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Abstract
Improving the generalization of multi-camera 3D
object detection is essential for safe autonomous
driving in the real world. In this paper, we con-
sider a realistic yet more challenging scenario,
which aims to improve the generalization when
only single source data available for training,
as gathering diverse domains of data and col-
lecting annotations is time-consuming and labor-
intensive. To this end, we propose the Fourier
Cross-View Learning (FCVL) framework includ-
ing Fourier Hierarchical Augmentation (FHiAug),
an augmentation strategy in the frequency domain
to boost domain diversity, and Fourier Cross-View
Semantic Consistency Loss to facilitate the model
to learn more domain-invariant features from ad-
jacent perspectives. Furthermore, we provide the-
oretical guarantees via augmentation graph the-
ory. To the best of our knowledge, this is the
first study to explore generalizable multi-camera
3D object detection with a single source. Exten-
sive experiments on various testing domains have
demonstrated that our approach achieves the best
performance across various domain generaliza-
tion methods.

1. Introduction
Multi-camera 3D detection based on Bird’s Eye View (BEV)
representations has achieved rapid development, as BEV
captures both spatial locations and semantic features with-
out being heavily affected by occlusions. While existing
models (Philion & Fidler, 2020; Huang et al., 2022; Li et al.,
2023; 2022b) have achieved excellent performance on in-
distribution datasets like nuScenes (Caesar et al., 2020),
they struggle in real-world settings where the environment
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and conditions vary widely. This performance drop occurs
because camera data in practical applications often has dif-
ferent distributions compared to the limited training data.
As a result, enhancing the generalization of these models is
critical for their safe deployment. Domain generalization
(DG) aims to generalize a model to an unseen target domain
by learning from multiple source domains. However, gath-
ering diverse sources of data for training is time-consuming
and labor-intensive, especially in autonomous driving sce-
narios, and cannot always guarantee improved performance.
In this paper, we tackle a more practical yet challenging
problem: boosting the generalization of 3D object detectors
trained on a single source domain. Focusing on single-
domain generalization (SDG) not only addresses practical
constraints but also provides a more rigorous assessment of
model adaptability.

In SDG for 2D image classification, previous works (Zhao
et al., 2024; Qiao et al., 2020) focus on enhancing data di-
versity through common 2D data augmentation techniques,
such as geometric transformations, style transfer, or adver-
sarial data generation. However, directly applying these
approaches to BEV-based tasks introduces several chal-
lenges. First, BEV representations are generated by pro-
jecting multi-view 2D features using real-world physical
constraints, which limits the use of strong geometric trans-
formations. For example, large rotation of the input images
will disrupt the spatial relationships, thereby affecting the
spatial consistency of the BEV features. Second, style trans-
fer techniques (Zhao et al., 2024) replace the original image
statistics with those from the target style, but this often blurs
the boundary between style and content (Lee et al., 2023),
distorting important features and ultimately harming model
accuracy and generalization. Third, adversarial generation
methods (Goodfellow et al., 2020) suffer from unstable train-
ing and mode collapse. While diffusion-based techniques
(Ho et al., 2020) are more stable, they add significant com-
putational and storage overhead, making them impractical
for complex 3D detection models. Therefore, common 2D
data augmentations cannot be effectively leveraged to create
diverse training samples for BEV-based tasks. More im-
portantly, for multi-camera 3D object detection, the natural
availability of cross-view data offers a unique opportunity
to learn domain-invariant features, a potential that remains
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Figure 1. (a) Detection results of different models: the proposed FCVL can improve the generalization of 3D detection on multiple
target domains with single source training data. (b) Cross-View Learning: make the most of the natural cross-view input to improve the
generalization. (c) Augmentation graph connectivity: augmentations of data from the same classes are assumed to be connected. FHiAug
increases the augmentation graph connectivity between source and unseen domains.

underexplored in scenarios with limited training data.

In response to these limitations and challenges, we propose
the Fourier Cross-View Learning (FCVL) framework includ-
ing Fourier Hierarchical Augmentation (FHiAug), an aug-
mentation strategy in the frequency domain to boost domain
diversity and Fourier Cross-View Semantic Consistency
Loss to facilitate the model to learn more domain-invariant
features. Different from work (Zhao et al., 2024) expanding
style statistics in the pixel domain, we utilize the Fourier
transform to introduce style variations while minimizing
content distortion. This is motivated by the well-known
property of the Fourier transformation: the phase compo-
nent encodes high-level semantic information, while the
amplitude component captures low-level image statistics
(Xu et al., 2021). This separation allows us to independently
manipulate style (low-level statistics) and content (high-
level semantics) in the frequency domain. At the image
level, we introduce Frequency Jitter, which perturbs both
amplitude and phase components to create diverse samples
that complement the single source domain. At the feature
level, we propose Amplitude Transfer, a novel method for
generating fine-grained style variations, ensuring domain di-
versity in the latent space. To leverage the natural cross-view
input, we design the Fourier Cross-View Semantic Consis-
tency Loss to help the model acquire more robust features
from adjacent perspectives. Furthermore, by leveraging aug-
mentation graph theory (HaoChen et al., 2021; Wang et al.,
2024), we provide a unique theoretical perspective on FCVL
and establish its theoretical soundness.

In summary, our major contributions are as follows:

• Towards SDG for multi-camera 3D object detection,
we present the Fourier Cross-View Learning frame-
work to fully exploit natural cross-view input.

• We propose FHiAug, a novel, efficient, plug-and-play
augmentation strategy that operates on both image and

feature levels, to enhance domain diversity without
requiring additional modules or specialized training
strategies.

• We propose Fourier Cross-View Semantic Consistency
Loss to facilitate the model to learn more domain-
invariant features from adjacent perspectives.

• Leveraging augmentation graph theory, we provide a
valid theoretical foundation for the effectiveness of
FCVL (See Appendix A).

• To the best of our knowledge, this is the first work to ad-
dress generalizable multi-camera 3D object detection
using single-source data. Extensive experiments across
various test domains demonstrate that our approach
achieves superior performance compared to existing
domain generalization methods (See Fig.1(a)).

2. Related Work
2.1. Multi-view 3D Object Detection

The recent advances in bird’s eye view (BEV) representation
exhibit great potential for MC3D-Det. The camera-based
BEV models typically project 2D image features from six
cameras to explicit BEV feature maps in the 3D space and
make predictions based on BEV features. In terms of the
BEV projection, Lift-splat-shoot (LSS) (Philion & Fidler,
2020), BEVDet (Huang et al., 2022) and BEVDepth (Li
et al., 2023) distribute the 2D features into 3D space ac-
cording to the depth information while BEVFormer (Li
et al., 2022b) adopts cross attention to query BEV features
from 2D images. LSS-based method and transformer-based
methods have achieved excellent performance on the in-
distribution datasets, like nuScenes (Caesar et al., 2020).
Lift-splat-shoot (LSS) proposes a view transform method
that explicitly predicts depth distribution and projects im-
age features onto a bird’s-eye view (BEV), which has been

2



Generalizable Multi-Camera 3D Object Detection from a Single Source via Fourier Cross-View Learning

proved practical for 3D object detection. Based on LSS,
BEVDepth designs a novel Depth Refinement Module to
refine feature projection process (Li et al., 2023). BEV-
Former further designs a transformer structure to automat-
ically extract and fuse BEV features, leading to excellent
performance on 3D detection (Li et al., 2022b).

2.2. Single Domain Generalization

Domain Generalization (DG) aims to generalize a model
trained on multiple source domains to a target domain which
is distributionally different (Muandet et al., 2013). Data aug-
mentation has been a common strategy to regularize the
training process to avoid overfitting and improve generaliza-
tion (Zhou et al., 2023). CIRL (Lv et al., 2022) generates
augmented images by a causal intervention module with
intervention upon non-causal factors. AGFA (Kim et al.,
2023) trains the classifier and the amplitude generator ad-
versarially to synthesize a worst-case domain for adaptation.
Compared with these methods, our proposed method is sim-
ple, stable, yet effective, without extra module design or
special training strategy.

This paper focuses on Single Domain Generalization
(SDG) (Wang et al., 2023b) which is a more challenging
yet realistic setting. Existing works enhance data diversity
first using 2D data augmentation techniques, including three
categories of data augmentation methods: photometric and
geometric augmentations, style transfer, and data genera-
tion. Chen et al. (2023) use photometric augmentations
(e.g., Invert) and geometric augmentations (e.g., Rotation)
to create diverse domains, then learn to analyze the causes
of domain shift, and finally learn to reduce the domain shift
for model adaptation. BEV representations are generated by
projecting multi-view 2D features using real-world physical
constraints, which limits the use of geometric transforma-
tions. For example, large rotation of the input images will
disrupt the spatial relationships, thereby affecting the spa-
tial consistency of the BEV features1. Zhao et al. (2024)
propose CPerb, a simple yet effective cross-perturbation
method with style transfer to enhance the diversity of the
training data and introduce multi-route perturbation to learn
domain-invariant features. Style transfer techniques (Nuriel
et al., 2021) replace the original image statistics with those
from the target style, but this often blurs the boundary be-
tween style and content (Lee et al., 2023), distorting impor-
tant features and ultimately harming model generalization.
Wang et al. (2023b) propose a style-complement module
with generative adversarial network to enhance the gener-
alization power of the model by synthesizing images from
diverse distributions that are complementary to the source
ones. Qiao et al. (2020) leverage adversarial training to
create “fictitious” yet “challenging” populations and use a

1More experimental analysis can be found in the Appendix C.

Wasserstein Auto-Encoder (WAE) to relax the widely used
worst-case constraint in a meta-learning scheme. Adversar-
ial generation can suffer from unstable training and mode
collapse. It often requires a lot of experiments and fine-
tuning to get a GAN to work well, making them impractical
for complex 3D detection models.

3. Methodology
3.1. Overview of Fourier Cross-View Learning

Framework

The overall structure of our framework is depicted in Fig.2
and the process is outlined in Algorithm 1 in Appendix B.

The FCVL framework is motivated by the cross-view con-
sistency in multi-camera 3D object detection. For example,
as shown in Fig.1(b), objects such as cars or pedestrians
are often visible across multiple adjacent camera views.
To capture this cross-view relationship, we implement a
Fourier Cross-View Semantic Consistency Loss, where fea-
tures from nearby camera views are considered positive sam-
ples, while those from distant views are treated as negative
samples. However, its effectiveness is limited in the single-
domain setting due to restricted feature diversity. Therefore,
we propose Fourier Hierarchical Augmentation (FHiAug)
to alleviate the bias in single-domain representations. FHi-
Aug, on one hand, expands the domain diversity to force the
model to learn from different feature distributions. On the
other hand, it expands the quantity and diversity of the cross-
view sample pairs, enabling the consistency loss to more
effectively explore semantic alignments between adjacent
perspectives.

In the following sections, we provide an in-depth explana-
tion of both the Fourier Hierarchical Augmentation and the
Fourier Cross-View Semantic Consistency Loss.

3.2. Fourier Hierarchical Augmentation

Fourier Hierarchical Augmentation includes data augmen-
tation at image level (Frequency Jitter) and domain per-
turbation at feature level (Amplitude Transfer), which is a
plug-and-play method to boost domain diversity without
extra module designing or special training strategies.

Frequency Jitter at image level For a single channel
image x ∈ Rd1×d2 , the 2D Fourier transformation is defined
as follows,

F (x)(u, v) =

d1−1∑
m=0

d2−1∑
n=0

x(m,n) exp−2πi(mu
d1

+nv
d2

), (1)

where F denotes Fourier Transform; d1 and d2 denote
height and width of the image; u and v denote frequency
coordinates; m and n denote spatial coordinates.
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Figure 2. Overview of our FCVL framework. FCVL includes two major parts: FHiAug to boost domain diversity and Fourier Cross-
View Semantic Consistency Loss to ensure domain-invariant BEV features. FHiAug consists of two stages. One is Frequency Jitter at
image level. The other is Amplitude Transfer at feature level. Notably, we achieve cross-camera augmentation via FHiAug, which means a
set of surrounding views have different “styles”. This forces the model to learn from diversified domains. Besides, on cross-view features,
we calculate Fourier Cross-View Semantic Consistency Loss to learn more domain-invariant BEV features from adjacent perspectives.

The amplitude components A and phase components P are
then respectively expressed as:

A(x)(u, v) = [R2(x)(u, v) + I2(x)(u, v)]1/2,

P(x)(u, v) = arctan
[ I(x)(u, v)
R(x)(u, v)

]
,

(2)

where R(x) and I(x) represent the real and imaginary part
of F (x), respectively.

To generate diverse samples that complement the single
source domain, we employ two strategies. First, we perturb
the amplitude component using a hyperparameter, α, to cre-
ate variations in low-level statistics. Second, we modify the
intensity of the phase component with a hyperparameter, β,
to expose the model to previously less emphasized features
(Chen et al., 2020).

Â(x)(u, v) = αA(x)(u, v),
P̂(x)(u, v) = βP(x)(u, v),

(3)

where α ∼ U(η, 1) and the hyperparameter η control the
strength of the augmentation on amplitude; β ∼ U(λ, 1)
and the hyperparameter λ control the strength of the aug-
mentation on phase.

With new amplitude and phase component, we can form a
new Fourier representation and use inverse Fourier transfor-

mation to generate the augmented image x̂.

F (x̂)(u, v) = Â(x)(u, v) ∗ e−j∗P̂(x)(u,v),

x̂ = F−1[F (x̂)(u, v)].
(4)

In the training phase, we set pi as the calling probability of
Frequency Jitter and sample p ∼ U(0, 1). For image input
x, we acquire the augmented xaug as:

xaug = Frequency Jitter(x), if p ≤ pi. (5)

This Fourier-based augmentation strategy, termed Fre-
quency Jitter, manipulates both amplitude and phase com-
ponents, as shown in Fig.7. The top row demonstrates
adjustments to the amplitude, primarily affecting image
brightness, which helps the model become robust to varying
lighting conditions. The bottom row shows modifications to
the phase component, creating samples with varying levels
of semantic detail while preserving the overall structure.
This controlled manipulation of semantic strength encour-
ages the model to learn more domain-invariant and robust
features. Additional examples highlighting the effect of
phase adjustments are provided in Fig.10.

Amplitude Transfer at feature level To implement do-
main perturbation and create diverse virtual styles during
training, we apply Amplitude Transfer based on the style
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statistics of intermediate features. This approach aims to
improve model robustness and generalization.

Given an intermediate feature map X ∈ RB×C×H×W ,
where B, C, H , and W denote batch size, number of chan-
nels, height, and width, respectively, we first perform a
Fourier transformation and extract its amplitude component
A(X) ∈ RB×C×H×W . We then compute the channel-wise
mean (µ) and standard deviation (σ) for each instance’s
amplitude as follows:

µ(A(X)) =
1

HW

H∑
h=1

W∑
w=1

A(X),

σ2(A(X)) =
1

HW

H∑
h=1

W∑
w=1

[A(X)− µ(A(X))]2.

(6)

Now, we acquire the style statistics µ(A(X)) and σ2(A(X))
of the features. To achieve feature-level perturbation, differ-
ent from (Xu et al., 2021) and (Zhou et al., 2021) to mix up
different domains’ style information directly, inspired by (Li
et al., 2022a) we make uncertainty estimation on µ(A(X))
and σ(A(X)) with the variance as follows:

Var(µ(A(X))) =
1

B

B∑
b=1

[µ(A(X))− E(µ(A(X)))]2,

Var(σ(A(X))) =
1

B

B∑
b=1

[σ(A(X))− E(σ(A(X)))]2,

(7)
where B is the batch size and E denotes the mathematical
expectations.

Next, we obtain new style statistics β and γ by random
sampling from the Gaussian distributions:

β(A(X)) = µ(A(X)) + ϵµ
√

Var(µ(A(X))), ϵµ ∼ N (0, 1),

γ(A(X)) = σ(A(X)) + ϵσ
√

Var(σ(A(X))), ϵσ ∼ N (0, 1).
(8)

Finally, we replace the original style statistics with the per-
turbed values and perform an inverse Fourier transform to
obtain the augmented feature map X̂:

Â(X) = γ(A(X))× A(X)− µ(A(X))

σ(A(X))
+ β(A(X)).

(9)
This allows us to create diverse styled features in each train-
ing iteration without explicitly defining content and style.
During training, we set pf as the probability of applying
Amplitude Transfer and sample p ∼ U(0, 1). For a given
feature input X, the augmented feature Xaug is generated
as follows:

Xaug = Amplitude Transfer(X), if p ≤ pf . (10)

We visualize the style variations of some pictures via Ampli-
tude Transfer in Fig.8. The left column shows the original

images, while the adjacent columns display styled variations.
As observed, the augmented images exhibit different colors
and textures, showcasing the effectiveness of the proposed
method in generating diverse feature styles. The visualized
results of FHiAug are shown in Fig.9. For the same image,
via FHiAug, we can generate multiple styles.

3.3. Fourier Cross-View Semantic Consistency Loss

For multi-camera 3D object detection, the input inherently
includes cross-view data, which is beneficial for learning
domain-invariant features. This has not yet been harnessed
to improve generalization. As illustrated in Fig.3, consider
a car appearing in both the front and front-right views. Such
cross-view targets are common in multi-camera inputs, pro-
viding natural opportunities to observe the same object from
different perspectives.

To exploit this, we propose the Fourier Cross-View Seman-
tic Consistency Loss to help the model learn more robust
features from adjacent views. Unlike conventional consis-
tency losses that operate in the pixel domain, we minimize
the distance between the phase distributions of the targets
with the same semantics, as the phase component usually
encodes high-level semantic information. Concretely, for
adjacent views, we split the features into halves as shown
in Fig.3. There is a cross-view instance binding mechanism
that the identical instance labels are assigned to cross-view
instances of the same object. When taking a target object in
one view as the anchor, we search for objects with the same
instance label in adjacent views as positive samples. For
negative samples, we choose samples of different categories
from other views. Next, we calculate triplet loss (Schroff
et al., 2015) in the frequency domain to explore potential
semantic similarity as follows:

vpos
aug = FHiAug(vpos),

vneg
aug = FHiAug(vneg),

(11)

a = P(vanchor), p = P(vpos
aug), n = P(vneg

aug), (12)

Lcross = max(dist(a, p)− dist(a, n) + margin, 0), (13)

where FHiAug is the proposed augmentation method; vanchor

is the anchor example; vpos is the sample with the same cate-
gory as anchor; vneg is the sample with different categories;
P denotes calculating the phase components of different
views after Fourier transformation; dist is the distance mea-
surement; margin is a constant greater than zero.

Overall, the training objective loss including detection loss
Ldet and consistency loss Lcross can be written as:

Ltrain = Ldet + γLcross, (14)

where γ is the weighting parameter to balance different loss
terms.
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Figure 3. Illustration of Fourier Cross-View Semantic Consistency
Loss.

4. Experiments
In this section, we showcase the overall performance of
our method. To comprehensively evaluate our method, we
conduct extensive experiments across four distinct baseline
models, four varied domain generalization methods, and
three different datasets. To gauge the practical viability and
performance of our algorithm, we also evaluate it within
real-world application scenarios.

4.1. Implementation details

We first choose three baselines BEVFormer, BEVDepth and
BEVDet and experiment on nuScenes and nuScenes-C (Xie
et al., 2023). Besides, we choose a new SOTA Far3D (Jiang
et al., 2024) as another baseline and experiment on dataset
Argoverse 2 (Wilson et al., 2023). More details of datasets
can be found in Appendix D.1. We use ResNet50 as the
backbone and extend our method to different baselines re-
spectively. All models are trained until full convergence for
24 epochs. All parameters in our framework are initialized
from ImageNet. We apply an AdamW optimizer with the
learning rate set to 0.0002 and set the batch size to 2 per
GPU. All experiments are conducted with 4 GPUs. After
training, we mainly report mean Average Precision (mAP)
and nuScenes Detection Score (NDS) (Caesar et al., 2020).

4.2. Comparison with SOTA methods

We compare our method with some SOTA SDG and DG
methods which involve frequency-domain data augmenta-
tion (CPerb (Zhao et al., 2024), FACT (Xu et al., 2021))
and style transformation (DAC-SC (Lee et al., 2023)). PD-
BEV (Lu et al., 2025) working on BEVDepth, is proposed
to ensure consistent and accurate detection and improve
generalization via perspective debiasing.

The results on nuScenes and nuScenes-C are shown in Ta-
ble 1. On transformer-based framework, our FCVL can
greatly improve the generalization of BEVFormer as shown
in Table 1. The average NDS of eight testing domains is in-

creasing from 0.3028 to 0.3567 (↑ 5.39%). FCVL achieves
SOTA out-of-domain performance across different SDG or
DG methods. On LLS-based framework, FCVL achieves
SOTA performance on both BEVDepth and BEVDet as well.
In terms of the average NDS of eight testing domains, our
method achieves much better performance than BEVDepth
(↑ 5.05%) and BEVDet (↑ 6.07%). Especially, FCVL im-
proves the performance of BEVDepth by 10.87% for ad-
verse weather conditions Snow and 10.19% for Low Light.
Similarly, FCVL improves the performance of BEVDet by
8.07% for adverse weather conditions Snow and 12.50% for
Low Light. FCVL has more stable generalization ability for
adverse weather and light conditions on different 3D detec-
tion frameworks. For worst cases Low Light and Snow, as
shown in Fig.4(b), FCVL has shown significant improve-
ment. Overall, as is shown in Fig.4(a), the proposed FCVL
outperforms other methods with great margin on average of
three frameworks (↑ 2.08%). Besides, for both transformer-
based framework and LLS-based framework, FCVL has the
superiority in stable maintenance of better generalization
ability in eight testing domains, especially in Low Light,
Motion Blur and Snow.

To further evaluate our method, we extend our methods
to the 3D detectors without explicit BEV features, such as
Sparse4D (Lin et al., 2023) and multi-modal method, such as
BEVFusion (Liu et al., 2023) as well. We list the experimen-
tal results including different 3D detection schemes (explicit
BEV or not, multi frames or not, etc.) in the Table 2. Our
method can improve the out-of-distribution performance in
all the settings, while maintaining the in-distribution perfor-
mances as far as possible.

More results on Argoverse 2 are shown in Table 3. We
experiment on a new SOTA Far3D, which presents a sparse
query-based method for multi-view 3D long-range detec-
tion without explicit BEV features. To achieve training on
one domain and testing on unseen domains, we sample data
from sunny weather in Miami scenarios as the training data
and data from cloudy weather or other five cities as the ood
test set. As is shown, our method improves the general-
ization for long-range detection as well. In addition, we
have visualized some detection results in Fig.12. As can be
seen, after being optimized by FCVL, Far3D exhibits great
performance when the lighting conditions are poor.

4.3. Ablation Study on nuScenes

Effects of different components of FCVL Firstly, we
analyze the effects of different components of Frequency
Jitter at image level, as shown in Table 4. As is shown,
jittering amplitude only(#1) or jittering phase of the input
only (#2) has impressive performance. When jittering both
phase and amplitude (#3), Frequency Jitter improves the
performance further. Next, we separately examine the ef-
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Table 1. Comparison with baseline methods on nuScenes and nuScenes-C. The table represents the results of NDS ↑ with ResNet50 as
backbone. ”Clean” denotes the normal validation set of nuScenes. ”OoD Avg.” is the average performance of eight testing domains. FCVL
achieves SOTA out-of-distribution performance on three frameworks. PD-BEV †(Lu et al., 2025) has released the code for BEVDepth.
Thus, we mainly compare our method with PDBEV on BEVDepth for fair comparison. The best and second-best results are highlighted
in Red and Blue, respectively.

Model Clean
Cam
Crash

Frame
Lost

Color
Quant

Motion
Blur Bright

Low
Light Fog Snow OoD Avg.

BEVFormer (Li et al., 2022b) 0.4362 0.3175 0.3246 0.3410 0.2549 0.4022 0.2461 0.3853 0.1510 0.3028
+CPerb (Zhao et al., 2024) 0.4356 0.3199 0.3292 0.3372 0.2548 0.4096 0.2420 0.3907 0.1661 0.3062

+DSU (Li et al., 2022a) 0.4359 0.3206 0.3322 0.3609 0.3425 0.4083 0.2458 0.3937 0.2601 0.3330
+DAC-SC (Lee et al., 2023) 0.4332 0.3085 0.2872 0.3703 0.3691 0.4161 0.3155 0.4093 0.3086 0.3481

+FACT (Xu et al., 2021) 0.4379 0.3181 0.3285 0.3436 0.2585 0.4100 0.2494 0.3916 0.1486 0.3060
+FCVL(Ours) 0.4375 0.3244 0.3374 0.3751 0.3748 0.4202 0.3078 0.4170 0.2969 0.3567

BEVDepth (Li et al., 2023) 0.4028 0.2654 0.2178 0.2801 0.2697 0.3072 0.1558 0.3080 0.0881 0.2365
PD-BEV † (Lu et al., 2025) 0.4094 0.2822 0.2316 0.3102 0.2842 0.3011 0.1411 0.3151 0.1091 0.2468
+CPerb (Zhao et al., 2024) 0.4034 0.2698 0.2294 0.2847 0.2873 0.3180 0.1616 0.3164 0.1054 0.2466

+DSU (Li et al., 2022a) 0.4057 0.2722 0.2330 0.3065 0.3270 0.3462 0.2165 0.3249 0.1565 0.2729
+DAC-SC (Lee et al., 2023) 0.4007 0.2714 0.2200 0.2846 0.2861 0.3284 0.1586 0.3172 0.1299 0.2495

+FACT (Xu et al., 2021) 0.4026 0.2670 0.2224 0.2872 0.2749 0.3276 0.1611 0.3141 0.0957 0.2438
+FCVL(Ours) 0.4050 0.2722 0.2346 0.3106 0.3318 0.3539 0.2577 0.3380 0.1968 0.2870

BEVDet (Huang et al., 2022) 0.3880 0.2508 0.1955 0.2409 0.2201 0.2591 0.1112 0.2633 0.0728 0.2017
+CPerb (Zhao et al., 2024) 0.3908 0.2590 0.2065 0.2479 0.2325 0.2643 0.1322 0.2752 0.0782 0.2120

+DSU (Li et al., 2022a) 0.3835 0.2582 0.2061 0.2814 0.3019 0.3128 0.1806 0.2961 0.1065 0.2430
+DAC-SC (Lee et al., 2023) 0.3884 0.2574 0.2046 0.2688 0.2644 0.2986 0.1450 0.2926 0.1028 0.2293

+FACT (Xu et al., 2021) 0.3907 0.2581 0.2054 0.2430 0.2277 0.2708 0.1230 0.2727 0.0773 0.2098
+FCVL(Ours) 0.3848 0.2579 0.2064 0.2928 0.3204 0.3244 0.2393 0.3156 0.1848 0.2677

Table 2. The table represents the effectiveness of our proposed
method under different settings on nuScenes and nuScenes-C. ”C”
denotes camera input. ”L” denotes lidar input. ”Explicit BEV”
means 3D detectors generate explicit BEV features. ”Temporal”
denotes whether utilizing multi frames. ”Depth” denotes whether
utilizing depth information. Bold fonts indicate the best results.

Model Modality Temporal Depth
Explicit

BEV Clean OoD Avg.

BEVFormer C ✓ ✓ 0.4362 0.3028
+FCVL(Ours) C ✓ ✓ 0.4375 0.3567

BEVDepth C ✓ ✓ 0.4028 0.2365
+FCVL(Ours) C ✓ ✓ 0.4050 0.2870

BEVDepth C ✓ ✓ ✓ 0.4828 0.4128
+FCVL(Ours) C ✓ ✓ ✓ 0.4827 0.4291

BEVDet C ✓ 0.3880 0.2017
+FCVL(Ours) C ✓ 0.3848 0.2677
Sparse4Dv3 C ✓ ✓ 0.5590 0.4431

+FCVL(Ours) C ✓ ✓ 0.5592 0.4492
BEVFusion L+C ✓ 0.7074 0.6865

+FCVL(Ours) L+C ✓ 0.7123 0.6948

fect of the Amplitude Transfer at feature level (#4). It can
be observed that enhancing at feature level alone can also
lead to great improvement. Then, we combine Frequency
Jitter and Amplitude Transfer (#5). Importantly, the com-
bination of image and feature levels augmentations yields
more significant performance gains. The image level aug-
mentation expands the data distribution first, while feature
level augmentation capitalizes on this augmented input to
derive fine-grained style variations, further enhancing repre-
sentation diversity. This hierarchical augmentation pipeline
increases domain diversity collectively, thereby enhancing
the model’s ability to generalize to unseen scenarios. At

Table 3. Comparison with baseline methods on Argoverse 2 based
on Far3D (Jiang et al., 2024). The table represents the results of
mAP ↑. ”Clean” denotes the in-domain set.

Model Clean City Cloudy OoD Avg.
Far3D 0.1964 0.1140 0.0800 0.0970

+CPerb 0.2044 0.1172 0.0820 0.0996
+DSU 0.2072 0.1352 0.0904 0.1128

+DAC-SC 0.1904 0.1152 0.0830 0.0991
+FACT 0.2052 0.1302 0.0898 0.1100

+FCVL(Ours) 0.2170 0.1610 0.1082 0.1346 (↑ 2.18%)

last, we add our Lcross in the training (#6). This further
enables the model to learn more domain-invariant features.
Notably, the consistency loss is not only beneficial for the
in-domain performance, but also boosts the out-of-domain
performance.

Effects of different inserted positions of Amplitude
Transfer We evaluate the impact of different inserted po-
sitions of Amplitude Transfer, as shown in Table 5. Inserted
position of ResNet is numbered as follows: after first Conv
0, after Max Pooling layer 1, after first Resblock 2, after
second Resblock 3, after third Resblock 4 and after fourth
Resblock 5, respectively. According to (Zhou et al., 2021),
Resblock 1 to Resblock 3 contain domain-related informa-
tion, which means domain-related information usually lies
in shallow layers. Thus, in our method, Amplitude Trans-
fer is inserted in Position 0-2. We make more experiments
by increasing Position 3-5 gradually to find more suitable
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(a) (b) (c)

+7.83% +5.87%

Figure 4. (a) The average detection results of different methods including eight OoD domains under three baseline frameworks. As is
shown, the proposed FCVL outperforms other methods with great margin on average. (b) Worst cases analysis. Our method has shown
significant improvement in the worst cases, Low Light and Snow. (c) Hyperparameters analysis of FHiAug. The strength of augmentation
η and λ for Frequency Jitter; the probability pi for Frequency Jitter and pf for Amplitude Transfer.

Table 4. Ablation Study on different components of FCVL on
BEVDepth (Li et al., 2023). Amp. denotes Amplitude. Amp.
Jitter means only jittering on amplitude component. Phase Jitter
means only jittering on phase component. Jittering on both is the
Frequency Jitter operated at image level. Amplitude Transfer is op-
erating at feature level. Lcross denotes consistency loss. ✓denotes
performing corresponding operation. Bold fonts indicate the best
results.

# Image Level Feature Level Lcross Clean OoD Avg.Amp. Jitter Phase Jitter Amp. Transfer
# 0 - - - - 0.4028 0.2365
# 1 ✓ - - - 0.4037 0.2735
# 2 - ✓ - - 0.4021 0.2690
# 3 ✓ ✓ - - 0.4037 0.2767
# 4 - - ✓ - 0.4022 0.2570
# 5 ✓ ✓ ✓ - 0.4004 0.2843
# 6 ✓ ✓ ✓ ✓ 0.4050 0.2870

positions. As shown in Table 5, in terms of in- and out- of
distribution performance, inserting Amplitude Transfer in
Position 0-3 achieves both the best performance.

Table 5. Effects of different inserted positions of Amplitude Trans-
fer. Inserted position of ResNet is numbered as: after first Conv 0,
after Max Pooling layer 1, after first Resblock 2, after second Res-
block 3, after third Resblock 4 and after fourth Resblock 5. ”0-5”
means inserting Amplitude Transfer from Position 0 to Position 5.

Model Clean OoD Avg.
BEVFormer 0.4362 0.3028

0-5 0.4404 0.3267
0-4 0.4393 0.3289
0-3 0.4421 0.3294
0-2 0.4404 0.3280

4.4. Hyperparameters Analysis

In Frequency Jitter, there are three hyper-parameters. The
hyperparameter η controls the strength of Amplitude aug-
mentation; λ controls the strength of Phase augmentation
and pi is the provability of implementing Frequency Jitter.
For Amplitude Transfer, we experiment on the probabil-
ity pf of implementing Amplitude Transfer. As shown in
Fig.4(c), initially, as the probability and intensity increase,

the out-of-domain performance gradually improves. After
reaching a certain level of probability and intensity, fur-
ther changes in the parameters will no longer cause drastic
changes in ood performance, indicating that the model is
stable against hyper-parameter misspecifications as long as
the hyper-parameters are within reasonable ranges. We set
η = 0.25, λ = 0.5, pi = 0.25 and pf = 0.75 as the final
setting.

The effect of Fourier Cross-View Semantic Consistency
Loss alone are shown in Table 6.

Table 6. The effect of Fourier Cross-View Semantic Consistency
Loss alone. γ is the weight of Lcross.

Model
Cam
Crash

Frame
Lost

Color
Quant

Motion
Blur Bright

Low
Light Fog Snow OoD Avg.

BEVDet 0.2508 0.1955 0.2409 0.2201 0.2591 0.1112 0.2633 0.0728 0.2017
γ = 0.5 0.2487 0.1942 0.2444 0.2132 0.2583 0.1328 0.2635 0.0641 0.2024
γ = 1.0 0.2501 0.1952 0.2785 0.2882 0.2890 0.1407 0.2807 0.1140 0.2296
γ = 2.0 0.2462 0.1932 0.2806 0.2863 0.2872 0.1340 0.2803 0.1147 0.2278

4.5. Efficiency Analysis

In this part, we make efficiency analysis to delve into the
proposed FCVL. We investigate how the method scales with
increasing image resolution and computational complex-
ity. The results are listed in Table 7. As it can seen, at
larger image scales, FCVL can still significantly improve
the model’s generalization performance. Though there will
be a slight increase in training time (+0.11s per training step)
during the training phase, as the proposed FCVL is only
used during the training phase, it introduces no latency in
inference phase. Without the need for more time-consuming
or costly data collections, the proposed FCVL can improve
the generalization performance almost for free, which is
highly valuable for practical applications.

4.6. Evaluation in Real-world Autonomous Driving
Scenarios

To further evaluate the performance of our algorithm in
practical application scenarios, we test our method in the
night with the model training on daylight samples only.
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Table 7. Efficiency analysis of FCVL. “Train” refers to the time it
takes for one training step when the batch size is 1. “Inference”
refers to the time for inferring a single sample. “Memory” is the
consumed GPU memory during training with batch size 1.

Model Resolution Train(s) Inference(s) Memory(MB) OoD Avg.
BEVDet 256 × 704 0.257 0.073 5498 0.2017
+FCVL 256 × 704 0.364 0.073 7383 0.2677(↑ 6.60%)
BEVDet 512 × 1408 0.482 0.143 11698 0.2006
+FCVL 512 × 1408 0.605 0.143 20094 0.2394(↑ 3.88%)

More results can be found in Appendix D.3. This example
in Fig.5 well demonstrates that our model can robustly deal
with rapid environmental changes, such as variations in
lighting conditions. As it can be seen, in the distance where
vehicles are dense and the lighting is very strong, the model
can stably detect the targets. Although the model has only
seen normal daylight samples, with our proposed FCVL,
it also performs well under the extreme changes in light
condition at night.

Figure 5. Visualized detection results of FCVL at night with light
variations. The model is trained on only daylight samples with the
proposed FCVL.

4.7. Visualization Analysis with t-SNE

We use t-SNE to visualize the BEV features from different
domains of BEVDet and FCVL. In the Fig.6, source domain
is represented in red and other colors represent different
target domains. We can find that the features of different
domains extracted from BEVDet are distant from each other
and loosely distributed in the feature space. While, after
optimization with FCVL, the distribution of four domains
becomes more compact and connected, which is in line with
augmentation graph theory. FCVL increases the augmenta-
tion graph connectivity between source and unseen domains
and improve the generalization a lot.

BEVDet BEVDet+FCVL

Source Domain

Figure 6. t-SNE Visualization of FCVL.

5. Conclusion
In conclusion, this paper addresses the challenge of Single
Domain Generalization in multi-camera 3D object detection
via Fourier Cross-View Learning framework. We propose a
non-parametric Fourier Hierarchical Augmentation at both
image and feature levels to enhance data diversity and Se-
mantic Consistency Loss to facilitate model to learn more
domain-invariant features from adjacent perspectives. Be-
sides, via augmentation graph theory, we make valid theoret-
ical guarantees. Extensive experiments have demonstrated
that our approach achieves the best performance across vari-
ous domain generalization methods.

Limitations There are several hyperparameters to be tuned
in FCVL. In the future work, we can explore additional
techniques to avoid spending too much time on tuning hy-
perparameters. Additionally, for Snow, we have already
improved by 10%, but the performance is still much worse
compared to the performance in other scenarios such as
Low Light. Consequently, there is a substantial potential for
enhancement in adverse weather conditions.
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A. Theoretical Analysis
To analyze the influence of data augmentation, we adopt the standard augmentation graph framework (HaoChen et al., 2021;
Wang et al., 2024), where data augmentations induce interactions (as edges) between training samples (as nodes). Given
a natural data sample x ∈ X , we use A(·|x) to denote the distribution of its augmentations. For any two augmented data
x, x′ ∈ X , define the adjacency matrix Wxx′ as the marginal probability of x and x′ from a random natural data x ∼ PX :

Wxx′ = Ex∼PX
[A(x|x)A(x′|x)]. (15)

Let L = I−D− 1
2WD− 1

2 be the normalized graph Laplacian matrix, where D is a diagonal degree matrix with the (x, x)-th
diagonal element as Dxx =

∑
x′ Wxx′ .

Based on the above augmentation graph framework, we construct the augmentation graph G(X ,X ,W ) in the feature space
for single source domain and augmented domains as shown in Fig.1(c). Then, we have the following theorem:

Theorem A.1. For the optimal encoder f∗, BEV projection module P ∗
BEV, a learned classification head C∗ and regression

head R∗ on augmented data X , its linear probing error has the following generalization upper bound,

E(f∗, P ∗
BEV, C

∗, R∗) ≤ 2α

λk+1
+ 4∆(yc, ŷc) + 4∆(yr, ŷr), (16)

where α denotes the labeling error caused by data augmentation; λk+1 denotes the k + 1-th smallest eigenvalue of
the Laplacian matrix L; ∆(yc, ŷc) denotes the average disagreement between ŷc and the ground-truth labeling yc for
classification; ∆(yr, ŷr) denotes the average disagreement between ŷr and the ground-truth labeling yr for regression.

Based on the generalization upper bound in Eq.16 (proof in AppendixA.1), we can provide rigorous explanations to show
that our method can increase graph connectivity λk+1 and reduce label error α to decrease the generalization loss.

First, as shown in Fig.1(c), as we can only get access to the single source data, the connectivity of the graph is poor and only
a few feature points are connected. There is a large margin between the source and target domains. The proposed FHiAug
plays a positive role in expanding graph connectivity λk+1, since it creates more diverse ”middle” domains between single
source data and unseen target domains. According to augmentation graph theory, with the increase of augmentation strength,
the graph connectivity λk+1 can be increased. Via increasing λk+1 in Eq.16, the generalization upper bound can be tighter
and the generalization ability can be improved.

However, common strong augmentation, such as strong geometric enhancement, also causes label error (larger α in Eq.16 )
and increases the generalization loss. The proposed FHiAug augmenting in the frequency domain can effectively alleviate
this issue. Next, we will provide a theoretical analysis and show that FHiAug can ensure semantic consistency under
strong augmentation strength to increase connectivity. As mentioned in Sec.3, input data X can be decomposed into two
components: phase Xp, and amplitude Xa, where Xp contains semantic information about the label y, denoting the causal
component, and Xa contains more low-level information, denoting the non-causal components.

Assumption A.2. We assume the linear relationship between Xp and y,

y = Xpϕ+ ϵ, (17)

where ϵ is the noise, Cov(Xp, ϵ) = 0, E[Xp] = 0.

Theorem A.3. If input data X consists of all the phase components, X = Xp, the optimal linear predictor ϕ can be
estimated without bias. Otherwise, the predictor ϕ is biased.

For some style transferring methods in pixel domain, both phase and amplitude components are modified. In this situation,
the predictor ϕ is biased, which means that the predictor probably gives wrong prediction of label. While the proposed
method FHiAug augments in the frequency domain and retains the phase congruency, avoiding label error effectively. At
image level, Frequency Jitter only adjusts the intensity of phase component in the global. The distribution of semantic
information is not changed. At feature level, we achieve style transfer with operating on amplitude component only. More
proof for Theorem A.3 is in Appendix A.2.
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A.1. Proof for TheoremA.1

Lemma A.4. Let G = (X ,W ) be the augmentation graph, r be the number of underlying classes. There exists an extended
labeling function ŷ such that

ϕŷ =
∑

x,x′∈X
Wxx′ · I[ŷ(x), ŷ(x′)] ≤ 2α. (18)

Lemma A.5. (Theorem B.3 (HaoChen et al., 2021)). Assume the set of augmented data X is finite. Let f∗ be the optimal
encoder. Then, for any labeling function ŷ : X ← [r], there exists a linear probe B∗ such that

Ex∼Px∼A(·|x)
= [∥y(x)−B∗f∗(x)∥22] ≤

ϕy

λk+1
+ 4∆(y, ŷ), (19)

where λk+1 denotes the k + 1-th smallest eigenvalue of the Laplacian matrix L; ∆(y, ŷ) denotes the average disagreement
between ŷ and the ground-truth labeling y.

According to above lemmas, for detection task, the optimal encoder f∗, BEV projection module P ∗
BEV, a learned classification

head C∗ and regression head R∗ on augmented data X , its linear probing error has the following generalization upper bound,

E(f∗, P ∗
BEV, C

∗, R∗) ≤ ϕyc

λk+1
+ 4∆(yc, ŷc) + 4∆(yr, ŷr)

≤ 2α

λk+1
+ 4∆(yc, ŷc) + 4∆(yr, ŷr),

(20)

where α denotes the labeling error caused by data augmentation; ∆(yc, ŷc) denotes the average disagreement between ŷc and
the ground-truth labeling yc for classification; ∆(yr, ŷr) denotes the average disagreement between ŷr and the ground-truth
labeling yr for regression.

A.2. Proof for TheoremA.3

The optimal linear predictor for y = Xpϕ+ ϵ is

ϕ∗ = argmin[(y −Xpϕ)
T (y −Xpϕ)] (21)

= (E[X T
p Xp])

−1E[X T
p y] (22)

= ϕ+ (E[X T
p Xp])

−1(E[X T
p y]−E[X T

p Xp]ϕ) (23)

= ϕ+ (E[X T
p Xp])

−1E[X T
p (y − ϕTXp)] (24)

= ϕ+ (E[X T
p Xp])

−1E[X T
p ϵ] (25)

= ϕ+ (E[X T
p Xp])

−1(E[X T
p ]E[ϵ] + Cov(Xp, ϵ)) (26)

= ϕ (27)

If input data X is deteriorated due to data augmentation in pixel domain, the phase components, Xp = Xp− , is no longer a
distribution with E[Xp− ] = 0. Then, the predictor ϕ is biased:

ϕ∗ = ϕ+ (E[X T
p−Xp− ])−1(E[X T

p− ]E[ϵ]) (28)

B. Algorithm
The algorithm of the proposed method is illustrated in 1.
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Algorithm 1 The proposed algorithm (FCVL)
Input: Training data (x, y), detector network f with parameter θ,learning rate β, probability pi to do Frequency Jitter ,
probability pf to do Amplitude Transfer.
Output: The optimized network parameter θ∗.

1: while t ≤ T do
2: # Fourier-based data augmentation at image level.
3: Sample p0 ∼ U(0, 1)
4: for (x, y) do
5: if p0 ≤ pi then
6: Perform Frequency Jitter according to Eq. 3.
7: Obtain augmented image x̂ according to Eq. 4.
8: else
9: x̂← x

10: end if
11: end for
12: # Fourier-based domain perturbation at feature level.
13: Sample p1 ∼ U(0, 1)
14: for intermediate features X do
15: if p1 ≤ pf then
16: Perform Amplitude Transfer according to Eq.6 - Eq.9.
17: Obtain perturbed features X̂ according to Eq.4.
18: else
19: X̂ ← X
20: end if
21: end for
22: #Cross-view Semantic Consistency Loss.
23: θ ← θ − β · ▽θLtrain((x̂, y), X̂; θ) ;
24: end while
25: return Save the optimized network f(θ∗).

C. More Analysis of Common Data Augmentation Techniques for Single Domain Generalization
In SDG for 2D image classification, previous works (Zhao et al., 2024; Qiao et al., 2020) aim to enhance data diversity using
common 2D data augmentation techniques, such as geometric transformations, style transfer, or data generation. However,
directly applying these approaches to BEV-based tasks introduces several challenges.

First, BEV representations are generated by projecting multi-view 2D features using real-world physical constraints, which
limits the use of strong geometric transformations, such as 270-degree rotations, as they would disrupt the spatial consistency
of the BEV space. We add a strong geometric enhancement experiment including significant rotation and translation
on the image and the results are as follows in the Table 8. For one thing, it shows that strong geometric enhancement
hurts in-domain performance, as large scale rotation or translation may destroy physical restraints in the real driving scenario.
For another, geometric enhancement is not very effective in improving OoD performance.

Table 8. Strong geometric enhancement experiments including significant rotation and translation on the images.

Model Clean
Cam
Crash

Frame
Lost

Color
Quant

Motion
Blur Bright

Low
Light Fog Snow OoD Avg.

BEVDet 0.3880 0.2508 0.1955 0.2409 0.2201 0.2591 0.1112 0.2633 0.0728 0.2017
strong geo 0.3505 0.2338 0.1875 0.2249 0.2030 0.2371 0.1188 0.2511 0.0639 0.1900

Second, some style transfer techniques (Zhao et al., 2024; Nuriel et al., 2021) replace the original image statistics with those
from the target style, but this often blurs the boundary between style and content (Lee et al., 2023), distorting important
features and ultimately harming model generalization. These methods need to remove the ”style” in the pixel domain first.
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Some content cues will be removed inevitably.

Third, data generation methods including adversarial generation and diffusion-based techniques. Training a Generative
Adversarial Network (GAN) (Goodfellow et al., 2020) involves a competitive process between two neural networks: the
generator and the discriminator. Adversarial generation can suffer from unstable training and mode collapse. It often requires
a lot of experiments and fine-tuning to get a GAN to work well. While diffusion-based techniques(Ho et al., 2020) are
more stable, they need significant computational and storage overhead, making them impractical for complex 3D detection
models. Additionally, although we can spend much time generating a large number of samples, we would also require extra
storage space. However, our method involves online augmentation and does not require any additional storage space.

Therefore, common 2D data augmentations cannot be effectively leveraged to create diverse training samples for BEV-based
tasks.

Besides, we further clarify the differences between our method and other frequency-domain approaches. Compared
with these methods(Xu et al., 2021; Lv et al., 2022; Kim et al., 2023), our method has major strengths in two aspects
including accuracy and efficiency. Firstly, in the setting of single source data, our proposed method can enhance the
generalization ability of the detectors by large margin. FACT (Xu et al., 2021) mixes up two different domains’ data in
frequency, e.g. Cartoon and Photo from dataset PACS and achieves great OOD performance in the paper. But when training
with only single domain, FACT can only mix the samples within the single domain and it indeed improves the in-domain
clean set a little, but the improvement of OOD sets is very slim in the single domain setting. Different from FACT, we
first propose Frequency Jitter at image level to create diverse samples that are complementary to the single source domain.
Then, at feature level, we introduce a novel method Amplitude Transfer to achieve style transfer without content distortion.
Through uncertainty estimation, we can obtain uncertain feature statistics, which can gradually shift the features to more
diverse domains through continuous training. Secondly, due to the high complexity of BEV-based 3D object detection
models, our plug-and-play and non-paramerter data augmentation method can achieve better generalization results more
efficiently. CIRL (Lv et al., 2022) generates augmented images by a causal intervention module with intervention upon
non-causal factors. AGFA (Kim et al., 2023) trains the classifier and the amplitude generator adversarially to synthesise
a worst-case domain for adaptation. Compared with these methods, our proposed method is simple, stable, yet effective
without extra module designing or special training strategies.

D. More Experimental Results
D.1. Datasets

To verify different methods’ single domain generalization ability, we first utilize nuScenes (Caesar et al., 2020) as the
single training source and nuScenes-C (Xie et al., 2023) as the testing sets. NuScenes-C is comprehensive dataset that
encompasses eight distinct corruptions, including Bright, Dark, Fog, Snow, Motion Blur, Color Quant, Camera Crash, and
Frame Lost. Each type of corruption has three different levels of corruption intensity (i.e., easy, moderate, and hard). These
eight corruptions include different weather conditions, different light conditions, potential equipment damage situations.
These scenarios are common out-of-distribution problems in real-world application. We use eight distinct corruptions as our
multi testing domains to evaluate the effectiveness of different DG methods.

In addition, we experiment on public dataset Argoverse 2 (Wilson et al., 2023). The Argoverse contains different driving
scenarios across six major U.S. cities (Miami, Washington D.C. and so on), including various weather conditions such
as sunny days and cloudy conditions. To adhere to the single domain to multi domain generalization paradigm, we take
sunny-day data from Miami as the single-domain training set, while sunny-day data from other cities (with diverse urban
road structures) as the first ood test set (City), and cloudy (dim lighting) data from other cities as the second ood test set
(Cloudy).

D.2. Experiments with Random Seed

In early experiments, we find that the effect of random seeds on BEVDepth or BEVFormer is relatively small. We run our
method FCVL three times on BEVDepth and the average NDS on clean testing set is 0.4004± 0.0002; the average NDS of
OoD sets is 0.2845± 0.0003. The standard deviation for three trials is 0.0002 or 0.0003, which means the method is quite
robust to different seeds. Thus, in later experiments, we run our method with random seed.
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D.3. Evaluation in Practical Application Scenarios

To further evaluate the performance of our algorithm in practical application scenarios, we collect a large dataset consisting
of sunny daytime and nighttime. We train the detection model with our method on 61716 samples of sunny daytime and test
on daytime (6169) and night (8200) samples. More results can be found in Table 9. Notably, on the night testing set, FCVL
can improve the mAP from 0.0420 to 0.1004(↑ 5.84%).

Table 9. Evaluation results (mAP ↑) in the real-world autonomous driving scenarios.

Model Daytime Night
Baseline 0.2690 0.0420

+FCVL(Ours) 0.2687 0.1004(↑ 5.84%)

E. Visualization Analysis
E.1. Visualization of Proposed FHiAug

In this section, we visualize diverse styles generated via FHiAug. Visualization of Frequency Jitter at image level and
visualization of style variations via Amplitude Transfer are shown in Fig.7, 8 and 9. To better illustrate the phase component,
we provide more examples of changing phase components in Fig.10.

Figure 7. Frequency Jitter at image level. The top line is adjusting the amplitude. It mainly influence the image brightness. The bottom
line is adjusting the phase. As it can been, main structures of different targets have been retained.

Figure 8. Amplitude Transfer at feature level. The left cols are original pictures. The other two cols are styled pictures.
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Figure 9. Visualized results of FHiAug. For the same image, via FHiAug, we can generate multiple samples, which can facilitate the
model to learn more domain invariant feature.

Figure 10. The sample on the top right is the image reconstructed with the phase only. As it can be seen, the phase components mainly
contain the semantic information. The images in the bottom show how the image changing when adjusting the strength of phase
components only. The image after the phase changing is similar to dirty lenses and weather changes in real world, still preserving key
BEV prediction information.

E.2. More Visualized Detection Results

Notably, FCVL greatly improves the performance for Snow. We visualize some detection results of these samples to
compare the performance between baseline models and FCVL in Fig.11. Under the condition of Snow, baseline model
misses detecting the small targets severely, while FCVL can greatly alleviate the problem of missing detection. Compared
with CPerb, FCVL still shows more stable and more accurate localization and recognition ability.
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Figure 11. Visualized detection results of baseline and FCVL from Snow set.

Figure 12. Visualized detection results of baseline and FCVL on Argoverse 2.
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