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Abstract

Breakthroughs of Large Language Models (LLMs) have rekindled hopes for1

broadly capable artificial intelligence (i.e., Artificial General Intelligence (AGI)).2

Yet, these models still exhibit notable limitations – particularly in deductive rea-3

soning and efficient skill acquisition. In contrast, neuro-symbolic approaches can4

exhibit more robust generalization across diverse tasks, as they integrate sub-5

symbolic pattern extraction with explicit logical structures. In this position paper,6

we go a step further and dissect generalizing systems into six pillars: well-defined7

model specificity, (human) capability encoding, dynamic knowledge acquisition8

& transfer, meaningful representations, abstraction & hierarchies, as well as the9

synergy effects resulting from component interactions. Based on historical and10

contemporary Artificial Intelligence (AI) approaches, we conclude that such a11

multi-component implementation strategy is necessary for efficient general intelli-12

gence. Our position is reinforced by the latest performance gains on the Abstraction13

and Reasoning Corpus (ARC) generalization benchmark.14

1 Introduction15

Across decades of progress, research on “artificial intelligence” has often centered on narrow tasks16

and small leaps in computational automation, without necessarily pursuing robust, human-like17

intelligence. This changed with the rise of large neural networks – models that excel in pattern18

extraction and display intriguing emergent capacities [Bubeck et al., 2023]. Yet, while these black-19

box approaches are remarkable in many respects, they also suffer from opaque decision-making20

processes and often exhibit only local forms of generalization. They thus provide limited insights21

into the core mechanisms underlying flexible, human-level intelligence.22

Motivated by these gaps, an increasing number of researchers suggest incorporating symbolic23

reasoning into deep learning pipelines, giving rise to neuro-symbolic approaches [d’Avila Garcez24

and Lamb, 2023, Keber et al., 2024]. By preserving the neural model’s strengths in statistical25

pattern recognition and combining them with symbolic structures that allow for compositional logic,26

explainable decisions, and interpretability, neuro-symbolic methods promise broader skill-acquisition27

efficiency, deeper semantic understanding, and safer real-world deployment [Hernández-Orallo, 2020,28

Hassija et al., 2024].29

However, merely layering symbolic modules on top of neural back-ends does not automatically confer30

general intelligence. To foster meaningful progress, we must first define (1) the gist of (artificial)31

intelligence, especially in terms of skill acquisition efficiency, then pinpoint how best to evaluate (1)32

a model’s capacity to abstract knowledge from sparse data and adapt to novel tasks. On this basis,33

we evaluate predominant research directions, such as Large Reasoning Models (LRMs) and neuro-34
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symbolic approaches (2). We derive our position that a novel, multi-component implementation35

strategy is necessary for efficient general intelligence. Our core contribution is the identification of36

six different fundamental pillars for achieving efficient generalization (3); (3.1 ) Model Specificity,37

(3.2) (Human) Capability Encoding, (3.3) Meaningful Representations, (3.5) Knowledge Acquisition38

& Transfer, (3.4) Abstractions & Hierarchies, and (3.6) Multi-Component Synergy. We conclude39

with implications for future research directions and practical system design (4).40

Defining Intelligence as Skill-Acquisition Efficiency Despite centuries of study, intelligence41

remains notoriously difficult to define comprehensively [Legg and Hutter, 2007]. We adopt the42

formulation by Chollet [2019] that views the intelligence of a system as “a measure of its skill-43

acquisition efficiency over a scope of tasks, with respect to priors, experience, and generalization44

difficulty.” This perspective shifts attention from raw performance on a single task to the ability to45

learn new tasks under constraints – such as limited data, novel transformations, or minimal prior46

knowledge.47

An agent that extracts greater competence (skills, insights, etc.) from identical training conditions is48

inherently more efficient at acquiring skills. In evolution, this efficiency holds an inherent advantage.49

Most modern intelligence tests are based on the related concepts of fluid and crystallized intelligence.50

Figure 3 from [Chollet, 2019] visualizes this information conversion ratio from situational to opera-51

tional space nicely. All other factors (e.g., prior knowledge, curriculum size, development efforts52

(e.g., inductive bias), training time & strategy, intrinsic task difficulty) should be controlled for to53

isolate the system’s skill-acquisition efficiency. Even the competence a developer (or the development54

process) (un)consciously puts into the model (e.g., by hyperparameter choice) shall be accounted for55

to get a clean measure of the system’s own skill-acquisition efficiency. For more on “developer-aware”56

generalization see Appendix B.57

Of course, this intelligence definition has shortcomings but we believe1 that it is currently the most58

complete and correct notion of intelligence we have, which is applicable to humans as well as59

machines. A consequence of this perspective is that skill-acquisition efficiency is at the heart of60

what sets “general” intelligence apart from specialized or over-engineered solutions [Bober-Irizar and61

Banerjee, 2024]. Hence, if the field’s ambition is true general intelligence – rather than a proliferation62

of specialized or heavily handcrafted solutions – then adopting metrics and methods highlighting63

skill-acquisition efficiency becomes indispensable. This, in turn, requires reliable ways to evaluate64

how well a model performs under low-data, unseen, or compositional scenarios – where brute-force65

training or naive memorization is infeasible.66

Benchmarking for Generality Skill-acquisition efficiency, i.e., the amount of competence gained67

from a fixed amount of data or experience, should be evaluated independently of a system’s final68

performance. The prior knowledge of a system matters as it gives a head start on performance. Tradi-69

tional benchmarks often conflate performance with the data or developer-engineered interventions70

needed to achieve it. Here is where the ARC comes in; it tries to isolate and measure a system’s71

inherent learning efficiency [Chollet, 2019]. The ARC benchmarks (currently in version ARC-AGI-172

and ARC-AGI-2) consist of small, diverse puzzles that test “core knowledge” concepts like spatial73

manipulation, color/object transformations, or compositional logic [Moskvichev et al., 2023]. Besides74

their simple format/setting, the crucial challenge is that no task is like the other, and the test set75

contains tasks that are unseen during training. The point of ARC is to force the model to learn the76

least common denominator of all scenarios, meaning that it needs to generalize over and flexibly77

operate on the underlying geometric concepts. This requires some form of generalization capability78

over a set of problems, making the benchmark robust against performance saturation by large, curated79

datasets.80

Despite being straightforward for humans, ARC tasks have proven unexpectedly difficult for compu-81

tational models, with only about half the tasks consistently solved on the private ARC-AGI-1 test set82

[Bober-Irizar and Banerjee, 2024, ARC Prize, 2024]. This difficulty emerges precisely because ARC83

demands abstract generalization over a minimal set of examples, thwarting superficial shortcuts.84

While ARC is not a perfect proxy for all human-level reasoning, it remains a valuable gauge of85

small-data adaptability, creative knowledge transfer, and flexible problem solving. The many caveats86

of ARC-AGI-1 were partially resolved in ARC-AGI-2 [Chollet, 2019, ARC Prize, 2025c]. As this87

second iteration exists only for a few months and not many custom approaches for this iteration exist88

1For more detailed arguments, please see chapters I and II of Chollet [2019]
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yet, we will primarily focus on ARC-AGI-1 in this paper. Nevertheless, the setting and therefore the89

conclusions are similar for ARC-AGI-2. In what follows, we leverage ARC as a testbed to motivate90

why efficient generalization requires multi-component integration. For more details on limits,91

alternatives and why we still choose ARC, see Appendix D.92

2 Alternative Views93

To the best of our knowledge, there is currently no real alternative view focused on efficient generaliza-94

tion. However, the next closest approaches might be (a) Extended LLMs (2.1) as a not-so-efficient95

but generalizing method, and (b) Neuro-Symbolic methods (2.2) as an efficient but not generality-96

focused approach.97

2.1 Extended Large Language Models98

Transformers and LLMs have undeniably exhibited broad emergent capabilities, including surprising99

generalization and few-shot reasoning, across multiple domains [Bubeck et al., 2023, Webb et al.,100

2023]. When extended with techniques like chain-of-thought prompting and test-time fine-tuning, they101

can perform competitively even on ARC [Greenblatt, 2024a, Berman, 2024, ARC Prize, 2025a]. With102

resource-heavy test-time optimization, models like GPT-4 and Sonnet 3.5 achieve up to 87.5% on103

ARC-AGI-1, leading many to view LLMs as the foundation for future general-purpose AI[ARC Prize,104

2025a].105

Strengths of LLMs. Modern LLMs exhibit several key strengths. Pre-training on Massive106

Corpora allows for extensive self-supervised learning on diverse text sources. This way, LLMs107

acquire a wealth of representations, effectively consolidating and covering wide-ranging knowledge108

[Bubeck et al., 2023]. Flexible Transfer of Knowledge can be applied to handle various downstream109

tasks (including non-linguistic tasks expressed in language) with minimal fine-tuning, thanks to110

in-context learning, powerful embedding spaces, and diverse test-time strategies [Dong et al., 2023,111

Berman, 2024]. Emergent Reasoning Behaviors can be elicited through prompting strategies such112

as chain-of-thought or retrieval augmented generation. Such reasoning-like procedures within LLMs113

often improve the performance on complex tasks [Webb et al., 2023].114

Challenges and Limitations. Despite impressive benchmark results, LLMs still exhibit significant115

hurdles regarding efficient generalization:116

1. Opaque and Brittle Emergence: The extent to which LLMs can perform genuine abstract117

reasoning (versus pattern matching) remains an open debate [Valmeekam et al., 2023,118

Kaddour et al., 2023, Dziri et al., 2023, Lewis and Mitchell, 2024, Wang et al., 2024a, Lotfi119

et al., 2024, Schuurmans et al., 2024, ARC Prize, 2025f]. Their “emergent” abilities can120

be unreliable, hard to interpret, and domain-specific [Bober-Irizar and Banerjee, 2024].121

For example, on ARC-AGI-1, the best performing LLMs achieve up to 87.5% but on122

ARC-AGI-2 only 4%, while humans consistently reach 100% [ARC Prize, 2025d].123

2. Data-Hungry and Costly: Training large-scale transformers demands massive, human-124

generated corpora – and some fear we are reaching the upper limit of high-quality data125

for further scaling this approach [Sutskever, 2024]. In addition, fine-tuning and extensive126

resource-intensive test-time synthesis methods are expensive (money and time) [Sachdeva127

et al., 2024, Greenblatt, 2024a, Berman, 2024]. For example, on ARC-AGI-1, the amount128

of solved tasks scales logarithmically with the inference compute at test time [ARC Prize,129

2025a]. For o3 to reach 75.7% on the semi-private ARC-AGI-1, $20 and 13.8 minutes130

per task were necessary. To obtain 87.5%, roughly $3400 and 3.7 hours2 were reported131

[ARC Prize, 2025e]. In comparison, an average human STEM graduate reaches 98%132

requiring $10 [ARC Prize, 2025d]. For further discussion on scaling efficiency, see Appendix133

H.3.134

3. Developer vs. Model Intelligence: Many LLM-based successes rely heavily on engineered135

prompting and human-coded heuristics. The latest ARC-AGI-1 results reveal that while136

LLM-based approaches can outperform other methods on the public benchmark, they do so137

through massive prompt engineering [Greenblatt, 2024a, Berman, 2024]. Thus, high-level138

performance may reflect developer-centric3 skill more than an intrinsic model capacity for139

2Corrected for 173 times more compute compared to low setting
3Definition see Appendix B
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generalization [Chollet, 2019, Dong et al., 2023, Yu et al., 2023, Bober-Irizar and Banerjee,140

2024].141

4. Lack of Transparency: Unlike modular designs, LLMs encode reasoning steps in vast142

weight matrices, limiting interpretability. This black-box nature impedes deeper analysis143

of the reasoning process and complicates improvements targeted at genuine compositional144

intelligence [Garcez and Lamb, 2023]. For more details, see Appendix A.145

Conclusion for LLMs. Even though LLMs are powerful in practice, they do not generalize146

efficiently. Mahowald et al. [2024] draw parallels to the human brain’s specialized “language areas,”147

cautioning that forcing a language-dominant model to cover abstract non-linguistic tasks may be148

fundamentally inefficient. We cannot know yet if the continuing trend of extending purely neural149

LLMs with fancy strategies like Chain of Thought (CoT), In-Context Learning (ICL), Retrieval150

Augmented Generation (RAG), test-time compute, etc., will make them ultimately more efficient at151

generalization. This inefficiency might very well be fundamental, but we nevertheless encourage the152

continuing efforts to embed LLMs into neuro-symbolic frameworks. For a more detailed discussion,153

see Appendix H.3 and C.154

2.2 Neuro-Symbolic Strategies155

The term neuro-symbolic (sometimes abbreviated NeSy) can encompass a wide variety of hybrid156

architectures and learning strategies. While the specific mechanisms vary, the core idea is to marry157

symbolic structures (e.g., logic programs, Domain-Specific Languages (DSLs), knowledge graphs)158

with neural components (e.g., deep networks or learned embeddings) [Hitzler et al., 2022, Garcez and159

Lamb, 2023, Keber et al., 2024]. These two paradigms clearly complement each other [Bober-Irizar160

and Banerjee, 2024], already hinting at the potential of neuro-symbolic methods to tackle a broader161

range of tasks than each paradigm alone [Bober-Irizar and Banerjee, 2024, Chollet et al., 2025].162

As multiple works have already surveyed the general advantages and disadvantages of neuro-symbolic163

approaches in depth [Hamilton et al., 2022, Hitzler et al., 2022, Garcez and Lamb, 2023, Keber et al.,164

2024, Bhuyan et al., 2024], we will not reiterate these existing arguments. Instead, we focus here165

on the key aspects relevant for generalization. Nevertheless, for completeness, we provide a brief166

discussion of symbolic approaches in Appendix G.167

Relevance in LLMs Methods like chain-of-thought prompting and structured reasoning graphs168

already incorporate neuro-symbolic principles [Hitzler et al., 2022]. These techniques wrap neural169

transformers in symbolic scaffolding [Yu et al., 2023], improving performance across tasks. Examples170

include tree-of-thought [Yao et al., 2023] and graph-based reasoning [Besta et al., 2024]. Xu et al.171

[2024] demonstrate how such logical orchestration around LLM calls enhances reliability on diverse172

tasks. Consequently, also on ARC-AGI-1, the top LLM-based approaches incorporate symbolic173

heuristics to stabilize generalization [Franzen et al., 2024, Barbadillo, 2024, Chollet et al., 2025].174

Advantages and Successes In recent years, researchers have increasingly aimed to harness the175

advantages of combining neural and symbolic paradigms[Hitzler et al., 2022, Garcez and Lamb,176

2023]. That this strategy is fruitful could be shown by some first successes like the neuro-symbolic177

theorem prover AlphaGeometry [Trinh et al., 2024]. Also, the most recent ARC-AGI-1 findings178

[Chollet et al., 2025] show that neuro-symbolic approaches are a promising route to generalization.179

A clear illustration is Bober-Irizar and Banerjee [2024], who build upon a DSL-based ARC solver by180

adding learnable “concept formation” components, significantly boosting efficiency and success rates.181

Hybrid models can learn abstract concepts more compactly, leveraging both (i) a neural module to182

handle noisy or high-dimensional inputs and (ii) a symbolic module to enforce logical coherence and183

compositional reasoning. This synergy is particularly relevant in low-data tasks like ARC, where184

purely neural systems often overfit, and purely symbolic systems lack robust inductive priors. Table 3185

in Appendix F summarizes a few representative state-of-the-art neuro-symbolic approaches that have186

been shown to be effective for generalization in ARC-like tasks.187

Challenges and Limitations While recent work has demonstrated promising gains on ARC188

[Moskvichev et al., 2023, Chollet et al., 2025, Bober-Irizar and Banerjee, 2024], open challenges189

remain – most notably:190

1. Exploding Search Spaces. Combining symbolic search with neural heuristics can mitigate191

the worst-case combinatorial complexity explosion, but designing these heuristics remains192

nontrivial [Bober-Irizar and Banerjee, 2024].193
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2. Balancing Data Efficiency and Model Complexity. For example, ARC tasks demand194

strong reasoning from minimal examples, stressing the importance of balanced architectures195

that do not over-parameterize [Moskvichev et al., 2023].196

3. Dynamic Concept Formation. Handling ever-evolving domains requires neuro-symbolic197

methods that can learn new concepts dynamically rather than rely solely on a hard-coded198

DSL [Bober-Irizar and Banerjee, 2024].199

4. Underspecified methodology. To the best of our knowledge, there is very little standardized200

methodology in the field of neuro-symbolic AI research. We are still searching for a201

consensus on the most effective ways to combine neural and symbolic approaches [Feldstein202

et al., 2024].203

5. Limited Focus on Generalization. The promise of neuro-symbolic integration is as204

significant as it is unspecific. Combining the two major AI research paradigms of the last 80205

years will open many possibilities; efficient generalization might be one of them, but not the206

prime focus of the strategy [Garcez and Lamb, 2023, Bhuyan et al., 2024].207

Conclusion for Neuro-Symbolic Approaches Though the obstacles mentioned above are signifi-208

cant, the ability of neuro-symbolic methods to unify inductive and deductive reasoning is an especially209

potent strength – analogous to “System 1” vs. “System 2” thinking in human cognition [Kahneman,210

2011, Garcez and Lamb, 2023]. As computational and data constraints grow more relevant, this211

marriage of neural and symbolic approaches will likely become unavoidable for efficient models.212

Unfortunately, the field of neuro-symbolic AI research is still in its infancy, quite underspecified213

regarding concrete methodology and not particularly focused on generalization, rendering it not214

particularly helpful for advances on skill-acquisition efficiency [Garcez and Lamb, 2023, Feldstein215

et al., 2024, Bhuyan et al., 2024].216

2.3 Closing Remark217

In summary, LLM-focused approaches can demonstrate remarkable capabilities but often rely on218

extensive engineering, computational resources, and data, with limited inherent interpretability and219

skill-acquisition efficiency. Neuro-symbolic methods stand at the intersection of statistical learning220

and explicit symbolic reasoning, promising synergy effects far beyond what either paradigm can221

achieve alone. They might be the most promising previously known route to efficient, transparent222

generalization. However, they only hint at the power of multi-concept integration and are underspecific223

when it comes to efficient generalization.224

3 Pillars of Efficient Generalization225

Based on historical examples, recent approaches, and models designed for the ARC benchmark, we226

propose that the following fundamental pillars are indispensable for attaining efficient generalization.227

A key insight of our work is the interrelation between these pillars, which we highlight by referencing228

connections between pillars using section references. For an overview, see Figure 1.229

3.1 Model Specificity230

Currently, we are unable to produce efficient models for general intelligence. For example, extended231

LLMs (see Section 2.1) generalize over a broad range of tasks but possess low skill-acquisition232

efficiency when accounting for all relevant factors (see Section 1). When hitting the practical limits233

of transformer scalability, the research community is forced to increase skill-acquisition efficiency to234

further improve generalization. The latest developments regarding reasoning models underpin this235

observation [DeepSeek-AI et al., 2025, Ballon et al., 2025].236

We argue that the process should be the other way around: first achieving high skill-acquisition237

efficiency over a limited scope, which later needs to be extended, instead of aiming for low skill-238

acquisition efficiency over a broad scope, and later increasing the skill-acquisition efficiency. Conse-239

quently, a pillar for efficient generalization is properly fitting the model to the given scope. There are240

many steps in between narrow task-specific AI and open-ended AGI. We advocate for climbing this241

ladder slowly but thoroughly, aiming for high skill-acquisition ability always and only increasing the242

domain size (and difficulty).243

For instance, in ARC, there is a defined set of known “core knowledge” priors (e.g. shape manipula-244

tion, counting, etc.), from which tasks are constructed. The puzzles seem relatively simple, but the245
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Figure 1: Conceptual illustration of the six pillars for efficient generalization. Blue: Components
of a generalizing model. Green: Human development components. Yellow: Environment and Data.
Oval shapes: Entities. Bold: Pillars (Knowledge Acquisition and Transfer separated for clarity).
Explanation: The overall scope of the model, data, development is dictated by the Model Specificity
(3.1). The Developer (or development process) is responsible for encoding (Human) Capabili-
ties (3.2) into the model as well as preselecting data. The data is represented using Meaningful
Representations (3.3). The model uses Abstractions & Hierarchies (3.4) to work at appropriate
levels of granularity. On this basis, the model extracts knowledge and competences (3.5) which
are reiterated over (transfer and recombination). Finally, all components of the model and the
development process create Multi-Component Synergy Effects (3.6) that contribute to the model’s
skill level. The skill determines the action the model takes in a novel situation (which is determined
by the environment). The situation will return some feedback signal, which is interpreted as new
data. Based on this environment reaction, the model updates its inner states, improves its skill
and (hopefully) generalizes to the underlying task. The (interactive) cycle between model action,
environment reaction, model update and skill improvement is where we observe skill-acquisition
efficiency in the end.

enormous flexibility of conceptual instantiations and recombination makes ARC hard to generalize246

over [Chollet, 2019, Ellis et al., 2020]. Efficiently solving this sub-challenge of intelligence allows for247

concentrating development efforts on generalization while preventing runaway complexity [Chollet248

et al., 2025].249

By narrowing the domain, models can incorporate strong assumptions or exhaustive knowledge about250

that domain, yielding deeper generalization within the scope (at the expense of versatility). Here, lies251

a strong connection with the no free lunch theorem we discuss more extensively in the Appendix H.4.252

Takeaway: A targeted model scope, with sufficient coverage of relevant key primitives yet focused253

capabilities, yields a broad solution space while still being feasible and tractable.254

3.2 (Human) Capability Encoding255

(Human) Capability Encoding focuses on how human competence can be injected into a system256

(e.g., via curated datasets, architectural biases, or manual hyperparameter tuning). It addresses what257

competences are pre-loaded into a model before training. Symbolic frameworks are predetermined258
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to incorporate human knowledge, but usually in a very rigid way, killing adaptability. For more259

details on generalization in symbolic systems, see appendix G. An illustrative example of how little260

generalization performance might be achieved despite extensive human knowledge encoding pose261

the top solutions to the initial ARC challenge in 2020 [icecuber, 2020, de Miquel, 2020, Larchenko,262

2020].263

Consequently, it is crucial to carefully focus on abstract processes (3.4), instead of hard-coding264

low-level solutions, when encoding human capabilities into a model. The idea is that the expensive265

extraction of high-level concepts from low-level data (3.5, 3.4) can partially be avoided making266

the overall systems significantly more efficient. Especially when it comes to absolute truths, such267

as moral (alignment), we do not want to learn from scratch, nor do we want a statistical modeling.268

Ellis et al. [2020, p 18] emphasizes that “rich systems of built-in knowledge” radically accelerate269

learning – a stance aligning with the principle that broad competence arises from fundamental,270

composable operators. For ARC-AGI-1 Xu et al. [2023a] showcases how rigid function definitions271

can be generalized by defining process-level abstractions (e.g. “move(object, vector)”), resulting in272

reusability across countless tasks as well as a significant reduction in search space.273

Takeaway: Injecting abstract human expertise (concept-level rather than solution-level) boosts data274

efficiency and encourages flexible reuse.275

3.3 Meaningful Representations276

Meaningful Representations are the internal model of reality; they define the complexity and structure277

of the system’s “world model”, whether continuous embeddings or discrete symbols. They can278

be engineered (e.g., ontological graphs) or emerge purely data-driven (e.g., embedding spaces).279

Representation spaces influence how the environment is perceived and processed, ultimately shaping280

what abstractions and inferences are possible. While subject to capability encoding and abstractions,281

they are a distinct aspect/pillar of a system.282

Representational design profoundly shapes a system’s ability to generalize. While neural embeddings283

capture latent structure, they can be overly broad for specialized tasks like ARC (3.1) [Garcez and284

Lamb, 2023, Skean et al., 2024]. On the other hand, graph- or object-centric representations can285

simplify the model’s action space. For example, Xu et al. [2023a] demonstrate how a simple shift from286

pixel based representations to object based representations can reduce search complexity by factor 10287

while simultaneously increasing model interpretability. In contrast to abstraction capabilities (3.4),288

which are more processing-focused, meaningful representation spaces reflect the model’s perspectives289

on the world (i.e., world model) [Huh et al., 2024, Barbadillo, 2024].290

Takeaway: Accurately aligning representations with the natural granularity of the domain maintains291

computational efficiency while setting a meaningful scope for the model.292

3.4 Abstractions and Hierarchies293

Abstractions and hierarchies define the ability to transform raw input into progressively more concep-294

tual representations by discarding irrelevant details. For example, a convolutional neural network,295

hierarchically abstracts raw pixels into high-level semantic features. This allows to process initially296

different input as similar at a higher level, which is central for generalization. The system recognizes297

structurally similar scenarios and might transfer learned skills more readily (3.5). Latest in with298

AlexNet, the significance of this approach became apparent as it was able to more robustly generalize299

over their respective image classification tasks [Alom et al., 2018]. This flexibility is a distinct300

phenomenon from merely encoding a competence (3.2) or having a fitting internal representation301

(3.3). Layered abstractions are foundational to both human cognition and deep-network architectures302

[LeCun et al., 1989, Riesenhuber and Poggio, 1999, Grill-Spector and Malach, 2004, Krizhevsky303

et al., 2017]. In the ARC-AGI-1 context, moving from pixel-level to object- or pattern-level opera-304

tions delivers major efficiency improvements [Xu et al., 2023a,b]. Each abstracted layer or module305

discards noisy details, accentuating shared structures across tasks while bolstering interpretability.306

Takeaway: Hierarchical design combines low-level perception and high-level logic, enabling com-307

positional reasoning and meaningful explanations/representations.308

3.5 Knowledge Acquisition, Transfer, and Combination309

No matter how thorough the initial capability encoding, novel situations inevitably appear. Thus, an310

intelligent system must learn fresh concepts during training, convert them into something useful, and311
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recombine them spontaneously at inference time [Chollet, 2019]. It is debatable whether knowledge312

acquisition (how to get it) and knowledge transfer (how to use it) shall be considered two distinct313

pillars. Nevertheless, classical machine learning, primarily focuses on this pillar and has achieved314

major success so far.315

Knowledge acquisition from data is fundamental for a generalizing system. A prerequisite are316

usually comprehensive training algorithms and fitting model architectures with sufficient capacity.317

Illustrative examples of the usefulness of knowledge acquisition is Transfer learning; for instance, a318

neural network pre-trained on a large dataset (like ImageNet or Wikipedia text) can be fine-tuned on a319

smaller target task, leveraging learned features or language understanding generalizing with less data320

[Weiss et al., 2016]. Also, multi-task learning utilizing shared representations (3.3) was shown to321

speed up the learning process [Zhang and Yang, 2018]. Multimodal LLMs follow a similar paradigm322

and are demonstrably applicable to many tasks/domains [Wang et al., 2024b]. Likewise, the field of323

meta-learning heavily relies on extracting useful information from the given data to generalize to new324

situations [Vettoruzzo et al., 2024].325

The difference between knowledge acquisition and transfer is often fluid. However, Knowledge326

transfer from one domain to another is more involved; it requires systems to refine existing knowledge327

into concepts which are also useful on unseen tasks. The dependence on abstractions (3.4) is328

apparent, as non-abstracted knowledge is usually too situation-specific to be transferable. Knowledge329

transfer and recombination might happen during training as well as at inference time. For example,330

DreamCoder’s “sleep-wake” cycle continuously refines a library of existing abstractions (dynamic331

concept synthesis) to transfer abstracted knowledge onto novel situations [Ellis et al., 2020]. Bober-332

Irizar and Banerjee [2024] demonstrates how DreamCoder can be adapted for successfully handling333

diverse ARC puzzles based on different underlying concepts. These approaches are primarily focused334

on transfer during training, not inference.335

A good example for knowledge recombination during inference (as re-training/fine-tuning is too336

expensive) are LLM-based approaches. On ARC-AGI-1, test-time fine-tuning (Test-Time Fine-337

Tuning (TTFT)) has proven an essential tool for high-performing LLM-based models [Akyürek et al.,338

2024, Chollet et al., 2025]. The highest performing ARC-AGI-1 solution so far relies heavily on339

TTFT [ARC Prize, 2025a].340

Takeaway: Flexible generalization arises from continual concept formation plus dynamic adaptation341

at test time.342

3.6 Multi-Component Synergy Effects343

Although some concepts are more critical, other “side problems” like uncertainty handling, and344

capability encoding are equally significant for broad-scope generalization [Bhuyan et al., 2024].345

Many advanced methods overlook at least one dimension (e.g. using trivial transformations or346

underpowered representations), losing potential flexibility [Franzen et al., 2024, Berman, 2024]. In347

contrast, a systematic approach addresses each sub-component fostering powerful synergy effects348

between them [Garcez and Lamb, 2023].349

A classical example is AlphaZero that uses a combination of Monte Carlo Tree Search (MCTS), a350

neural network, and a DSL to achieve superhuman performance in chess, shogi, and Go [Silver et al.,351

2017]. It achieves this by synergizing pillars: it uses a deep neural network to represent game states352

(3.3) and learn policies/value functions via self-play (3.5), but it also integrates an MCTS planner353

(3.4) and a capability encoding (3.2) in form of hard-coded rules of the game. The result is a system354

that acquires superhuman skill over multiple board games without extensively prepared training data,355

human expert data or handcrafted evaluations [Silver et al., 2017, McGrath et al., 2022].356

On ARC, Bober-Irizar and Banerjee [2024] utilize a DreamCoder-inspired neuro-symbolic approach357

that significantly outperforms naive DSL search by leveraging richer learned representations (3.3)358

and heuristics (3.5). It integrates a symbolic program synthesis over a ARC-specific (3.1) domain359

specific language (3.2). Over-time it recognizes via a neural recognition model (3.3), usefull terms it360

abstracts (3.4) and adds to its knowledge base ()3.5) [Bober-Irizar and Banerjee, 2024, Ellis et al.,361

2020].362

Takeaway: By holistically optimizing each component in the system, one transcends individual363

contributions and achieves system-wide synergy, enabling more capable and efficient generalization.364
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3.7 Concluding Remarks on the Pillars365

Although these pillars are inherently interrelated, each highlights a distinct mechanism supporting366

or constraining a system’s competence to generalize over novel tasks. Collectively, the six pillars367

constitute the blueprint for efficient generalization. When each is addressed deliberately and woven368

together cohesively, the resulting system achieves far more than either paradigm alone. We posit,369

therefore, that fully engaging these pillars is indispensable for the next leap in data-efficient, developer-370

aware, potentially interpretable, and efficient general AI.371

4 Conclusion372

In this position paper, we have argued that efficient generalization requires the deliberate integration373

of six fundamental pillars (see section 3). Our analysis of historical and contemporary AI approaches374

indicates that the pillars are not merely optional enhancements but crucial components for achieving375

skill-acquisition efficiency. Most promising approaches to generalization already implicitly optimize376

for these pillars to varying degrees. By making this framework explicit, we provide researchers with377

a conceptual design principle for developing more efficient generalizing systems. On this basis, we378

propose three priority research directions to advance efficient generalization:379

• Holistic Generalization Benchmarking: More comprehensive test suites to systematically380

measure how effective systems implement all six pillars and convert their capacities into381

synergistic skill-acquisition. ARC-AGI-style benchmarks go a first step, but cannot con-382

trol (yet) for crucial confounding factors like data augmentation (undermining low-data383

constraints), training effort (e.g., compute, time, grokking, etc.) or developer competence384

leakage (inflating system-centric capabilities). Besides operating conditions (cost, time,385

compute), there is no analysis of how models arrive at a conclusion/output. Additionally,386

real-world-focused datasets will be necessary to demonstrate practical applicability and387

foster adoption beyond academic contexts.388

• Pillar-Aware Architecture Design: Create modular architectures with explicit interfaces389

between components representing different pillars/concepts, allowing researchers to system-390

atically study their interactions. If we want to measure the quality of our pillars, we need to391

concretely distinguish and collect metrics on them.392

• Harvesting Synergy Effects: Develop methods to analyze and track the dynamic sharing393

of information across pillars. We might not be able to understand the complex interactions394

within the human brain, but for artificial systems we have a chance at understanding how395

their pillars interrelate and the synergy effects emerge, enabling us to leverage synergies396

more effectively during both training and inference.397

We also found that the pillars must be developed in concert, as their interplay and synergy effects are398

what enable systems to generalize efficiently across diverse tasks with minimal data and developer399

engineering. While individual pillars have been researched in isolation, systems optimizing only for400

one or two dimensions inevitably fall short of robust generalization. This explains why purely neural401

or purely symbolic approaches – and even many current neuro-symbolic systems – struggle with402

efficient skill acquisition. At least for neuro-symbolic approaches, it has already been acknowledged403

that proper modular integration is crucial yet technically daunting [Garcez and Lamb, 2023, Chollet404

et al., 2025]. Similar to neuro-symbolic AI, where the individual components are not novel in405

isolation (neural networks, symbolic approaches), our pillars are not fundamentally new either.406

However, acknowledging the significance of their interconnection and the resulting effects offers a407

fresh lens on the essence of generalization. This also connects to the modular-yet-highly-integrated408

functional organization of the human brain, where specialized modules work in concert to create409

flexible cognition [Kahneman, 2011]. To our knowledge, no prior work has systematically mapped410

these six pillars or argued for their collective necessity in enabling true skill-acquisition efficiency.411

This six-pillar approach offers a systematic way to evaluate and enhance existing architectures while412

guiding the development of novel ones.413

We urge the research community to shift focus from monolithic approaches or partial implementations414

toward comprehensive architectures that deliberately integrate the pillars. While developing such415

systems presents significant engineering challenges, we believe this path offers the most promising416

route to achieving truly efficient general intelligence – systems that, in the long run, can flexibly adapt417

to novel situations with minimal resources while potentially remaining transparent, interpretable, and418

reliable.419
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A Behaviorism vs. Internalism802

A longstanding philosophical debate pertains to whether only external behavior matters (behaviorism)803

or whether the internal mechanisms of thought carry essential explanatory value (internalism). In804

contemporary machine learning, this tension appears as “functionality vs. interpretability” or “black-805

box vs. transparent systems.” High-performing but opaque models – like many Large Language806

Models – demonstrate that achieving sophisticated outputs does not necessarily illuminate the process807

by which the model reasons [Hernández-Orallo, 2020, Schlangen, 2021].808

As these systems are deployed in sensitive or high-stakes environments, interpretability and control809

become paramount [Hassija et al., 2024]. Post-hoc explanations often provide only a partial window810

into massive parameter spaces, leaving significant uncertainties about why a particular decision was811

reached [Kenny et al., 2021, Slack et al., 2021, Leemann et al., 2023, Rong et al., 2023]. By contrast,812

inherent model transparency – via symbolic modules, meaningful structured interfaces, or modular813

architectures – can yield more reliable comprehension of internal processes, facilitate debugging,814

and bolster trustworthiness. Consequently, we argue that internalist considerations should shape the815

development of any model that aspires to broader, more systematic intelligence.816

B Developer-Aware Generalization817

Even when a model attains notable performance on a suite of tasks, it is crucial to distinguish between818

intrinsic generalization and engineered solutions.819

Many recent successes hinge on massive data curation, architectural tuning, or manual injection820

of priors – leading to impressive system-centric results, but not necessarily reflecting a model’s821

capacity to autonomously learn how to solve unseen tasks. A “developer-aware”4 perspective on822

skill acquisition controls for these extra-human interventions [Chollet, 2019]. In contrast, a developer-823

centric measure includes both the developer’s competence as well as the model’s competence.824

Without this distinction, higher benchmark scores might be misinterpreted as an increase in the825

system’s general intelligence, while instead, only the development process was optimized (e.g., more826

optimal hyperparameters do not make the model design more fitting, but the performance improves).827

This even applies to generality-focused benchmarks such as the Abstraction and Reasoning Corpus.828

C LLM’s worth for understanding intelligence829

The LLMs mentioned in Section 2.1 are even less suitable as an academic research framework for830

understanding the mechanisms behind generalization, which are as unresolved as they are crucial.831

Large data combined with sufficient computing resources can brute force solutions, but they do832

not illuminate the core processes underlying abstract reasoning. For those interested in deeper833

interpretability, explainability, or developer-aware skill acquisition, neuro-symbolic integration might834

be indispensable.835

D ARC-AGI limitations and alternative benchmarks836

Relying heavily on the ARC benchmark(s) often appears limiting; therefore, we will shortly discuss837

prominent limitations, how other popular benchmarks compare, and why we still conclude that ARC838

is the best choice.839

D.1 Limitation: Visual Data840

A known caveat of ARC is that it “only” tests for geometric problem solving via image data.841

This potentially puts heavily text-oriented models at a disadvantage. Transformers are indeed very842

sensitive to the input/output prompting of ARC-style tasks [Greenblatt, 2024b]. Fortunately, the trend843

of foundation models goes towards more modality agnostic models (i.e., multi-modal models) [Li844

et al., 2024, Wang et al., 2024b]. Especially given the the platonic representation hypothesis by Huh845

4As defined by Chollet [2019] p. 10: “Developer-aware generalization: this is the ability of a system [...], to
handle situations that neither the system nor the developer of the system has encountered before.” Further, “Note
that ’developer-aware generalization’ accounts for any prior knowledge that the developer of the system has
injected into it.”
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et al. [2024], the concrete modality of data will lose its relevance for highly capable/universal models,846

making the visual nature of ARC tasks irrelevant in the future.847

D.2 Limitation: Too artificial and not real-world enough848

ARC is often perceived as overly structured or “toy-like.” We argue this is not a limitation but849

a hallmark of isolating the gist of a problem. ARC specifically tests for generalization while850

minimizing all other factors. This does not mean that crucial properties are missing; for example,851

there exist multiple ARC tasks specifically focused on ambiguity and noise removal.852

In our opinion, “real-world” data does not have any additional properties relevant for generalization.853

Similarly, Adam et al. [2019] came to the conclusion that the complexity of real-world tasks is highly854

overestimated and the prevalent meta-structure in real data is heavily underestimated.855

Furthermore, unspecified noise may obscure whether a model genuinely generalizes or simply856

leverages massive data, shortcuts, or pattern memorization. ARC helps evaluate generalization in a857

controlled setting, offering valuable insights before tackling noisy real-world environments. Given858

the early research stage of skill-acquisition-focused approaches, an overly unstructured setting is859

counterproductive for progress.860

Furthermore, we believe that researchers unfamiliar with ARC tend to significantly overestimate861

the structure in the actual ARC challenge. Between tasks, there is no structural similarity, resulting862

in a lack of invariants between tasks (except the underlying geometric rules). If there were easily863

exploitable structural patterns across ARC tasks, traditional neural networks and feature extractors864

would work significantly better on ARC, but they do not. Consequently, on ARC-AGI-2, even LRMs865

have major issues improving beyond a single-digit performance count [ARC Prize, 2025c].866

While practical deployment requires large-scale integration, lessons from ARC can inform real-867

world contexts where robust, data-efficient learning is critical. Consequently, the insights gained on868

ARC are also valuable for the real world. Implementing them in real-world systems is primarily an869

engineering challenge (and not the scope of this position paper).870

D.3 Alternatives871

ARC is not the only dataset targeting higher-level reasoning, but it is the only one that explicitly872

stresses skill-acquisition efficiency. For completeness’ sake, we want to give some details on why873

other, popular “reasoning” benchmarks are less suitable regarding efficient skill acquisition. Table 1874

provides an overview of the most prominent alternatives (selection is not exhaustive and potentially875

subjective).876

Benchmark Core Skill Tested Efficiency Gap

ARC Geometric problem solving, abstract reason-
ing

Explicitly designed to measure skill-
acquisition efficiency. On ARC-AGI-2,
Humans: 98%, LLMs : <4% [ARC Prize,
2025d]

BIG-Bench Mixed reasoning, code, riddles Many-shot CoT sampling lets models brute-
force via scale [Srivastava et al., 2023]

MMLU Broad domain knowledge Scores dominated by pre-training, not in-task
learning [Hendrycks et al., 2021]

SciEval Dynamic STEM QA Unlimited query passes hide inference com-
pute cost [Sun et al., 2024]

GPQA Expert closed-book retrieval Measures “knows,” not “learns”; retrieval >
abstraction [Rein et al., 2023]

Table 1: Popular reasoning benchmarks versus skill-acquisition efficiency. Each still rewards brute-
force scale or developer engineering, obscuring the cost–competence ratio that ARC measures.

We shortly describe each benchmark and where we think they are lacking:877

• BIG-Bench (Beyond the Imitation Game Benchmark), is a collaborative benchmark with878

200+ tasks such as code debugging, riddles, and obscure language translation. It is supposed879

to test robustness to ambiguity and compositional reasoning through diverse challenges880

requiring logic, creativity, and cross-domain knowledge transfer [Srivastava et al., 2023].881
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It includes many complex reasoning tasks and even “challenge” tasks beyond current AI,882

some of which require reasoning steps or creative generalization, testing flexibility to an883

extent. However, models are evaluated in a zero- or few-shot prompt setting, and many884

tasks still correlate with knowledge or patterns seen in training. Indeed, tasks with a large885

knowledge component show gradual improvement as model size increases (suggesting886

pattern-learning), whereas truly novel multi-step reasoning tasks remain unsolved until887

models hit a scale “breakthrough” point. In short, BIG-Bench does probe generalization,888

but it does not uniformly enforce learning new skills – some tasks can be partially solved by889

pattern matching or sheer pre-trained knowledge [Srivastava et al., 2023].890

• MMLU (Massive Multitask Language Understanding), covers 57 subjects across STEM,891

humanities, and social sciences to assess broad knowledge application. It is supposed to892

measure how models generalize across disciplines rather than excelling at narrow tasks893

[Hendrycks et al., 2021]. MMLU is knowledge-centric and less focused on new skill learning.894

It primarily measures factual knowledge and some reasoning acquired from large-scale895

training. There is little focus on adapting to novel tasks as questions resemble those in896

textbooks or exams. Strong model performance often comes from more training data or897

model parameters, not on-the-fly abstraction. Additionally, MMLU seems to suffer from898

dataset quality and transparency issues [Gema et al., 2024].899

• SciEval (Scientific Evaluation Benchmark), uses dynamically generated questions in physics,900

chemistry, and biology to prevent memorization. Models shall demonstrate genuine scientific901

reasoning, with GPT-4’s accuracy dropping from 65% to 26% when tested on novel dynamic902

data [Sun et al., 2024]. It is valuable for assessing in-depth reasoning in science, requiring903

models to apply scientific knowledge and logic rather than just memorize answers. The904

inclusion of dynamically generated problems means models face some novel content,905

revealing whether they can reason beyond rote memory (GPT-4 still has “substantial room906

for improvement” on these dynamic questions [Sun et al., 2024]). However, SciEval is907

limited to the scientific domain – it measures generalization within science (e.g., applying908

known principles in new ways) more than general skill acquisition across arbitrary tasks.909

Models are not learning entirely new kinds of tasks; they are answering science questions910

(albeit challenging ones) using prior scientific knowledge. This is a test of expertise and911

reasoning depth, but not learning to learn broadly outside the science context [Sun et al.,912

2024].913

• GPQA (Graduate-Level Google-Proof QA), features 448 expert-level multiple-choice ques-914

tions in biology, physics, and chemistry where internet access provides minimal human915

performance gains (34% vs 25% baseline). This benchmark tests for deep conceptual916

understanding rather than information retrieval capabilities [Rein et al., 2023]. It specifi-917

cally targets questions that demand (in humans) complex reasoning or deep understanding,918

beyond simple fact recall. It highlights the gap between human experts and AI on truly hard919

questions. In terms of skill acquisition, though, GPQA remains a static question benchmark.920

The model is not asked to learn a new skill; it is challenged to apply its existing high-level921

knowledge in novel, intricate ways. Failing GPQA often means the AI lacks the necessary922

combined knowledge or reasoning chain, rather than failing to learn from small data (since923

no new training is given). Thus, GPQA is excellent for stress-testing an AI’s reasoning924

within known domains, but it does not evaluate the process of rapidly learning an entirely925

new type of task or concept [Rein et al., 2023].926

Most benchmarks assume that some aspect of human intelligence is required to perform well on the927

given dataset, simply because humans would require intelligence to solve it. A theoretical foundation928

for such assumptions is usually lacking. Historically, chess was also once considered a real-world929

intelligence benchmark as humans require a diverse repertoire of skills to solve it (tactics, reasoning,930

planning, means-end analysis, theory of mind, deception, etc.) [Newell, 1973]. However, it later931

became obvious that a naive tree-search method - lacking all signs of intelligence - is perfectly932

capable of solving chess. We are therefore cautious not to overestimate the value of “established”933

benchmarks of intelligent agents that do not have an explicit grounding regarding skill-acquisition934

efficiency.935

To cite the ARC foundation themselves (ARC Prize [2025c]):936

All other AI benchmarks focus on superhuman capabilities or specialized knowl-937

edge by testing ’PhD++’ skills. ARC-AGI is the only benchmark that takes the938

opposite design choice – by focusing on tasks that are relatively easy for humans,939
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yet hard, or impossible, for AI, we shine a spotlight on capability gaps that do not940

spontaneously emerge from “scaling up”.941

As Chollet [2019] substantiated ARC with an extensive theory of how to measure generalization, we942

find the ARC challenge to be much more valuable for progress on AGI than any currently existing943

“real-world” benchmark. Of course, we are aware that this claim is up for discussion and remains to944

be proven right or wrong with time.945

D.4 Conclusion946

ARC it is one of the few benchmarks explicitly designed to minimize statistical shortcuts and em-947

phasize skill-acquisition efficiency. By removing extraneous noise and avoiding easily exploitable948

patterns, ARC isolates how effectively a model can acquire and transfer skills from limited experience.949

Pinpointing and measuring skill acquisition efficiency is central to generalization (see 1) and a key950

research question in itself. To the best of our knowledge, ARC is the most relevant benchmark951

regarding this notion of generalization, which is why it’s our priority.952

While ARC is not perfect, it provides an environment to observe the interplay of multiple factors953

(architectural choices, knowledge priors, hierarchical abstractions, etc.), providing an ideal testbed954

for novel generalization approaches, fostering progress.955

E Dimensions for designing models956

Certain system properties (e.g., transparency or interpretability) are not strictly required for a model957

to generalize well on some tasks. However, as discussed in Section A, one should focus beyond958

mere performance. To offer design guidance for more robust, reliable, and maintainable systems we959

provide guardrails for the developmental process in Table 2. These are suggested design principles960

rather than mandatory criteria.961

Table 2: Key Dimensions for Designing Models with Broad Generalization
Dimension Importance for General Intelligence Representative

Works
Skill-Acquisition Efficiency Emphasizes how well a system adapts to new tasks with-

out extensive retraining; penalizes overreliance on devel-
oper engineering or huge datasets.

Chollet [2019],
Bober-Irizar and
Banerjee [2024]

Transparency & Interpretability Strengthens trust and debugging; post-hoc explanations
are often insufficient for large black-box models. Inher-
ent transparency is crucial for real-world reliability.

Hernández-Orallo
[2020], Hassija et al.
[2024]

Symbolic Reasoning Allows compositional, logically coherent transforma-
tions. Fosters human-level abstraction and provides ro-
bust handling of discrete structures.

d’Avila Garcez and
Lamb [2023], Keber
et al. [2024]

Neural Representations Harnesses powerful pattern-extraction capabilities from
raw data (images, text), enabling feature discovery and
capturing nuanced correlations.

Bubeck et al. [2023]

Small-Data Adaptation Avoids brute-forcing solutions by demanding strong gen-
eralization from very few examples (as in ARC tasks),
exposing true abstraction capabilities.

Moskvichev et al.
[2023], Chollet et al.
[2025]

F Representative Neuro-Symbolic Approaches962

Table 3 summarizes representative state-of-the-art neuro-symbolic approaches that have been shown963

to be effective for generalization in ARC-like tasks.964

G Purely Symbolic Approaches: Domain-Specific Languages and Program965

Synthesis966

Although overshadowed by neural methods in recent years, purely symbolic or logic-based AI once967

dominated AI research and retains a devoted following Kastner and Hong [1984]. To provide an968

overview of their limitations for current generalization challenges we analyze them in context of969
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Table 3: Representative Neuro-Symbolic Approaches for Generalization in ARC-like Tasks
Approach Neural Component Symbolic Compo-

nent
Key Mechanism & Insights

Bober-Irizar
& Banerjee
(2024) [Bober-
Irizar and Banerjee,
2024]

Learned concept-
formation module
(e.g., CNN-like em-
beddings to identify
object features)

DSL-based program
search for transforma-
tions

Uses neural heuristics to guide symbolic
search, significantly reducing the DSL’s
combinatorial explosion. Demonstrates no-
table gains on ARC tasks versus purely
symbolic baselines.

DreamCoder [Ellis
et al., 2020]

Neural “wake-sleep”
cycle that learns com-
mon subroutines or
concepts

Inductive program
synthesis in a high-
level language (with
control-flow, recur-
sion)

Iteratively refines a library of reusable func-
tions – symbolic abstractions – guided by
neural scoring. DreamCoder is not specifi-
cally designed for ARC but illustrates how
learned domain knowledge can be symboli-
cally encoded.

Neuro-Symbolic
DSL Enhancements
(various) [Hamilton
et al., 2022, Hitzler
et al., 2022, Garcez
and Lamb, 2023,
Bhuyan et al., 2024]

Neural embeddings
for object detection,
classification, or spa-
tial feature extraction

Logic-based DSL or
ontology enforcing
compositional rules

General family of hybrid methods: neural
modules handle perceptual tasks or fuzzy
matches, while symbolic DSL enforces
interpretability and constraint satisfaction.
Shown to improve data-efficiency and inter-
pretability on small “grid-world” or ARC-
like puzzles.

ARC-AGI-1. Within the ARC domain, the most visible symbolic attempts revolve around exhaustive970

search in a Domain-Specific Language (DSL) or program-synthesis methods such as DreamCoder971

Ellis et al. [2020].972

DSL-Based Methods. Early top-ranked solutions in the original ARC challenge relied on large,973

hand-crafted DSLs icecuber [2020], de Miquel [2020], Larchenko [2020]. By systematically searching974

over a predefined set of transformations and heuristics, these approaches found valid transformations975

for specific puzzles. However, these DSL-based methods achieved only modest coverage due to976

the combinatorial explosion of possible transformations and the diversity of ARC tasks. They also977

demanded extensive human engineering to hard-code each concept, undermining developer-aware978

generalization measures Bober-Irizar and Banerjee [2024].979

Program Synthesis Approaches. Program-synthesis frameworks like DreamCoder Ellis et al.980

[2020] extend the DSL idea with higher-level constructs (e.g., control-flow operators, recursion).981

While this unlocks greater expressiveness, it can also inflate the search space. Adapting a fully982

general programming language for ARC tasks becomes cumbersome because ARC-AGI-1 is already983

quite challenging without further increasing the solution space Bober-Irizar and Banerjee [2024].984

Symbolic Drawbacks. While symbolic approaches can offer strong interpretability (one can often985

track each logical step explicitly), they typically struggle to infer abstract “core concepts” from986

limited data without some learned inductive biases. Their purely top-down logic has trouble coping987

with the noisy, high-dimensional input distributions where data-driven feature extraction is crucial.988

Additionally, naive symbolic search tends to be fragile in the face of tasks requiring approximate or989

probabilistic reasoning. A ubiquitous problem of symbolic approaches - even outside of ARC - is the990

above-mentioned complexity explosion, making scalability to real-world settings often infeasible991

[Garcez and Lamb, 2023].992

Conclusion Historically, purely symbolic solutions have rarely scaled well across diverse tasks993

and have difficulty encoding robust priors for low-data settings Kastner and Hong [1984], Ellis et al.994

[2020]. Conversely, the golden era of symbolic AI faded in the late 1980s, giving way to sub-symbolic995

(neural) approaches. Still, the ARC challenge confirms that exhaustive or highly engineered symbolic996

DSLs rapidly reach diminishing returns. Hence, purely symbolic approaches, while valuable for997

interpretability and logic, alone are still insufficient for broad or efficient generalization.998

The limitations that once suffocated symbolic AI – such as brittle rule systems or exponential999

search complexity – can be mitigated by modern neural advances and computing power Mira [2008].1000

However, those hybrid, neuro-symbolic approaches go beyond what we consider purely symbolic.1001
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H Frequently Asked Questions1002

H.1 General Paper Structure and Approach1003

Your paper reads like a survey, are you sure it’s a position paper? Yes. We intentionally include1004

numerous references to prior literature as necessary grounding for our claims. Much research about1005

AGI is (highly) speculative. Therefore, we carefully selected many different sources to substantiate1006

our claims. Nevertheless, we are not only stating previous developments, but also distill a structured1007

perspective on how to possibly achieve efficient generalization, which we would like the research1008

community to consider more intensively.1009

This is just a general description of desiderata. Why is it so vague? We take a meta-level1010

perspective, aiming to shift focus toward systematically addressing six core components (see Section1011

3) of generalization. We aim to articulate a conceptual framework of guardrails and design guidelines1012

relevant for achieving robust skill-acquisition and generalization. Concrete work implementing1013

multiple pillars to varying degrees already exists. Therefore, our motivation is to guide researchers1014

toward systematically and consciously using these components to enable synergy effects resulting1015

in effective generalization. Our paper shall broaden the conversation from “LLMs vs. Neuro-1016

Symbolic” to “How do we achieve efficient generalization, and what is essential to that end?”. We1017

contribute a mindset shift for the research community (research direction), not concrete experimental1018

results/insights.1019

Consequently, it is up to the ML community to further conceive, test, and refine systems specifically1020

focused on these pillars. We provide a design paradigm that must be instantiated and therefore do not1021

provide extensive algorithmic details, which would be more appropriate for a concrete research-track1022

paper.1023

Why focus on ARC when it’s just a visual reasoning benchmark? We address this more extensively1024

in Appendix D. In short, ARC is not merely a visual reasoning benchmark but a carefully designed1025

test for generalization capability that minimizes statistical shortcuts and emphasizes skill-acquisition1026

efficiency. The visual modality is incidental, not central – what matters is the benchmark’s ability to1027

isolate generalization from other confounding factors. With the trend toward more modality-agnostic1028

models and the Platonic Representation Hypothesis [Huh et al., 2024], the specific modality becomes1029

increasingly irrelevant for highly capable models anyway.1030

H.2 Six Pillars Framework1031

How do your six pillars differ from neuro-symbolic frameworks? While neuro-symbolic ap-1032

proaches typically focus on combining neural and symbolic components, our six-pillar framework1033

takes a more comprehensive view. Existing frameworks tend to emphasize the neural-symbolic1034

integration itself, whereas our pillars address multiple orthogonal aspects of generalization: from1035

model specificity and (human) capability encoding to meaningful representation spaces and abstract1036

hierarchies. Most of the pillars can be implemented either in a purely neuronal or purely symbolic1037

way (even if that does not make much sense in practice).1038

Our framework also explicitly highlights the synergy effects between these components in terms of1039

skill-acquisition efficiency rather than just performance or capability, prioritizing generalization from1040

minimal data and experience.1041

What concrete evidence supports the necessity of all six pillars? The need for all six pillars1042

is supported by analyzing the limitations of current approaches that excel in some areas but fail1043

in others. For instance, purely neural approaches lack compositional reasoning (addressed by1044

Multi-Component Synergy), while purely symbolic methods struggle with meaningful representation1045

learning and adaptation (addressed by Knowledge Acquisition & Transfer). The success of approaches1046

incorporating multiple pillars, such as the neuro-symbolic method by Bober-Irizar and Banerjee1047

[2024], provides empirical evidence for their collective importance. However, to the best of our1048

knowledge, no single system has yet fully optimized all six pillars simultaneously, which represents a1049

key research frontier. Each pillar addresses distinct failure modes observed in existing AI systems1050

when confronted with generalization challenges.1051

How do you measure “efficiency” in skill acquisition? We adopt the framework proposed by1052

Chollet [2019], where efficiency is measured as the ratio between the competence gained and the1053

resources required. Specifically, we consider: (1) data efficiency – how much performance is achieved1054

from minimal examples; (2) computational efficiency – the processing resources needed during both1055
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training and inference; (3) developer effort – controlling for human engineering in the system design;1056

and (4) transfer capacity – how well skills learned in one context apply to novel scenarios. That1057

the ARC benchmark (organizers) cannot control all the relevant factors (i.e., data augmentation,1058

developer effort, training compute) is an open issue/limitation, which - however - applies to most1059

benchmarks.1060

In an optimal world, an efficient system would solve novel ARC tasks with minimal resources while1061

a less efficient system (like current LLMs) might achieve similar performance but at vastly greater1062

computational or data costs. Chollet [2019] also proposed some formalisms how to calculate the1063

skill-aquisition efficiency and mathematically correct for confounding factors (see Section II.2.2 of1064

[Chollet, 2019]).1065

H.3 LLMs and Scaling1066

For AGI, why don’t we just use LLMs, and make them more powerful? You already suggested1067

extending LLMs with symbolic scaffolding to improve their lack of reasoning. You can do that,1068

and you will probably also get something that looks like AGI at some point. But that has not much to1069

do with skill-acquisition efficiency. Making these approaches more efficient afterwards might be very1070

hard, so we suggest we start with efficiently generalizing systems first and steadily expand the scope.1071

We will make LLMs more efficient at some point. Computers were also building-sized and1072

now are small. Maybe you can increase the efficiency of a LLM-based system by the same order of1073

magnitude as hardware improves (see Moore’s law). But maybe we cannot, as there might be more1074

fundamental issues. We will see with time. In the meantime, our position paper proposes a parallel1075

research direction that is inherently focused on generality by design from the start.1076

As a reference, until ARC-AGI-1 could be solved with near-human performance, it required Large1077

Reasoning Models. These models are currently at a low two-digit percentage on ARC-AGI-21078

[ARC Prize, 2025c,b]. It will take some time (and effort) to crack ARC-AGI-2, not even mentioning1079

ARC-AGI-3, which is also on its way [ARC Prize, 2025c]. This being said; ARC only tackles1080

relatively straightforward geometric problems; there is no significant increase in domain/concept1081

coverage between these increments of the ARC challenge, only the required adaptability and efficiency1082

increases.1083

H.4 Generalization1084

There are indications that large, unspecific models are actually very good at generalization.1085

Why then focus on the “model specificity” pillar? Researchers like Goldblum et al. [2024] have1086

indeed observed that LLMs (or more generally, “overparameterized” neural networks) do not tend1087

to overfit as much as originally thought but rather generalize over topics. However, they also claim1088

that this effect is related to the low Kolmogorov complexity of real-world data. They therefore1089

argue (and we agree) that currently, the no free lunch theorems have little relevance for SoTA LLMs.1090

Acknowledging that LLMs work and generalize does not make them efficient at doing so. So this1091

does not help us much for skill-acquisition efficiency. Datasets like ARC, which are precisely focused1092

on skill acquisition efficiency, do not possess the same low complexity/flexibility as real-world data.1093

As a consequence, custom under-specific ARC solvers have a much harder time performing on ARC1094

tasks. We therefore think that efficient generalization indeed is scope-dependent, making the no free1095

lunch theorems relevant again.1096

On that note: human intelligence is not universal either. We are relatively optimized/specialized1097

for the specific physical world we live in. The concept of universal general intelligence exists, and1098

humanity is pretty far away from it [Everitt and Hutter, 2018].1099
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