
Parallelizing Model-based Reinforcement Learning
Over the Sequence Length

ZiRui Wang
Zhejiang University, China
ziseoiwong@zju.edu.cn

Yue Deng
Zhejiang University, China
devindeng@zju.edu.cn

Junfeng Long
Shanghai AI Laboratory, China

junfeng@gmail.com

Yin Zhang∗

Zhejiang University, China
zhangyin98@zju.edu.cn

Abstract

Recently, Model-based Reinforcement Learning (MBRL) methods have demon-
strated stunning sample efficiency in various RL domains. However, achieving this
extraordinary sample efficiency comes with additional training costs in terms of
computations, memory, and training time. To address these challenges, we propose
the Parallelized Model-based Reinforcement Learning (PaMoRL) framework.
PaMoRL introduces two novel techniques: the Parallel World Model (PWM) and
the Parallelized Eligibility Trace Estimation (PETE) to parallelize both model
learning and policy learning stages of current MBRL methods over the sequence
length. Our PaMoRL framework is hardware-efficient and stable, and it can be
applied to various tasks with discrete or continuous action spaces using a single
set of hyperparameters. The empirical results demonstrate that the PWM and
PETE within PaMoRL significantly increase training speed without sacrificing
inference efficiency. In terms of sample efficiency, PaMoRL maintains an MBRL-
level sample efficiency that outperforms other no-look-ahead MBRL methods and
model-free RL methods, and it even exceeds the performance of planning-based
MBRL methods and methods with larger networks in certain tasks.

1 Introduction

Model-based Reinforcement Learning (MBRL) is widely believed to have the great potential to
substantially enhance sample efficiency by training a policy through a learned world model [1, 2, 3].
Previous studies [4, 5, 3, 6] achieve the same asymptotic performance as their model-free counterparts
while requiring orders of magnitude less interactions. In particular, some recent works have even
achieved human-level efficiency in complex RL domains like Atari [7, 8, 9] and robot control [10, 11].

MBRL methods can be generally divided into two stages: model learning and policy learning. During
the model learning stage, a parameterized world model is required to predict the environmental
dynamics by constructing specific self-supervised learning tasks. The policy learning stage benefits
from synthetic interactions between the policy and the world model, hence on-policy actor-critic
methods or planning methods such as Model Predictive Path Integral (MPPI) [12, 13] or Monte-Carlo
Tree Search (MCTS) [7, 9] can be used for policy improvement. To obtain better performance,
techniques like sequential modeling and ensembling are frequently used in the model learning stage,
while the policy learning stage mostly involves the computation of eligibility traces or multi-step
returns [2, 14]. However, these powerful techniques often come with additional computations,

∗Corresponding author: Yin Zhang.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: Comparisons on Atari 100k benchmark [16] and DeepMind Control Suite [24]. Among
these methods, DreamerV3 [17], and our PaMoRL are directly evaluated on an NVIDIA V100 GPU,
and IRIS [20], TWM [21], and REM [25] are evaluated on an A100 GPU, while other methods
are evaluated on a P100 GPU. The extrapolation method employed aligns with the setup used in
DreamerV3, where it assumes the P100 is twice as slow and the A100 is twice as fast.

memories, and training time. This leads users to carefully consider which specific MBRL method to
use or even whether to use an MBRL method based on the computational resources available.

In recent years, numerous endeavors have been made to develop an efficient world model architecture.
Recurrent Neural Networks (RNNs) are frequently employed as the foundational architecture for
world models [15, 16, 3, 6, 17]. However, the recurrent nature of RNNs hinders parallelization,
leading to slow training speeds. In contrast, transformers have emerged as a potential successor,
garnering acclaim for their remarkable performance in language modeling tasks and parallelized
training paradigm [18]. Several attempts have been made to incorporate transformers into world
models [19, 20, 21, 22]. However, the quadratic complexity of transformers w.r.t. sequence length
limits their efficiency during training and inference. To achieve an RNN-level inference efficiency,
extra tricks such as half-precision training or KV-Cache are required[23]. Furthermore, none of the
aforementioned works have introduced improvements in the hardware efficiency of policy learning.

In this paper, we aim to mitigate the curse of computational inefficiency of current MBRL methods
and achieve the best of both worlds in terms of hardware efficiency and sample efficiency. The key
idea is to fully parallelize the computations of sequential data, which has been a main workhorse of the
rapid progress in deep learning over the past decade [26]. We achieve this by introducing the parallel
scan. Specifically, We delve into two classic and widely implemented parallel scanners [27, 28],
which can be applied for parallel training by excluding non-linear dependencies [29, 30]. Motivated
by recent works in efficient sequential modeling [31, 32, 33], we observe that model architectures like
linear attentions and linear RNNs not only enable parallel training but also recurrent inference. We
also observe that the computations of eligibility trace estimation [2, 14] can be naturally parallelized
over the sequence length by using parallel scan.

To this end, we introduce the Parallelized Model-based Reinforcement Learning (PaMoRL) frame-
work, which consists of two novel techniques as shown in Figure 2 that can parallelize the current
MBRL paradigm over sequence length: (1) the Parallel World Model (PWM) and (2) the Parallelized
Eligibility Trace Estimation (PETE). The resulting framework, PaMoRL, is hardware-efficient and
stable. It is compatible with various on-policy RL methods and can be applied to both discrete and
continuous control problems using a single set of hyperparameters.

We evaluated our PaMoRL framework in the Atari 100K benchmark [16] and the DeepMind Con-
trol suite [24]. Tasks in these domains include discrete and continuous action spaces, images, and
proprioception observations. We choose to follow the DreamerV3 [17] paradigm, which relies on
"imagination" for policy learning. The summarized experimental results are shown in Figure 1.
The empirical results demonstrate that PaMoRL, despite being a framework that incorporates au-
toencoding, still benefits greatly from the implementation of dual parallelization techniques (i.e.,
PWM and PETE). These techniques substantially enhance training speed, allowing PaMoRL to rival
the performance of model-free RL methods without decoders [34]. In terms of sample efficiency,
PaMoRL outperforms other no-look-ahead MBRL methods and model-free RL methods. It is worth
mentioning that PaMoRL even outperforms the planning-based MBRL methods or methods with
much larger networks in certain tasks [8].

2

Our contributions can be summarized as follows:

• We introduce PaMoRL, a novel MBRL framework equipped with PWM and PETE that parallelizes
both model and policy learning stages over the sequence length simultaneously.

• We evaluate our PaMoRL on the Atari 100k benchmark and DMControl suite with recent methods
and obtain excellent results in terms of both sample and hardware efficiency. In addition, we conduct
ablation studies on the validity of different modules, scanners, and other components.

• To the best of our knowledge, we are the first to point out that the computational process of
eligibility traces can be parallelized over the sequence length. This technique can not only accelerate
the value estimation process of various MBRL methods but any return-based reinforcement learning
methods such as TD-λ [2], Retrace [35] and GAE [36] can benefit from it.

2 Background

Model-based Reinforcement Learning. We follow the paradigm of Partially Observable Markov
Decision Process (POMDP) with observations ot, scalar rewards rt, actions at, continuation flag
ct ∈ {0, 1}, discount factor γ ∈ (0, 1), and environmental dynamics ot, rt, ct ∼ p(ot, rt, ct|o<t, a<t).
The objective of the Reinforcement Learning (RL) is to train a policy π that maximizes the return∑∞

t=1 γ
t−1rt. In Model-based Reinforcement Learning (MBRL), the RL agent learns a model of

the environmental dynamics through an iterative process that involves collecting data using a policy,
training a model of the environment based on the accumulated data, and optimizing the policy using
the learned model [1, 2, 14].

Parallel Scan. As a universal parallel algorithm building block, the computations of parallel scan
involve repeated application of a binary operator ⊕ over sequential data arrays. Previous work[37]
describes scan as a good example of a computation that seems inherently sequential, but for which
there is an efficient parallel algorithm. The scan of ⊕ with initial value a0 is defined in Equation 1.

SCAN(⊕, [a1, a2, ..., an], a0) := [(a1 ⊕ a0), (a2 ⊕ a1 ⊕ a0), ..., (an ⊕ an−1...⊕ a1 ⊕ a0)] (1)

First-order linear recurrences ht := (At ⊗ ht−1)⊕ xt can be parallelized over the sequence length
with the utilization of parallel scans if the following three conditions are met:

• ⊕ is associative: (a⊕ b)⊕ c = a⊕ (b⊕ c).

• ⊗ is semi-associative: there exists a binary associative operator ⊙ such that a⊗(b⊗c) = (a⊙b)⊗c.
• ⊗ distributes over ⊕: a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

We observe vector addition a ⊕ b := a + b, matrix-vector multiplication A ⊗ b := A · b, and
matrix-matrix multiplication A ⊙ B := A · B fulfill the aforementioned conditions. This allows
the parallel computation of xt := (At · xt−1) + bt across time steps t, considering input vectors
bt and square matrices At. Considering the operators required in computing linear attentions [31]
and eligibility trace estimations [2, 14] involve only diagonal matrices, the linear recurrence can be
re-formulated as xt := λt ⊙ xt−1 + bt, where λt is the eigenvalues of the diagonal matrices and ⊙ is
an element-wise multiplication.

3 Methodology

We introduce our Parallelized Model-based Reinforcement Learning (PaMoRL) framework, which
facilitates dual parallelization across both model and policy learning stages. By parallelized training
and recurrent inference, PaMoRL significantly improves training speed while avoiding additional
computation overhead during inference. Figure 2 illustrates the overview of our PaMoRL framework,
and we will now proceed to elaborate on its details.

3.1 Parallelized World Model Learning.

World Model Architecture Overview. As with other MBRL methods, our world model is trained
to predict environmental dynamics. Since observations can be high-dimensional (e.g., images), we

3

Deterministic Nodes Stochastic Nodes ConcatenationC

World Model Learning
(Parallel)

𝑧!"#

𝑎!"#

𝑥!"#

ℎ!"#

�̂�!"# �̂�!"#

𝑜!"# "𝑜!"#

C

Enc Dec

�̂�!

𝑥$

𝑧!

𝑎!

𝑥!

ℎ!

�̂�! �̂�!

𝑜! "𝑜!

C

Enc Dec

�̂�!%#

…

𝑧&

𝑎&

𝑥&

ℎ&

�̂�& �̂�&

𝑜& "𝑜&

C

Enc Dec

�̂�&%#

Parallel
Scan

Imagination
(Recurrent)

𝑧!

𝑎!

𝑥!

ℎ!

�̂�! �̂�!

𝑜!

C

Enc

�̂�!%#

𝑎!%#

𝑥!%#

ℎ!%#

�̂�!%# �̂�!%#

C

�̂�'

𝑎'

𝑥'

ℎ'

�̂�' �̂�'

C

…

…

Eligibility Trace Estimation
(Parallel)

ℎ!

�̂�!%#

C

ℎ!%#

𝑅(!

𝑅(!%#

�̂�!%#

�̂�!%#

)𝑣!%)

+𝛿!%#

𝜆!%#

…
…

�̂�!

�̂�!

)𝑣!%#

+𝛿!

𝜆!

Parallel
Scan

�̂�!%)

C

…
…

𝑒!
	
𝑒"

…

𝑒!
	
𝑒"

…

𝑒!
	
𝑒"

…

𝑒!
	
𝑒"

…
𝑒!
	
𝑒"

…

𝑒!
	
𝑒"

…

𝑒!
	
𝑒"

…

Figure 2: Overview of our PaMoRL framework. The symbols used in the figure are explained in
Sections 3.1 and Section 3.2. The computations of the sequential model’s outputs and the TD-λ
returns allow using parallel scans. In contrast, the imaginations cannot be parallelized over the
sequence length because a non-linear actor network is required for action sampling.

predict future representations rather than future observations. This reduces accumulating errors and
enables massively parallel training with a large batch size. The compact representations are obtained
by an autoencoder and can be utilized to predict future observations, reward, and continuation flags.

To exclude non-linear dependencies for parallel training and obtain better performance, we make
several modifications to the vanilla Recurrent State-Space Model’s (RSSM) [3, 6, 17] configurations:
(1) differentiating the hidden states xt from the sequential model’s outputs ht, (2) excluding ht from
the inputs of the encoder and decoder, (3) eliminating the stochastic states zt from the predictors’
inputs, and (4) applying Batch Normalization for the encoder and dynamic predictor’s outputs before
the distributions are computed. Similar to RSSM, our model consists of six components:

Encoder: zt ∼ qθ(zt|ot) Decoder: ôt ∼ pθ(ôt|zt)
Sequence model: ht, xt = fθ(xt−1, zt−1, at−1) Dynamics predictor: ẑt ∼ pθ(ẑt|ht)
Reward predictor: r̂t ∼ pθ(r̂t|ht) Continue predictor: ĉt ∼ pθ(ĉt|ht)

(2)

The encoder and decoder use convolutional neural networks (CNN) for image inputs and multi-layer
perceptrons (MLPs) for proprioception inputs. The sequence model has multiple stacked residual
blocks, each of which consists of a modified linear attention [31] module and a Gated Linear Unit
(GLU) [38] module. The dynamics, reward, and continue predictors are all MLPs. Consistent with
previous work [6, 17], we set the qθ(zt|ot) as a stochastic distribution comprising 32 categories, each
with 32 classes, and we take straight-through gradients through the sampling step [39].

Sequence Model Architectures. As mentioned above, each residual block of our sequence model
consists of a modified linear attention module and a GLU module. The vanilla linear attention module,
as introduced in previous work [31], employs 1 + ELU as an element-wise kernel function applied
to queries qt and keys kt taking ut as input. This configuration allows for its reformulation into an
RNN-style recurrent form. However, this version of linear attention is prone to unstable convergence
during training due to the unbounded gradients [40]. Thus, we remove the time-dependent normalizer,
which is designed to approximate the Softmax operator and use an RMSNorm [41] for stabilize
training. Furthermore, we incorporate the token mixing module from RWKV [32], which accepts
inputs ut and previous inputs ut−1, along with the gating mechanism in Gated Recurrent Unit
(GRU) [42] to provide an input-dependent decay rate gt for hidden state xt. The subsequent GLU
module selects SiLU as the gating function, taking linear attention output yt as input. By integrating
all the modifications, we can derive the entire block of the sequence model as shown in Equation 3.

4

qt, kt = 1 + ELU(utWq), 1 + ELU(utWk),

vt = Sigmoid(utWr)⊙ utWv,

gt = Sigmoid((µ⊙ ut + (1− µ)⊙ ut−1)Wg),

xt = gt ⊙ xt−1 + k⊤t vt,

yt = RMSNorm(qtxt)Wh + ut,

ht = SiLU(ytWg)⊙ ytWy + yt.

(3)

The architecture of our modified linear attention satisfies the conditions in Section 2 and can be
effectively computed using parallel scans. We can refer to Table 1 to summarize the computational
complexities of various model architectures such as vanilla attention, RNN, SSM, and our modified
linear attention in the training, inference, and imagination stages.

Loss Functions. The total loss function of model learning is shown as in Equation 4, where βpred,
βrep, and βdyn are coefficients to adjust the influence of each term in the loss function [43, 17].

L(θ) =Eqθ [
T∑
t=1

βpredLpred(θ, ht, ot, rt, ct, zt) + βrepLrep(θ, ht, ot) + βdynLdyn(θ, ht, ot)]

Lpred(θ) =− ln pθ(rt|ht)− ln pθ(ct|ht) + ||ôt − ot||2
Lrep(θ) =max(1,KL[qθ(zt|ot) || sg(pθ(ẑt|ht))])
Ldyn(θ) =max(1,KL[sg(qθ(zt|ot)) || pθ(ẑt|ht)])

(4)

The operation sg(·) represents the stop gradient operation. The KL divergences are derived from the
Evidence Lower Bound (ELBO). We clip the KL divergence when it falls below the threshold of
1 [6, 17] and use the KL-balancing trick to prioritize the training losses [17].

3.2 Policy Learning

The policy learning stage incorporates the actor and critic networks, both of which are MLPs, taking
concatenation of zt and ht as input state st.

Actor: at ∼ πϕ(at|st), Critic: vψ(st). (5)

Our policy learning method is in line with DreamerV3 [17] and can be used for both discrete and
continuous action spaces. The critic uses TD-λ [2] as the its target, as shown in Equation 6, where r̂t
represents the reward predicted by the world model, and ĉt represents the predicted continuation flag.

Rλt = r̂t + γĉt((1− λ)vϕ(st+1) + λRλt+1), RλT = vT (6)

The actor utilizes the Reinforce estimator [44] to compute the actor loss with a fixed entropy
regularization term. The complete loss is described by Equation 7.

L(ϕ) = −
T∑
t=1

sg(
Rλt − vψ(st)

max(1, S)
), logπϕ(at|st)− ηH(πϕ(at|st))

L(ψ) = −
T∑
t=1

(vψ(st)− sg(Rλt))
2.

(7)

The hyper-parameter η represents the coefficient of the entropy regularization term. The normalization
ratio S utilized in the actor loss is defined in Equation 8, which is computed as the range between the
95th and 5th percentiles of the TD-λ returns Rλt across the batch.

S = percentile(Rλt , 95)− percentile(Rλt , 5) (8)

5

Table 1: The step complexities [28] of different architectures, where L is the sequence length and H
is the imagination horizon. Attention considers the full context with a burn-in and imagined steps
of O(L+H), leading to a complexity of O((L+H)2). It is worth noting that the SSMs in recent
works [46, 47] do not incorporate any gating mechanism or selectivities. Thus, despite SSMs and
linear attentions both achieving the minimum complexity, linear attentions remain more expressive.

Architecture Training Inference step Imagination step Parallel Resettable Selective

Atten O(L2) O(L2) O((L+H)2) ! ! !

RNN O(L) O(1) O(1) # ! !

SSM (FFT) O(L logL) O(1) O(1) ! # #

SSM (Scan) O(L) O(1) O(1) ! ! #

Lin-Atten (Scan) O(L) O(1) O(1) ! ! !

By rearranging Equation 6, we can see that the calculations of both TD-λ and Retrace returns also
also meet the conditions mentioned in Section 2. Therefore, they can be efficiently computed using
parallel scan. This observation also applies to other eligibility trace estimation methods such as
GAE [36] and Retrace [35], as they still satisfy the aforementioned conditions.

3.3 Parallel Scan Algorithms

In both the model learning stage and the policy learning stage, we use two different parallel scanners:
the Kogge-stone scanner [45] and the Odd-even scanner [28].

The Kogge-stone scanner [45] is commonly used in hardware design for adders. It has a computational
complexity of O(Llog2L) for sequence length L and a step complexity of O(log2L) after full
parallelization. This indicates that it has higher computational redundancy, lower running time, and
sufficient computational resources, making it suitable for parallel computation in a small batch.

The Odd-even scanner [28] is based on the concept of binary balanced trees. It has a computational
complexity of O(2L) for a sequence length L and a step complexity of O(2log2L) after being fully
parallelized. Despite theoretically taking more steps than the Kogge-stone scanner, it offers lower
computational complexity and more uniform load sharing, making it better suited for large-scale
parallel computation. Further details and illustrations are in Appendix B.

4 Experiments

In this section, we aim to evaluate both the sample and training efficiency of our PaMoRL framework
on the Atari 100K benchmark [16] and the DMControl suite [24]. The tasks include various scenarios
with image and proprioception observations and discrete and continuous action spaces.

4.1 Experimental Setup

Atari 100K. Atari 100K consists of 26 video games with discrete action dimensions of up to
18. The 100K samples are equated to 400K actual game frames, corresponding to approximately 2
hours of real-time gameplay, with action repeats of 4. The human normalized score is defined as
(scoreagent − scorerandom)/(scorehuman − scorerandom), where scorerandom comes from a random policy,
and scorehuman is obtained from human players [48].

DeepMind Control Suite. DeepMind Control Suite consists of various control tasks with continu-
ous action spaces. Referring to the categorizations in Sample MuZero [49] and EfficientZero V2 [9],
tasks are divided into easy and hard categories. We followed the experimental setup of EfficientZero
V2 [9] and established two benchmarks, named Proprio Control and Visual Control.

Among them, Proprio Control uses proprioception observations with 50K training samples for easy
tasks and 100K for hard tasks, and Visual Control uses image observations with 100K training
samples for easy tasks and 200K for hard tasks. Each benchmark includes 16 tasks. Action repeats
are set to 2, and the maximum episode length is 1000 for both benchmarks, in line with previous

6

Table 2: Experimental results on the 26 games of Atari 100k after 2 hours of real-time experience
and human-normalized aggregate metrics. Bold and underlined numbers indicate the highest and the
second-highest scores, respectively. PaMoRL outperforms other methods regarding the number of
superhuman games, mean, and median.

Game Random Human SPR SR-SPR SimPLe IRIS TWM STORM DreamerV3 PaMoRL (Ours)

Alien 227.8 7127.7 801.5 1015.5 616.9 420 674.6 984 959 1270.6
Amidar 5.8 1719.5 176.3 203.1 88 143 121.8 205 139 264.4
Assault 222.4 742 571 1069.5 527.2 1524.4 682.6 801 706 883.8
Asterix 210 8503.3 977.8 916.5 1128.3 853.6 1116.6 1028 932 2957.3

BankHeist 14.2 753.1 380.9 472.3 34.2 53.1 466.7 641 649 255.9
BattleZone 2360 37187.5 16651 19398.4 5184.4 13074 5068 13540 12250 23120

Boxing 0.1 12.1 35.8 46.7 9.1 70.1 77.5 80 78 87.9
Breakout 1.7 30.5 17.1 28.8 16.4 83.7 20 16 31 15.8

ChopperCommand 811 7387.8 974.8 2201 1246.4 1565 1697.4 1888 420 2110.7
CrazyClimber 10780.5 35829.4 42923.6 43122.3 62583.6 59324.2 71820.4 66776 97190 84102
DemonAttack 152.1 1971 545.2 2898.1 208.1 2034.4 350.2 165 303 208.2

Freeway 0 29.6 24.4 24.9 20.3 31.1 24.3 0 0 33.8
Frostbite 65.2 4334.7 1821.5 1752.8 254.7 259.1 1475.6 1316 909 3711.4
Gopher 257.6 2412.5 715.2 711.2 771 2236.1 1674.8 8240 3730 5085.2
Hero 1027 30826.4 7019.2 7679.6 2656.6 7037.4 7254 11044 11161 12076.2

Jamebond 29 302.8 365.4 392.8 125.3 462.7 362.4 509 445 405
Kangaroo 52 3035 3276.4 3254.9 323.1 838.2 1240 4208 4098 2554.7

Krull 1598 2665.5 3688.9 5824.8 4539.9 6616.4 6349.2 8413 7782 7273.2
KungFuMaster 258.5 22736.3 13192.7 17095.6 17257.2 21759.8 24554.6 26182 21420 24624.7

MsPacman 307.3 6951.6 1313.2 1522.6 1480 999.1 1588.4 2673 1327 2201.7
Pong -20.7 14.6 -5.9 -3 12.8 14.6 18.8 11 18 15.5

PrivateEye 24.9 69571.3 124 95.8 58.3 100 86.6 7781 882 4968.6
Qbert 163.9 13455 669.1 3850.6 1288.8 745.7 3330.8 4522 3405 4730.3

Roadrunner 11.5 7845 14220.5 13623.5 5640.6 9614.6 9109 17564 15565 24726.7
Seaquest 68.4 42054.7 583.1 800.5 683.3 661.3 774.4 525 618 595.2

UpNDwon 533.4 11693.2 28138.5 95501.1 3350.3 3546.2 15981.7 7985 7667 11935.8

Games >Human 0 26 7 9 2 9 8 9 9 11
Median 0% 100% 41.53% 56.07% 14% 29% 51% 42.63% 49% 71.75%
Mean 0% 100% 70.34% 118.84% 44% 105% 96% 122.30% 112% 126.64%

Table 3: Experimental results on the DeepMind Control suite. Bold and underlined numbers indicate
the highest and the second-highest scores, respectively. PaMoRL outperforms other baselines in
terms of the number of mean and median scores.

Task Proprio Control Vision Control

SAC DreamerV3 PaMoRL (Ours) CURL DrQ-v2 DreamerV3 PaMoRL (Ours)

Cartpole Balance 997.6 839.6 994.7 963.3 965.5 956.4 610.3
Cartpole Balance Sparse 993.1 559 997.4 999.4 1000 813 996.5

Cartpole Swingup 861.6 527.7 773.6 765.4 756 374.8 281.9
Cup Catch 949.9 729.6 957.9 932.3 468 947.7 966.3
Finger Spin 900 765.8 835.8 850.2 459.4 633.2 765.3

Pendulum Swingup 158.9 830.4 707.1 144.1 233.3 619.3 26.6
Reacher Easy 744 693.4 761.6 467.9 722.1 441.4 950.2
Reacher Hard 646.5 768 645.9 112.7 202.9 120.4 103.7

Cartpole Swingup Sparse 256.6 172.7 542.3 8.8 81.2 392.4 263.6
Cheetah Run 680.9 400.8 313.2 405.1 418.4 587.3 935.6

Finger Turn Easy 630.8 560.5 617.1 371.5 286.8 366.6 886.2
Finger Turn Hard 414 474.2 389.7 236.3 268.4 258.5 500.1

Hopper Hop 0.1 9.7 387.5 84.5 26.3 76.3 426.9
Hopper Stand 3.8 296.1 151.5 627.7 290.2 652.5 189.7

Quadruped Run 139.7 289 246.7 170.9 339.4 168 344.8
Quadruped Walk 237.5 256.2 457.9 131.8 311.6 122.6 371.6

Mean 538.4 510.8 611.2 454.5 426.8 470.7 538.7
Median 638.7 543.4 631.5 388.3 325.5 416.9 463.5

studies [17, 13, 9]. We choose various baselines for each domain, which include SAC [50], DrQ-
v2 [51], and DreamerV3 [17].

4.2 Experimental Results

In this section, we do not compare our results with look-ahead search methods [52, 7, 12, 13] or
methods using larger networks [8], as our main goal in terms of sample efficiency is to improve
performance while maximizing the hardware efficiency of existing MBRL methods.

7

Figure 3: Ablation studies of the effectiveness of each module of PWM, where SSM is equivalent to
removing the data-dependent decay rate of PWM. We also include vanilla DreamerV3 as a baseline.

Atari 100K. The summarized results are shown in Figure 4. The full results for individual games
in the Atari 100k benchmark are elaborated in Table 2, where scores are normalized against those of
human players. Our PaMoRL framework attains a mean score of 126.64% and a median score of
71.75%, surpassing the other methods in terms of both mean and median human normalized score.
For detailed training curves, please refer to Appendix C. Additionally, you can find more results and
further discussions, including methods with look-ahead search or larger networks, in Appendix I.

DeepMind Control Suite. Table 3 shows that our method achieves a mean score of 661.2 across
16 tasks. As shown in Table 3, our method achieves a mean score of 661.2 using proprioception
observations and 538.7 using image observations across 16 tasks, surpassing the previous state-of-
the-art, DreamerV3. The improvement in sample efficiency is attributed to two key modules: the
token mixing module in the PWM, where the extra previous input provides more information to
the data-dependent decay rate, and the implementation of RMSNorm, which improves the stability
of the learning of the linear attention module, especially in the case of limited data. Our PaMoRL
framework consistently demonstrates MBRL-level sample efficiency in tasks with proprioception
observations, image observations, and discrete and continuous action spaces. Detailed training curves
can be found in Figure 9 and Figure 10 in Appendix D.

4.3 Ablation Study

In this section, we will be conducting ablation studies to evaluate the effectiveness of PWM and
PETE in terms of stabilizing training and improving hardware efficiency. For more details, including
PyTorch-style pseudo-code, please refer to Appendix G.

World Model Design. The results presented in Figure 3 demonstrate the impact of adding or
removing the token mixing, RMSNorm, and data-dependent decay rate in various games in the Atari
100K benchmark. To showcase the benefits of token mixing in sequence prediction, we focused
on tasks such as Alien, Boxing, and MsPacman. Additionally, we measured the improvement of
RMSNorm on training stability by considering tasks like Amidar, UpNDown, and Qbert.

The findings in Figure 3 indicate that, while the token mixing module has minimal impact on the
final performance for tasks where the reward can be accurately predicted from a single frame (e.g.,
Boxing), it leads to a performance drop on tasks that require several contextual frames to predict
the reward accurately (e.g., Alien and Ms. Pacman). Regarding RMSNorm, removing it negatively
affects the final performance and increases the instability of the training process.

8

Figure 4: (Left) Atari 100K aggregated metrics with 95% stratified bootstrap confidence intervals
of the mean, median, and interquartile mean (IQM) human-normalized scores and optimality gap.
(Right) Probabilities of improvement, i.e. how likely it is for our PaMoRL to outperform baselines.

Figure 5: (Upper) Comparison of parallel scanners with sequential rollout in terms of runtime for
sequence modeling and eligibility trace estimation, as well as total GPU memory utilization. (Lower)
Wall-clock time vs. GPU memory usage comparison for our PaMoRL method, SSM, and DreamerV3
across various batch size and sequence length combinations.

There are two possible reasons for this difference. First, the gradient is bounded after the original
normalizer is removed [40]. Adding RMSNorm further enhances training stability, which is especially
important in the setting of limited data and end-to-end training. Second, RMSNorm only rescales the
input and maintains the original center of the samples, which allows the module’s output to maximize
the information’s retention.

Parallel Scanner Selection. Figure 5 shows PWM and PETE’s runtime and GPU memory uti-
lization on a single 3090 GPU using different scanners, respectively. Sequence model computation
achieves 7.2× and 16.6× speedups compared to sequential rollout using the Kogge-stone and Odd-
even scanners, respectively, with a sequence length of 64. In this case, the Kogge-stone scanner
with the theoretically lowest runtime takes more than the Odd-even scanner in practice. This is
because the computation of the sequence model involves the parallelism of both batch and hidden
dimensions, which belongs to massively parallel computation, and the Kogge-stone scanner cannot
realize full parallelism and thus encounters a bottleneck in computational resources. In contrast, the

9

Odd-even scanner is due to less computational redundancy, which allows the computational process
of sequence modeling to achieve full parallelism and thus spends less running time. The PETE uses
the Kogge-stone scanner and Odd-even scanner to achieve 3× and 2× speedups, respectively, with a
sequence length of 16. Since the eligibility trace has a dimension of only 1, the Kogge-stone scanner
can take full advantage of it. It thus achieves less runtime compared to the Odd-even scanner.

Regarding GPU memory utilization, using the Kogge-stone scanner imposes an additional 6×
overhead compared to the sequential rollout, while the Odd-even scanner imposes an additional
2× overhead compared to the sequential rollout. However, the additional GPU memory overhead
of parallel computation is not significant compared to the GPU memory overhead of encoder and
decoder computation, especially in tasks with image observation.

Therefore, we recommend using the Odd-even scanner for PWM and the Kogge-stone scanner for
PETE to achieve maximal speed with acceptable additional GPU memory utilization.

Batch Normalization Trick. World models are commonly learned using variational autoencoders
to create concise representations of observations. However, they have some drawbacks, such as the
tendency to disregard small moving objects. In Figure 11 in Appendix K, the reconstruction results
are compared with and without using Batch Normalization for the Pong and Breakout games in the
Atari 100K benchmark. It is observed that Batch Normalization improves the ability to distinguish
similar video frames and capture information about small objects by re-centering the samples.

Additionally, Figure 12 demonstrates that PWM benefits from the batch normalization trick, whereas
DreamerV3 does not. This is likely due to PWM’s decoder solely having stochastic states as inputs,
making it challenging for training samples to be distinguished from each other in the early stages of
training, leading to "posterior collapse" [53]. On the other hand, DreamerV3’s decoder mitigates this
problem by incorporating additional deterministic states as conditional inputs.

5 Conclusion & Limitations

In this paper, we introduce the PaMoRL framework, an MBRL method capable of being computed
using the parallel scan in both the model learning and policy learning stages. The key breakthrough of
PaMoRL is the integration of two novel techniques: the Parallelized World Model and Parallelizable
Eligibility Trace Estimation. With these techniques, we simultaneously accelerate the training
process while maintaining MBRL-level sample efficiency. PaMoRL demonstrates excellent hardware
efficiency and training stability in various games or tasks in the Atari 100K benchmark and DeepMind
Control suite without incurring additional overhead during inference. An important contribution of
our work is the introduction of a modified linear attention module in the MBRL method. Furthermore,
we show that eligibility trace estimation computation can be parallelized for the first time.

It’s important to acknowledge the limitations of our work. For instance, planning-based MBRL
methods cannot parallelize computation over the sequence length, which hinders the incorporation of
the most sample-efficient methods within our PaMoRL framework to maximize hardware efficiency.
It would be interesting to explore using hybrid architectures to enhance PaMoRL by leveraging the
strengths of Transformers, RNNs, and SSMs. Additionally, the world model and baselines used for
comparison in PaMoRL are trained end-to-end with joint optimization of the image encoder and
sequence model. While this end-to-end training paradigm enables the world model to predict the
latent representations, it also impacts the scalability of the world model.

Acknowledgments and Disclosure of Funding

This work was supported by the NSFC project (No. 62072399), Zhejiang Provincial Natural Science
Foundation of China under Grant No. LZ23F020009, Chinese Knowledge Center for Engineering
Sciences and Technology, MoE Engineering Research Center of Digital Library, China Research
Centre on Data and Knowledge for Engineering Sciences and Technology, and the Fundamental
Research Funds for the Central Universities (No. 226-2024-00170).

10

References
[1] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM

Sigart Bulletin, 2(4):160–163, 1991.

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Robotica,
17(2):229–235, 1999.

[3] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[4] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural
information processing systems, 31, 2018.

[5] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in neural information processing systems, 32,
2019.

[6] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

[7] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari
games with limited data. Advances in Neural Information Processing Systems, 34:25476–25488,
2021.

[8] Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh
Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level
efficiency. In International Conference on Machine Learning, pages 30365–30380. PMLR,
2023.

[9] Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero v2:
Mastering discrete and continuous control with limited data. arXiv preprint arXiv:2403.00564,
2024.

[10] Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Day-
dreamer: World models for physical robot learning. In Conference on Robot Learning, pages
2226–2240. PMLR, 2023.

[11] Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Structured world models from human
videos. arXiv preprint arXiv:2308.10901, 2023.

[12] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

[13] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for
continuous control. arXiv preprint arXiv:2310.16828, 2023.

[14] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[15] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[16] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-
based reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

[17] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

11

[19] Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint arXiv:2202.09481, 2022.

[20] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world
models. arXiv preprint arXiv:2209.00588, 2022.

[21] Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
models are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

[22] Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
transformer based world models for reinforcement learning. arXiv preprint arXiv:2310.09615,
2023.

[23] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

[24] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[25] Lior Cohen, Kaixin Wang, Bingyi Kang, and Shie Mannor. Improving token-based world
models with parallel observation prediction. arXiv preprint arXiv:2402.05643, 2024.

[26] Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing
non-linear sequential models over the sequence length. arXiv preprint arXiv:2309.12252, 2023.

[27] Richard E Ladner and Michael J Fischer. Parallel prefix computation. Journal of the ACM
(JACM), 27(4):831–838, 1980.

[28] Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix sum (scan) with cuda.
GPU gems, 3(39):851–876, 2007.

[29] Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length.
arXiv preprint arXiv:1709.04057, 2017.

[30] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers
for sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

[31] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

[32] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

[33] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[34] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. arXiv
preprint arXiv:2007.05929, 2020.

[35] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. Advances in neural information processing systems, 29,
2016.

[36] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[37] Guy E Blelloch. Prefix sums and their applications. 1990.

[38] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

12

[39] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[40] Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
Zhong. The devil in linear transformer. arXiv preprint arXiv:2210.10340, 2022.

[41] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

[42] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[43] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations,
2016.

[44] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[45] Peter M Kogge and Harold S Stone. A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE transactions on computers, 100(8):786–793, 1973.

[46] Fei Deng, Junyeong Park, and Sungjin Ahn. Facing off world model backbones: Rnns,
transformers, and s4. arXiv preprint arXiv:2307.02064, 2023.

[47] Mohammad Reza Samsami, Artem Zholus, Janarthanan Rajendran, and Sarath Chandar. Master-
ing memory tasks with world models. In Second Agent Learning in Open-Endedness Workshop,
2023.

[48] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR, 2016.

[49] Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning, pages 4476–4486. PMLR, 2021.

[50] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[51] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021.

[52] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[53] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

[54] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and
practice—a survey. Automatica, 25(3):335–348, 1989.

[55] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algo-
rithmic framework for model-based deep reinforcement learning with theoretical guarantees.
arXiv preprint arXiv:1807.03858, 2018.

13

[56] Jian Shen, Han Zhao, Weinan Zhang, and Yong Yu. Model-based policy optimization with
unsupervised model adaptation. Advances in Neural Information Processing Systems, 33:2823–
2834, 2020.

[57] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on machine learning
(ICML-11), pages 465–472, 2011.

[58] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. Advances in neural
information processing systems, 31, 2018.

[59] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey
Levine. Model-based value estimation for efficient model-free reinforcement learning. arXiv
preprint arXiv:1803.00101, 2018.

[60] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

[61] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

[62] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

[63] Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

[64] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast
weight programmers. In International Conference on Machine Learning, pages 9355–9366.
PMLR, 2021.

[65] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4(1):131–139, 1992.

[66] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng
Kong. Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

[67] Huanru Henry Mao. Fine-tuning pre-trained transformers into decaying fast weights. arXiv
preprint arXiv:2210.04243, 2022.

[68] Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for
sequence modeling. Advances in Neural Information Processing Systems, 36, 2024.

[69] Blazej Osinski, Chelsea Finn, Dumitru Erhan, George Tucker, Henryk Michalewski, Konrad
Czechowski, Lukasz Mieczyslaw Kaiser, Mohammad Babaeizadeh, Piotr Kozakowski, Piotr
Milos, et al. Model-based reinforcement learning for atari. ICLR, 1:2, 2020.

14

A Related Work

Model-based reinforcement learning (MBRL) methods aim to construct a world model of the real
environment and utilize the model to enhance the performance of policy. The crucial aspect of MBRL
lies in its utilization of a world model. Previous methods in MBRL have employed world models
in various ways, including searching for optimal action sequences [54, 4, 3], generating synthetic
data [1, 55, 3, 5, 56], or improving the value estimation [57, 4, 58, 59]. Our PaMoRL framework
builds upon DreamerV3 [17], which embraces the Dyna paradigm [1, 2, 14]. The world model
is utilized to interact with the policy to generate synthetic data, aiding model-free RL methods in
maximizing cumulative task rewards during the policy learning stage.

To maximize sample efficiency, MBRL researchers MBRL researchers have attempted to employ
Recurrent Neural Networks (RNNs) [15, 16, 3, 6, 17] or Transformers [19, 21, 20, 22] as the
architecture of world models. However, the update of the hidden state of the RNNs involves full matrix
multiplication and the presence of nonlinearities within the recurrence hinders parallel computation,
resulting in slower training speed. While Transformers provide a viable high-performance option,
there is a quadratic relationship between their computational complexity and sequence length, which
introduces additional computational and memory overhead.

Recent research has introduced a novel linear RNN architecture with simplified interaction between
hidden states called the Structured State Space sequence model (S4) [60] that surpass both Trans-
formers and RNNs in Long-Range Arena benchmarks (LRA) [61]. The S4 model and its variants are
designed to effectively handle tasks involving long-range reasoning and draw inspiration from classi-
cal continuous-time linear state space models (SSMs) [62], which are well-established components
of control theory. The relationship between the time and the frequency domain implies that SSMs
have a convolutional view when the decay rate is data-independent, and therefore, training can be
accomplished using the fast Fourier transforms (FFT).

We remark on the importance of incorporating a data-dependent decay rate, which is ignored by
current works in SSMs until liquid S4 [63] and Mamba [33]. Our PWM builds upon linear attention
with a data-dependent decay rate, which does not have the convolutional view and thus cannot
use FFT for training but allows the use of parallel scans. The field of linear attentions and linear
RNNs exhibits a close relationship [31], i.e. linear attentions can be reformulated as linear RNNs
during auto-regressive decoding, revealing similarities to the update rules observed in fast weight
additive outer products [64, 65]. These updated rules can be seen as a special case of element-wise
linear recurrence. However, this formulation in linear attention cannot forget irrelevant information,
resulting in the attention dilution issue. To address this limitation, gating mechanisms [66, 67, 68]
can be used to facilitate the forgetting of irrelevant information similar to those in traditional RNNs.

The work that is most similar to our PaMoRL is Mamba [33]. Both our PaMoRL and Mamba have
data-dependent decay rates and employ parallel scans to speed up the training process. However,
there are significant differences between PaMoRL and Mamba in terms of model architectures and
hardware preferences. In terms of model architecture, Mamba needs to maintain self-consistency with
previous work in the SSM family, and therefore it must adhere to the paradigm of classical state space
models, representing continuous differential equations. It needs to be parameterized and discretized
using special tricks to achieve the gating mechanism implicitly. On the other hand, we recognize this
limitation of Mamba and use a more "simple yet effective" gating mechanism. Regarding hardware
preference, Mamba employs a special IO-aware parallel scanning algorithm for efficient training,
which focuses on reducing the number of reads and writes between SRAM and HBM in the GPU
through kernel fusion, and is suitable for improving the training efficiency of the hardware features
when the model architecture is determined. In contrast, to satisfy the need for flexibility in MBRL,
the parallel scanner we use is inspired by high-performance computing hardware design and focuses
more on generality. Our parallel scanning method is compatible with arbitrary model architectures,
as long as it satisfies the parallelization conditions mentioned in Section 2, as compared to the model
architecture-specific parallel scanning method used by Mamba.

15

B Illustrations to Parallel Scan Algorithms

B.1 Kogge-stone Scanner

A common example of such a first-order recurrence problem is a time-varying linear system, the
system’s state at timestep t is xt, computed from the system’s internal dynamical variables at and bt,
as shown in Equation 9. Depending on the problem, the variables at and bt can be real or complex
numbers, constants, etc.

x1 = b1,

x2 = a2x1 + b2,

x3 = a3x2 + b3,

...
xi = aixi−1 + bi,

...
xL = aLxL−1 + bL.

(9)

Before solving the problem, we can define the function A(m,n) and B(m,n), as shown in Equa-
tion 12.

A(m,n) =

m∏
j=n

ai,

B(m,n) =

m∑
i=n

(

m∏
j=i+1

aj)bi, wheren ≤ m.

(10)

Now we can integrate Equation 9 with Equation 10 to get Equation 11.

B(1, 1) = x1 = b1,

B(2, 1) = x2 = a2x1 + b2 = a2B(1, 1) +B(2, 2) = A(2, 2)B(1, 1) +B(2, 2),

...
B(4, 1) = x4 = a4x3 + b4 = a4a3B(2, 1) +B(4, 3) = A(4, 3)B(2, 1) +B(4, 3),

...

B(2i, 1) = x2i = (
2i∏

j=i+1

aj)B(i, 1) +B(2i, i+ 1) = A(2i, i+ 1)B(i, 1) +B(2i, i+ 1).

(11)

It can be observed in Equation 11 that B(2i, i+ 1) is associated with the computation of A(2i, i+ 1)
but independent from B(i, 1), which means that we can split the computation of B(2i, 1) into two
parallel parts. For reasons of notational simplicity, we define the tuple Q(m,n) that wraps the
functions A(m,n) and B(m,n), as shown in Equation 12.

Q(m,n) = (A(m,n), B(m,n)), wheren ≤ m. (12)

Figure 6 shows the operation of the Kogge-stone scanner [45] when the sequence length L = 8. After
⌈log2L⌉ iterations the solution to the problem x1, . . . , xT can be computed.

B.2 Odd-even Scanner

To avoid the extra computational complexity of log2L generated by the Kogge-stone scanner [45], the
Odd-even scanner [28] uses an algorithmic pattern that arises often in parallel computing: balanced

16

trees. The idea is to build a balanced binary tree on the input data and start scanning from the root.
A binary tree with L leaves has log2L layers with 2d nodes per layer d ∈ [0, L). If we perform one
operation on each node, then we will perform O(L) operations in one traversal of the tree. The tree
we construct is not an actual data structure, but rather a concept that we use to determine what each
thread has to do at each step of the traversal.

The algorithm consists of two phases: up-sweep and down-sweep. During the up-sweep phase, we
traverse from the leaves to the root of the tree. During the down-sweep phase, we backtrack from the
root node up the tree, using the results computed in the up-sweep phase. Figure 7 shows the operation
of the Kogge-stone scanner [28] when the sequence length L = 8.

Note that since this is an exclusive scan (i.e., the sum is not included in the result), we zero out the
last element of the array between phases. This zero is propagated back to the head of the array in the
down-sweep phase. This scanning algorithm performs O(2L) operations, so it is very efficient.

Figure 6: Illustrations of the operation of the Kogge-stone scanner when the sequence length L = 8.

Figure 7: Illustrations of the operation of the Odd-even scanner when the sequence length L = 8.

17

C Training Curves of the Atari 100K Benchmark

The Atari 100K benchmark [69] is a standard RL benchmark comprising 26 Atari games featuring
diverse gameplay mechanics. It is designed to assess a broad spectrum of agent skills, and agents are
limited to executing 400 thousand discrete actions within each environment, which is approximately
equivalent to 2 hours of human gameplay. To put this in perspective, when there are no constraints on
sample efficiency, the typical practice is to train agents for 200M steps.

Figure 8: Training curves on the Atari 100k benchmark. The solid line represents the average result
over 5 seeds, and the filled area indicates the range between the maximum and minimum results
across these 5 seeds.

18

D Training Curves of the DeepMind Control Suite

DeepMind Control suite [24] is a standard RL benchmark comprising various tasks with continuous
action spaces. It supports both image observation and low-dimensional proprioception observation.
When there are no constraints on sample efficiency, the typical practice is to train agents for millions
of steps.

Figure 9: Training curves on the DeepMind Control suite with image observations. The solid line
represents the average result over 5 seeds, and the filled area indicates the range between the maximum
and minimum results across these 5 seeds.

19

Figure 10: Training curves on the DeepMind Control suite with proprioception observations. The
solid line represents the average result over 5 seeds, and the filled area indicates the range between
the maximum and minimum results across these 5 seeds.

20

E Details of Model Architecture

Table 4: Architecture details of the image encoder. The size of the modules is omitted and can
be derived from the shape of the tensors. SiLU refers to the sigmoid-weighted linear units used
for activation, while Linear represents a fully connected layer. Flatten and Reshape operations are
employed to alter the tensor’s indexing method while preserving the data and their original order.
Conv denotes a CNN layer characterized by kernel = 4, stride = 2, and padding = 1. BN denotes
the batch normalization layer.

Module Output tensor shape

Imput image (ot) 3 × 64 × 64
Conv1+BN1+SiLU 32 × 32 × 32
Conv2+BN2+SiLU 64 × 16 × 16
Conv3+BN3+SiLU 128 × 8 × 8
Conv4+BN4+SiLU 256 × 4 × 4

Flatten 4096
Linear + BN5 + Reshape 32 × 32

Table 5: Architecture details of the image decoder. DeConv denotes a transpose CNN layer
characterized by kernel = 4, stride = 2, and padding = 1.

Module Output tensor shape

Random samples (zt) 32 × 32
Flatten 1024

Linear+BN1+SiLU 4096
Reshape 256 × 4 × 4

DeConv1+BN1+SiLU 128 × 8 × 8
DeConv2+BN2+SiLU 64 × 16 × 16
DeConv3+BN3+SiLU 32 × 32 × 32

DeConv4 3 × 64 × 64

Table 6: Action mixer. Concatenate denotes combining the last dimension of two tensors and
merging them into one new tensor. The variable A represents the action dimension. D denotes the
feature dimension of the sequence model. LN is an abbreviation for layer normalization.

Module Output tensor shape

Random samples (zt) & Action (at) 32 × 32, A
Reshape and concatenate 1024 + A

Linear+LN1+SiLU D
Linear+LN2 D

Table 7: Modules which are pure MLPs. 1-layer MLP corresponds to a fully connected layer. 255
is the size of the bucket of symlog two-hot loss [17]. K refers to the dimension of proprioception
observations.

Name MLP layers Iutput/Hidden/Output shape

Encoder (proprio) 3 K/512/D
Decoder (proprio) 3 D/512/K
Dynamic predictor 1 D/D/1024
Reward predictor 3 D/D/225

Continuation predictor 3 D/D/1
Actor network 3 D/D/A
Critic network 3 D/D/225

21

F Hyperparameters

Table 8: Full hyperparameters. Note that the environment will provide a “done” signal when losing a
life but will continue running until the actual reset occurs. This life information configuration aligns
with the setup used in IRIS [20]. Regarding data sampling, each time, we sample B1 trajectories of
length T for world model training and sampleB2 trajectories of length C for starting the imaginations.

Hyperparameter Symbol Value

Sequence model layers K 2
Hidden size of query, key, and value - 64

Hidden size of sequence model output D 512

World model training batch size B1 16
World model training batch length T 64

Imagination batch size B2 1024
Imagination horizon H 16

Update world model every environment step - 1
Update policy environment env step - 1

Scan algorithm for world model training - Odd-even
Scan algorithm for policy training - Kogge-stone

Gamma γ 0.997action repeat

Lambda λ 0.95
Entropy coefficiency η 3× 10−4

Optimizer - Adam
World model learning rate - 1× 10−4

World model gradient norm clipping - 100.0
Actor-critic learning rate - 3× 10−5

Actor-critic gradient norm - 100.0

Gray image input - False
Frame stacking - False
Frame skipping - 4 (Atari) or 2 (DMControl)

Use of life information - True (Atari)

22

G Pytorch-style Pseudo-code of Parallel Scan

G.1 Odd-even scanner

1 def odd_even_parallel_scan(inputs , operator):
2 """
3 Odd/Even Parallel Scanner.
4 Inputs:
5 inputs: tuple of sequence elements.
6 operator: binary operator function.
7 Outputs:
8 outputs: tuple of sequence elements.
9 """

10 Length = inputs [0]. shape [0]
11

12 if Length < 2:
13 return inputs
14

15 reduced_inputs = operator(
16 (input [: -1][0::2] for input in inputs),
17 (input [1::2] for input in inputs)
18)
19 odd_inputs = odd_even_parallel_scan(reduced_inputs , operator)
20

21 if Length % 2 == 0:
22 even_inputs = operator(
23 (input [:-1] for input in odd_inputs),
24 (input [2::2] for input in inputs)
25)
26 else:
27 even_inputs = operator(
28 (input for input in odd_inputs),
29 (input [2::2] for input in inputs)
30)
31

32 even_inputs = [
33 torch.cat((input [0:1] , even_input), dim=0)
34 for (input , even_input) in zip(inputs , even_inputs)
35]
36

37 outputs = [
38 interleave(odd_input , even_input)
39 for (even_input , odd_input) in zip(even_inputs , odd_inputs)
40]
41 return outputs
42

43

44 def interleave(odd , even):
45 padded_odd = torch.cat((odd , torch.zeros_like(odd [-1:])), dim =0)
46 outputs = torch.stack ((even , padded_odd [:even.shape [0]]), dim=1)
47 outputs = outputs.flatten(0, 1)[:(odd.shape [0] + even.shape [0])]
48 return outputs

23

G.2 Kogge-stone scanner

1 def kogge_stone_parallel_scan(inputs , operator):
2 """
3 Kogge -Stone Parallel Scanner.
4 Inputs:
5 inputs: tuple of sequence elements.
6 operator: binary operator function.
7 Outputs:
8 outputs: tuple of sequence elements.
9 """

10 Length = inputs [0]. shape [0]
11 Times = math.ceil(math.log2(Length))
12

13 for i in range(Times):
14 interval = int(2 ** i)
15 outputs = operator(
16 (input[:-interval] for input in inputs),
17 (input[interval :] for input in inputs)
18)
19 inputs = [
20 torch.cat((input [: interval], output), dim=0)
21 for (input , output) in zip(inputs , outputs)
22]
23 return inputs

24

H Pytorch-style Pseudo-code of Parallelized Eligibility Trace Estimation

1 def parallel_eligibility_trace(reward , value , next_value , p_cont , lam)
:

2 """
3 Parallel Eligibility Trace Estimations.
4 """
5 ones = torch.ones_like(reward)
6 p_cont , lam = p_cont * ones , lam * ones
7 lam = torch.cat((lam[1:], ones [:1]), dim =0)
8

9 delta = reward + p_cont * next_value - value
10 flipped_delta = delta.flip(dims =(0,))
11 flipped_lam = (p_cont * lam).flip(dims =(0,))
12

13 residual = odd_even_parallel_scan(
14 [flipped_lam , flipped_delta], binary_return_fn)
15 returns = value + residual [1]. flip(dims =(0,))
16 return returns
17

18

19 def parallel_lambda_return(reward , value , next_value , p_cont , lam):
20 """
21 Parallel TD -Lambda Estimations.
22 """
23 ones = torch.ones_like(reward)
24 p_cont , lam = p_cont * ones , lam * ones
25

26 delta = reward + p_cont * next_value * (1 - lam)
27 last = delta [-1:] + p_cont [-1:] * lam[-1:] * next_value [-1:]
28 delta = torch.cat((delta[:-1], last), dim =0)
29

30 flipped_delta = delta.flip(dims =(0,))
31 flipped_lam = (p_cont * lam).flip(dims =(0,))
32

33 returns = odd_even_parallel_scan(
34 [flipped_lam , flipped_delta], binary_return_fn)
35 returns = returns [1]. flip(dims =(0,))
36 return returns
37

38

39 def binary_return_fn(cur_i , cur_j):
40 coef_i , in_i = cur_i
41 coef_j , in_j = cur_j
42 return coef_i * coef_j , coef_j * in_i + in_j

25

I Additional Comparisons on the Atari 100K Benchmark

Atari 100K benchmark [69] is a standard RL benchmark comprising 26 Atari games featuring diverse
gameplay mechanics. It is designed to assess a broad spectrum of agent skills, and agents are
limited to executing 400 thousand discrete actions within each environment, which is approximately
equivalent to 2 hours of human gameplay. To put this in perspective, when there are no constraints on
sample efficiency, the typical practice is to train agents for 200M steps.

In this section, we compare the performance of our PaMoRL framework with planning-based methods
such as EfficientZero [7] and EfficientZero V2 [9] and methods with much larger networks, i.e.,
BBF [8] on the Atari 100K benchmark. The full results are shown in Table I. The PaMoRL framework
is not as good as the other methods in terms of the number of superhuman games, median score, and
average score. However, it leads the pack of 13/26 games in terms of an individual game perspective.

Table 9: Experimental results on the 26 games of Atari 100k after 2 hours of real-time experience
and human-normalized aggregate metrics. Bold and underlined numbers indicate the highest and the
second-highest scores, respectively.

Game Random Human EfficientZero BBF EfficientZero V2 PaMoRL (Ours)

Alien 227.8 7127.7 808.5 1173.2 1557.7 1270.6
Amidar 5.8 1719.5 148.6 244.6 184.9 264.4
Assault 222.4 742 1263.1 2098.5 1757.5 833.8
Asterix 210 8503.3 25557.8 3946.1 61810 2957.3

BankHeist 14.2 753.1 351 732.9 1316.7 225.9
BattleZone 2360 37187.5 13871.2 24459.8 14433.3 23120

Boxing 0.1 12.1 52.7 85.8 75 87.9
Breakout 1.7 30.5 414.1 370.6 400.1 15.8

ChopperCommand 811 7387.8 1117.3 7549.3 1196.6 2110.7
CrazyClimber 10780.5 35829.4 83940.2 58431.8 112363.3 84102
DemonAttack 152.1 1971 13003.9 13341.4 22773.5 208.2

Freeway 0 29.6 21.8 25.5 0 33.8
Frostbite 65.2 4334.7 296.3 2384.8 1136.3 3711.4
Gopher 257.6 2412.5 3260.3 1331.2 3868.7 5085.2

Hero 1027 30826.4 9315.9 7818.6 9705 12076.2
Jamebond 29 302.8 517 1129.6 468.3 405
Kangaroo 52 3035 724.1 6614.7 1886.7 2554.7

Krull 1598 2665.5 5663.3 8223.4 9080 7273.2
KungFuMaster 258.5 22736.3 30944.8 18991.7 28883.3 24624.7

MsPacman 307.3 6951.6 1281.2 2008.3 2251 2201.7
Pong -20.7 14.6 20.1 16.7 20.8 15.5

PrivateEye 24.9 69571.3 96.7 40.5 99.8 4968.6
Qbert 163.9 13455 14448.5 4447.1 16058.3 4730.3

Roadrunner 11.5 7845 17751.3 33426.8 27516.7 24726.7
Seaquest 68.4 42054.7 1100.2 1232.5 1974 595.2

UpNDwon 533.4 11693.2 17264.2 12101.7 15224.3 11953.8

Games >Human 0 26 14 12 21 9
Median 0% 100% 111.53% 91.71% 123.47% 71.75%
Mean 0% 100% 194.46% 224.74% 267.97% 126.64%

26

J Runtime of Experiments

Table 10: Average runtime of experiments

Task Atari 100K Proprio (easy) Proprio (hard) Vision (easy) Vision (hard)

Runtime 3.5 hours 0.94 hours 1.88 hours 2.74 hours 7.1 hours

K Effectiveness of Batch Normalization Trick

(a) (b)

Figure 11: Visualizations on Batch Normalization trick in Pong and Breakout.

Figure 12: Quantitative results on the effectiveness of the Batch Normalization trick.

27

L Video Predictions

Figure 13: Multi-step predictions on several environments in Atari games and DeepMind Control
suite. The world model utilizes 5 observations and actions as contextual input, enabling the imagina-
tion of future events spanning 56 frames in an auto-regressive manner.

28

M Initializations in Freeway

The reward function in Freeway is sparse since the agent is only rewarded when it completely crosses
the road. In addition, bumping into cars will drag it down, preventing it from smoothly ascending the
highway. This poses an exploration problem for newly initialized agents because a random policy will
almost surely never obtain a non-zero reward with a 100k frames budget. The solution to this problem
is actually straightforward and requires stretches of time when the "UP" action is oversampled. In this
paper, we opted for the simplest strategy of having an initialized buffer with fulfilled "UP" actions.
Hence, we dont’t need to lowered the sampling temperature to avoid random walks that would not
be conducive to learning in the early stages of training. Consequently, once it received its first few
rewards through exploration, our PaMoRL could internalize the sparse reward function in its world
model.

Figure 14: A game of Freeway. Cars will bump the player down, making it very unlikely to cross the
road and be rewarded for random policies.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly claim the three contributions in the introduction. We also describe
the method and show the experimental results in the main paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state the limitations in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

30

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide sufficient information about the hyper-parameters as well as the
details in the Appendix. We also pack our code in the supplemental materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

Answer: [Yes]
Justification: We pack the code in the supplemental materials and the code base of each
algorithm is clearly cited in the main paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We show sufficient experimental settings and hyper-parameters in the main
paper and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In each graph, we show the average results among 3 different seeds and the std
variance of the learning curves.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We show the hardware for training and state the time used for each training
process in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The experimental environments and the baseline algorithms code-bases are
fully officially released, open-sourced, and open-accessed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We propose a parallel model-based RL framework for fast training, so there is
no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

33

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We propose a parallel model-based RL framework for fast training, so there is
no misuse concerns.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The experimental environments as well as the algorithms code-bases are
properly cited in the experiment settings section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

34

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code with documents in supplemental materials and will release
them.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

35

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Background
	Methodology
	Parallelized World Model Learning.
	Policy Learning
	Parallel Scan Algorithms

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Study

	Conclusion & Limitations
	Related Work
	Illustrations to Parallel Scan Algorithms
	Kogge-stone Scanner
	Odd-even Scanner

	Training Curves of the Atari 100K Benchmark
	Training Curves of the DeepMind Control Suite
	Details of Model Architecture
	Hyperparameters
	Pytorch-style Pseudo-code of Parallel Scan
	Odd-even scanner
	Kogge-stone scanner

	Pytorch-style Pseudo-code of Parallelized Eligibility Trace Estimation
	Additional Comparisons on the Atari 100K Benchmark
	Runtime of Experiments
	Effectiveness of Batch Normalization Trick
	Video Predictions
	Initializations in Freeway

