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Abstract. To address the problem of training on small datasets for ac-
tion recognition tasks, most prior works are either based on a large num-
ber of training samples or require pre-trained models transferred from
other large datasets to tackle overfitting problems. However, it limits
the research within organizations that have strong computational abili-
ties. In this work, we try to propose a data-efficient framework that can
train the model from scratch on small datasets while achieving promising
results. Specifically, by introducing a 3D central difference convolution
operation, we proposed a novel C3D neural network-based two-stream
(Rank Pooling RGB and Optical Flow) framework for the task. The
method is validated on the action recognition track of the ECCV 2020
VIPriors challenges and got the 2nd place (88.31%) 1. It is proved that
our method can achieve a promising result even without a pre-trained
model on large scale datasets. The code will be released soon.

Keywords: from-scratch training, 3D difference convolution, Rank Pool-
ing, over-fitting

1 Introduction

Nowadays, with the strong ability of deep learning methods, training on massive
datasets could consistently gain substantial performances on the action recog-
nition task. However, it only works for a few very large companies that have
thousands of expensive hardware GPUs and the majority of smaller companies
and universities with few hardware clusters cannot enjoy the benefits. In this
work, we try to train a model from scratch without large datasets or large scale
pre-trained models while it can achieve state-of-the-art performance on the ac-
tion recognition task.

Specifically, we introduce an enhanced convolution operation: 3D temporal
central difference convolution (TCDC) into a traditional 3D CNN structure to

1 https://competitions.codalab.org/competitions/23706#results
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2 H. Chen et al.

efficient spatio-temporal features in basic convolution operators with less over-
fitting. Besides, instead of using raw RGB frames that might learn too much
unnecessary details, we propose to use an efficient representation called Rank
Pooling to serve as an enhanced RGB stream. Furthermore, the Optical Flow
stream is used to guide the learning of the Rank Pooling stream to tackle the
overfitting issue. At last, the Optical Flow stream and Rank Pooling stream are
combined to be trained jointly on the task for better performance. The frame-
work of our method is illustrated in Fig. 1. Our contribution to tackling this
training-from-scratch task includes: a novel temporal convolution operator (3D
TCDC), an Optical Flow guided Rank Pooling stream and a joint two-stream
learning strategy for action recognition.

Optical flow stream

RGB stream Rank Pooling stream

Rank Pooling
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Fig. 1. Network architecture for our hybrid two stream framework. The Optical Flow
is used to enhance the learning of Rank Pooling for overcoming the overfitting problem

2 Related work

The first common used two-stream 2D CNN architecture for action recognition
was proposed by Simonyan and Zisserman [6], including one stream of RGB
frames, and the other of Optical Flow. The two streams are trained separately
and fused by averaging the scores of both the streams. A transition from 2D
CNNs to 3D CNNs was made since the better performances of spatio-temporal
features compared by 3D CNN to their 2D equivalents [8]. This transition comes
with the problem of overfitting caused by small datasets and a high large number
of parameters that need to be optimized [9] [10] in the model.

Specifically, in a two-stream (RGB and Optical Flow) framework, directly
training models to learn RGB frames from scratch on a small dataset can lead
to severe overfitting problem for RGB stream, while Optical Flow stream can
still achieve relative high performances. The reason is that RGB frames contain
too many noisy details and a large model could learn some irrelevant features
which lead to overfitting with local optima. Many previous works have reported
this overfitting issue, for instance, training from scratch on single RGB stream,
3D Resnet50 model [2] can achieve 55.2% accuracy, Slowfast model [3] for 40.1%,
and even with neural network searching [5], the accuracy can only reach 61%.
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An Efficient Optical Flow Stream Guided Framework 3

To deal with the problem of overfitting, Carreira and Zisserman [1] intro-
duced the Kinetics dataset with the I3D network, which was large enough to
let 3D CNNs be trained sufficiently. Using RGB and Flow streams pre-trained
on Kinetics [4], I3D achieved the state of art on the UCF101 [7] datasets. How-
ever, when the large scale datasets and pre-trained models are not available,
especially for those who are not able to access to powerful computing facilities,
how to overcome the overfitting is still an unsolved problem. In this work, we
proposed to introduce a new 3D CNN operator TCDC [12], which is inspired by
the 2D-CDC[13], and use Rank Pooling RGB stream with Optical Flow guided
strategy to tackle this issue, which can achieve a promising result with a low
computational cost.

3 Methodology

3.1 C3D Backbones with Central Difference Convolution

Based on the traditional 3D CNN framework [8], we introduce an unified 3D con-
volution operator called 3D temporal central difference Convolution (3D TCDC)
for better integrating local gradient information. In a TCDC operation, the sam-
pled local receptive field cube C is consisted of two kinds of regions: 1) the region
in the current moment R′, and 2) the regions in the adjacent moments R′′. In
the setting of a TCDC, the central difference term is only calculated from R′′.
Thus the generalized TCDC can be formulated as:

y(p0) =
∑
pn∈C

w(pn) · x(p0 + pn)

︸ ︷︷ ︸
vanilla 3D convolution

+θ · (−x(p0) ·
∑

pn∈R′′

w(pn))

︸ ︷︷ ︸
temporal CD term

.

(1)

where w, x and p denote the kernel weights, input feature maps and weight
positions respectively. The first term in the right side stands for a Vanilla 3D
convolution, while the second term stands for 3D TCDC operation. Please note
that w(pn) is shared between vanilla 3D convolution and temporal CD term,
thus no extra parameters are added. The hyperparameter θ ∈ [0, 1] is the fac-
tor to combine the contribution of gradient-level (3D TCDC) and intensity-level
(Vanilla 3D). As a result, our C3D framework combines vanilla 3D convolution
with 3D TCDC and could provide more robust and diverse modeling perfor-
mance.

3.2 Rank Pooling for Optical Flow guided learning

We introduce a more explicit representation Rank Pooling instead of raw RGB
frames to avoid the overfitting problem on the RGB steam. The definition of the
Rank Pooling is below. Let a RGB stream sequence with k frames be represented
as < I1, I2, ..., It, ..., Ik >, where It is the average of RGB features over the
frames up to t-timestamp. The process of Rank Pooling is formulated as following
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objective function:

argmin
1

2
‖ω‖2 + δ

ξij∑
i>j

,

s.t.ωT · (Ii − Ij) ≥ 1− ξij , ξij ≥ 0

(2)

By optimizing Eq. 2, we map a sequence of K frames to a single vector d. In this
paper, Rank Pooling is directly applied on the pixels of RGB frames and the
dynamic image d is of the same size as the input frames. After the Rank Pooling
images being generated, we combine the Rank Pooling stream with Optical Flow
stream as input into the above C3D networks, which can enhance the learning
of Rank Pooling stream.

4 Experiments

We validate our method on action recognition track of the ECCV 2020 VIPri-
ors challenges with part (split 1) of the well-known action recognition dataset
UCF101 [7]. There are 9537 video clips for training and validating, and 3783 for
testing.

4.1 Different backbones

Table 1. Comparison of different backbone networks

Backbone Stream Training Acc Testing Acc Overfitting gap

Slowfast[3] RGB 84.1% 40.1% 44.1%
Slowfast [3] Optical Flow 75.2% 56.4% 18.8%

ResNet 3D 101 [2] RGB 82.8% 48.8% 34.0%
ResNet 3D 101 [2] Optical Flow 84.4% 66.3% 18.1%
ResNet 3D 50 [2] RGB 84.1% 51.8% 32.3%
ResNet 3D 50 [2] Optical Flow 86.1% 67.6% 18.5%

NAS [5] RGB 88.9% 50.2% 38.7%
C3D [8] RGB 88.3% 51.9% 36.4%
C3D [8] Optical Flow 84.2% 68.1% 16.1%

TCDC (ours) RGB 91.4% 55.8% 35.6%
TCDC (ours) Optical Flow 85.4% 77.2% 8.2%

In the experiment, we compared our 3D temporal CDC stacked networks
(TCDC network) with C3D[8], ResNet 3D 50[2], ResNet 3D 101[2], SlowFast
network[3] and also searched neural networks[5]. It turns out that our network
performs the best among these networks. As shown in Table 1, we can see that
our TCDC network can relatively solve the overfitting problem. However, there
is still room to improve the performance, especially for the RGB stream. Then
we introduce the Rank Pooling representations.
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An Efficient Optical Flow Stream Guided Framework 5

4.2 Efficiency of Rank Pooling stream

Table 2. Comparison of different stream fusions

Fusing streams Accuracy

Theta in TCDC network 0.2 0.5 0.7

RGB 52.6% 53.1% 55.8%
RGB

(Optical Flow enhanced)
52.8% 54.2% 58.9%

Rank Pooling
(Optical Flow enhanced)

69.7% 71.2% 78.5%

Rank Pooling
(Optical Flow enhanced)

+ Optical Flow
- - 83.8%

Rank Pooling (Optical Flow enhanced)
+ Optical Flow (ensemble 12 &16 frame)

- - 88.3%

To further overcome the serve overfitting problem of networks on RGB stream,
we concatenate Optical Flow stream along with the RGB stream to enhance the
learning procedure. However, as shown in Table 2, the benefit it gains is limited.
We assume it’s caused by the irrelevant features with local optima. Thus we
propose to use a more explicit and efficient representation of RGB frames called
Rank Pooling to tackle the problem. By introducing Rank Pooling representa-
tion, the overfitting problem is released (Rank Pooling 78.5% V.S. RGB 58.9%)
as shown in third line of the Table 2. The best result is achieved by assembling
the two stream results at clip lengths of 12 frame and 16 frame (all the data
augmentations are implemented in all these frameworks).

4.3 Other experimental settings

Data augmentation techniques such as random cropping and horizontal flipping
are proved very effective to avoid the problem of over-fitting. Here, we imple-
mented two data augmentation techniques as same as [11]: 1. a corner cropping
strategy, which means only 4 corners and 1 center of the images are cropped; 2.
Horizontal Flip strategy that the training set is enlarged two times as the origi-
nal one. We fix the input image size is 112*112. The clip length is 16 (ensembled
with 12) frame. The optimal training parameters are set as 32, 0.1, 0.9, 10, 200
for the batch size, the initial learning rate, the momentum, the learning rate
patience, and the epoch iteration respectively. The optimizer is standard SGD.
The optical flow is extracted by a OpenCV wrapper for tvl1 optical flow and
then processed by FlowNet2 2 to generate 2-channel frames. The distribution
platform is Pytorch with a single GPU: NVidia V100 (RAM: 32 GB).

2 https://github.com/lmb-freiburg/flownet2-docker
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5 Conclusions

In this work, we propose a data-efficient two-stream framework that can train the
model from scratch on small datasets while achieving state-of-the-art results. By
introducing a TCDC network on an Optical Flow guided Rank Pooling stream,
we can substantially reduce the overfitting problem when dealing with small
datasets. The method is validated on the action recognition track of the ECCV
2020 VIPriors challenges. It is proved that our method can achieve a promising
result even without a pre-trained model on a large scale dataset.
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