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Abstract

As a key component of power system production simulation, load forecasting
is critical for the stable operation of power systems. Machine learning methods
prevail in this field. However, the limited training data can be a challenge. This
paper proposes a generative model-assisted approach for load forecasting under
small sample scenarios, consisting of two steps: expanding the dataset using
a diffusion-based generative model and then training various machine learning
regressors on the augmented dataset to identify the best performer. The expanded
dataset significantly reduces forecasting errors compared to the original dataset,
and the diffusion model outperforms the generative adversarial model by achieving
about 200 times smaller errors and better alignment in latent data distributions.

1 Introduction

The modern power grid faces new challenges for stable and secure operation, such as the difficulty in
forecasting load demand due to the uncertain charging profiles of electric vehicles (EV)’s. Accurate
load forecasting informs power consumption for a given time horizon, enabling power utilities to
schedule sufficient power generation while minimizing waste. Consequently, production simulation,
viz., an optimization program to economically allocate each power plant’s output, is widely used by
utility companies.

Various machine learning methods for load forecasting have been reported. Fan et al. [1] employed
a Long Short-Term Memory (LSTM) network for short-term load forecasting. Similarly, Kong et
al. [2] developed a hybrid model combining Convolutional Neural Networks (CNN) and LSTM
to enhance forecasting accuracy by capturing spatial and temporal dependencies. A random forest
(RF) model was utilized in [3]] to address overfitting through ensemble learning for short-term load
forecasting. Wang et al. [4] applied a Gradient Boosting Decision Tree (GBDT) model to effectively
capture nonlinear relationships in the data. The CatBoost model was used in [5] to predict power
load demands, demonstrating strong performance with mixed data types.

The methods mentioned above assume abundant, high-quality load demand data, which is often
unavailable in the power industry. Communication failures, device malfunctions, and newly built
communities with limited data can impede accurate load forecasting.

Therefore, obtaining a large number of high-quality datasets from a given small dataset is a key
issue here. Generative Adversarial Networks (GANs) have excelled in data generation[7; 8} |9], and
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many variants have been developed, among which TimeGAN (Time-series Generative Adversarial
Networks) [[LO] performs well in synthesizing time series data. In addition, the diffusion model [/11]]
has been applied for time-series data generation in recent years. For example, Yuan. et al. proposed
an interpretable diffusion model for generic time series generation [12].

In this paper, we explore the effectiveness of load data augmentation for power system production
simulation using TimeGAN and TS-Diffusion, respectively. The first step is augmenting the original
dataset, the second step is training a forecasting model based on the augmented dataset, and the last
step is feeding the predicted load demand in an optimization model to conduct the power system
production simulation. The source code and data are freely accessible at https://github. com/
Becklishious/NeurIPS2024.

2 Dataset Augmentation for Load Forecasting

In this section, we present a brief description of the original dataset and the TS-Diffusion model
for data augmentation. The math details are described in Appendix A.2. The TimeGAN-based data
augmentation model and the ExtraTree-based [6] load forecasting model are described in Appendix
A.l and A.3.

2.1 Dataset Description

The dataset used in this paper is collected from a household in northwest China, comprising 168
hourly load records from April 16 to April 22, 2024. It includes additional meteorological data:
temperature, barometric pressure, wind speed, wind direction, surface horizontal radiation, direct
normal radiation, and diffuse radiation. These variables will be included during dataset augmentation.
In our load forecasting model, the meteorological data serve as features, while the load values are
used as labels.

2.2 TS-Diffusion Model for Load Demand Augmentation

TS-Diffusion is a diffusion model for time series data generation based on a Transformer-inspired
architecture combined with a decomposition design. TS-Diffusion performs well in tasks like missing-
value interpolation. Hence, we adopt it to augment time series data. The training process diagram of
the TS-Diffusion generation model is shown in Figure
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Figure 1: TS-Diffusion training framework.

The encoder module processes the input time series using a multi-head attention mechanism and a
feed-forward neural network. The decoder module also uses multi-head attention and feed-forward
layers, plus a deep decomposition design to capture the trend and seasonality components of the
time series. The diffusion-embedding module incorporates time-step information, and the positional
encoding module adds positional information to help the model capture the inherent temporal patterns
of the data.
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3 Experiment Results

This section mainly 1) compares the quality of the augmented datasets obtained by the two generative
machine learning approaches and 2) gives a simple showcase for power system production simulation.
An in-depth analysis of the experiment results can be found in Appendix A.4. All the experiments
are implemented on a desktop PC with Intel 5.4GHz CPU and 32GB RAM.

3.1 Quality of TS-Diffusion Augmented Dataset

The original data is divided into the training and test sets at the beginning with an 8:2 split ratio.
Then, the TS diffusion model is used to augment the original training set (about 134 data samples) to
3456 samples. Prediction models are then trained respectively on the original training set and the
augmented training set. Besides, another comparison dataset is established by expanding the original
training set to the same size as the TS diffusion-augmented dataset using simple replication, followed
by model training. RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) are used as
the performance metrics. Four types of regression models are considered: ExtraTree, Random Forest,
CatBoost, and XGBoost. Each model is independently trained once on the original, replicated, and
augmented datasets and tested on the (previously split) 20% testing set. Results are shown in Table[T]

Table 1: Performance comparison on the original, replicated and augmented datasets (TS-Diffusion)

Model dataset RMSE MAE

XGBoost original 0.05774 0.04276
replicated  0.06485  0.04427
augmented 0.01526 0.00249
CatBoost original 0.04389  0.03323
replicated  0.04536 0.03243
augmented 0.00236  0.00098
RandomForest  original 0.04183  0.02952
replicated  0.05846  0.03968
augmented 0.00153  0.00013
ExtraTree original 0.04467  0.03209
replicated  0.04495  0.03229
augmented 0.00023  0.00004

There is no risk of data leakage because: 1) the original dataset has been divided into the training
set and test set at the beginning 2) only the training set is used to establish the GAN model and 3)
the final augmented dataset contains no entry from the testing set. From Table[I] we can see that the
results of the TS-Diffusion augmented dataset are better than the original and replicated datasets, and
this conclusion holds for all four models. In particular, when the ExtraTree model is trained using the
augmented dataset, it has the best prediction effect on the testing set, with an RMSE of 0.00023 and
an MAE of 0.00004, which cannot be achieved by simply duplicating the original dataset.

3.2 Quality of TimeGAN Augmented Dataset

Similar to 3.1, we use TimeGAN to augment the dataset. The experiment results on the augmented
dataset are shown in Table 2] (comparisons with other datasets are put in Table [3|of the Appendix).

Table 2: Performance on the augmented dataset (TimeGAN)

Model dataset RMSE  MAE

XGBoost augmented 0.06398  0.03445
CatBoost augmented 0.05637 0.02761
RandomForest augmented 0.06130 0.02949
ExtraTree augmented  0.05356  0.02395
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Figure 2: (a) a regional power grid; (b) production simulation results

From Table we can find that the ExtraTree model still performs best. However, the RMSE increases
(compared to the prediction model trained on the original data). Therefore, the robustness of the
TimeGAN-based data-augmentation model is slightly inferior to that of the TS-diffusion model.

3.3 A Simple Showcase for Power System Production Simulation

The previously predicted load data can be utilized in a standard power system production simulation
procedure, which means solving the following optimization model:

Suppose a region’s load is supplied by grid-purchased power P,,;4(t) and photovoltaic (PV) power
P,,(t) . The cost of PV power is 0.4 $/kWh, while the cost of the grid-purchased power is 1
$/kWh. To optimize this region’s power operation, the objective is to minimize the power production
cost while meeting load requirements P,,,q(t). The objective function is defined in Eq., with
constraints from Eq.(2) to Eq.({@).

T=24 T=24
minimize cost griq Z Pyria(t) + costpy, Z P,,(t) )
t=1 t=1
subject to Proad(t) = Pgria(t) + Ppo(t), t=1,...T 2)
Pyria(t) >0, t=1,...T 3)
OSva<t) Sppv,maw(ﬁ), t= 17"'7T (4)

In Eq., vaymw(t) is the maximum possible PV power at time ¢. Since the load demand of the
future horizon (e.g., the next day) is unknown, we employ the ExtraTree-based load forecasting
model (trained on the dataset augmented by TS-Diffusion) “as” the future day’s load, Pjyqq(t). Then,
this forecast load will be substituted in Eq.(2). After solving the optimization problem, the simulation
results of the PV generation and grid power purchase are depicted in Figure [2]

During the no-PV-power period (before sunrise or after sunset), the region’s power supply fully relies
on external grid support. As the PV power increases, the grid power exchange gradually decreases.
From 10:00 to 16:00, when the PV power is the most sufficient, it fully meets the region’s load needs.

4 Conclusion and Future Work

In this paper, we propose a method to improve the accuracy of load forecasting models using
generative machine learning under small samples. The quality of the generated load data ( especially
by the diffusion model) significantly improves the load-forecasting accuracy, demonstrating the
feasibility and capability of generative machine learning for power system production simulation.

Future work includes fine-tuning the generative models for better data quality and conducting
additional comparisons. A limitation of this study is that the trained generative model for one regional
power system may not directly apply to neighboring regions. Thus, applying transfer learning to
enhance the model’s generalizability will be the next step.
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A Appendix

A.1 GAN-based Load Demand Augmentation Model

TimeGAN (Time-series Generative Adversarial Networks) is a GAN model customized for time
series data generation. It integrates GAN with self-supervised learning to capture complex temporal
patterns. Like traditional GAN, it includes a generator that produces synthetic data and a discriminator
that distinguishes between real and generated data. Through iterative training, the generator improves
in producing simulated time series.

A key feature of TimeGAN is its use of self-supervised learning via an auto-encoder, comprising
an encoder that maps time series data to latent representations and a decoder that reconstructs the
original data. This structure enhances the model’s ability to capture the intrinsic time-series features.
Figure[3]illustrates the TimeGAN training process.

Supervised
Loss
Unsupervised Training
Loss Loss
Network

Figure 3: TimeGAN training framework.
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In Figure [3] the original data s, x1.7 is processed by the encoder and decoder networks to obtain
the latent representation hs, hy.7 and the reconstruction values s, X;.7. The reconstruction loss is
defined by Eq. (§).

Lr = Espmmplls =8l + Y lIxe = %ello] ®)

t

When TimeGAN generates data, the generator receives two types of 1nputs during training. First,
in the open-loop mode, the generator receives synthetic embedding hg, h. .t—1 to generate the next
synthetic vector h,. The gradient is calculated based on the unsupervised loss in Eq.@, in order to

provide the correct classification results ys, ¢1.7 for the generated data and the training data as much
as possible.

L0 = Fopionp| 108 s + D108 51| + Boxyrp | log(1 = ) + > _log(1 = )| (6)
t t

In the closed-loop mode, the generator receives sequences of actual-data embeddings h;.,; to
generate the next latent vector. The gradient is then calculated based on the supervised loss of Eq.(7)
to capture the difference between the distributions of the real data and generated data.

Ls = ]ES,XLTNP[Z ”ht - QX(hSa ht—lazt)”ﬂ @)
t

Compared with traditional GANs, TimeGAN can capture temporal dependencies and generate
sequences with a similar temporal dependency structure as real data. In addition, by combining ad-
versarial training and self-supervised learning, TimeGAN can simultaneously optimize the processes
of data generation and feature transformation. Hence, high-quality data can be generated. Moreover,
the trained TimeGAN can generate multi-dimensional time series of arbitrary lengths.



A.2 TS-Diffusion-based Load Demand Augmentation Model

As shown in Figure[l] the TS-Diffusion model contains forward and reserve processes. In this setting,
a sample from the data distribution zy ~ q(z) is gradually noised by a Gaussian noise A during the
forward process, where the transition is parameterized by q(z¢|v;—1) = N (z4; 1 — Brxi_1, Be)
with 8; € (0,1) as the amount of noise added at diffusion step ¢. Then a neural network
learns the reverse process of gradual denoising the sample via reverse transition py(xi—1|x¢) =
N (13 po(we, ), > (21, 1)). The reverse process can be approximated via Eq. (8).

_ Vaa1pB

Ti_1 = T a Zo(ze, t,0) +

\/OTt(l - dt_l)xt + L @t_ilﬁtzt (®)
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where z; ~ N(0,I),a; =1 — f; and &y = szl a5 TS-Diffusion trained this denoising model
o (xy,t) using a weighted mean squared error loss, the reweighting strategy is shown in Eq. @)

R Ao (1l — &
Esimple = Et,xo [thxo - Io(l‘t,t, 9)”2] , Wt = M ©

Bi

where A is a constant. These loss terms are down-weighted at small ¢ to force the network focus on a
larger diffusion step. In addition, TS-Diffusion guides an interpretable diffusion training by applying
the Fourier transformation in the frequency domain, i.e.,

[,9 = Et,xo [wt [)\1“560 - .f?o(l‘t,t,ﬁ)HZ + /\2||.F.FT(.Z‘0) - .F.FT(io(l‘t,t,G))HQ]] (10)

where FFT denotes the Fast Fourier Transformation, and \q, A2 are the balancing weights for the
two losses in Eq. (10).

A.3 ExtraTree-based Load Forecasting Model

ExtraTree is a decision tree-based machine learning model that improves its generalization ability
and computational efficiency by introducing extreme stochasticity to randomly select features and
feature splitting points.

Unlike the usual approach that uses only a subset of the data, it uses the entire training dataset to build
each tree. During the training process, the ExtraTree model introduces a lot of randomness. At each
split node, it randomly selects features and feature values to split rather than choosing the optimal
feature split point. More specifically, it randomly selects a subset of all features, then randomly
selects a feature from this subset to split, and randomly selects one of the possible split points as the
actual split point. Figure[]illustrates the basic idea of the ExtraTree model for load forecasting.
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Figure 4: ExtraTree Model.



When making predictions, the ExtraTree model first makes individual predictions for each tree.
Specifically, the input data is passed to each decision tree, and each tree makes a prediction based on
the feature splitting rule for the path from the root node to the leaf nodes. Finally, the predictions of
all decision trees are averaged to obtain the final prediction.

A.4 An In-depth Analysis of the Experiment Results

In this subsection, the "generation quality" of the TS-Diffusion and TimeGAN augmented datasets
are respectively analyzed. The load forecasting models are trained on the augmented datasets, of
which the MAE and RMSE are compared with the forecasting models trained on the original data.
The complete results of section [3.2]are shown in Table 3]

Table 3: Performance comparison on the original, replicated and augmented datasets (TimeGAN)

Model dataset RMSE MAE

XGBoost original 0.05774  0.04276
replicated  0.06485 0.04427
augmented 0.06398  0.03445

CatBoost original 0.04389 0.03323
replicated  0.04536 0.03243
augmented 0.05637 0.02761

RandomForest  original 0.04183  0.02952
replicated  0.05846 0.03968
augmented 0.06130 0.02949

ExtraTree original 0.04467  0.03209
replicated  0.04495 0.03229
augmented 0.05356 0.02395

The results in Table 3| reveal that the model trained on the TimeGAN-augmented dataset outperforms
the one trained on the original and replicated data regarding the MAE but underperformed in RMSE.
MAE measures the average absolute error between predicted and actual values, giving equal weight
to each error. In contrast, the RMSE is more sensitive to larger errors due to the squaring operation.
The augmented data leads to lower MAE but higher RMSE, indicating smaller errors overall with
a few extreme outliers. This suggests that TimeGAN may have introduced slight anomalies during
augmentation, thus enlarging the RMSE. Besides, the augmented data possibly deviates from the
original data distribution in the tail, leading to poorer model performance in extreme cases. While the
augmentation improves prediction accuracy to some extent, it somewhat compromises robustness.

On the other hand, the load forecasting models trained on the TS-Diffusion augmented dataset are
better than those trained on the original data, both in terms of MAE and RMSE. Also, compared with
the TimeGAN augmented dataset, the quality of the TS-Diffusion augmented dataset is obviously
better. Taking ExtraTree as an example, the MAEs of the model trained on the original dataset, the
TimeGAN augmented dataset, and the TS-Diffusion augmented dataset are respectively 0.03209,
0.02395, and 0.00004. The performance of the TS-Diffusion augmented dataset is remarkable.

Figuredd] and [6] show the PCA (Principal components analysis) plot versus t-SNE (t-Distributed
Stochastic Neighbor Embedding) plot of the TS-Diffusion and TimeGAN generated data versus the
original data.

From the PCA and t-SNE plots, it can be found that with an equal number of generated samples, the
data generated by TS-Diffusion overlaps with the original data better. In contrast, the data generated
by TimeGAN is relatively widely dispersed. Thus, we can infer that TS-Diffusion might learn the
distribution of the input data better when generating the time series data, which is a key requirement
in time series data generation.

On the other hand, we also want to check if such a high overlap of the TS-Diffusion generated data
with the original data on the above 2D plots means that the TS-Diffusion does not have the potential to
dissimilate the original data (Because nobody wants to always generate the same data as the original
dataset!). So, we further inspect the distribution (i.e., probability density) of each generated feature
column by the KDE (kernel density estimation) plots shown in Figure7]
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Figure 5: PCA of the TS-Diffusion generated data and the original data (right) and PCA of the
TimeGAN generated data and the original data (left).
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Figure 6: t-SNE of the TS-Diffusion generated data and the original data (right) and t-SNE of the
TimeGAN generated data and the original data (left).
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Table 4: Mean and standard deviation of three datasets

Feature Original dataset TimeGAN augmented TS-Diffusion augmented
Mean Standard deviation Mean Standard deviation Mean Standard deviation

Load 0.0846 0.0796 0.0785 0.1047 0.0840 0.0819
Temperature 12.1151 3.5519 11.9075 3.8843 11.8959 3.7428
Pressure 805.4252 2.1036 805.0396 2.2329 805.2451 2.1093
Wind Speed 3.0823 2.0580 3.2160 2.2103 3.1738 2.1988
Wind Direction 200.2355 112.9504 209.9846 108.3983 211.6479 116.6709
Surface Horizontal Radiation = 223.0501 299.1725 240.8833 311.9197 233.1411 311.5514
Normal Direct Radiation 174.3329 280.0541 199.4151 290.4430 194.1014 296.6413
Scattered Radiation 95.8374 114.8145 91.6883 107.3998 90.9040 109.0043

Finally, it can be observed that the distribution of the data generated by TS-Diffusion does not
completely overlap with the distribution profile of the original data (but still captures the basic
position and shape of the original data). This further explains the previously observed superiority
(Table([T] vs. Table3)) of the TS-Diffusion augmented dataset over the TimeGAN augmented dataset.
Briefly speaking, the TS-Diffusion model is not simply “copying” the target dataset when it tries to
generate its own data.

In addition, we calculate the mean and standard deviation of the seven input features and the load
demand for the original dataset and the augmented datasets, respectively, to inspect the quality of the
augmented datasets from a statistical perspective. The results are shown in Table [4]

It can be seen more clearly from Table [ that although the augmented dataset is much larger, it still
holds similar statistics as the original data, demonstrating again that the augmented models can indeed
capture the original data’s inherent patterns.
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