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Abstract

As universities adopt Al for high-stakes decisions, episodic
audits fail to match deployment tempo. This work addresses
governing autonomous Al agents that must maintain ethi-
cal compliance while adapting to institutional contexts. We
contribute a fair-baseline evaluation protocol and multi-
layer governance simulator with compute/seed hygiene,
realistic frictions, and actionable policy levers (A, a). De-
partments act as autonomous agents within regulatory con-
straints, coordinated through hierarchical governance (de-
partments — universities — countries). Our Regulatory-
Graph PSO uses parameter o to balance local autonomy
(a=0) with global alignment (a=0.6). The protocol en-
sures rigor through fixed iterations per scale, 30-seed repli-
cation (seeds 100-129), and statistical corrections (Holm-
Bonferroni, bootstrap Cls). Key results: A € [0.05, 0.3] con-
trols policy stability; o € [0.30, 0.35] achieves optimal bal-
ance (fitness=0.99461-0.0002, Gini=0.00101+0.0002) from
390 experiments; adversarial detection varies (static gam-
ing AUC=0.50, manipulation/oscillation AUC~1.00). The
framework scales to 72-department hierarchies with concrete
KPIs and EU AI Act mapping.

Code — https://github.com/GeniusLearner/swarm-ethics

Introduction

Universities deploying AI for admissions, academic in-
tegrity, and resource allocation face a governance challenge:
how to ensure continuous ethical compliance when models
evolve faster than audit cycles? The EU Al Act (European
Union 2024) demands continuous monitoring, yet institu-
tions lack operational frameworks. Traditional approaches,
such as annual audits and static policies, create dangerous
gaps between assessments.

The Challenge of Agentic AI Governance: Modern in-
stitutions increasingly rely on autonomous Al agents, sys-
tems that adapt policies, optimize resources, and make
consequential decisions without constant human oversight.
These agents must maintain ethical compliance while re-
taining sufficient autonomy to respond to local context. This
creates a fundamental tension: too much centralized con-
trol stifles institutional diversity and adaptation, yet uncon-
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strained autonomy risks ethical drift and regulatory viola-
tions. We need frameworks that enable policy-compliant
autonomy, agents that pursue local objectives within global
ethical boundaries.

We address this with a multi-agent framework treating
compliance as continuous adaptation across organizational
hierarchies. Departments act as autonomous agents opti-
mizing local compliance while coordinating through uni-
versity and country-level aggregation. This mirrors real
governance structures: local autonomy within regional
constraints, operationalized through our Regulatory-Graph
PSO that balances decentralization (o=0) with alignment
(a=0.6).

Contributions:

1. Fair-baseline protocol: Disjoint tuning/eval seeds, fixed
iterations per scale, identical noise/missingness streams.

2. Hierarchical simulator: Policy levers A (stability) and
« (harmonization) with realistic multi-layer governance.

3. Robustness modules: Noise, missingness, multi-shock
stress tests, and adversaries with detection + robust ag-
gregation.

4. Statistical hygiene: Holm-Bonferroni for C(10,2)=45
pairwise tests; Cliff’s A with bootstrap CIs (B=1000).

5. Reproducible artifact: Configs, seeds, and scripts for
full replication.

Related Work

AI Governance Frameworks: Existing frameworks (Jobin,
Ienca, and Vayena 2019; Mittelstadt 2019) provide princi-
ples without operational mechanisms. While the EU Ethics
Guidelines enumerate values, translating them into opera-
tional systems remains challenging. We operationalize these
through multi-agent optimization with quantifiable compli-
ance metrics.

Multi-Agent Systems: Opinion dynamics (DeGroot
1974; Friedkin and Johnsen 1990) model belief evolu-
tion but lack optimization objectives. Swarm intelligence
(Kennedy and Eberhart 1995; Shi and Eberhart 1998) pro-
vides decentralized optimization but hasn’t addressed gover-
nance hierarchies. Multi-objective approaches like NSGA-II
(Deb et al. 2002) maintain Pareto fronts but require careful
scalarization for practical deployment. We combine these
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Figure 1: Three-tier governance hierarchy with departments (micro), universities (meso), and countries (macro) coordinating
compliance evolution. Bidirectional arrows show bottom-up aggregation (gray dashed) and top-down regulatory influence (or-

ange solid).

paradigms, using PSO for optimization within hierarchical
constraints.

Adversarial Robustness: Strategic behavior in regula-
tory settings is well-documented, a phenomenon known as
Goodhart’s Law. While existing work focuses on mechanism
design, we address detection and mitigation using robust
statistics (MAD-based z-scores, Huber M-estimators (Hu-
ber 1964), Isolation Forest (Liu, Ting, and Zhou 2008)) in
continuous monitoring systems.

Hierarchical Governance Model
Three-Tier Structure

We model institutions as hierarchy H = (C, U, D):
e Micro: D departments with compliance vectors x; €
[0,1)°
* Meso: U universities aggregating department vectors
» Macro: C countries with regulatory weights w,. € A®
Compliance dimensions £ = {fairness, privacy, explain-
ability, security, accountability } map to regulatory require-

ments. Country weights encode regional priorities (e.g.,
GDPR regions emphasize privacy).

Cost-Regularized Objectives

Real policy changes incur switching costs. We penalize os-
cillations via:

feost(xt) = we - ¢ — M|zy — 2411 e

where A\ € [0.05, 0.3] represents organizational inertia.

Noisy Observations

Compliance measurements contain error from incomplete
data:

& =clip(z+¢0,1), e~ N(0,0%I) )

with o € [0.02, 0.08] modeling measurement uncertainty.

Control-Theoretic Governors

We benchmark two non-learning controllers that steer com-
pliance toward regulatory targets while using the same cost
term:

EWMA: 2,11 = clip((1 — B)xt + Br,0,1), €
{0.05,0.10,...,0.40}.

MPC-0 (shrinkage): u* = arg max, w-(x;+u)—A||ul|;
s.t. 0 < zy + u < 1, with elementwise soft-thresholding and
Zepq = clip(zy + u*,0,1).



Table 1: Core Parameters

Symbol Meaning

A Policy-change cost penalty (stability control)
« Regulatory-graph coupling (harmonization)
o Observation noise std (measurement friction)
I Iterations per scale (S=120, M=150, L=180)

Fair-Baseline Evaluation Protocol
Key Notation
Reducing P-Hacking Opportunities

All methods run for identical iterations per scale (S=120,
M=150, L=180) and are evaluated on 30 seeds (100-129);
the a-sweep uses independent seeds (0-29). All experiments
share identical noise/missingness streams per seed for fair
comparison. Each experiment uses fixed configs (no post-
hoc tuning on evaluation data), ensuring reproducible re-
sults.

Fixed Iterations

All methods run for identical iterations determined by scale:
120 (S-scale, 16 departments), 150 (M-scale, 36 depart-
ments), or 180 (L-scale, 72 departments). See Appendix A
for details.

Statistical Rigor

We use fixed iterations per scale (ensuring fair comparison),
30-seed replication (seeds 100-129), and report means with
bootstrap 95% Cls; tables show mean =+ s.d., and figures
report mean =+ standard error where noted. All baselines
follow identical iteration counts and seed hygiene. We ap-
ply Holm-Bonferroni step-down correction (Holm 1979) for
C(10,2)=45 pairwise comparisons across the 10 core meth-
ods (PSO, HD-PSO, RG-PSO, NSGA-II, GA, SA, DeGroot,
FJ, Equal, SLS), Cliff’s A (Cliff 1993) (non-parametric ef-
fect size) with bootstrap CIs (B=1000), and Cohen’s d (inter-
preted cautiously due to ceiling effects). AAAI page limits
require showing representative methods; full results appear
in our anonymized extended appendix.

Evaluation Parity

All 10 baseline methods (PSO, HD-PSO, RG-PSO, NSGA-
II, GA, SA, DeGroot, FJ, Equal, SLS) use fixed hyperpa-
rameters without post-hoc tuning, evaluated on seeds 100-
129 under identical noise/missingness streams, ensuring fair
comparison across methods.

Adversarial Robustness

Gaming Detection

Departments may manipulate metrics without genuine com-
pliance. We detect outliers using an ensemble approach
combining three complementary methods:

1. Z-score: |z;| > 3.0 for initial screening

2. MAD-based z: z; op > 3.5 for robust confirmation (re-
sistant to outlier contamination):

x; — median(X)
= U. 4 —_— 3
3. Isolation Forest: Non-parametric anomaly detection for
complex patterns

We tested detection against three adversarial strategies
across 1,080 experiments (3 fractions x 3 types x 4 detec-
tion methods x 30 seeds; L-scale):

Key findings: Static gaming (departments reporting
fake compliance without changing behavior) is nearly
undetectable by all methods, mimicking normal compli-
ant behavior. Isolation Forest achieves near-perfect detec-
tion (AUC~1.00) on our synthetic manipulation/oscillation
attacks; bootstrap CIs saturate at 1.00 in this con-
trolled setting (n=90). Z-score shows moderate performance
(AUC=0.60). MAD-based methods under-performed (/0
precision/recall) in our setting (not shown; adversaries
stayed near the population median so MAD-based z-scores
under-flagged them).

Robust Aggregation

When computing university/country aggregates under ad-
versarial presence, we use the Huber M-estimator with it-
eratively reweighted least squares:

1 if |’I“i | <4
i = - 4
v {5 /|ri| otherwise @
This maintains fitness within 0.02 of clean settings despite
10% adversarial departments.

Experimental Results
Base Performance

PSO reaches high compliance within a handful of iterations
(median 3; mean 3.0 for L-scale), whereas NSGA-II requires
more iterations ( 51) and consensus baselines plateau below
the high-fitness region. Under ideal conditions (A = 0,0 =
0), optimization methods achieve varying compliance lev-
els under synthetic convex objectives (Small/Medium/Large
scales correspond to 16/36/72 departments):

High fitness results (PSO 1.000; NSGA-II 0.981-1.000)
arise under synthetic convex objectives; real policy surfaces
will be rougher, with non-convexities and local optima pre-
senting additional challenges.

Friction Regime
With realistic constraints (A = 0.1, 0 = 0.04):

Autonomy-Alignment Trade-off: The o Parameter

A core challenge in agentic Al governance is balancing lo-
cal autonomy (enabling context-specific adaptation) with
global alignment (ensuring regulatory compliance). The «
parameter in Regulatory-Graph PSO directly operationalizes
this trade-off:



Table 2: Adversarial Detection Performance (mean + s.d., n=90 seeds per type). Each adversarial type tested with two detection

methods: Z-score and Isolation Forest.

Adversarial Type Method Precision Recall AUC
Static Gaming Z-score 0.011+0.105  0.001+0.007  0.500+0.004
Isolation Forest  0.011+0.105  0.001+£0.007  0.500+0.004
Manipulation Z-score 0.356+0.479  0.188+0.272  0.594+0.136
Isolation Forest  1.000+0.000  1.000+0.000  1.000+0.000
Oscillation Z-score 0.333+0.471  0.203£0.296  0.602+0.148
Isolation Forest  1.000+0.000  1.000+0.000  1.000+0.000

Table 3: Mean Fitness Across Scales (mean * s.d., n=30
evaluation seeds)

Method Small Medium Large
PSO 1.000 1.000 1.000
NSGA-II  0.981 1.000 0.990
GA 0.989 0.991 0.990
Consensus  0.496 0.493 0.498

Table 4: Performance Under Friction (A=0.1, 0=0.04; mean
+ s.d., n=30 seeds)

Method Fitness Gini Convergence
PSO 0.973+0.002  0.006+0.001 3.5+1.6
HD-PSO 0.969+0.002 0.00640.001 3.240.7
NSGA-II  0.9494+0.004 0.010£0.001 21.7+£3.4
GA 0.9404+0.005 0.019£0.009 13.143.1

* Pure Autonomy (a=0): Departments optimize indepen-
dently, maximizing local fitness but risking fragmenta-
tion and ethical inconsistency across the institution.

* Balanced Governance (o € [0.30,0.35]): Departments
retain substantial autonomy while coordinating toward
shared ethical standards, the “sweet spot” for policy-
compliant autonomous agents.

e Full Alignment («=0.6): Strong regulatory coupling
yields greater uniformity while maintaining perfor-
mance, but reduces local adaptive flexibility.

This trade-off mirrors real-world governance debates:
How much should individual schools/departments deviate
from institutional policy? Our empirical Pareto frontier
quantifies this balance:

* « = 0: Pure local (fitness=0.9945+0.0004,
Gini=0.0025+0.0063)
* « = 0.35: Balanced (fitness=0.994640.0002,

Gini=0.0010+0.0002)

e o« = 0.6 Harmonized (fitness=0.9946+0.0002,
Gini=0.000940.0001)

Decision-level fairness metrics confirm low dis-
parity  across departments: ADP~0.0840.02 and
AEO~0.05£0.01 under linear fitness, indicating mini-
mal demographic parity and equalized odds violations.

Convergence Comparison: PSO vs NSGA-II (Synthetic L-scale, 30 seeds)
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Figure 2: Convergence trajectories from 30 experiments (L-
scale, seeds 100-129). PSO converges rapidly ( 3 iterations
to 0.999+; median 3, mean 3.0); NSGA-II slower ( 51 iter-
ations) with variable final fitness (0.990). Means across 30
runs; error bands show 95% bootstrap CIs (B=1000).

Policy Implications
EU AI Act Alignment

Our compliance dimensions (fairness, privacy, explain-
ability, security, accountability) map directly to EU Al
Act requirements including risk management, data gover-
nance, transparency, cybersecurity, and post-market moni-
toring (see Appendix B for complete mapping). Institution-
specific Data Protection Impact Assessments (DPIA) and
post-market monitoring remain necessary per Articles 9 and
72.

Operational Guidelines
For institutional compliance teams:

1. Stability vs Responsiveness: Set A ~ 0.1 to prevent pol-
icy thrashing while maintaining adaptability

2. Equity vs Performance: Use o = (.35 for balanced out-
comes; adjust based on institutional priorities

3. Anomaly Monitoring: Use ensemble methods (Isola-
tion Forest + Z-score) with institution-calibrated thresh-
olds; avoid relying on MAD-based methods alone as they
failed to detect static gaming in our experiments



Pareto Frontier: Performance vs Fairness (Synthetic Hierarchies, n=30 seeds)
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Figure 3: Fairness-fitness Pareto frontier from 390 RG-PSO
runs (13 « values x 30 evaluation seeds; L-scale). Each
point: mean+SE over 30 seeds (72 simulated departments).
a=0.00 (pure local), a=0.35 (optimal balance, marked),
a=0.60 (full harmonization). Optimal band « € [0.30, 0.35]
yields fitness 0.9946+0.0002 with Gini 0.0010£0.0002.

Dashboard Implementation

Key performance indicators for continuous monitoring in-
clude mean compliance (>0.95 target), Gini coefficient
(<0.01), drift velocity (<0.05/iter), and outlier count
(<2%). See Appendix C for complete KPI table with
alert thresholds. Values are institution-calibrated simulation
defaults; production deployments should adjust based on
domain-specific risk tolerance and regulatory requirements.

Scalability to Real-World Governance

With 72 departments (L-scale), PSO converges in <10 sec-
onds on commodity hardware (2.6 GHz CPU, 16 GB RAM),
enabling daily compliance updates. The three-tier structure
generalizes to four or five-tier governance (e.g., departments
— schools — universities — national regulators). Multi-
jurisdictional institutions can use region-specific a values
(e.g., apy=0.45 for GDPR, ap5=0.25 for state flexibility).
Pilot deployment requires calibrating A\, o and running par-
allel to existing audits for validation.

Conclusion and Discussion

We presented a comprehensive framework for governing
policy-compliant autonomous Al agents in multi-agent in-
stitutional settings, addressing the fundamental challenge of
enabling autonomous agents to pursue local objectives while
maintaining institutional ethics alignment.

Key Contributions: (1) A fair-baseline evaluation pro-
tocol ensuring reproducibility through seed partitioning
(100-129 for evaluation, 0-29 for hyperparameter sweeps),
fixed iterations per scale, and statistical rigor (Holm-
Bonferroni correction, bootstrap CIs with B=1000). (2)
Regulatory-Graph PSO operationalizing bounded auton-
omy, agents adapt locally while respecting global ethi-
cal boundaries through hierarchical coordination. (3) The
«a parameter providing a concrete policy lever for bal-
ancing autonomy-alignment; our empirical Pareto frontier

from 390 experiments reveals o € [0.30,0.35] as opti-
mal (fitness=0.9946+0.0002, Gini=0.001040.0002), quan-
tifying that institutions should allow 60-70% local auton-
omy. (4) Computational efficiency enabling daily updates
(<10s for 72 departments on 2.6 GHz CPU, 16 GB RAM);
hierarchical extensibility supporting 4-5 tier governance; EU
Al Act mapping demonstrating regulatory alignment.

The framework provides actionable policy levers
grounded in verified experimental data: A € [0.05,0.3]
for stability control, o for autonomy-alignment trade-offs,
ensemble detection methods for gaming (Isolation Forest
+ Z-score), and dashboard KPIs for continuous moni-
toring. Our fair-baseline protocol ensures reproducible
evaluation across 2,797 experiments (1,089 CSV files),
reducing cherry-picking common in Al governance re-
search. Demonstrated robustness under friction (A=0.1,
0=0.04: fitness=0.973) and adversarial conditions (Isolation
Forest AUC~1.00 on synthetic manipulation/oscillation;
static gaming remains hard AUC~0.50) suggests practical
resilience against detectable threats in controlled settings,
while highlighting fundamental challenges in detecting
sophisticated gaming strategies.

Theoretical Insights: The «-sweep reveals a funda-
mental governance principle: effective multi-agent systems
require coordinated autonomy, neither full independence
(a=0, risks fragmentation) nor full centralization («=0.6,
sacrifices performance). The optimal band balances these
tensions, achieving 99.46% of maximum fitness while main-
taining near-perfect equity. This mirrors real institutional
governance debates about departmental autonomy within
university policies.

Practical Deployment: Scalability analysis shows the
framework transitions smoothly from proof-of-concept (16
departments) to institutional scale (72+ departments) with
linear computational growth. Multi-jurisdictional coordina-
tion enables institutions to use region-specific « values (e.g.,
apy=0.45 for tight GDPR harmonization, aps=0.25 for
state-level flexibility). Integration requires only: (1) compli-
ance scoring functions, (2) organizational hierarchy data, (3)
regulatory weight vectors, all typically available in existing
systems.

Limitations and Future Work: High fitness results (PSO
1.000; NSGA-II 0.981-1.000) arise from synthetic convex
objectives designed for algorithmic comparison. Real in-
stitutional compliance surfaces will exhibit non-convexities
from conflicting objectives (privacy vs. transparency), local
optima from organizational constraints, and measurement
noise exceeding our 0=0.04 calibration. External valid-
ity depends critically on measurement design and domain-
specific validation. We use simulated hierarchies with syn-
thetic compliance scores; validation on real institutional
data (with IRB approval and privacy protections) is essen-
tial before deployment. Future work should address: (1)
dynamic regulatory graphs modeling organizational evolu-
tion, (2) adaptive adversaries that learn from detection, (3)
continuous-time governance using differential equations for
real-time monitoring, (4) human-Al collaboration frame-
works with veto power and explainability. This work uses
only synthetic data with no human subjects; institutions



adopting such systems must maintain human oversight, reg-
ular audits, and accountability mechanisms as required by
applicable regulations.
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Appendix
A. Experimental Configuration

All methods operate on the same hierarchical structure and
run for identical iterations per scale, ensuring fair compari-
son.

B. EU AI Act Mapping
Dimension EU AI Act Duty
Fairness Risk mgmt & bias monitoring
(Mehrabi et al. 2021; Binns 2018)
Privacy Data governance & DPIA
Explainability =~ Transparency & human oversight

(Wachter, Mittelstadt, and Russell
2018)

Cybersecurity & robustness

Quality mgmt & post-market monitor-
ing

Security
Accountability

Note: This mapping is illustrative; institution-specific Data
Protection Impact Assessments (DPIA) and post-market
monitoring remain necessary per Articles 9 and 72.

C. Dashboard KPIs
Metric Target Alert
Mean Compliance >0.95 <0.90
Gini Coefficient <0.01 >0.02
Drift Velocity <0.05/ter >0.10/iter
Outlier Count <2% >5%

Scale Departments Iterations Structure (CxUxD)
S (Small) 16 120 2x2x4
M (Medium) 36 150 3x2x6
L (Large) 72 180 4x3x6




