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Abstract

Efficient information dissemination is crucial for supporting critical operations across
domains like disaster response, autonomous vehicles, and sensor networks. This paper
introduces a Multi-Agent Reinforcement Learning (MARL) approach as a significant step
forward in achieving more decentralized, efficient, and collaborative information dissem-
ination. We propose a Partially Observable Stochastic Game (POSG) formulation for
information dissemination empowering each agent to decide on message forwarding in-
dependently, based on the observation of their one-hop neighborhood. This constitutes
a significant paradigm shift from heuristics currently employed in real-world broadcast
protocols. Our novel approach harnesses Graph Convolutional Reinforcement Learning
and Graph Attention Networks (GATs) with dynamic attention to capture essential network
features. We propose two approaches to accomplish cooperative information dissemination,
L-DyAN and HL-DyAN, differing in terms of the information exchanged among agents. Our
experimental results show that our trained policies outperform existing methods, including
the state-of-the-art heuristic, in terms of network coverage and communication overhead on
dynamic networks of varying density and behavior.

1 Introduction

Group communication, implemented in a broadcast or multicast fashion, finds a natural application in different
networking scenarios, such as Vehicular Ad-hoc Networks (VANETs) (Tonguz et al., 2007; Ibrahim et al.,
2020), with the necessity to disseminate information about the nodes participating, e.g. identity, status, or
crucial events happening in the network. These systems can be characterized by congestion-prone networks
and/or different resource constraints, such that message dissemination becomes considerably expensive if not
adequately managed. For this matter, message forwarding calls for scalable and distributed solutions able to
minimize the total number of forwards, while achieving the expected coverage. Moreover, modern broadcast
communication protocols often require careful adjustments of their parameters before achieving adequate
forwarding policies, which would otherwise result in sub-optimal performance in terms of delivery ratio and
latency (Suri et al., 2022).

Recently, researchers have considered learning communication protocols (Foerster et al., 2016) with Multi-
Agent Reinforcement Learning (MARL) (Buşoniu et al., 2010). At its core, MARL seeks to design systems
where multiple agents learn to optimize their objective by interacting with the environment and the other
entities involved. Such tasks can be competitive, cooperative, or a combination of both, depending on the
scenario. As agents interact within a shared environment, they often find the need to exchange information to
optimize their collective performance. This has led to the development of communication mechanisms that are
learned rather than pre-defined, allowing agents to cooperate better utilizing their learned signaling system.

Nevertheless, learning to communicate with MARL comes with several challenges. In multi-agent systems,
actions taken by one agent can significantly impact the rewards and state transitions of other agents, rendering
the environment more complex and dynamic, and ensuring that agents develop a shared and consistent
communication protocol, is an area of active research. Methods such as CommNet (Sukhbaatar et al., 2016)
and BiCNet (Peng et al., 2017), focus on the communication of local encodings of agents’ observations. These
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approaches allow agents to share a distilled version of their perspectives, enabling more informed collective
decision-making. ATOC (Jiang and Lu, 2018) and TarMAC (Das et al., 2019) have ventured into the realm
of attention mechanisms. By leveraging attention, these methods dynamically determine which agents to
communicate with and what information to share, leading to more efficient and context-aware exchanges. Yet
another approach, as exemplified by Graph Convolutional Reinforcement Learning (DGN) (Jiang et al., 2020),
harnesses the power of Graph Neural Networks (GNNs) and attention mechanisms to model the interactions,
relations, and communications between agents.

However, to the best of our knowledge, no MARL-based method involving proactive communication and GNNs
has been proposed to address the unique challenges of optimizing the process of information dissemination
within a broadcast dynamic network. In such a scenario, nodes need to cooperate to spread the information
by forwarding it to their immediate neighbors, which might change over time, while relying on their limited
observation of the entire graph. Furthermore, their collaboration and ability to accomplish dissemination are
bound by the limitations of the underlying communication channels. This means that both the quantity of
forwarding actions and the amount of information exchange needed for effective cooperation are constrained
and should be minimized.

In this work, we introduce a novel Partially Observable Stochastic Game (POSG) for optimized informa-
tion dissemination in dynamic broadcast networks, forming the basis for our MARL framework.1 To this
end, we design a MARL algorithm to encourage cooperation within dynamic neighborhoods where node
connections are frequently changing. Furthermore, we design and test two distinct architectures, namely
Local Dynamic Attention Network (L-DyAN) and Hyperlocal Dynamic Attention Network (HL-DyAN),
which require different levels of communication leveraging Graph Attention Network (GAT) with dynamic
attention (Brody et al., 2022) and Dueling Q-Networks (Wang et al., 2016).

Our experimental study demonstrates our methods’ efficacy in achieving superior network coverage across dy-
namic graphs in different scenarios, outperforming DGN and the established Multipoint Relay (MPR) (Dearlove
and Clausen, 2014) heuristic. Moreover, our approach operates on one-hop observations and empowers nodes
to take independent forwarding decisions, unlike MPR. By exploring the potential of learning-based approaches
for addressing information dissemination in dynamic networks, our work underscores the versatility of MARL
in present and future, real-world applications such as information dissemination in social networks (Guille
et al., 2013), space networks (Ye and Zhou, 2021), and vehicle communication services (Ma et al., 2012).

2 Background

Optimized Flooding in Broadcast Networks A dynamic broadcast network can be represented as a dynamic
graph G(t) = (V, E(t)), where each node represents a (possibly) mobile node and an edge between two nodes
at time t represents the two corresponding nodes being within each other’s broadcasting range at that time.
Hence, for every node v ∈ V , the set of its neighbors at time t is defined as Nv(t) = {u ∈ V|(v, u) ∈ E(t)}.

A main objective of broadcast communications over connected networks is called Optimized Flooding (Qayyum
et al., 2002) and it is achieved when the information emitted from a given node v ∈ V reaches every other node
u ̸= v, thanks to forwarding actions of a set of nodes D ⊆ V . While maximizing coverage it is also desirable
to minimize redundant transmissions, which might impact resource utilization, such as bandwidth, power
consumption, and latency. From a graph-theoretic point of view this can be achieved by identifying a specific
subset of nodes, called a Minimum Connected Dominating Set (MCDS), that will be tasked with forwarding
the information. This task requires the introduction of a centralized entity with complete knowledge of the
network state and has been shown to be NP-complete (Garey and Johnson, 1979). A much more efficient and
realistic approach is to approximate the MCDS in a distributed manner, relying only on local observations of
the network made from each node’s perspective. Indeed, this is the approach taken by the MPR heuristic and
our MARL approach.

1Repository link obscured.
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3 Related Work

The MPR selection algorithm is a technique developed to efficiently disseminate information in Mobile Ad-hoc
Networks (MANETs) and wireless mesh networks. It achieves this by having each node designate certain
one-hop neighbors to forward messages arriving from them, thereby reducing the overall transmission load
and preventing excessive network broadcasting. This process involves nodes exchanging “HELLO messages”
to identify and select their MPR sets, ensuring effective network coverage with minimal redundancy.

In real-world networking protocols, MPR plays an essential role. For instance, in the Optimized Link State
Routing (OLSR) protocol (Dearlove and Clausen, 2014), MPR is fundamental in managing the distribution of
Topology Control (TC) messages. Similarly, in Simplified Multicast Forwarding (SMF) (Macker, 2012), MPR
is employed primarily for the efficient forwarding of multicast packets.

In this work, we compare our approach with the MPR selection algorithm, as outlined in the standard OLSR
implementation (Dearlove and Clausen, 2014), leveraging this algorithm as a baseline for distributed message
dissemination in dynamic graph structures.2 However, we define a completely different approach that leverages
MARL and, unlike MPR, only requires an anonymized knowledge of the one-hop neighborhood and empowers
each agent to independently decide their message forwarding policy.

4 Method

In this section, we describe our novel MARL approach for optimizing information flooding in dynamic
broadcast networks. We start by presenting a POSG formulation and then introduce our learning method and
our two architectures, L-DyAN and HL-DyAN, designed to achieve efficient dissemination while requiring
different degrees of communication.

4.1 MARL Formulation

We envision the dissemination process discretized into timesteps and episodes starting with a source node
transmitting the information (a message) to its immediate (one-hop) neighbors. Each node in the graph
corresponds to an agent observing its one-hop neighborhood and their features. At every timestep, nodes
that have received the message will sense their neighborhood and decide whether to forward it to its current
one-hop neighbors or stay silent. However, agents do not have any control or information on who will be part
of their neighborhood at the next time-step. Finally, the agents’ objective is to disseminate the message emitted
from the source node, i.e. maximize the network coverage, while minimizing the amount of forwarding actions,
i.e. the messages, required.

An agent becomes a meaningful actor, receiving appropriate reinforcement signals only once it receives the
message and for a limited number of steps. We capture this by implementing two different elements of our
POSG. On the one hand, we distinguish “Graph Episodes” from “Agent Episodes”, allowing the agents to
dynamically enter and leave the game independently. For this purpose, upon message reception, we limit the
Agent’s Episode to a fixed number of steps (local horizon) during which it decides whether to forward the
message to its immediate neighbors or not. Graph Episodes, model the overall dissemination process, and
terminate once every agent that has received the message has exhausted its local horizon. Given the agents’
asynchronous presence, reward signals are issued individually to each agent, but capture the necessary degree
of cooperation within their neighborhoods.

In our formulation agents are anonymous (i.e. not identified by any ID) and sense only their immediate
neighborhood, accessing the degree of connectivity of such neighbors and observing their forwarding behavior.
This is far more parsimonious than what is required by MPR that requires agents to obtain a complete, identified,
two-hop knowledge. More specifically, given the broadcast network represented by graph G0 = (V, E0) at
time t0, and node ns ∈ V , we define the POSG associated to the optimized flooding of G0 with source ns and
network update function U , with the tuple ⟨I, S, Ai

i∈I , U , P, Ri
i∈I , Oi

i∈I , γ⟩, where:

2The complete MPR selection algorithm used by OLSR is shown in Algorithm 1-Appendix A.1
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Agents set I. Set I contains one agent for each node in V . I is divided into three disjoint sets which are
updated at every timestep t: the active set Ia(t), the done set Id(t), and the idle set Ii(t). Agents in Ii(t) are
inactive because they have not received the message yet. At the beginning of the process, Ii(t) will contain all
agents except the one associated with ns. Agents in Id(t) are also inactive, after participating in the game and
terminating their Agent Episode once the local horizon is reached. Ia(t), instead, includes the set of agents
actively participating in the game at timestep t. Agents in Ii(t) are moved to Ia at time step t + 1, if they
have been forwarded the information, hence starting their Agent Episode.

Actions Ai
i∈I . For any time step t, if agent i is in Ia(t), then, Ai contains two possible actions: forward the

information to their neighbors or stay silent. The action set for agents in Ii(t) and Id(t) is, instead, empty.

Environment Dynamics P and Network Update U . The environment dynamics are defined by the transition
function P : S × A1 × · · · × A|I| → ∆(S), where ∆(S) represents the set of probability distributions over the
state space S . In our POSG model, we incorporate a general stochastic network update function, U , controlling
how the edges of the network change over time. This element allows us to capture various dynamics such as
agent mobility or other factors that may affect a network’s connectivity. More formally, at every timestep t,
the graph structure is updated such that Gt+1 = G(V, U(Et)).

The message-forwarding mechanism is purposefully modeled as deterministic and, at each timestep t, if an
active agent i forwards the message, all nodes in Ni(t) will receive it.

Observations Oi
i∈I and State set S . Each node in the graph has a set of three features observable by other

neighboring agents at each time step t: neighborhood size, the number of messages transmitted, and its last
action. The agents’ observations are represented as the graph describing their one-hop neighborhood and the
features associated with each node in this local structure. In our setting, the state St corresponds to the current
graph structure Gt and the following information for each node: its features, the set to which the agent belongs
Ia, Id, or Ii, and the remaining steps of the local horizon for those in Ia.

Rewards Ri
i∈I . At the end of each step every agent in Ia is issued with a reward signal with positive and

negative components. The positive term rewards the agent based on its two-hop coverage, i.e. how many one-
and two-hop neighbors have received the information. One of two penalties might be issued, based on the
agent’s behavior. If the agent has forwarded during its last action, it will participate in a shared transmission
cost, punishing the agent for the number of messages sent by its neighborhood. Otherwise, it will receive
penalties based on the unexploited coverage potential of neighbors who have not yet received the information.
Formally, the reward signal for agent i at time t be defined as follows:

ri,t = υ(Mi(t), t)
|Mi(t)|

− p(i, t), Mi(t) =
⋃

u∈Ni(t)∪{i}

Nu(t) \ {i}

p(i, t) =
{

m(Ni(t), t), if i ∈ T (t)
µ(Ni(t), t), if i ∈ Ia(t) \ T (t)

In Equation 4.1, Mi(t) represents the set of two-hop neighbors of agent i at t. υ(Mi, t) denotes the number
of them that by timestep t have already received the message, while p(i, t), defines the penalties assigned
to agent i. The latter is further described in Equation 4.1, where T (t) is the set of active agents that have
forwarded the message at least once. Here m(Ni(t), t) denotes the sum of the number of messages transmitted
by the current neighborhood of agent i by timestep t. The term µ(Ni(t), t) instead defines the Maximum
Normalized Coverage Potential of node i:

µ(Ni(t), t) = max(Ci(t))∑
Ci(t)

Ci(t) = {|Nj(t)| : j ∈ Ni(t) ∩ Ii(t)}

On the one hand, we note that by assessing the ability of an agent’s neighborhood to reach nodes beyond its
immediate neighbors, Equation 4.1, encourages agents to collectively cover more nodes through coordination
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Figure 1: Information flow from a single agent observation (5) to the produced Q-Values in L-DyAN.

within their vicinity. On the other hand, the neighborhood-shared transmission steers the agents away
from redundancy, promoting efficient dissemination. Finally, the Maximum Normalized Coverage Potential
counterbalances the shared transmission costs, by hastening transmission to nodes with highly populated
neighborhoods that have not yet been reached.

4.2 Learning Approach

The idea behind L-DyAN and HL-DyAN is to encourage cooperation within dynamic neighborhoods, where
links between nodes can form and/or disappear over time. We therefore propose a loss function comprising
neighborhood experiences, the usage of GAT layer(s) with dynamic attention (Brody et al., 2022), and the
presence of a dueling network to separately estimate the state-value and the advantages for each action (Wang
et al., 2016). The choice of a GAT layer with dynamic attention is driven by its capability of capturing
expressive attention mechanisms within a graph, a feature shown to be weaker in dot-product attention, as
used in DGN (Brody et al., 2022).

4.2.1 Cooperative Dynamic Neighborhoods

During training, at each timestep t, the tuple (OIa(t), AIa(t), RIa(t), O′
Ia(t)) is stored in a circular replay

buffer with a fixed length. OIa(t) indicates the set of observations of all agents in Ia(t), AIa(t) the set of
actions taken by these agents, RIa(t) is the set of rewards, and O′

Ia(t) the set of observations of agents in
Ia(t) at the next timestep.

At each training step, we sample a random batch B from the replay buffer, with every sample containing the
experience of some agent i and the ones of its current and active neighbors Ni,Ia(t) = Ni(t) ∩ Ia(t). The loss
for each sample is computed not only based on the agent’s own experience but also considering the experiences
of its active neighbors. We denote N +i

i,Ia(t) = Ni,Ia(t) ∪ {i} and define the loss function:

L(θ) = 1
|B|
∑

B

1
|N +i

i,Ia(t)|

∑
j∈N +i

i,Ia(t)

(
yj

t − Q(oj , aj ; θ)
)2

,

where, for each agent j, yj
t is the target return and Q(oj , aj ; θ) the predicted Q value, parameterized with θ,

given the observation oj and action aj . From this point onward, we will drop the superscript j when referring
to o, a, r, and y as they will refer to a single experience.

Additionally, we take advantage of the agents’ short-lived experiences and perform n-step returns, with n
equal to the local horizon (k). We note that the replay buffer is temporally sorted and organized such that
every individual episode, ongoing or terminated with a length up to k, can be uniquely identified. If the buffer
contains the remaining steps until the termination of the agent’s episode, the n-step computation serves an
unbiased value of the return: yt =

∑k−t
i=0 γirt+i.
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If the trajectory stored in the buffer contains only the next j steps before termination, yt will be estimated as:

yt =
j−1∑
i=0

γirt+i + γjQ(ot+i, argmaxa′∈AQ(ot+i, a′; θ); θ̄),

where θ is the current network and θ̄ is the target network.

4.2.2 Local-DyAN

The first architecture we propose is depicted in Figure 1 and consists of an encoder module comprised of
three different stages: one Multi Layer Perceptron (MLP) followed by two multi-headed GATs (Veličković
et al., 2018) with dynamic attention (Brody et al., 2022). The final latent representation will comprise the
concatenation of each stage output, which is then fed to a dueling network decoding the final representation
into the predicted Q values. After each encoding stage, a ReLU activation function is applied.

We now describe the flow from the agent’s observation to the Q values prediction and we show how it can
be integrated into broadcast communication protocols. Agent i’s observation at time t is first fed to the MLP
encoding stage. This results in a learned representation of the features belonging to agent i and its neighbors,
denoted respectively xi and xj , ∀j ∈ Ni(t). Following such encoding stage, the output of each of the M
attention heads of the first GAT is:

xm
i = αm

i,iWxi +
∑

j∈Ni(t)

αm
i,jWxj ∀m ∈ {0, ..., M − 1},

where the dynamic attention αm for the tuple (i, j), denoted as αm
i,j , is computed by:

αm
i,j =

exp
(
a⊤LeakyReLU (W[xi ∥ xj ])

)∑
k∈Ni(t)∪{i} exp (a⊤LeakyReLU (W[xi ∥ xk])) ,

where a and W are learned. We denote X̂i = x0
i ||x1

i ||...||xM−1
i , where || is the concatenation operator, as

the concatenation of every attention output. Through message passing, each agent i receives X̂j , ∀j ∈ Ni(t).
These new representations are fed to the second GAT layer, where the computation follows the same logic
seen in Equation 4.2.2 and 4.2.2, producing the embedding Ẑi.

Finally, the output of each encoding stage is concatenated in a final latent representation Hi:

Hi = xi||X̂i||Ẑi.

At this point, Hi is fed to the two separate streams of the dueling network, namely the value network V and
the advantage network A, parameterized by two separate MLPs with parameters α and β, respectively. Let us
denote the parameterization previous to the dueling network, which produced the final latent representation
Hi given o, as δ. The predicted Q values are then obtained as:

Q(o, a; δ, α, β) = V (o; δ, α) +
(

A(o, a; δ, β) − 1
|A|

∑
a′∈A

A(o, a′; δ, β)
)

.

We note that the encoding process described above harmoniously integrates with the communication mecha-
nisms present in protocols deployed in the real world, such as OLSR. We envision every node (agent) in the
network, feeding its neighborhood structure through the encoding process described above. Subsequently,
every agent shares their intermediate representation X̂i with their one-hop neighbors, in a similar way to how
nodes communicate their MPR sets in OLSR. Once the representations are collected, agents feed them to the
second GAT layer, obtaining Hi.
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Table 1: Evaluation of L-DyAN, HL-DyAN, MPR, and DGN in terms of Coverage and Messages forwarded.

Initial Node Degree Nodes Speed Metric L-DyAN HL-DyAN MPR DGN

5 Neighbors 1 unit
step

Messages 28.22 34.81 25.64 3.88
Coverage 93.78% 90.02% 86.24% 24.34%

5 Neighbors 6 units
step

Messages 24.05 33.40 8.21 6.69
Coverage 79.34% 83.64% 34.02% 35.77%

10 Neighbors 1 unit
step

Messages 23.26 33.06 22.95 15.91
Coverage 88.51% 89.59% 85.73% 24.35%

10 Neighbors 6 units
step

Messages 24.31 37.01 8.10 7.03
Coverage 86.33% 91.69% 37.98% 42.74%

25 Neighbors 1 unit
step

Messages 23.74 34.15 24.93 3.28
Coverage 90.44% 93.84% 92.86% 26.33%

25 Neighbors 6 units
step

Messages 24.29 36.35 10.03 6.96
Coverage 88.19% 92.23% 46.80% 44.02%

However, embedding the communication process generates a communication overhead of size proportional to
X̂i, an aspect which might need to be further minimized in bandwidth-constrained networks (Suri et al., 2023;
Galliera et al., 2023). This observation leads us to our second approach.

4.2.3 Hyperlocal-DyAN

Intending to generate less communication overhead, we design a second model, named HL-DyAN, which
resembles L-DyAN in its form. We replace the three encoding stages with a single GAT layer with dynamic
attention. Within agent i’s observation, we apply the GAT encoding process to every node, followed by
a ReLU activation function. Finally, a global max-pooling layer is applied to summarize the most salient
neighborhood characteristics. The rationale for this approach is that agents can make informed decisions by
processing their one-hop neighborhood dynamics from each neighbor’s perspective, eliminating the need to
share their latent representations, hence reducing the communication overhead, as seen in L-DyAN.

In detail, agent i’s observation at time t is fed to the GAT layer and, as opposed to L-DyAN, such an operation
is repeated for every node within the local observation of agent i, producing a set of latent representations
comprising Ŷi and Ŷj , ∀j ∈ Ni(t). We then perform global max pooling, obtained through a feature-wise
max operation:

Hi = maxj∈Ni(t)∪{i} Ŷj .

Finally, Hi is fed to the dueling network following the same process described in Equation 4.2.2.

5 Experiments

Experimental Setup We generated 50,000 connected graph topologies for training, each consisting of
50 nodes with a broadcasting range of 20 units and no constraints on the number of neighbors. For every
learning algorithm, training was conducted five times adopting different random seeds (4, 9, 17, 42, 43) for 1
million agent steps. Furthermore, we utilized 4 distinct sets of connected starting graph topologies, not seen
during training, for testing purposes. These sets comprised 50 nodes per graph with various constraints on the
maximum intial node degree allowed (5, 10, and 25). Our evaluation process involved testing each graph 50
times and selecting a different node as the source ns in each iteration. Additional evaluations were conducted
on the impact of the nodes’ velocity setting their speed to 1, 6, and 10 units

step . Further experiments with different
constraints are presented in Section A.2 of the Appendix.

Our analysis compared L-DyAN and HL-DyAN with the MPR heuristic and DGN. The DGN methodology
excluded Temporal Relation Regularization, as it was unnecessary in our setting where agent interaction
is temporally bounded by a short local horizon. To ensure a fair evaluation, we maintained consistent
hyperparameters across all models, the details of which are presented in Table 3-Appendix A.4.1.
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Figure 2: Training performance in terms of average return
achieved by the agents.

Results Table 1 shows the results of our experi-
ments in terms of coverage and messages required
to achieve it, presenting the means and standard
deviations. Our proposed methods, L-DyAN and
HL-DyAN, consistently demonstrate higher cover-
age across different scenarios compared to MPR and
DGN. In particular, HL-DyAN achieves the high-
est coverage with a mean of 90.37%. However, this
comes at the cost of a higher number of messages,
with HL-DyAN generating an average of 34.85 mes-
sages per episode. L-DyAN, while slightly less suc-
cessful in coverage (87.70%), requires significantly
fewer messages (24.32), indicating its suitability in
scenarios where message efficiency is prioritized
over coverage.

As the nodes’ speed increases, the performance gap
between our proposed methods and MPR widens,
with L-DyAN and HL-DyAN maintaining superior coverage across all tests with increased speed. This is
further supported by additional tests we conducted with the nodes’ speed set to 10, obtaining a coverage of
82.35%, resp. 88.83% with 23.88 resp. 36.61 messages, by L-DyAN and HL-DyAN. MPR, instead, struggled
to reach 27% of coverage. Additionally, in the more dynamic scenarios with speed set to be greater than 1, the
maximum node degree negatively influences the performance of all methods, but L-DyAN and HL-DyAN
consistently outperform the other algorithms, which fail to reach 50% coverage. This indicates the robustness
of L-DyAN and HL-DyAN to dynamic scenarios with less dense neighborhoods. In more static scenarios
where the node speed is set to 1, L-DyAN and MPR reveal to be the more efficient reaching, respectively,
14.84 and 14.54 percent of coverage per message.

Figure 2 illustrates the training progress of L-DyAN, HL-DyAN, and DGN over multiple cycles using five
distinct random seeds. Our proposed methodologies, L-DyAN and HL-DyAN, demonstrated an average of
the total graph returns (sum of all the agents returns) of 141.47 ± 15.63 and 127.50 ± 13.57, respectively. In
contrast, the training trajectory of DGN indicates a more brittle learning progress, unable to learn an effective
multi-agent strategy for this task.

The results underscore the efficiency of L-DyAN and HL-DyAN in learning effective multi-agent strategies
balancing message efficiency with coverage consistently across various scenarios. MPR falls short in both
slightly and very dynamic and/or sparsely connected environments, with its performance worsening as nodes
are faster and their starting neighborhood more sparse. The results also highlight the adaptability of L-DyAN
and HL-DyAN in varying network densities and node velocities, making them suitable for a wide range of
dynamic network environments.

6 Conclusion and Future Work

In this work, we captured the problem of information dissemination in dynamic broadcast networks in a novel
POSG formulation and proposed two MARL methods to solve the task, namely L-DyAN and HL-DyAN. Our
experiments showed how these methods outperform in terms of coverage and message efficiency both DGN
and a popular heuristic employed in real-world networking scenarios.

Our future research agenda includes investigating more structured group communication tasks, where, for
example, coverage is desired only for a subset of nodes or nodes with higher priority. We will also study
methods to enable more controlled trade-offs between coverage and forwarded messages, as well as their
application in deployed protocols for physical computer networks. Orthogonally, we will investigate the
application of our approach to the dissemination of information in other domains, such as social networks and
computational social choice.
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A Technical Appendix

A.1 Pseudo-code of the MPR Selection algorithm

Algorithm 1 MPR Selection Heuristic

Require: The set N of one-hop neighbors
Ensure: The MPR set

1: Initialize MPR set with all members of N with willingness equal to WILL_ALWAYS
2: for each node y ∈ N do
3: Calculate D(y)
4: end for
5: Select nodes in N which cover the poorly covered nodes in N2. Remove these nodes from N2.
6: while nodes exist in N2 not covered by at least MPR_COVERAGE nodes in the MPR set do
7: for each node in N do
8: Calculate reachability: number of nodes in N2 not yet covered by at least MPR_COVERAGE nodes

in the MPR set and are reachable through this 1-hop neighbor.
9: end for

10: Select as MPR the node with the highest willingness among nodes in N with non-zero reachability.
11: if multiple choices then
12: Select node providing maximum reachability to nodes in N2.
13: if multiple nodes provide same reachability then
14: Select node as MPR with greater D(y).
15: end if
16: end if
17: Remove nodes from N2 now covered by MPR_COVERAGE nodes in the MPR set.
18: end while

D(y) is defined as the number of symmetric neighbors of node y, excluding all the members of N and
excluding the node performing the computation. A poorly covered node is a node in N2 which is covered by
less than MPR_COVERAGE nodes in N . Note that in our implementation every node has willingness set to
WILL_ALWAYS and MPR_COVERAGE is set to 1 to ensure that the MPR heuristic’s overhead is kept to the
minimum.

A.2 Extended Results

In Table 2 we present an extended version of Table 1, where we include additional networking scenarios with
node velocities set to 3 and 10 units

step and 49 initial maximum node degree. We note that all of the additional
experiments support the claims made in the paper.

A.3 Ablation Study

We investigate different ablations of L-DyAN, whose architectures lay between L-DyAN and HL-DyAN, and
DGN. Their performance is measured in terms of the summation of the returns achieved by each agent that has
participated in the dissemination task, named “graph return” (Figure 3). Given that our environment is highly
dynamic in terms of the entities contributing to the dissemination task at each timestep, such a metric allows us
to understand if the local rewards assigned to each agent correlate with a desired overall collaboration across
the entire graph, measured in terms of summations of the rewards achieved. We trained these policies on static
scenarios with graphs of 20 nodes.

L-DyAN-Duel. The implementation of this method lies between L-DyAN and DGN. Starting from the latter,
we added the dueling network instead of a single MLP stream as the action decoder. Figure 3 shows the
positive impact of the dueling network in the final strategy, which significantly outperforms L-DyAN after
600K steps. From such a learning trajectory, we can also deduce the impact of another main component
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Initial Node Degree Nodes Speed Metric L-DyAN HL-DyAN MPR
Heuristic

DGN

5 Neighbors 1 unit
step

Messages 28.22 34.81 25.64 3.88
Coverage 93.78% 90.02% 86.24% 24.34%

5 Neighbors 3 units
step

Messages 26.21 34.55 14.33 5.21
Coverage 87.78% 88.65% 54.53% 30.49%

5 Neighbors 6 units
step

Messages 24.05 33.40 8.21 6.69
Coverage 79.34% 83.64% 34.02% 35.77%

5 Neighbors 10 units
step

Messages 22.10 32.50 4.49 9.34
Coverage 71.96% 79.78% 21.54% 45.32%

10 Neighbors 1 unit
step

Messages 23.26 33.06 22.95 15.91
Coverage 88.51% 89.59% 85.73% 24.35%

10 Neighbors 3 units
step

Messages 24.34 35.97 16.10 4.07
Coverage 88.73% 93.30% 65.4% 29.36%

10 Neighbors 6 units
step

Messages 24.31 37.01 8.10 7.03
Coverage 86.33% 91.69% 37.98% 42.74%

10 Neighbors 10 units
step

Messages 24.66 35.98 5.05 9.72
Coverage 82.32% 88.06% 26.61% 52.15%

25 Neighbors 1 unit
step

Messages 23.74 34.15 24.93 3.28
Coverage 90.44% 93.84% 92.86% 26.33%

25 Neighbors 3 units
step

Messages 24.33 36.05 17.73 4.25
Coverage 90.81% 93.49% 72.92% 31.04%

25 Neighbors 6 units
step

Messages 24.29 36.35 10.03 6.96
Coverage 88.19% 92.23% 46.80% 44.02%

25 Neighbors 10 units
step

Messages 24.46 35.78 5.75 9.50
Coverage 84.79% 89.87% 30.32% 51.89%

49 Neighbors 1 unit
step

Messages 22.99 34.34 23.92 3.47
Coverage 89.73% 91.96% 88.93% 27.16%

49 Neighbors 3 units
step

Messages 23.9 35.8 16.45 4.76
Coverage 90.05% 93.02% 67.91% 33.38%

49 Neighbors 6 units
step

Messages 24.81 36.61 9.39 6.81
Coverage 88.86% 92.42% 43.49% 41.33%

49 Neighbors 10 units
step

Messages 23.88 35.55 4.81 9.81
Coverage 82.35% 88.83% 26.68% 52.69%

Table 2: Evaluation of L-DyAN, HL-DyAN, MPR, and DGN in terms of Coverage and Messages forwarded involving
different scenarios.

of our L-DyAN, the n-step return estimation proportional to the local horizon (see Cooperative Dynamic
Neighborhoods). With the addition of such n-step returns, we obtain our L-DyAN architecture, and we can
notice how such a component helps the learned strategy to converge earlier and less abruptly.

L-DyAN-MP. This method removes the second GAT layer of L-DyAN and replaces it with the global max pool
operator (later adopted by HL-DyAN). The concatenation of the output of every encoding stage is still present
here. We can notice a slight drop in performance when compared to L-DyAN.

L-DyAN-MPNC. This method removes both the second GAT layer of L-DyAN, as well as the concatenation of
the output of every encoding stage. We notice a decrease in performance when compared to L-DyAN. It can
also be seen that HL-DyAN can be derived from L-DyAN-MPNC after the ablation of the MLP encoding
stage and that HL-DyAN does not suffer from such performance reduction.

In summary, these ablation studies centered around L-DyAN allow us to both understand the strengths of
this approach when compared to DGN, as well as motivate the design of the HL-DyAN architecture, which
exhibits a simplified structure, less communication overhead, and only slightly underperforms in terms of
graph return during training.
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Figure 3: Graph return of the various methods used for the ablation study.

A.4 Additional Reproducibility Details and Instructions

A.4.1 Hyperparameters

Hyperparameter Value

Training
Training steps 1 × 106

Learning rate 1 × 10−3

Buffer size 1 × 105

Gamma 0.99
Batch size 32

Exploration Decay Exponential
Local Horizon 4

N-Step Estimation 4
Training Frequency 1 per 160 Agent steps

Gradient Steps 1
Parallel Training Envs 40

Experience Replay Uniform
Seed 4, 9, 17, 42, 43

Network Parameters
MLP Hidden Size 32

GAT Attention Heads 4
GAT Hidden Size 32 (each head)

A-Network Hidden Sizes [128, 128]
V-Network Hidden Sizes [128, 128]

Table 3: Hyperparameters used across our experiments. “Uniform” indicates that no prioritized replay has been employed.

A.4.2 Implementation Details

Our framework, which is written in Python and based on PyTorch, implements a customized extension of
Tianshou (Weng et al., 2022). The MARL environment is defined following the PettingZoo (Terry et al., 2021)
API. The GAT, transformer-like dot product attention layer, and global max pooling follow the implementation
provided by PyTorch Geometric (Fey and Lenssen, 2019). Training and testing graphs were generated with
the aid of the NetworkX library (Hagberg et al., 2008).
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A.4.3 Hardware Involved

Our policies were trained using 40 parallel environments on a workstation running Ubuntu 22.04 LTS, CUDA
Toolkit v11.7, and equipped with an Intel i9-13900F CPU, 32GB DDR4 RAM, and an NVIDIA GeForce RTX
4090 GPU.
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