layer, and the bottom table shows results with 32 nodes per layer. All models were
trained for 300 iterations using Adam and 300 iterations using L-BFGS. The median PINN loss
from the final iteration for the Burgers, Allen–Cahn, Diffusion, and Poisson equations, computed
over 5 runs, is presented.

Allen-Cahn (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 9.58e-04 8.16e-04 7.61e-04 1.06e-03 1.1e-03 1.24e-03 3.55e-03 1.81e-03
Xavier + BN 1.42e-03 8.17e-04 8.56e-04 7.07e-04 7.77e-04 8.87e-04 9.11e-04 2.15e-03
Xavier + LN 6.29e-01 1.77e-03 6.98e-04 1.27e-03 1.82e-03 6.65e-01 3.29e-01 5.86e-01
Proposed 9.21e-04 7.29e-04 5.76e-04 5.29e-04 5.37e-04 4.03e-04 4.73e-04 5.77e-04
Burgers (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 6.97e-03 1.11e-02 7.9e-03 9.71e-03 2.45e-02 2.65e-02 6.5e-02 5.71e-02
Xavier + BN 8.07e-03 7.72e-03 6.24e-03 1.70e-02 1.50e-02 1.85e-02 2.91e-02 6.84e-02
Xavier + LN 3.89e-02 1.88e-02 9.48e-03 9.28e-03 2.46e-02 3.30e-02 6.91e-02 4.42e-02
Proposed 6.19e-03 5.08e-03 5.28e-03 9.31e-04 3.56e-03 8.27e-04 3.43e-04 2.05e-03
Diffusion (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 2.52e-03 4.82e-03 9.69e-03 1.33e-02 2.08e-02 1.50e-02 2.92e-02 7.24e-02
Xavier + BN 2.89e-03 5.77e-03 1.05e-02 9.65e-03 2.76e-02 1.07e-02 9.07e-03 1.43e-02
Xavier + LN 1.72e-03 6.10e-03 8.04e-03 9.48e-03 2.14e-02 7.59e-03 2.05e-02 2.21e-02
Proposed 9.14e-04 2.59e-03 2.40e-03 1.01e-03 1.97e-03 1.21e-03 1.12e-03 1.91e-03
Poisson (16 Nodes) 5 10 20 30 40 50 60 80

Xavier 1.52e-02 2.87e-02 1.28e-01 9.82e-02 1.15e-01 1.37e-01 1.82e-01 2.55e-01
Xavier + BN 1.62e-02 2.02e-02 8.72e-02 1.12e-01 2.45e-01 9.85e-02 1.00e-01 1.34e-01
Xavier + LN 5.39e-01 4.40e-02 1.34e-01 3.91 2.52e+02 2.58 9.79e+02 nan
Proposed 1.37e-02 1.70e-02 4.62e-02 2.43e-02 3.75e-02 4.03e-02 6.07e-02 6.01e-02

Allen-Cahn (32 Nodes) 5 10 20 30 40 50 60 80

Xavier 3.13e-01 5.03e-02 3.64e-03 2.37e-03 4.03e-03 5.27e-03 1.73e-02 6.94e-01
Xavier + BN 4.05e-01 8.85e-04 8.41e-04 7.82e-04 9.97e-04 6.80e-04 9.34e-04 6.94e-01
Xavier + LN 3.31e-01 2.10e-03 5.99e-04 6.71e-04 1.49e-03 1.29e-03 3.31e-02 6.93e-01
Proposed 1.04e-03 6.92e-04 5.34e-04 4.26e-04 3.31e-04 3.52e-04 3.85e-04 5.96e-04
Burgers (32 Nodes) 5 10 20 30 40 50 60 80

Xavier 1.12e-02 3.53e-03 2.72e-03 1.81e-03 7.60e-03 8.56e-03 9.86e-03 1.66e-01
Xavier + BN 5.88e-03 1.04e-03 1.79e-03 2.80e-03 5.95e-03 3.66e-02 6.60e-02 1.66e-01
Xavier + LN 4.31e-02 1.21e-02 1.88e-03 7.22e-03 5.54e-03 8.46e-03 9.04e-03 4.86e-02
Proposed 4.14e-03 4.11e-03 1.58e-03 1.29e-03 7.96e-04 5.85e-04 9.80e-04 1.47e-03
Diffusion (32 Nodes) 5 10 20 30 40 50 60 80

Xavier 1.69e-03 6.85e-03 7.63e-03 4.50e-03 8.98e-03 5.67e-03 6.33e-01 1.59
Xavier + BN 1.68e-03 2.66e-03 1.08e-02 6.00e-03 8.58e-03 6.60e-03 5.66e-02 1.69e+02
Xavier + LN 8.16e-04 2.85e-03 8.46e-03 4.57e-03 9.40e-03 1.04e-02 2.42e-01 1.67e+02
Proposed 2.89e-04 8.03e-04 5.25e-04 5.07e-04 5.33e-04 6.17e-04 9.80e-04 1.53e-03
Poisson (32 Nodes) 5 10 20 30 40 50 60 80

Xavier 1.09e-02 1.33e-02 3.13e-02 7.69e-02 6.72e-02 8.90e-02 9.68e+02 1.46e+02
Xavier + BN 1.14e-02 1.47e-02 2.68e-02 3.55e-02 8.25e-02 8.97e-02 4.50e-02 7.75e-01
Xavier + LN 2.36e-02 2.18e-02 3.07e-02 3.85e-01 1.40 4.69 2.60 6.14
Proposed 9.63e-03 8.29e-03 1.41e-02 1.88e-02 1.65e-02 1.85e-02 1.73e-02 3.59e-02
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(a) Burgers Equation (b) Diffusion Equation

Figure 6: Mean absolute error between the exact solution and PINN-predicted solution with varying
numbers of collocation points. The FFNN has 30 hidden layers (32 nodes each) and is trained for
300 iterations using Adam followed by 300 iterations using L-BFGS. The results are averaged over
5 experiments.

Data Efficiency Based on the results in Table 4, we evaluated data efficiency on a network with 30
hidden layers, each containing 32 nodes, where Xavier achieved the lowest PINN loss. As shown in
Figure 6, for the Burgers equation, the Mean Absolute Error (MAE) of the proposed initialization
shows a clear difference compared to Xavier initialization across varying numbers of collocation
points. In contrast, for the Diffusion equation, the difference in MAE between the two methods
becomes more pronounced when the number of collocation points exceeds 20, 000. Additionally,
Figure 7 illustrates that increasing the number of collocation points enables PINNs with the proposed
initialization to predict solutions with lower absolute error. For detailed experiments on the Burgers
equation, please refer to Appendix C.4.

Figure 7: Absolute error between the exact solution and the PINN-predicted solution for the Diffu-
sion equation with varying numbers of collocation points (3000, 10000, 20000, 50000) using (upper
row) Xavier and (lower row) the proposed initialization. The FFNN has 30 hidden layers (32 nodes
each) and is trained for 300 iterations using Adam followed by 300 iterations using L-BFGS. The
color bar ranges from 0 to 0.05, with values outside this range shown in white.

5 CONCLUSION

In this study, we proposed a novel weight initialization method for tanh neural networks, grounded
in the theoretical analysis of fixed points of the tanh(ax) function. The proposed method is ex-
perimentally demonstrated to achieve robustness to variations in network size without normaliza-
tion methods and to exhibit improved data efficiency. Therefore, the proposed weight initialization
method reduces the time and effort required for training on large datasets and optimizing network
architectures.
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A PROOFS OF THE THEORETICAL RESULTS

A.1 PROOF OF LEMMA 1

Proof. We define g(x) = tanh(ax)− x. Since g(x) is continuous, and g(−M) > 0, g(M) < 0 for
a large real number M ∈ R+, the Intermediate Value Theorem guarantees the existence of a point x
such that g(x) = 0.

First, consider the case 0 < a ≤ 1. Since 0 < a ≤ 1, the derivative g′(x) = a · sech2(ax) − 1
satisfies −1 ≤ g′(x) ≤ a − 1 < 0 for all x. Hence, g(x) is strictly decreasing and therefore g(x)
has the unique root. At x = 0, ϕ(0) = tanh(a · 0) = 0. Hence, x = 0 is the unique fixed point.

Let us consider the case a > 1. For 0 < x ≪ 1, tanh(ax)−x ≈ (a−1)x. Since a > 1, tanh(ax)−
x > 0. On the other hand, since | tanh(ax)| < 1 for all x,

lim
x→∞

[−1− x] ≤ lim
x→∞

[tanh(ax)− x] ≤ lim
x→∞

[1− x].

By the squeeze theorem, limx→∞[tanh(ax) − x] = −∞. By the intermediate value theorem,
therefore, there exists at least one x > 0 such that tanh(ax) = x. To establish the unique-
ness of the positive fixed point, we investigate the derivative g′(x) = a sech2(ax) − 1. We
find the critical points to be x = ± 1

a sec−1( 1√
a
). It is straightforward to see that g′(x) > 0

in
(
− 1

a sec−1( 1√
a
), 1

a sec−1( 1√
a
)
)

and g′(x) < 0 in R\
(
− 1

a sec−1( 1√
a
), 1

a sec−1( 1√
a
)
)

. i.e.
g(x) = 0 has exactly two fixed points. Because g(x) is an odd function, if x∗ is a solution, then
−x∗ is also a solution. Thus, for a > 1, there exists a unique positive fixed point if x > 0 and a
unique negative fixed point if x < 0.

A.2 PROOF OF LEMMA 2

Proof. (1) Since (tanh(ax))′ = a sech2(ax) < 1 for all x > 0, it holds that xn+1 = ϕa(xn) < xn

for all n ∈ N. Thus the sequence {xn}∞n=1 is decreasing. Since xn > 0 for all n ∈ N, by the
monotone convergence theorem, it converges to the fixed point x∗ = 0.
(2) Let x0 < ξa. Since ϕ′(x) decreasing for x ≥ 0, with ϕ′(0) > 1 and ξa is the unique fixed
point for x > 0, it holds that xn < xn+1 < ξa for all n ∈ N. Thus, by the monotone convergence
theorem, the sequence converges to the fixed point ξa. The proof is similar when x0 > ξa.

A.3 PROOF OF PROPOSITION 3

Proof. Set N = max{n|an > 1}. Define the sequences {bn}∞n=1 and {cn}∞n=1 such that bn =

cn = an for n ≤ N , with bn = 0 and cn = 1 for n > N . Suppose that {Φ̂m}∞m=1 and {Φ̃m}∞m=1
are sequences of functions defined as for each m ∈ N

Φ̂m = ϕbm ◦ ϕbm−1
◦ · · · ◦ ϕb1 , Φ̃m = ϕcm ◦ ϕcm−1

◦ · · · ◦ ϕc1 .

Then, the inequality Φ̂m ≤ Φm ≤ Φ̃m holds for all m. By Lemma 1, for any x ≥ 0, we
have limm→∞ Φ̂m = 0 and limm→∞ Φ̃m = 0. Therefore, the Squeeze Theorem guarantees that
limm→∞ Φm(x) = 0.

A.4 PROOF OF COROLLARY 4

Proof. Set N = max{n | an < 1 + ϵ}. Define the sequence {bn}∞n=1 such that bn = an for
n ≤ N , and bn = 1 + ϵ for n > N . The remainder of the proof is analogous to the proof of
Proposition 3.
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B CLASSIFIACATION TASKS

B.1 ACTIVATION DISTRIBUTION FOR NORMALLY DISTRIBUTED INPUT DATA.

Figure 8: The activation values in the 1000th layer, with 32 nodes per hidden layer, were analyzed
using the proposed weight initialization method with σz values of 0.0003, 0.015, 0.3, and 3. The
upper row shows results for 3000 input samples drawn from a standard normal distribution, while
the lower row presents results for samples drawn from a Beta distribution with parameters a = 2.0
and b = 5.0.

B.2 WIDTH INDEPENDENCE IN CLASSIFICATION TASKS

Figure 9: Validation accuracy and loss are presented for tanh FFNNs with varying numbers of
nodes (2, 8, 32, 128), each with 20 hidden layers. All models were trained for 20 epochs on the
MNIST dataset, with 10 different random seeds.
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Figure 10: Validation accuracy and loss are presented for tanh FFNNs with varying numbers of
nodes (2, 8, 32, 128), each with 20 hidden layers. All models were trained for 20 epochs on the
Fashion MNIST dataset, with 10 different random seeds.

Figure 11: Validation accuracy and loss are presented for tanh FFNNs with varying numbers of
nodes (2, 8, 32, 128), each with 20 hidden layers. All models were trained for 20 epochs on the
CIFAR-10 dataset, with 10 different random seeds.

B.3 NON-UNIFORM HIDDEN LAYER DIMENSIONS

Tanh neural networks have been less commonly used compared to ReLU networks due to higher
computational complexity, the vanishing gradient problem, and ReLU’s superior empirical perfor-
mance in many deep learning tasks. However, recent success of PINNs with tanh neural networks
has led to a resurgence in their usage. In this section, we compare the performance of four methods
on architectures that are generally challenging to train: (1) tanh activation with Xavier initialization,
(2) tanh activation with the proposed initialization, (3) ReLU activation with He initialization + BN,
and (4) ReLU activation with orthogonal initialization.

FFNN The experiments were conducted on an FFNN with alternating hidden layers of 16 and 4
nodes, repeated 50 times, over 100 epochs. The results are shown in Figure 13 (a). Both Xavier and
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Figure 12: Validation accuracy and loss are presented for tanh FFNNs with varying numbers of
nodes (2, 8, 32, 128), each with 20 hidden layers. All models were trained for 20 epochs on the
CIFAR-100 dataset, with 10 different random seeds.

the proposed method successfully trained the network, with the proposed method showing overall
better performance. Given its strong performance despite significant differences in the number of
nodes between hidden layers, we further tested the proposed method on autoencoders with large
variations in layer sizes, as shown in Figure 13 (b).

Autoencoder The autoencoder architecture consists of an encoder and a decoder, both employing
batch normalization and dropout (0.2) for regularization. The encoder compresses the input through
layers of sizes 512, 256, 128, and finally maps to a latent space of 64 units. The decoder reconstructs
the input by symmetrically expanding the latent space through layers of sizes 128, 256, and 512,
followed by a final output layer with sigmoid activation. In Figure 13 (b), the model is trained on
the MNIST dataset with a batch size of 256, while in (c), it is trained on the FMNIST dataset with a
batch size of 512.

(a) FFNN (MNIST) (b) Autoencoder (MNIST) (c) Autoencoder (FMNIST)

Figure 13: (a) Validation loss for an FFNN with alternating hidden layers of 16 and 4 nodes, repeated
50 times, comparing four methods: Tanh with Xavier initialization, Tanh with the proposed initial-
ization, ReLU with He initialization + BN, and ReLU with orthogonal initialization. (b) Validation
loss for an autoencoder with encoder-decoder layers of 512, 256, 128, and 64 units, comparing the
same four methods. (c) Same as (b), but on the FMNIST dataset.
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C PHYSICS INFORMED NEURAL NETWORKS

C.1 PDE DETAILS

Allen-Cahn Equation The diffusion coefficient is set to d = 0.01. The initial condition is defined as
u(x, 0) = x2 cos(πx) for x ∈ [−1, 1], with boundary conditions u(−1, t) = −1 and u(1, t) = −1,
applied over the time interval t ∈ [0, 1]. The Allen-Cahn equation is expressed as:

∂u

∂t
− d

∂2u

∂x2
= −u3 + u

d

where u(x, t) represents the solution, d is the diffusion coefficient, and the nonlinear term u3 − u
models the phase separation dynamics.

Burgers’ Equation The Burgers’ equation, a viscosity coefficient of ν = 0.01 is employed. The
initial condition is given by u(x, 0) = − sin(πx) for x ∈ [−1, 1], with boundary conditions
u(−1, t) = 0 and u(1, t) = 0 imposed for t ∈ [0, 1]. The Burgers’ equation is given by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

where u(x, t) is the velocity field, and ν is the viscosity coefficient.

Diffusion Equation The diffusion equation includes a time-dependent source term and is defined
over the spatial domain x ∈ [−1, 1] and temporal interval t ∈ [0, 1]. The initial condition is specified
as u(x, 0) = sin(πx), with Dirichlet boundary conditions u(−1, t) = 0 and u(1, t) = 0. The
diffusion equation is expressed as:

∂u

∂t
− ∂2u

∂x2
= e−t

(
sin(πx)− π2 sin(πx)

)
,

where u(x, t) is the solution.

Poisson Equation The Poisson equation is defined over the spatial domain x ∈ [0, 1] and y ∈ [0, 1].
The Poisson equation is expressed as:

∂2u

∂x2
+

∂2u

∂y2
= f(x, y),

where u(x, y) is the solution, and f(x, y) is the source term given by:

f(x, y) = 2π2 sin(πx) sin(πy).

C.2 IMPACT OF ACTIVATION FUNCTION ON PINN

Figure 14: Absolute error for the Burgers’ equation with varying activation functions (from left:
tanh, ReLU, sigmoid, and swish). The FFNN has 30 hidden layers (32 nodes each) and is trained
for 300 iterations using Adam followed by 300 iterations using L-BFGS.

We experimentally demonstrated that the absolute error between the exact solution and the PINN-
predicted solution is smaller when using the tanh activation compared to ReLU, sigmoid, and swish
activations (Ramachandran et al., 2017) in Figure 14.
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C.3 σz FOR BURGERS’ EQUATION

(a) Same dimension (b) Varying dimensions

Figure 15: Here, STD refers to σz . (a) shows the PINN loss for the Burgers’ equation, using an
FFNN with 30 layers and 32 nodes in each hidden layer. (b) shows the PINN loss for an FFNN
with 30 layers, where the hidden layers alternate between 64 and 32 nodes, repeated 15 times. Each
experiment was repeated 10 times with different random seeds.

C.4 ABSOLUTE ERROR FOR BURGERS’ EQUATION

Figure 16: Absolute error between the exact solution and the PINN-predicted solution for the Burg-
ers’ equation with varying numbers of collocation points (3000, 10000, 20000, 50000) using (upper
row) Xavier and (lower row) the proposed initialization. The FFNN has 30 hidden layers (32 nodes
each) and is trained for 300 iterations using Adam followed by 300 iterations using L-BFGS.

D EXAMPLES OF THE MATRIX Dℓ

Figure 17: Examples of the matrix Dℓ ∈ RNℓ×Nℓ−1 in Section 3.2 (from left: Nℓ < Nℓ−1, Nℓ =
Nℓ−1, Nℓ > Nℓ−1).

20


	Introduction
	Related works
	Proposed Weight Initialization method
	Theoretical motivation
	The derivation of the proposed weight initialization method
	Preventing activation saturation via appropriate z tuning

	Experiments
	Classification Task 
	Physics-Informed Neural Networks

	Conclusion
	Proofs of the theoretical results
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 3
	Proof of Corollary 4

	Classifiacation Tasks
	Activation distribution for normally distributed input data.
	Width independence in Classification tasks
	Non-uniform Hidden Layer Dimensions

	Physics Informed Neural Networks
	PDE Details
	Impact of activation function on PINN
	z for Burgers' Equation
	Absolute error for Burgers' equation

	Examples of the matrix D

