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Abstract

Training even moderately-sized generative models with differentially-private stochastic gradient
descent (DP-SGD) is difficult: the required level of noise for reasonable levels of privacy is simply
too large. We advocate instead building off a good, relevant representation on an informative public
dataset, then learning to model the private data with that representation. In particular, we minimize
the maximum mean discrepancy (MMD) between private target data and a generator’s distribution,
using a kernel based on perceptual features learned from a public dataset. With the MMD, we can
simply privatize the data-dependent term once and for all, rather than introducing noise at each step
of optimization as in DP-SGD. Our algorithm allows us to generate CIFAR10-level images with
ϵ ≈ 2 which capture distinctive features in the distribution, far surpassing the current state of the art,
which mostly focuses on datasets such as MNIST and FashionMNIST at a large ϵ ≈ 10. Our work
introduces simple yet powerful foundations for reducing the gap between private and non-private deep
generative models. Our code is available at https://github.com/ParkLabML/DP-MEPF.1

1 INTRODUCTION

The gold standard privacy notion, differential privacy (DP), is now ubiquitous in a diverse range of academic research,
industry products (Apple, 2017), and even government databases (National Conference of State Legislatures, 2021). DP
provides a mathematically provable privacy guarantee, which is its main strength and reason for its popularity. DP even
offers means of tracking the effect of multiple accesses to the same data on it’s overall privacy level, but with each
access, the privacy of the data gradually degrades. To guarantee a high level of privacy, one thus needs to limit access to
data, a challenge in applying DP with the usual iterative optimization algorithms used in machine learning.

Differentially private data generation solves this problem by creating a synthetic dataset that is similar to the private
dataset, in terms of some chosen similarity metric. While producing such a synthetic dataset incurs a privacy loss,
the resulting dataset can be used repeatedly without further loss of privacy. Classical approaches, however, typically
assume a certain class of pre-specified purposes on how the synthetic data can be used (Mohammed et al., 2011; Xiao
et al., 2010; Hardt et al., 2012; Zhu et al., 2017). If data analysts use the data for other tasks outside these pre-specified
purposes, the theoretical guarantees on its utility are lost.

1This is a revision of the first published version which contained erroneous FID scores. Please refer to this paper’s OpenReview page for a
clarification of our errors and the older version.
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To produce synthetic data usable for potentially any purpose, many papers on DP data generation have utilized the
recent advances in deep generative modelling. The majority of these approaches are based on the generative adversarial
network (GAN; Goodfellow et al., 2014) framework, where a discriminator and a generator play an adversarial game
to optimize a given distance metric between the true and synthetic data distributions. Most approaches under this
framework have used DP-SGD (Abadi et al., 2016), where the gradients of the discriminator (which compares generated
samples to private data) are privatized in each training step, resulting in a high overall privacy loss (Park et al., 2017;
Torkzadehmahani et al., 2019; Yoon et al., 2019; Xie et al., 2018; Frigerio et al., 2019). Another challenge is that, as
the gradients must have bounded norm to derive the DP guarantee, the amount of noise for privatization in DP-SGD
increases proportionally to the dimension of the discriminator. Hence, these methods are typically bound to relatively
small discriminators, limiting the ability to learn data distributions beyond, say, MNIST (LeCun & Cortes, 2010) or
FashionMNIST (Xiao et al., 2017).

Given these challenges, the heavy machinery such as GANs and large-scale auto-encoder-based methods – capable of
generating complex datasets in a non-private setting – fails to model datasets such as CIFAR-10 (Krizhevsky, 2009) or
CelebA (Liu et al., 2015) with a meaningful privacy guarantee (e.g., ϵ ≈ 2). Typical deep generative modeling papers
have moved well beyond these datasets, but to the best of our knowledge, currently there is no DP data generation
method that can produce reliable samples at a reasonable privacy level.

How can we reduce this huge gap between the performance of non-private deep generative models and that of private
counterparts? We argue that we can narrow this gap by using the abundant resource of public data, in line with the core
message of Tramèr & Boneh (2021): We simply need better features for differentially private learning. While Tramèr &
Boneh demonstrated this in the context of DP classification, we aim to show the applicability of this reasoning for the
more challenging problem of DP data generation, with a focus on high-dimensional image generation.

We propose to exploit public data to learn perceptual features (PFs) from public data, which we will use to compare
synthetic and real data distributions. Following dos Santos et al. (2019), we use “perceptual features” to mean the
vector of all activations of a pretrained deep network for a given data point, e.g. the hundreds of thousands of hidden
activations from applying a trained deep classifier to an image. Building on dos Santos et al. (2019), who use PFs
for transfer learning in natural image generation, our goal is to improve the quality of natural images generated with
differential privacy constraints.

We construct a kernel on images using these powerful PFs, then train a generator by minimizing the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) between distributions (as in Harder et al., 2021; Li et al., 2015; Dziugaite
et al., 2015; dos Santos et al., 2019). This scheme is non-adversarial, leading to simpler and more stable optimization;
moreover, it allows us to privatize the mean embedding of the private dataset once, using it at each step of generator
training without incurring cumulative privacy losses.

We observe in our experiments that as long as the public data contains more complex patterns than private data, e.g.,
transferring the knowledge learned from ImageNet as public data to generate CIFAR-10 images as private data, the
learned features from public data are useful enough to generate good synthetic data. We successfully generate reasonable
samples for CIFAR-10, CelebA, MNIST, and FashionMNIST in high-privacy regimes. We also theoretically analyze
the effect of privatizing our loss function, helping understand the privacy-accuracy trade-offs in our method.

The main point of our paper is that features from public data are a key tool for improved DP data generation, a point
we think our experiments make resoundingly; this may be “obvious”, but has not been explored for image generation.
Our proposed method, in particular, is a simple (which, we think, is a good thing) initial technique exploiting this idea,
which outperforms simple pretraining of DP-GAN and DP-Sinkhorn (see Section 6). We hope this work will inspire
future work on other ways to use public features for improving image generation with differential privacy.

2 BACKGROUND

We provide background information on maximum mean discrepancy and differential privacy.

Maximum Mean Discrepancy The MMD is a distance between distributions based on a kernel kϕ(x, y) =
⟨ϕ(x), ϕ(y)⟩H, where ϕ maps data in X to a Hilbert space H (Gretton et al., 2012). One definition is

MMDkϕ
(P, Q) =

∥∥Ex∼P [ϕ(x)] − Ey∼Q[ϕ(y)]
∥∥

H,
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where µϕ(P ) = Ex∼P [ϕ(x)] ∈ H is known as the (kernel) mean embedding of P , and is guaranteed to exist if
Ex∼P

√
k(x, x) < ∞ (Smola et al., 2007). If kϕ is characteristic (Sriperumbudur et al., 2011), then P 7→ µϕ(P ) is

injective, so MMDkϕ
(P, Q) = 0 if and only if P = Q.

For a sample set D = {xi}m
i=1 ∼ P m, the empirical mean embedding µϕ(D) = 1

m

∑m
i=1 ϕ(xi) is the “plug-in”

estimator of µϕ(P ) using the empirical distribution of D. Given D̃ = {x̃i}n
i=1 ∼ Qn, we can estimate MMDkϕ

(P, Q)
as the distance between empirical mean embeddings,

MMDkϕ
(D, D̃) =

∥∥∥∥∥ 1
m

m∑
i=1

ϕ(xi) − 1
n

n∑
i=1

ϕ(x̃i)

∥∥∥∥∥
H

. (1)

We would like to minimize the distance between a target data distribution P (based on samples D) and the output
distribution Qgθ

of a generator network gθ. If the feature map is finite-dimensional and norm-bounded, following
Harder et al. (2021); Vinaroz et al. (2022), we can privatize the mean embedding of the data distribution µϕ(D) with a
known DP mechanism such as the Gaussian or Laplace mechanisms, to be discussed shortly. As the summary of the
real data does not change over the course of a generator training, we only need to privatize µϕ(D) once.

Differential privacy A mechanism M is (ϵ, δ)-DP for a given ϵ ≥ 0 and δ ≥ 0 if and only if

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ

for all possible sets of the mechanism’s outputs S and all neighbouring datasets D, D′ that differ by a single entry.
One of the most well-known and widely used DP mechanisms is the Gaussian mechanism. The Gaussian mechanism
adds a calibrated level of noise to a function µ : D 7→ Rp to ensure that the output of the mechanism is (ϵ, δ)-DP:
µ̃(D) = µ(D) + n, where n ∼ N (0, σ2∆2

µIp). Here, σ is often called a privacy parameter, which is a function2 of
ϵ and δ. ∆µ is often called the global sensitivity (Dwork et al., 2006), which is the maximum difference in L2-norm
given two neighbouring D and D′, ||µ(D) − µ(D′)||2. In this paper, we will use the Gaussian mechanism to ensure the
mean embedding of the data distribution is DP.

3 METHOD

In this paper, to transfer knowledge from public to private data distributions, we construct a particular kernel kΦ to use
in Equation 1 based on perceptual features (PFs).

3.1 MMD with perceptual features as a feature map

We call our proposed method Differentially Private Mean Embeddings with Perceptual Features (DP-MEPF), analogous
to the related method DP-MERF (Harder et al., 2021). We use high-dimensional, over-complete perceptual features
from a feature extractor network pre-trained on a public dataset, as illustrated in Step 1 of Figure 1. Given a vector input
x, the pre-trained feature extractor network outputs the perceptual features from each layer, where the jth layer’s PF is
denoted by ej(x). Each of the J layers’ perceptual features is of a different length, ej(x) ∈ Rdj ; the total dimension of
the perceptual feature vector is D =

∑J
j=1 dj .

As illustrated in Step 2 in Figure 1, we use those PFs to form our feature map Φ(x) := [ϕ1(x), ϕ2(x)], where the first
part comes from a concatenation of PFs from all the layers: ϕ1(x) = [e1(x), · · · , eJ(x)], while the second part comes
from their squared values: ϕ2(x) = [e2

1(x), · · · , e2
J(x)], where e2

j (x) means each entry of ej(x) is squared. Using
this feature map, we then construct the mean embedding of a data distribution given the data samples D = {xi}m

i=1:

µP (D) =
[

µϕ1
P (D)

µϕ2
P (D)

]
=
[ 1

m

∑m
i=1 ϕ1(xi)

1
m

∑m
i=1 ϕ2(xi)

]
. (2)

Lastly (Step 3 in Figure 1), we will train a generator gθ that maps latent vectors zi ∼ N (0, I) to a synthetic data sample
x̃i = gθ(zi); we need to find good parameters θ for the generator. In non-private settings, we estimate the generator’s

2The relationship can be numerically computed by packages like auto-dp (Wang et al., 2019), among other methods.
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Step 1 Step 2 Step 3

Train a feature extractor 
using public data
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Figure 1: Three steps in differentially private mean embedding with perceptual features (DP-MEPF). Step 1: We train
a feature extractor neural network, fθ̂pub

, using public data. This is a function of public data, with no privacy cost to
train. A trained fθ̂pub

maps an input x to perceptual features (in green), the outputs of each layer. Step 2: We compute
the mean embedding of the data distributions using a feature map consisting of the first and second moments (in green)
of the perceptual features, and privatize it based on the Gaussian mechanism (see text). Step 3: We train a generator gθ,
which produces synthetic data from latent codes zi ∼ N (0, I), by minimizing the privatized MMD.

parameters by minimizing an estimate of MMD2
kΦ

(P, Qgθ
), using D̃ = {x̃i} in Equation 1, similar to Dziugaite et al.

(2015); Li et al. (2015); dos Santos et al. (2019). In private settings, we privatize D’s mean embedding to µ̃ϕ(D) with
the Gaussian mechanism (details below), and minimize

M̃MD
2
kΦ

(D, D̃) =
∥∥µ̃ϕ(D) − µϕ(D̃)

∥∥2
. (3)

A natural question that arises is whether the MMD using the PFs is a metric: if MMDkΦ(P, Q) = 0 only if P = Q.
As PFs have a finite-dimensional embedding, we in fact know this cannot be the case (Sriperumbudur et al., 2011).
Thus, there exists some pair of distributions which our MMD cannot distinguish. However, given that linear functions
in perceptual feature spaces can obtain excellent performance on nearly any natural image task (as observed in transfer
learning), it seems that PFs are “nearly” universal for natural distributions of images (dos Santos et al., 2019). Thus we
expect the MMD with this kernel to do a good job of distinguishing “natural” distributions from one another, though the
possibility of “adversarial attacks” perhaps remains.

A more important question in our context is whether this MMD serves as a good loss for training a generator, and
whether the resulting synthetic data samples are reasonably faithful to the original data samples. Our experiments in
Section 6, as well as earlier work by dos Santos et al. (2019) in non-private settings, imply that it is.

Privatization of mean embedding We privatize the mean embedding of the data distribution only once, and reuse
it repeatedly during the training of the generator gθ. We use the Gaussian mechanism to separately privatize the first
and second parts of the feature map. We normalize each type of perceptual features such that ∥ϕ1(xi)∥2 = 1 and
∥ϕ2(xi)∥2 = 1 for each sample xi. After this change, the sensitivity of each part of the mean embedding is

max
D,D′ s.t. |D−D′|=1

∥µϕt(D) − µϕt(D′)∥2 ≤ 2
m , (4)

where µϕt
(D) denotes the two parts of the mean embedding for t = 1, 2. Using these sensitivities, we add Gaussian

noise to each part of the mean embedding, obtaining

µ̃Φ(D) =
[

µ̃ϕ1(D)

µ̃ϕ2(D)

]
=
[ 1

m

∑m
i=1 ϕ1(xi) + n1

1
m

∑m
i=1 ϕ2(xi) + n2

]
, (5)

where nt ∼ N (0, 4σ2

m2 I) for t = 1, 2.

Since we are using the Gaussian mechanism twice, we simply compose the privacy losses from each mechanism. More
precisely, given a desired privacy level ϵ, δ, we use the package of Wang et al. (2019) to find the corresponding σ for the
two Gaussian mechanisms.
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Labeled data generation Extending our framework to generate both labels and input images is straightforward. As
done by Harder et al. (2021), we construct a separate mean embedding for each class-conditional input distribution and
then concatenate them into a single embedding

µ̃ϕt
(D) =

[ 1
m

∑
i∈C1

ϕt(xi) + nt,1 · · · 1
m

∑
i∈CK

ϕt(xi) + nt,K

]⊤
, (6)

where K is the number of classes and Ck = {i ∈ [m]|yi = k} is the set of indices belonging to class k. As a result, the
size of the final mean embedding is D × K (number of perceptual features by the number of classes) if we use only the
first moment, or 2 × D × K if we use the first two moments. This is exactly the conditional mean embedding with a
discrete kernel on the class label (Song et al., 2013). In the case of imbalanced data, an estimate of the label distribution
can be obtained at low privacy cost with a DP release of the class counts, as done in Harder et al. (2021). Since all
datasets considered in this paper are balanced, this step is not necessary in our experiments.

3.2 Differentially private early stopping

On some datasets (CelebA and Cifar10) we observe that the generated sample quality deteriorates if the model is trained
for too many iterations in high-privacy settings. This is indicated by a steady increase in FID score (Heusel et al., 2017),
and likely due to overfitting to the static noisy embedding. Since the FID score is based on the training data, simply
choosing the iteration with the best FID score after training has completed would violate privacy.

Privatizing the FID score requires privatizing the covariance of the output of the final pooling layer in the Inception
network, which is quite sensitive. Instead, we privatize the first and second moment of data embeddings as in Equation 2,
but using only the output of the final pooling layer in the Inception network. We then use this quantity as a private
proxy for FID, and select the iteration with the lowest score. To minimize the privacy cost, we choose a larger noise
parameter than for the main objective: σstopping = 10σ, where σ is the noise scale for privatizing each part of the data
mean embeddings, works well. Again, we compose these σs with the analysis of Wang et al. (2019).

4 THEORETICAL ANALYSIS

We now bound the effect of adding noise to our loss function, showing that asymptotically our noise does not hurt the
rate at which our model converges to the optimal model.

Appendix A proves full finite-sample versions of all of the following bounds, which are stated here using Op notation
for simplicity. The statment X = Op(An) essentially means that X is O(An) with probability at least 1 − ρ for any
constant choice of failure probability ρ > 0.

The full version in the supplementary material is also ambivalent to the choice of covariance for the noise variable n,
allowing in particular analysis of DP-MEPF based either on one or two moments of PFs. (The full version gives a
slightly more refined treatment of the two-moment case, but the difference is typically not asymptotically relevant.)

To begin, we use standard results on Gaussians to establish that the privatized MMD is close to the non-private MMD:

Proposition 4.1. Given datasets D and D̃, the absolute difference between the privatized and non-private squared
MMDs, a random function of only n, satisfies

∣∣M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣ = Op

(
σ2

m2 D + σ
m MMDkΦ(D, D̃)

)
.

One key quantity in the bound is σ/m, the ratio of the noise scale σ (inversely proportional to ε) to the number of
observed (private) data points m. Note that σ depends only on the given privacy level, not on m, so the error becomes
zero as long as m → ∞. In the second term, σ/m is multiplied by the (non-private, non-squared) MMD, which is
bounded for our features, but for good generators (where our optimization hopefully spends most of its time) this term
will also be nearly zero. The other term accounts for adding independent noise to each of the D feature dimensions;
although D is typically large, so is m2. Having m = 50K private samples, e.g. for CIFAR-10, allows for a strong error
bound as long as Dσ2 ≪ 625M.
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The above result is for a fixed pair of datasets. Because we only add noise n once, across all possible comparisons, we
can use this to obtain a bound uniform over all possible generator distributions, in particular implying that the minimizer
of the privatized MMD approximately minimizes the original, non-private MMD:
Proposition 4.2. Fix a target dataset D. For each θ in some set Θ, fix a corresponding D̃θ; in particular, Θ = Rp

could be the set of all generator parameters, and D̃θ either the outcome of running a generator gθ on a fixed set of

“seeds,” D̃θ = {gθ(zi)}n
i=1, or the full output distribution of the generator Qgθ

. Let θ̃ ∈ arg minθ∈Θ M̃MD
2
kΦ

(D, D̃θ)
be the private minimizer, and θ̂ ∈ arg minθ∈Θ MMD2

kΦ
(D, D̃θ) the non-private minimizer. Then MMD2

kΦ
(D, D̃

θ̃
) −

MMD2
kΦ

(D, D̃
θ̂
) = Op

(
σ2D
m2 + σ

√
D

m

)
.

The second term of this bound will generally dominate; it arises from uniformly bounding the σ
m MMDkΦ(D, D̃θ) term

of Proposition 4.1 over all possible D̃θ. This approach, although the default way to prove this type of bound, misses
that MMDkΦ(D, D̃θ) is hopefully small for θ̃ and θ̂. We can in fact take advantage of this to provide an “optimistic”
rate (Srebro et al., 2010; Zhou et al., 2021) that achieves faster convergence if the generator is capable of matching the
target features (an “interpolating” regime):
Proposition 4.3. In the setting of Proposition 4.2,

MMD2
kΦ

(D, D̃
θ̃
) − MMD2

kΦ
(D, D̃

θ̂
) = Op

(
σ2D

m2 + σ
√

D

m
MMDkΦ(D, D̃

θ̂
)
)

.

Note that this bound implies the previous one, since MMDkΦ(D, D̃) is bounded. But in the case where the generator is
capable of exactly matching the features of the target distribution, the second term becomes zero, and the rate with
respect to m is greatly improved.

In either regime, our approximate minimization of the empirical MMD is far faster than the rate at which minimizing
the empirical MMD(D, Qgθ

) converges to minimizing the true, distribution-level MMD(P, Qgθ
): the known results

there (e.g. Dziugaite et al., 2015, Theorem 1) give a 1/
√

m rate, compared to our 1/m or even 1/m2.

We show that minimizing DP-MEPF’s loss actually pays no asymptotic penalty for privacy (especially when a perfect
generator exists), with the privacy loss dwarfed by the statistical error for large datasets; this essentially agrees with
experiments (see Section 6). This is not the case for all DP methods, and other DP generation papers didn’t prove any
such guarantees: DP-Sinkhorn only proved privacy, and DP-MERF showed only a much weaker guarantee (its gradient
is asymptotically unbiased).

5 RELATED WORK

Initial work on differentially private data generation assumed strong constraints on the type of data and the intended use
of the released data (Snoke & Slavković, 2018; Mohammed et al., 2011; Xiao et al., 2010; Hardt et al., 2012; Zhu et al.,
2017). While these studies provide theoretical guarantees on the utility of the synthetic data, they typically do not scale
to our goal of large-scale image data generation.

Recently, several papers focused on discrete data generation with limited domain size (Zhang et al., 2017; Qardaji
et al., 2014; Chen et al., 2015; Zhang et al., 2021). These methods learn the correlation structure of small subsets
of features and privatize them in order to produce differentially private synthetic data samples. These methods often
require discretization of the data and have limited scalability, so are also unsuitable for high-dimensional image data
generation.

More recently, however, a new line of work has emerged that adopt the core ideas from the recent advances in deep
generative models for a broad applicability of synthetic data with differential privacy constraints. The majority of this
work (Xie et al., 2018; Torkzadehmahani et al., 2019; Frigerio et al., 2019; Yoon et al., 2019; Chen et al., 2020) uses
generative adversarial networks (GANs; Goodfellow et al., 2014) along with some form of DP-SGD (Abadi et al.,
2016). Other works in this line include PATE-GAN based on the private aggregation of teacher ensembles (Papernot
et al., 2017) and variational autoencoders (Acs et al., 2018).

The closest prior work to the proposed method is DP-MERF (Harder et al., 2021), where the kernel mean embeddings
are constructed using random Fourier features (Rahimi & Recht, 2008). A recent variant of DP-MERF uses Hermite
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polynomial-based mean embeddings (Vinaroz et al., 2022). Unlike these methods, we use the perceptual features from
a pre-trained network to construct kernel mean embeddings. Neither previous method applies to the perceptual kernels
used here, so their empirical results are far worse (as we’ll see shortly). Our theoretical analysis is also much more
extensive: they only proved a bound on the expected error between the private and non-private empirical MMD for a
fixed pair of datasets.

More recently, a similar work to DP-MERF utilizes the Sinkhorn divergence for private data generation (Cao et al.,
2021), which performs similarly to DP-MERF when the cost function is the L2 distance with a large regularizer.
Another related work proposes to use the characteristic function and an adversarial re-weighting objective (Liew et al.,
2022) in order to improve the generalization capability of DP-MERF.

A majority of these related methods were evaluated only on relatively simple datasets such as MNIST and FashionMNIST.
Even so, the DP-GAN-based methods mostly require a large privacy budget of ϵ ≈ 10 to generate synthetic data samples
that are reasonably close to the real data samples. Our method goes far beyond this quality with much more stringent
privacy constraints, as we will now see.

6 EXPERIMENTS

We will now compare our method to state-of-the-art methods for DP data generation.

Table 1: Downstream accuracies by Logistic regression and MLP, evaluated on the generated data samples using
MNIST and FashionMNIST as private data and SVHN and CIFAR-10 as public data, respectively. In all cases, we set
ϵ = 10, δ = 10−5. In our method, we used both features ϕ1, ϕ2.

DP-MEPF DP-Sinkhorn GS-WGAN DP-MERF DP-HP
(Cao et al., 2021) (Chen et al., 2020) (Harder et al., 2021) (Vinaroz et al., 2022)

MNIST LogReg 83 83 79 79 81
MLP 90 83 79 78 82

F-MNIST LogReg 76 75 68 76 73
MLP 76 75 65 75 71

Datasets. We considered four image datasets3 of varying complexity. We started with the commonly used datasets
MNIST (LeCun & Cortes, 2010) and FashionMNIST (Xiao et al., 2017), where each consist of 60,000 28 × 28 pixel
grayscale images depicting hand-written digits and items of clothing, respectively, sorted into 10 classes. We also
looked at the more complex CelebA (Liu et al., 2015) dataset, containing 202,599 color images of faces which we
scale to sizes of 32 × 32 or 64 × 64 pixels and treat as unlabeled. We also study CIFAR-10 (Krizhevsky, 2009), a
50,000-sample dataset containing 32 × 32 color images of 10 classes of objects, including vehicles like ships and trucks,
and animals such as horses and birds.

Implementation. We implemented our code for all the experiments in PyTorch (Paszke et al., 2019), using the auto-dp
package4 (Wang et al., 2019) for the privacy analysis. Following Harder et al. (2021), we used the generator that
consists of two fully connected layers followed by two convolutional layers with bilinear upsampling, for generating
both MNIST and FashionMNIST datasets. For MNIST, we used the SVHN dataset as public data to pre-train ResNet18
(He et al., 2016), from which we took the perceptual features. For FashionMNIST, we used perceptual features from a
ResNet18 trained on CIFAR-10. For CelebA and CIFAR-10, we followed dos Santos et al. (2019) in using perceptual
features from a pre-trained VGG (Simonyan & Zisserman, 2014) on ImageNet, and a ResNet18-based generator. Further
implementation details are given in the supplementary material, which also studies how different public datasets and
feature extractors impact the performance.

Evaluation metric. Evaluating the quality of generated data is a challenging problem of its own. We use two conventional
measures. The first is the Frechet Inception Distance (FID) score (Heusel et al., 2017), which directly measures the
quality of the generated samples. The FID score correlates with human evaluations of visual similarity to the real

3Dataset licenses: MNIST: CC BY-SA 3.0; FashionMNIST:MIT; CelebA: see https://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html; Cifar10: MIT

4https://github.com/yuxiangw/autodp
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Table 2: Downstream accuracies of our method for MNIST and FashionMNIST at varying values of ϵ.

MNIST FashionMNIST
ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 90 89 89 80 76 75 75 70
DP-MEPF (ϕ1) 88 88 87 77 75 76 75 69

LogReg DP-MEPF (ϕ1, ϕ2) 83 83 82 76 75 76 75 73
DP-MEPF (ϕ1) 81 80 79 72 75 76 76 72

Real Data DP-MERF (ϵ = 10)

DP-Sinkhorn (ϵ = 10)

Ours (ϵ = 10)

Ours (ϵ = 1)

Ours (ϵ = 0.2)

pre-trained DP-GAN (ϵ = 10)

pre-trained DP-GAN (ϵ = 1)

pre-trained DP-GAN (ϵ = 0.2)

DP-Diffusion (ϵ = 10)

Figure 2: Synthetic 32 × 32 CelebA samples generated at different levels of privacy. Samples for DP-MERF and
DP-Sinkhorn are taken from Cao et al. (2021) and DP-Diffusion samples are taken from Dockhorn et al. (2022). The
pre-trained GAN is our baseline utilizing public data. Even at ϵ = 0.2, DP-MEPF (ϕ1, ϕ2) yields samples of higher
visual quality than the comparison methods.

data, and is commonly used in deep generative modelling. We computed FID scores with the pytorch_fid package
(Seitzer, 2020), based on 5 000 generated samples, matching dos Santos et al. (2019). As discussed in Section 3.2, we
use a private proxy for FID for early stopping, while the FID scores we report in this section are non-DP measures
of our final model for fair comparison to other existing methods. The second metric we use is the accuracy of
downstream classifiers, trained on generated datasets and then test on the real data test sets (used by Chen et al., 2020;
Torkzadehmahani et al., 2019; Yoon et al., 2019; Chen et al., 2020; Harder et al., 2021; Cao et al., 2021). This test
accuracy indicates how well the downstream classifiers generalize from the synthetic to the real data distribution and
thus, the utility of using synthetic data samples instead of the real ones. We computed the downstream accuracy on
MNIST and FashionMNIST using the logistic regression and MLP classifiers from scikit-learn (Pedregosa et al., 2011).
For CIFAR-10, we used ResNet9 taken from FFCV5 (Leclerc et al., 2022).

In all experiments, we tested non-private training and settings with various levels of privacy, ranging from ϵ = 10
(no meaningful guarantee) to ϵ = 0.2 (strong privacy guarantee). We set δ = 10−5 for MNIST, FashionMNIST, and
Cifar10 and δ = 10−6 for CelebA. In DP-MEPF, we also tested cases based on embeddings with only the first moment,
written (ϕ1), and using the first two moments, written (ϕ1, ϕ2). Each value in all tables is an average of 3 or more
runs; standard deviations are in the supplementary material.

Since we are unaware of any prior work on DP data generation for image data using auxiliary datasets, we instead
mostly compare to recent methods which do not access auxiliary data. As expected, due to the advantage of non-private
data our approach outperforms these methods by a significant margin on the more complex datasets. As a simple
baseline based on public data, we also pretrain a GAN on a downscaled version of ImageNet, at 32 × 32, and fine-tune
this model with DP-SGD on CelebA and Cifar10. We use architectures based on ResNet9 with group normalization
(Wu & He, 2018) for both generator and discriminator. As suggested by Bie et al. (2023), we update the generator
at a lower frequency than the discriminator and use increased minibatch sizes. Further details can be found in the
supplementary material.

MNIST and FashionMNIST. We compare DP-MEPF to existing methods on the most common settings used in
the literature, MNIST and FashionMNIST at ϵ = 10, in Table 1. For an MLP on MNIST, DP-MEPF’s samples far

5https://github.com/libffcv/ffcv/blob/main/examples/cifar/train_cifar.py
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ϵ = 5

ϵ = 1

ϵ = 0.2

DP-MEPF DP-GAN

Figure 3: Synthetic 64 × 64 CelebA samples generated at different levels of privacy with DP-MEPF (ϕ1, ϕ2).

Table 3: CelebA FID scores (lower is better) for images of resolution 32 × 32 and 64 × 64. Results for DP Diffusion
(DPDM) and DP Sinkhorn taken from Dockhorn et al. (2022) and Cao et al. (2021).

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

32

DP-MEPF (ϕ1, ϕ2) 17.4 17.5 18.1 19.0 21.4 25.8
DP-MEPF (ϕ1) 16.3 16.9 16.5 17.2 21.8 25.5
DP-GAN (pre-trained) 58.1 66.9 67.1 81.3 109.1 192.0
DPDM (no public data) 21.2 - - 71.8 - -
DP Sinkhorn (no public data) 189.5 - - - - -

64
DP-MEPF (ϕ1, ϕ2) 18.5 19.1 18.4 19.0 21.4 26.8
DP-MEPF (ϕ1) 17.4 16.5 16.9 18.4 20.4 27.7
DP-GAN (pre-trained) 57.1 62.3 65.2 72.5 91.9 133.3

outperform other methods for logistic regression and both classifiers on FashionMNIST, scores match or slightly exceed
those of existing models. This might be because the domain shift between public dataset (CIFAR-10, color images
of scenes) and private dataset (FashionMNIST, grayscale images of fashion items) is too large, or because the task is
simple enough that random features as found in DP-MERF or DP-HP are already good enough. This will change as we
proceed to more complex datasets. Table 2 shows that downstream test accuracy only starts to drop in high privacy
regimes, ϵ < 1, due to the low sensitivity of µϕ. Samples for visual comparison between methods are included in the
supplementary material.

Figure 4: Samples from non-DP
Sinkhorn. Top: ImageNet32. Bot-
tom: CelebA after pretraining.

CelebA Figure 2 shows that previous attempts to generate CelebA samples
without auxiliary data using DP-MERF or DP-Sinkhorn have only managed to
capture very basic features of the data. Each sample depicts a face, but offers
no details or variety. DP-MEPF produces more accurate samples at the same
32 × 32 resolution, which is also reflected in improved FID scores of around 17,
while DP-Sinkhorn, as reported in Cao et al. (2021), achieves an FID of 189.5.
Table 3 gives FID scores for both resolutions at varying ϵ. DP-MEPF consistently
outperforms our pre-trained DP-GAN baseline and the scores reported for DP
diffusion Dockhorn et al. (2022), As the dataset has over 200 000 samples, the
feature embeddings have low sensitivity, and offer similar quality between ϵ = 10
and ϵ = 1, although quality begins to decline at ϵ < 1. Samples for 64 × 64 images are shown in Figure 3, with similar
quality, and a quicker loss of quality in high privacy settings due to its larger embedding. In all cases, the ϕ1 embedding
yields better results than ϕ1, ϕ2, suggesting that the second moment does not contribute useful information, perhaps
because on the limited variance of the dataset.

Because DP-Sinkhorn is the best-performing method without public data, we perform experiments on DP-Sinkhorn,
pretraining it non-DP on ImageNet32 and fine-tuning with DP on CelebA (ϵ = 10). After seeing no improvement, we
tested non-DP fine-tuning and still saw no improvements beyond what is shown in Figure 4; we tried both BigGan- and
ResNet18-based generators with hyperparameter grid searches. DP-Sinkhorn only compares features at image-level,
without domain-specific priors, and it appears that even non-DP the method is not powerful enough to model image
data beyond MNIST. (A DP-MEPF analogue that extracts features learned from public data might help, but this would
be a novel method beyond scope for comparison.) DP-MERF is similarly limited by its random features, not DP noise,
as shown by non-DP versions matching ϵ = 10 performance.

Differentially private early stopping. For CelebA and Cifar10, we use DP early stopping as explained in Section 3.2
with a privacy parameter ten times larger than the σ used for the training objective. Keeping (ϵ, δ) fixed, this additional
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Table 4: Two examples of beneficial early stopping: For CelebA at 64 × 64 resolution and labeled Cifar10, DP-MEPF
(ϕ1) sample quality (measured in FID) degrades with long training in high privacy settings (here ϵ ≤ 1). This makes
the final model at the end of training a poor choice. Our DP selection of the best iteration via proxy stays close to the
optimal choice.

ϵ = 1 ϵ = 0.5 ϵ = 0.2

CelebA 64 × 64
Best FID (not DP) 17.7 20.1 27.0
DP proxy for FID 18.4 20.4 27.7
At the end of training 18.4 22.1 45.2

Cifar10 (labeled)
Best FID (not DP) 54.8 92.0 268.3
DP proxy for FID 56.5 92.0 268.3
At the end of training 198.6 267.7 357.1

Real Data

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2 ϵ = ∞ ϵ = 10
DP-MEPF (ours) DP-MERF

Figure 5: Labeled samples from DP-MEPF (ϕ1, ϕ2) and DP-MERF (Harder et al., 2021).

release results only in a small increase in σ, and gives us a simple way for choosing the best iteration. In Table 4, we
compare the true best FID, the FID picked by our private proxy, and the FID at the end of training to illustrate the
advantage in high DP settings. FID scores were computed every 5 000 iterations, while the model trained for 200 000
iterations in total.

CIFAR-10 Finally, we investigate a dataset which has not been covered in DP data generation. While CelebA
depicts a centered face in every image, CIFAR-10 includes 10 visually distinct object classes, which raises the required
minimum quality of samples to somewhat resemble the dataset. At only 5 000 samples per class, the dataset is also
significantly smaller, which poses a challenge in the private setting.

Figure 5 shows that DP-MEPF is capable of producing labelled private data (generating both labels and input images
together) resembling the real data, but the quality does suffer in high privacy settings. This is also reflected in the FID
scores (Table 5): at ϵ ≤ 1 labeled DP-MEPF scores deteriorate at a much quicker rate than the unlabeled counterpart. As
the unlabeled embedding dimension is smaller by a factor of 10 (the number of classes), it is easier to release privately
and retains some semblance of the data even in the highest privacy settings, as shown in Figure 6. The FID scores of
our pre-trained DP-GAN baseline consistently exceed our results, usually by over 10 points. These scores are better
than the DP-GAN results for CelebA, likely because 32 × 32 ImageNet is very similar to Cifar10. Nonetheless, the
high privacy cost of DP-SGD makes DP-GAN a poor fit for a dataset of this complexity and limited size.

Table 5: FID scores for synthetic CIFAR-10 data; labeled generates both labels and images.

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

unlabeled
DP-MEPF (ϕ1, ϕ2) 38.8 37.0 38.7 43.0 49.4 67.3
DP-MEPF (ϕ1) 38.5 38.6 40.1 45.1 49.8 72.3
DP-GAN 54.6 54.7 62.4 74.9 62.7 73.4

labeled DP-MEPF (ϕ1, ϕ2) 29.1 30.0 39.5 54.0 76.4 226.0
DP-MEPF (ϕ1) 30.3 35.6 42.0 56.5 92.0 268.3
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ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ours)

ϵ = 10 ϵ = 2

DP-GAN

Figure 6: Unlabeled CIFAR-10 samples from DP-MEPF (ϕ1, ϕ2) and DP-GAN.

In Table 6 we show the test accuracy of models trained synthetic datasets applied to real data. While there is still a large
gap between the 88.3% accuracy on the real data and our results, DP-MEPF achieves nontrivial results around 50% for
ϵ = 10, which degrade as privacy is increased. While the drop in sample quality due to high privacy is quite substantial,
it is less of a problem in the unlabelled case, since our embedding dimension is smaller by a factor of 10 (the number of
classes) and thus easier to release privately.

Table 6: Test accuracies (higher is better) of ResNet9 trained on CIFAR-10 synthetic data with varying privacy
guarantees. When trained on real data, test accuracy is 88.3%

ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 53.0 43.9 40.0 28.5 18.0 16.2
DP-MEPF (ϕ1) 40.7 32.3 42.6 33.2 18.8 15.3
DP-MERF 13.2 13.4 13.5 13.8 13.1 10.4

7 DISCUSSION

We have demonstrated the advantage of using auxiliary public data in DP data generation. Our method DP-MEPF takes
advantage of features from pre-trained classifiers that are readily available, and allows us to tackle datasets like CelebA
and CIFAR-10, which have been unreachable for private data generation up to this point.

There are several avenues to extend our method in future work, in particular finding better options for the encoder
features: the choice of VGG19 by dos Santos et al. (2019) works well in private settings, but a lower-dimensional
embedding that still works well for training generative models – perhaps based on some kind of pruning scheme – might
help reduce the sensitivity of µϕ and improve quality.

Training other generative models such as GANs or VAEs with pretrained components is also exploring further than our
initial attempt here. It may also be possible to take a “middle ground” and introduce some adaptation for features in
DP-MEPF, to allow for more powerful, GAN-like models, without suffering too much privacy loss. In the non-private
generative modelling community, this has proved important, but the challenge will be to do so while limiting the number
of DP releases to allow modelling with, e.g., ϵ ≤ 2.
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9 BROADER IMPACT STATEMENT

Our work is motivated by the need for strong and scalable data privacy, which we expect will have mainly beneficial
societal impact. However, our work touches on two topics, which are known to contain a risk of harmful impact on
individuals and thus need to be treated with caution.

9.1 Differential privacy and fairness

Firstly, recent research has shown that DP is at odds with notions of fairness when if comes to under-represented groups
in the data. For instance Chang & Shokri (2021) show that minorities are more susceptible to membership inference
attacks in fair non-DP models (i.e. fairness reduces privacy) and Bagdasaryan et al. (2019) show the reverse effect:
when training an unfair model with strong DP guarantees, the fairness is reduced further. The dilemma is intuitive:
Fairness requires amplifying the impact of samples from minorities in the data, so they will not be ignored, while DP
needs to limit the impact each individual sample can have in order to keep sensitivity low. Since its discovery, this
trade-off has received attention both in works seeking a more detailed understanding (Cummings et al., 2019; Mangold
et al., 2022; Esipova et al., 2022; Zhong et al., 2022; Sanyal et al., 2022) and works proposing custom approaches to
DP fair machine learning (Ding et al., 2020; Xu et al., 2019; Jagielski et al., 2019; Tran et al., 2021a;b; Esipova et al.,
2022). Given that the impact of DP on fairness is an active area of research and independent of our particular approach,
we do not see the need to perform our own experiments on this matter.

We will, however, provide an intuition on how the problem manifests in DP-MEPF by looking at labelled data generation
with significant class imbalance. Assuming an imbalanced dataset with two classes and |C1| = 100 and |C2| = 10, we
obtain the following mean embedding:

µ̃ϕt(D) =
[ 1

m

∑
i∈C1

ϕt(xi) + nt,1

1
m

∑
i∈C2

ϕt(xi) + nt,2

]
. (7)

With ∥ϕt(xi)∥2 = 1, we know that the norm of the unperturbed mean embedding for class 1, given by
∥ 1

m

∑
i∈C1

ϕt(xi)∥2 ≤ 100/110, may be ten times as large as the maximum possible norm for the class 2 em-
bedding ∥ 1

m

∑
i∈C2

ϕt(xi)∥2 ≤ 10/110. Nonetheless, in order to preserve DP, both embeddings are perturbed with
noise of the same magnitude, leading to a significantly worse signal-to-noise ratio for the class 2 embedding. As a
result, the generative model trained on this embedding will produce more accurate samples for class 1 than for class 2.

9.2 Differential privacy with public data

The second issue regards the use of public data in DP. In a recent position paper, Tramèr et al. (2022) raise several
concerns about the increasing trend of using auxiliary datasets in DP research. Their critique has two main arguments,
the first being that publicly available data may still be sensitive and using such data may cause unintended privacy
violations. Given that many large datasets are scraped from the internet with limited human oversight, this data may
contain personal data that was released involuntarily or shared exclusively for a specific context. The authors suggest
that responsible use of public data requires improved curation practices, including e.g. collection of explicit consent for
data use, auditing for and removal of sensitive content, and providing channels for reporting privacy concerns.

The other main criticism raised by Tramèr et al. (2022) is that the datasets used to demonstrate the benefits of public data
in DP, such as Cifar10 or ImageNet, are poorly chosen, because they are often from nearly the same distribution as the
private data. In contrast, they argue, using public data in realistic application scenarios such as medical imaging would
likely require considerable domain shift, since no public data close to the target domain is available. This disparity
leads to overly optimistic claims, as the experiments don’t actually demonstrate good performance under significant
domain shift. They further point out that the quality of a DP method becomes difficult to measure if it builds on e.g. a
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non-privately pre-trained model, as overall improvements may stem both from either the private and the non-private
part of the method. The authors propose dedicated benchmarks for DP machine learning should be developed, in order
to obtain results which are comparable and predictive of model performance in real-world applications. They also
acknowledge that such benchmarks don’t currently exist and their design requires careful consideration.

We agree with the authors in their analysis of the challenges facing DP machine learning research and value their
proposals for future directions and experiment design. In the light of all these problems introduced by public data, one
might ask whether this is at all a research direction worth pursuing. Here, we emphasize a fact that is acknowledged in
the final paragraph of Tramèr et al. (2022): "many recent works employing public data have played an important role in
showing that differential privacy can be preserved for certain complex machine learning problems, without suffering
devastating impacts on utility." DP currently sees little to no practical application in machine learning, in large part
because the loss of utility it causes is often unacceptable. Auxiliary public data is the best candidate for achieving
sufficient utility for practical use and so, in our eyes, the potential of these approaches outweighs the complications they
introduce. It is thus vital that research in DP ML with public data is pursued further.
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Supplementary Material

A Proofs

We will conduct our analysis in terms of general noise covariance Σ for the added noise, n ∼ N (0, Σ). The results will
depend on various norms of Σ, as well as ∥Σ1/2a∥, where a = µϕ(D) − µϕ(D̃) is the difference between empirical
mean embeddings µϕ(D) = 1

|D|
∑

x∈D ϕ(x). (Recall that MMD(D, D̃) = ∥a∥.)

When we use only normalized first-moment features, the quantities appearing in the bounds are

Σ = 4σ2

m2 ID

∥Σ∥op = 4σ2

m2 ∥Σ∥F = 4σ2

m2

√
D Tr(Σ) = 4σ2

m2 D (8)

∥Σ1/2a∥2 =
√

a⊤Σa = 2σ

m
MMDkϕ

(D, D̃).

When we use first- and second-moment features with respective scales C1 and C2 (both 1 in our experiments here), we
have

Σ =
[

σ2 ( 2C1
m

)2
ID 0

0 σ2 ( 2C2
m

)2
ID

]
= 4σ2

m2

[
C2

1 ID 0
0 C2

2 ID

]
∥Σ∥op = 4σ2

m2 max(C2
1 , C2

2 ) ∥Σ∥F = 4σ2

m2 (C2
1 + C2

2 )
√

D Tr(Σ) = 4σ2

m2 (C2
1 + C2

2 ) D (9)

∥Σ1/2a∥2 =
√

a⊤Σa = 2σ

m

√
C2

1 MMD kϕ1(D, D̃)2 + C2
2 MMD kϕ2(D, D̃)2.

Note that if C1 = C2 = C, then√
C2

1 MMD kϕ1(D, D̃)2 + C2
2 MMD kϕ2(D, D̃)2 = C MMDkΦ(D, D̃).

A.1 Mean absolute error of loss function

Proposition A.1. Given datasets D = {xi}m
i=1 and D̃ = {x̃j}n

j=1 and a kernel kϕ with a D-dimensional embedding ϕ,

let a = µϕ(D) − µϕ(D̃). Define M̃MD
2
kΦ

(D, D̃) = ∥a + n∥2 for a noise vector n ∼ N (0, Σ). Introducing the noise
n affects the expected absolute error as

En

[∣∣M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣] ≤ Tr(Σ) + 2

√
2
π

∥Σ1/2a∥. (10)

Proof. We have that

En

[∣∣ M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣]

= En

[∣∣ ∥a + n∥2 − ∥a∥2 ∣∣] = En

[ ∣∣n⊤n + 2n⊤a
∣∣ ] ≤ En

[
n⊤n

]
+ 2En

[∣∣∣n⊤a
∣∣∣]. (11)

The first term is standard:

En⊤n = ETr(n⊤n) = ETr(nn⊤) = Tr(Enn⊤) = Tr(Σ).

For the second, note that
a⊤n ∼ N (0, a⊤Σa),

and so its absolute value is
√

a⊤Σa times a χ(1) random variable. Since the mean of a χ(1) distribution is
√

2 Γ(1)
Γ(1/2) =√

2
π , we obtain the desired bound.
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A.2 High-probability bound on the error

Proposition A.2. Given datasets D = {xi}m
i=1 and D̃ = {x̃j}n

j=1, let a = µϕ(D) − µϕ(D̃), and define

M̃MD
2
kΦ

(D, D̃) = ∥a + n∥2 for a noise vector n ∼ N (0, Σ). Then for any ρ ∈ (0, 1), it holds with probabil-
ity at least 1 − ρ over the choice of n that

∣∣ M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣

≤ Tr(Σ) +
√

2
π ∥Σ 1

2 a∥2 + 2
(

∥Σ∥F +
√

2∥Σ 1
2 a∥2

)√
log( 2

ρ ) + 2∥Σ∥op log( 2
ρ ). (12)

This implies that ∣∣ M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣ = Op

(
Tr(Σ) + ∥Σ1/2a∥2

)
.

Proof. Introduce z ∼ N (0, I) such that n = Σ 1
2 z into Equation 11:

∣∣ M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣ ≤ n⊤n + 2

∣∣∣n⊤a
∣∣∣ = z⊤Σz + 2

∣∣a⊤Σ1/2z
∣∣. (13)

For the first term, denoting the eigendecomposition of Σ as QΛQ⊤, we can write

z⊤Σz = (Q⊤z)⊤Λ(Q⊤z),

in which Q⊤z ∼ N (0, I) and Λ is diagonal. Thus, applying Lemma 1 of Laurent & Massart (2000), we obtain that
with probability at least 1 − ρ

2 ,

z⊤Σz ≤ Tr(Σ) + 2∥Σ∥F

√
log( 2

ρ ) + 2∥Σ∥op log( 2
ρ ). (14)

In the second term,
∣∣a⊤Σ 1

2 z
∣∣, can be viewed as a function of a standard normal variable z with Lipschitz constant

at most ∥Σ 1
2 a∥2. Thus, applying the standard Gaussian Lipschitz concentration inequality (Boucheron et al., 2013,

Theorem 5.6), we obtain that with probability at least 1 − ρ
2 ,∣∣∣z⊤Σ 1

2 a
∣∣∣ ≤ E

∣∣∣z⊤Σ 1
2 a
∣∣∣+ ∥Σ 1

2 a∥2

√
2 log( 2

ρ ) = ∥Σ 1
2 a∥2

(√
2
π +

√
2 log( 2

ρ )
)

.

The first statement in the theorem follows by a union bound. The Op form follows by Lemma A.1 and the fact that
Tr(A) ≥ ∥A∥F ≥ ∥A∥op for positive semi-definite matrices A.

The following lemma shows how to convert high-probability bounds with both sub-exponential and sub-Gaussian tails
into a Op statement.

Lemma A.1. If a sequence of random variables Xn satisfies

Xn ≤ An + Bn

√
log bn

ρ
+ Cn log cn

ρ
with probability at least 1 − ρ,

then the sequence of variables Xn is

Op

(
max

(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

))
.

Proof. The definition of a sequence of random variables Xn being Op(Qn), where Qn is a sequence of scalars, means
that the sequence Xn

Qn
is stochastically bounded: for each ρ, there is some constant Rρ such that Pr(Xn/Qn ≥ Rρ) ≤ ρ.
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Here, we have for all n with probability at least 1 − ρ that

Xn

max
(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

) ≤
An + Bn

√
log bn

ρ + Cn log cn

ρ

max
(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

)
=

An + Bn

√
log bn + log 1

ρ + Cn

[
log cn + log 1

ρ

]
max

(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

)
≤

An + Bn

√
log bn + Bn

√
log 1

ρ + Cn log cn + Cn log 1
ρ

max
(
An, Bn max(

√
log bn, 1), Cn max(log cn, 1)

)
≤ 1 + 1 +

√
log 1

ρ
+ 1 + log 1

ρ
.

Thus the desired bound holds with Rρ = 3 +
√

log 1
ρ + log 1

ρ .

A.3 Quality of the private minimizer: worst-case analysis

We first show uniform convergence of the privatized MMD to the non-private MMD.

Proposition A.3. Suppose that Φ : X → RD is such that supx∥Φ(x)∥ ≤ B, and let M̃MDkΦ(D, D̃) = ∥µΦ(D) −
µΦ(D̃) + n∥ for n ∼ N (0, Σ). Then, with probability at least 1 − ρ over the choice of n,

sup
D,D̃

∣∣ M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣

≤ Tr(Σ) + 4B
√

Tr(Σ) + 2
(

∥Σ∥F + 2B∥Σ∥
1
2op

)√
log( 2

ρ ) + 2∥Σ∥op log( 2
ρ ) = Op

(
Tr(Σ) + B

√
Tr(Σ)

)
,

where the supremum is taken over all distributions, including the empirical distribution of datasets D, D̃ of any size.

Proof. Introducing z ∼ N (0, ID) such that n = Σ1/2z, we have that

sup
D,D̃

∣∣ M̃MD
2
kΦ

(D, D̃) − MMD2
kΦ

(D, D̃)
∣∣ ≤ sup

D,D̃
z⊤Σz + 2

∣∣a⊤Σ1/2z
∣∣

≤ z⊤Σz + 2 sup
a:∥a∥≤2B

∣∣a⊤Σ1/2z
∣∣

≤ z⊤Σz + 2 sup
a:∥a∥≤2B

∥a∥∥Σ1/2z∥

= z⊤Σz + 4B∥Σ1/2z∥.

To apply Gaussian Lipschitz concentration, we also need to know that

E∥Σ1/2z∥ ≤
√
E∥Σ1/2z∥2 =

√
Tr(Σ);

the exact expectation of a χ variable with more than one degree of freedom is inconvenient, but the gap is generally not
asymptotically significant. Then we get that, with probability at least 1 − ρ

2 ,

∥Σ1/2z∥ ≤
√

Tr(Σ) + ∥Σ∥1/2
op

√
2 log 2

ρ .

Again combining with the bound of Equation 14, we get the stated bound.

This bound is looser than in Proposition A.2, since the term depending on a is now “looking at” z in many directions
rather than just one: we end up with a χ(dim(Σ)) random variable instead of χ(1).

We can use this uniform convergence bound to show that the minimizer of the private loss approximately minimizes the
non-private loss:
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Proposition A.4. Fix a target dataset D. For each θ in some set Θ, fix a corresponding D̃θ; in particular, Θ = Rp

could be the set of all generator parameters, and D̃θ either the outcome of running a generator gθ on a fixed
set of “seeds,” D̃θ = {gθ(zi)}n

i=1, or the full output distribution of the generator Qgθ
. Suppose that Φ : X →

RD is such that supx∥Φ(x)∥ ≤ B, and let M̃MDkΦ(D, D̃) = ∥µΦ(D) − µΦ(D̃) + n∥ for n ∼ N (0, Σ). Let

θ̃ ∈ arg minθ∈Θ M̃MD
2
kΦ

(D, D̃θ) be the private minimizer, and θ̂ ∈ arg minθ∈Θ M̃MD
2
kΦ

(D, D̃θ) the non-private
minimizer. For any ρ ∈ (0, 1), with probability at least 1 − ρ over the choice of n,

MMD2
kΦ

(D, D̃
θ̃
) − MMD2

kΦ
(D, D̃

θ̂
)

≤ 2Tr(Σ) + 8B
√

Tr(Σ) + 4
(

∥Σ∥F + 2B∥Σ∥
1
2op

)√
log( 2

ρ ) + 4∥Σ∥op log( 2
ρ ) = Op

(
Tr(Σ) + B

√
Tr(Σ)

)
.

Proof. Let α represent the uniform error bound of Proposition A.2. Applying Proposition A.2, the definition of θ̃, then
Proposition A.2 again:

MMD2
kΦ

(D, D̃
θ̃
) ≤ M̃MD

2
kΦ

(D, D̃
θ̃
) + α ≤ M̃MD

2
kΦ

(D, D̃
θ̂
) + α ≤ MMD2

kΦ
(D, D̃

θ̂
) + 2α.

A.4 Quality of the private minimizer: “optimistic” analysis

The preceding analysis is quite “worst-case,” since we upper-bounded the MMD by the maximum possible value
everywhere. Noticing that the approximation in Proposition A.2 is tighter when ∥Σ1/2a∥ is smaller, we can instead
show an “optimistic” rate which takes advantage of this fact to show tighter approximation for the minimizer of the
noised loss. In the “interpolating” case where the generator can achieve zero empirical MMD, the convergence rate
substantially improves (generally improving the squared MMD from Op(1/m) to Op(1/m2)).

Proposition A.5. In the setup of Proposition A.4, we have with probability at least 1 − ρ over n that

MMD2
kΦ

(D, D̃
θ̃
) − MMD2

kΦ
(D, D̃

θ̂
)

≤ 9Tr(Σ) + 4
√

Tr(Σ) MMDkΦ(D, D̃
θ̂
)

+ 2
(

9∥Σ∥F + 2
√

2∥Σ∥op MMDkΦ(D, D̃
θ̂
)
)√

log 2
ρ

+ 18∥Σ∥op log 2
ρ

= Op

(
Tr(Σ) +

√
Tr(Σ) MMDkΦ(D, D̃

θ̂
)
)

.

Proof. Let’s use M̂MD(θ) to denote MMDkΦ(D, D̃θ), and M̃MD(θ) for M̃MDkΦ(D, D̃θ).

For all θ, we have that ∣∣ M̃MD
2
(θ) − M̂MD

2
(θ)
∣∣ ≤ z⊤Σz + 2

∣∣(µΦ(D) − µΦ(D̃))⊤Σ1/2z
∣∣

≤ z⊤Σz + 2 M̂MD(θ)∥Σ1/2z∥.

Thus, applying this inequality in both the first and third lines,

M̂MD
2
(θ̃) ≤ M̃MD

2
(θ̃) + z⊤Σz + 2 M̂MD(θ̃)∥Σ1/2z∥

≤ M̃MD
2
(θ̂) + z⊤Σz + 2 M̂MD(θ̃)∥Σ1/2z∥

≤ M̂MD
2
(θ̂) + 2z⊤Σz + 2

(
M̂MD(θ̃) + M̂MD(θ̂)

)
∥Σ1/2z∥;

in the second line we used that M̃MD(θ̃) ≤ M̃MD(θ̂). Rearranging, we get that

M̂MD
2
(θ̃) − β M̂MD(θ̃) − γ ≤ 0, (15)
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where

β = 2∥Σ1/2z∥ ≥ 0

γ = M̂MD
2
(θ̂) + 2z⊤Σz + 2 M̂MD(θ̂)∥Σ1/2z∥ ≥ 0.

The left-hand side of Equation 15 is a quadratic in M̂MD(θ̃) with positive curvature; it has two roots, at

β

2 ±

√(
β

2

)2
+ γ.

Thus the inequality Equation 15 can only hold in between the roots; the root with a minus sign is negative, and so does
not concern us since we know that M̂MD(θ) ≥ 0. Thus, for Equation 15 to hold, we must have

M̂MD(θ̃) ≤ β
2 +

√(
β
2

)2
+ γ

M̂MD
2
(θ̃) ≤ β2

4 +
(

β
2

)2
+ γ + β

√(
β
2

)2
+ γ

≤ γ + β2 + β
√

γ.

Also note that

γ = M̂MD
2
(θ̂) + 2z⊤Σz + 2 M̂MD(θ̂)∥Σ1/2z∥ ≤

(
M̂MD(θ̂) +

√
2∥Σ1/2z∥

)2
.

Thus, substituting in for β and γ then simplifying, we have that

M̂MD
2
(θ̃) ≤ M̂MD

2
(θ̂) + (6 + 2

√
2)z⊤Σz + 4∥Σ1/2z∥ M̂MD(θ̂).

Using the same bounds on z⊤Σz and ∥Σ1/2z∥ as in Proposition A.3, and 6
√

2 < 9, gives the claimed bound.

B Extended Implementation details

Repository. Our code is available at https://github.com/ParkLabML/DP-MEPF; the readme files contain
further instructions on how to run the code.

B.1 Hyperparameter settings

For each dataset, we tune the generator learning rate (LRgen) and moving average learning rate (LRmavg) from choices
10−k and 3 · 10−k with k ∈ {3, 4, 5} once for the non-private setting and once at ϵ = 2. The latter is used in all private
experiments for that dataset, as shown in 7. After some initial unstructured experimentation, hyperparameters are
chosen with identical values across dataset shown in 8

For the Cifar10 DP-MERF baseline we tested random tuned random features dimension d ∈ {10000, 50000}, random
features sampling distribution σ ∈ {100, 300, 1000}, learning rate decay by 10% every e ∈ {1000, 10000} iterations
and learning rate 10−k with k ∈ {2, 3, 4, 5, 6}. Results presented use d = 500000, σ = 1000, e = 10000, k = 3.

The DP-GAN baseline for Cifar10 and CelebA uses the same generator as DP-MEPF with 3 residual blocks and a total
of 8 convolutional layers and is paired with a ResNet9 discriminator which uses Groupnorm instead of Batchnorm to
allow for per-sample gradient computation. We pre-train the model non-privately to convergence on downsampled
imagenet in order to maintain the same resolution of 32 × 32 and then fine-tune the model for a smaller number of
epochs. In case of the CelebA 64 × 64 data we add another residual block to discriminator and generator to account
for the doubling in resolution. The base multiplier for number of feature maps is reduced from 64 to 50 to lessen the
increase in number of weights. Results are the best scores of a grid-search over the following parameters at ϵ = 2,
which is then used in all settings: number of epochs {1, 10, 30, 50} generator and discriminator learning rate separately
for 10−k and 3 · 10−k with k ∈ {3, 4, 5}, clip-norm {10−3, 10−4, 10−5, 10−6}, batch size {128, 256, 512} and, as
advised in Bie et al. (2023), number of discriminator updates per generator {1, 10, 30, 50}. The chosen values are given
in table 9.
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Table 7: Learning rate hyperparameters across datasets

Dataset ε (ϕ1, ϕ2) (ϕ1)
LRgen LRmavg LRgen LRmavg

MNIST ε = ∞ 10−5 10−3 10−5 10−3

ε < ∞ 10−5 10−4 10−5 10−4

FashionMNIST ε = ∞ 10−5 10−3 10−5 10−3

ε < ∞ 10−4 10−3 10−4 10−3

CelebA32
{∞, 10, 5} 3 · 10−4 10−4 3 · 10−4 10−4

{2, 1} 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

{0.5, 0.2} 10−3 3 · 10−4 ·10−3 3 · 10−4

CelebA64
{∞, 10, 5} 3 · 10−4 10−4 3 · 10−4 3 · 10−4

{2, 1} 3 · 10−4 10−3 3 · 10−4 3 · 10−4

{0.5, 0.2} 10−3 10−3 10−3 10−3

Cifar10 labeled
{∞, 10, 5} 10−3 3 · 10−4 10−3 10−4

{2, 1} 10−3 10−2 10−3 10−2

{0.5, 0.2} 10−3 10−2 10−3 10−2

Cifar10 unlabeled
{∞, 10, 5} 10−3 10−3 10−3 10−3

{2, 1} 10−3 10−3 10−3 10−3

{0.5, 0.2} 10−3 10−3 10−3 10−3

Table 8: Hyperparameters fixed across datasets

Parameter Value
(ϕ1)-bound 1
(ϕ2)-bound 1
iterations (MNIST & FashionMNIST) 100,000
batch size (MNIST and FashionMNIST) 100
iterations (Cifar10 & CelebA) 200,000
batch size (Cifar10 and CelebA) 128
seeds 1,2,3,4,5

C Detailed Tables

Below we present the results from the main paper with added a ± b notation, where a is the mean and b is the standard
deviation of the score distribution across three independent runs for MNIST and FashionMNIST and 5 independent
runs for Cifar10 and CelebA.

Table 10: Downstream accuracies of our method for MNIST at varying values of ϵ

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 91.4 ± 0.3 89.8 ± 0.5 89.9 ± 0.2 89.3 ± 0.3 89.3 ± 0.6 79.9 ± 1.3
DP-MEPF (ϕ1) 88.2 ± 0.6 88.8 ± 0.1 88.4 ± 0.5 88.0 ± 0.2 87.5 ± 0.6 77.1 ± 0.4

LogReg DP-MEPF (ϕ1, ϕ2) 84.6 ± 0.5 83.4 ± 0.6 83.3 ± 0.7 82.9 ± 0.7 82.5 ± 0.5 75.8 ± 1.1
DP-MEPF (ϕ1) 81.4 ± 0.4 80.8 ± 0.9 80.8 ± 0.8 80.5 ± 0.6 79.0 ± 0.6 72.1 ± 1.4

Table 9: Hyperparameters of DP-GAN for Cifar10 and CelebA

Cifar10 CelebA 32 × 32 CelebA 64 × 64
ϵ ∈ {0.2, 0.5} ϵ = 1 ϵ = 2 ϵ ∈ {5, 10}

LRgen 10−4 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

LRdis 10−3 3 · 10−4 10−3 3 · 10−4 10−3 10−3

batch size 512 512 512 512 512 512
epochs 10 10 10 10 10 10
discriminator frequency 10 10 30 30 10 10
clip norm 10−5 10−4 10−5 10−5 10−4 10−5
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Table 11: Downstream accuracies of our method for FashionMNIST at varying values of ϵ

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

MLP DP-MEPF (ϕ1, ϕ2) 74.4 ± 0.3 76.0 ± 0.4 75.8 ± 0.6 75.1 ± 0.3 74.7 ± 1.1 70.4 ± 1.9
DP-MEPF (ϕ1) 73.8 ± 0.5 75.5 ± 0.6 75.1 ± 0.8 75.8 ± 0.7 75.0 ± 1.8 69.0 ± 1.5

LogReg DP-MEPF (ϕ1, ϕ2) 74.3 ± 0.1 75.7 ± 1.0 75.2 ± 0.4 75.8 ± 0.4 75.4 ± 1.1 72.5 ± 1.2
DP-MEPF (ϕ1) 72.8 ± 0.5 75.5 ± 0.1 75.5 ± 0.8 76.4 ± 0.8 76.2 ± 0.8 71.7 ± 0.4

Table 12: CelebA FID scores 32 × 32 (lower is better)

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 18.5 ± 0.5 17.4 ± 0.7 17.5 ± 0.6 18.1 ± 0.8 19.0 ± 0.5 21.4 ± 1.3 25.8 ± 2.1
DP-MEPF (ϕ1) 16.6 ± 0.7 16.3 ± 0.9 16.9 ± 0.5 16.5 ± 0.8 17.2 ± 0.9 21.8 ± 1.0 25.5 ± 1.1

Table 13: CelebA FID scores 64 × 64 (lower is better)

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 18.6 ± 1.0 18.5 ± 1.2 19.1 ± 0.9 18.4 ± 1.0 19.0 ± 1.2 21.4 ± 1.3 26.8 ± 1.5
DP-MEPF (ϕ1) 16.3 ± 0.4 17.4 ± 1.4 16.5 ± 0.8 16.9 ± 1.1 18.4 ± 0.9 20.4 ± 0.8 27.7 ± 2.1

Table 14: FID scores for synthetic labelled CIFAR-10 data (generating both labels and input images)
ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

DP-MEPF (ϕ1, ϕ2) 27.7 ± 3.1 29.1 ± 1.3 30.0 ± 0.8 39.5 ± 1.9 54.0 ± 1.3 76.4 ± 3.9 226.0 ± 5.4
DP-MEPF (ϕ1) 28.4 ± 2.8 30.3 ± 2.1 35.6 ± 5.8 42.0 ± 3.0 56.5 ± 3.4 92.0 ± 3.5 268.3 ± 8.5

Table 15: Test accuracies (higher better) of ResNet9 trained on CIFAR-10 synthetic data with varying privacy guarantees.
When trained on real data, test accuracy is 88.3%

ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2
DP-MEPF (ϕ1, ϕ2) 57.5 ± 3.3 53.0 ± 2.8 43.9 ± 1.2 40.0 ± 1.9 28.5 ± 4.5 18.0 ± 1.0 16.2 ± 1.8
DP-MEPF (ϕ1) 43.8 ± 3.5 40.7 ± 4.2 32.3 ± 6.2 42.6 ± 1.6 33.2 ± 2.6 18.8 ± 4.0 15.3 ± 2.5

D Encoder architecture comparison

We are testing a large collection of classifiers of different sizes from the torchvision library including VGG, ResNet,
ConvNext and EfficientNet. For each we look at unlabelled Cifar10 generation quality in the non-DP setting and at
ϵ = 0.2. In each architecture, we use all activations from convolutional layers with a kernel size greater than 1x1. We
list the number of extracted features along with the achieved FID score in table 17, where each result is the best result
obtained by tuning learning rates. As already observed in dos Santos et al. (2019), we find that VGG architectures
appear to learn particularly useful features for feature matching. We hypothesized that in the private setting other
architectures with fewer features might outperform the VGG model, but have found this to not be the case.

E Public dataset comparison

We pretrained a ResNet18 using ImageNet, CIFAR10, and SVHN as our public data, respectively. We then used the
perceptual features to train a generator using CelebA dataset as our private data at a privacy budget of ϵ = 0.2 and
obtained the scores shown in 18. These numbers reflect our intuition that as long as the public data is sufficiently similar
and contains more complex patterns than private data, e.g., transferring the knowledge learned from ImageNet as public
data to generate CelebA images as private data, the learned features from public data are useful enough to generate
good synthetic data. In addition, as the public data become more simplistic (from CIFAR10 to SVHN), the usefulness
of such features reduces in producing good CelebA synthetic samples.
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Table 16: FID scores for synthetic unlabelled CIFAR-10 data
ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.5 ϵ = 0.2

DP-MEPF (ϕ1, ϕ2) 38.5 ± 1.5 38.8 ± 2.0 37.0 ± 1.1 38.7 ± 2.2 43.0 ± 1.1 49.4 ± 1.0 67.3 ± 2.6
DP-MEPF (ϕ1) 38.5 ± 0.6 38.5 ± 0.4 38.6 ± 1.3 40.1 ± 1.1 45.1 ± 2.4 49.8 ± 2.5 72.3 ± 4.0

Table 17: Unlabeled Cifar10 FID scores achieved with different feature extractors. VGG models yield the best results in
both non-DP and high DP settings.

Encoder model #features ϵ = ∞ ϵ = 0.2
(ϕ1, ϕ2) (ϕ1) (ϕ1, ϕ2) (ϕ1)

VGG19 303104 35.0 37.0 56.2 85.8
VGG16 276480 37.4 39.8 71.4 72.2
VGG13 249856 38.2 36.7 78.1 71.2
VGG11 151552 40.5 41.6 65.4 68.6
ResNet152 429568 71.8 70.1 88.6 87.9
ResNet101 300544 77.5 73.7 76.0 82.4
ResNet50 196096 71.5 76.3 90.0 105.1
ResNet34 72704 74.8 103.3 89.1 93.1
ResNet18 47104 84.9 85.0 104.5 95.2
ConvNext large 161280 141.9 232.0 138.2 221.6
ConvNext base 107520 142.4 248.0 157.0 200.1
ConvNext small 80640 171.7 212.3 169.9 202.9
ConvNext tiny 52992 145.6 218.2 138.8 205.8
EfficientNet L 119168 200.9 229.0 243.7 226.6
EfficientNet M 68704 185.7 177.1 218.7 227.1
EfficientNet S 47488 157.5 160.6 171.5 186.7

Table 18: FID scores achieved for CelebA 32 × 32 using a ResNet encoder with different public training sets

ImageNet Cifar10 SVHN
FID 47.6 51.2 65.2
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F Training DP-MEPF without auxiliary data

While DP-MEPF is explicitly designed to take advantage of available public data, one might wonder how the method
performs if no such data is available. The following experiment on CIFAR10 explores this scenario. We assume that a
privacy budget of ϵ = 10 is given. We use some part of the budget for feature extractor (i.e. the classifier) training and
the rest of the budget for the generator training.

For a feature extractor, we have trained ResNet-20 classifiers with DP-SGD at three different levels of ϵ ∈ {2, 5, 8} for
classifying the CIFAR10 dataset. We set the clipping norm to 0.01 and trained the classifiers for 7, 49 and 98 epochs,
respectively. Their test accuracies are 38.4%, 49.5% and 54.0% respectively. We also include scores for DP-MEPF
applied to the untrained Classifier, denoted as ϵ = 0.

Then, we train the generator using these four sets of features to generate CIFAR10 images, where each generator
training uses the rest of the budget, i.e., ϵ ∈ {8, 5, 2} and ϵ = 10 for the untrained classifier. We tune the learning rate
in each of the four settings and keep other hyperparameters at default values.

Table 19: DP-MEPF results in CIFAR10 when using a DP feature extractor (ϵ = 0 is an untrained extractor)

ϵ for feature extractor training for generator training FID
0 10 111.1
2 8 127.0
5 5 90.8
8 2 119.0

As expected, in Table 19 we see a considerable increase in the FID score, compared to DP-MEPF with public data.
A balanced allocation of privacy budget with ϵ = 5 each for classifier and generator training yields the best result at
an FID score of 90.8 and performs significantly better than just using a randomly initialized feature extractor, which
only achieves a score of 111.1. For comparison: with public data DP-MEPF achieves an FID score of 37.0 at ε = 5,
highlighting the importance of such data to our method.

G Additional Plots

Below we show samples from our generated MNIST and FashionMNIST data in Figure 7 and Figure 8 respectively.

Real Data ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

Figure 7: MNIST samples produced with DP-MEPF (ϕ1, ϕ2) at various levels of privacy
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Real Data ϵ = ∞ ϵ = 10 ϵ = 5 ϵ = 2 ϵ = 1 ϵ = 0.2

Figure 8: Fashion-MNIST samples produced with DP-MEPF (ϕ1, ϕ2) at various levels of privacy
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