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Abstract
Given independent and identically distributed data
from a compactly supported, α-Hölder density f ,
we study estimation of the Fisher information of
the Gaussian-smoothed density f ∗ φt, where φt

is the density of N(0, t). We derive the minimax
rate including the sharp dependence on t and show
some simple, plug-in type estimators are optimal
for t > 0, even though extra debiasing steps are
widely employed in the literature to achieve the
sharp rate in the unsmoothed (t = 0) case. Due to
our result’s sharp characterization of the scaling
in t, plug-in estimators of the mutual information
and entropy are shown to achieve the paramet-
ric rate by way of the I-MMSE and de Bruijn’s
identities.

1. Introduction
Due to various recent motivations from machine learning
(Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017;
Goldfeld et al., 2019; Song et al., 2021; Gabrié et al., 2018)
and information theory (Goldfeld et al., 2020b; Goldfeld
& Greenewald, 2020), the classical topic of the estimation
of some fundamental statistical functionals of a probability
density has seen renewed interest, now in the context of
Gaussian smoothed distributions. In this article, we establish
the minimax rate of estimating the Fisher information (also
known as the Stein information) of a smoothed density f∗φt

where φt denotes the density of N(0, t),

I(f ∗ φt) =

∫ ∞

−∞

(f ∗ φt)
′(x)2

(f ∗ φt)(x)
dx, (1)

given i.i.d. data from a compactly supported, α-Hölder
density f with α ≥ 1. A plug-in type estimator is shown
to achieve the optimal rate when t > 0, even though it
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is widely known plug-in estimators are suboptimal in the
unsmoothed case (t = 0) (Laurent, 1997; Birgé & Mas-
sart, 1995). Furthermore, the minimax rate turns out to be
slower for small t > 0; low amounts of Gaussian smooth-
ing makes estimation of the Fisher information a harder
problem compared to no smoothing, which is curious as
Gaussian smoothing was proposed (Goldfeld et al., 2020b)
in part to alleviate other statistical difficulties. Once t > 0,
however, the minimax rate is shown to be decreasing in
t, and there is a critical level of smoothing above which
the problem is easier than if unsmoothed. The smoothed
and unsmoothed settings are qualitatively different as the
target density’s support is, respectively, either unbounded or
bounded. The estimation theory is materially affected since
the Fisher information of f ∗ φt need not converge to that
of f as t→ 0; in fact, it may even diverge (see Remark 1.2).
As a consequence of our results, the I-MMSE and de Bruijn
identities (Guo et al., 2005; Stam, 1959) can be used to show
that simple plug-in type estimators achieve the parametric
rate for estimating the mutual information and the entropy,
which are functionals of particular interest from the perspec-
tive of the Information Bottleneck theory (Shwartz-Ziv &
Tishby, 2017; Tishby & Zaslavsky, 2015; Goldfeld et al.,
2019; 2020b). Furthermore, our error bounds for the mutual
information and the entropy do not blow up as t→ 0, which
affected previous bounds in the literature (Goldfeld et al.,
2020b).

Estimation of the Fisher information and other integral
functionals are natural problems with widely appreciated
motivations such as uncertainty quantification, estimation
of information-theoretic divergences, and model selection.
Hence, the unsmoothed case is, unsurprisingly, a well-
studied problem with a long history which precludes a
comprehensive review (Laurent, 1997; Donoho, 1988; Bhat-
tacharya, 1967; Cao et al., 2020; Laurent, 1996; Birgé &
Massart, 1995; Bickel & Ritov, 1988; Kandasamy et al.,
2015) (see (Laurent, 1997; Donoho, 1988; Cao et al.,
2020; Bhattacharya, 1967) for specific results concerning
the Fisher information). The program of considering the
smoothed setting was recently proposed in the work of Gold-
feld et al. (2020b). It is classically known that, given n i.i.d.
data points from a d-dimensional distribution, though the
empirical measure converges to the data-generating distribu-
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tion in various senses, the convergence rate can be exponen-
tially slow in the dimension (e.g. n−1/d in Wasserstein-1
distance for d ≥ 3 (Dudley, 1968)). Motivated to circum-
vent this curse of dimensionality, Goldfeld et al. (2020b)
suggest considering convergence of the empirical measure to
the data-generating distribution after smoothing both with a
Gaussian; they show the rate (in Wasserstein-1 distance, χ2-
divergence, and total variation distance among others) dras-
tically improves to the dimension-independent, parametric
rate n−1/2 (with prefactors depending on the dimension and
the Gaussian’s variance). Adopting the smoothing proposal,
a growing literature has emerged including asymptotic dis-
tributional results for various smoothed distances (Goldfeld
et al., 2024; Sadhu et al., 2022) and the development of the
Gaussian-smoothed approach to optimal transport (Zhang
et al., 2021; Goldfeld & Greenewald, 2020; Mena & Niles-
Weed, 2019; Goldfeld et al., 2020a; Chewi et al., 2024; Ding
& Niles-Weed, 2022; Chen & Niles-Weed, 2022).

Aside from convergence reasons, Goldfeld et al. (2020b)
are also motivated by the Information Bottleneck theory
(Shwartz-Ziv & Tishby, 2017; Tishby & Zaslavsky, 2015)
in deep neural networks; a central quantity is the mutual
information between the input feature vector and the hid-
den activation vector. Adopting a framework (Goldfeld
et al., 2019) which relates this mutual information to an
additive white Gaussian noise channel, estimation of this
mutual information amounts to estimating the entropy of a
smoothed density f ∗ φt. Goldfeld et al. (2020b) establish
the convergence rate for the plug-in estimator (entropy of
the smoothed empirical measure). Given the connection
of all these functionals, estimation of the Fisher informa-
tion under Gaussian smoothing is of clear interest. The
smoothed Fisher information has also been recently shown
to be an essential quantity in the finite-sample analysis of
mean estimation; we point the reader to Appendix H for a
discussion of this recent line of results.

1.1. Related work

In the unsmoothed case (t = 0), a detailed estimation theory
for the Fisher information is available. Laurent (1997) writes
the Fisher information as

∫ 1

−1
(f ′)2/f =

∫ 1

−1
Υ(f, f ′) with

Υ(u, v) = v2/u, then proposes to use preliminary estima-
tors f̂ and f̂ ′ to obtain the plug-in estimator

∫ 1

−1
Υ(f̂ , f̂ ′),

which is then debiased through an estimator of the error∫ 1

−1
Υ(f, f ′)−Υ(f̂ , f̂ ′). The error estimator estimates the

first two terms in the Taylor expansion of Υ at the point
(f̂ , f̂ ′) in the direction of (f, f ′). Assuming f belongs to an
Sobolev space of index α > 1, is compactly supported on,
say, [−π, π], satisfies some periodicity conditions, and is
bounded below by a positive constant, Laurent (1997) shows
the proposed estimator achieves the (squared error) rate
1
n + n−8(α−1)/(4α+1), which matches the minimax lower

bound proved earlier by Birgé & Massart (1995). Moreover,
when α > 9/4 and the parametric rate 1/n is achieved,
Laurent also shows the proposed estimator is semiparamet-
rically efficient. The methodology and results developed in
(Laurent, 1997) apply generally to integral functionals of
the form

∫
Υ(f, f ′, . . . , f (k)), though certain growth/decay

conditions on f and its derivatives are imposed to ensure
Υ is a smooth function on the relevant domain (e.g. f as-
sumed bounded below by a constant so that the gradient of
Υ(u, v) = v2/u is bounded when u = f(x)).

These conditions preclude the theory of Laurent (1997) (and
also (Laurent, 1996; Birgé & Massart, 1995)) from covering
the smoothed case since f ∗ φt has unbounded support
and is thus not bounded below by a constant. In fact, the
minimax estimation rate of certain functionals of f itself can
actually change if f is allowed to be arbitrarily close to zero
in some regions of its support. For example, the entropy
is no longer a smooth functional and the minimax rate of
estimating the entropy of f in squared error deteriorates
from 1

n +n−4α/(4α+1) to 1
n +(n log n)−α/(α+1) if f lies in

a Lipschitz ball with smoothness index α ∈ (0, 2] (see (Han
et al., 2020) for details). However, such results are worst-
case statements, and estimation of functionals of f ∗ φt can
be faster when f fulfills some regularity conditions since
there is special, specific structure in the form of Gaussian
convolution. Indeed, Goldfeld et al. (2020b) show a plug-
in estimator of the entropy achieves the parametric rate 1

n
(with prefactors depending on t).

For estimation of the Fisher information of f , Bhat-
tacharya (1967) proposes the estimator Î(f) =∫ kn

−kn
f̂ ′(x)2/f̂(x) dx where kn → ∞ is a sequence of

truncation hyperparameters and f̂ ′, f̂ are kernel density es-
timators of f ′, f respectively. Under various restrictive
assumptions on the size of f and on the score f ′/f , an
asymptotic analysis was given in (Bhattacharya, 1967) (see
also (Dmitriev & Tarasenko, 1974)), and later nonasymp-
totic results were derived by Cao et al. (2020). The upper
bound on the error of Bhattacharya’s estimator obtained
in (Cao et al., 2020) is quite slow (logarithmic in n), and
so Cao et al. propose a modification which truncates the
integrand in addition to the domain of integration. The pro-
posed estimator is shown to achieve an error bound which
is polynomial in n. Cao et al. (2020) then apply their es-
timator specifically to Gaussian smoothed densities of the
form f ∗ φt, and derive some convergence rates. However,
the rates are quite rough in the sense they are only shown to
decay polynomially in n with the precise exponents unclear.
Furthermore, no minimax lower bounds are offered and so
the question of optimality remains unresolved.
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1.2. Main contribution

The notation used throughout the paper are defined in Ap-
pendix G. The parameter space for the minimax theory is
defined as follows. For α,L > 0 define the α-Hölder class
of probability density functions,

Hα(L) =

{
f : [−1, 1] → [0,∞) :

∫ 1

−1

f(µ) dµ = 1,

f is ⌊α⌋-times differentiable on (−1, 1),

sup
|µ|<1

|f (k)(µ)| ≤ L for k = 0, 1, 2..., ⌊α⌋ − 1,

and
∣∣∣f (⌊α⌋)(µ)− f (⌊α⌋)(µ′)

∣∣∣ ≤ L|µ− µ′|α−⌊α⌋

for all µ, µ′ ∈ (−1, 1)
}
.

(2)

This article focuses on the setting where L > 0 is some
large universal constant, and so the notational dependence
on L will be suppressed. We will also treat α > 0 as a fixed
universal constant; all constants introduced implicitly or
explicitly can potentially depend on α. Define the parameter
space

Fα :={
f : R → [0,∞) : supp(f) ⊂ [−1, 1], f |[−1,1] ∈ Hα,

and cd ≤ f(µ) ≤ Cd for |µ| ≤ 1} ,
(3)

where Cd, cd > 0 are some universal constants. Throughout
the paper, we will assume α ≥ 1. Consequently, for f ∈ Fα,
the derivative f ′ exists and satisfies sup|µ|<1 |f ′(µ)| ≲ 1.
This is already assumed in the unsmoothed case t = 0 since
otherwise consistent estimation (in a minimax sense) is not
possible (Laurent, 1997).

In (3), we assume the data-generating density f is bounded
below by a constant in (3). Since the minimax rate for
estimating I(f) might depend on whether f is bounded
below or not (e.g. in analogy to entropy estimation discussed
earlier (Han et al., 2020)), we imagine the minimax rate for
estimating I(f ∗ φt) may also depend on whether f is
bounded below by a constant or not, even though f ∗ φt

always has unbounded support and gets arbitrarily close
to zero. Since (3) is a canonical class in nonparametric
statistics (Tsybakov, 2009) and is interesting in its own right,
we proceed with this assumption for this first investigation;
the case where f is not bounded away from zero is left open
for future work.

Let φt(x) =
1√
2πt

e−
x2

2t denote the probability density func-
tion ofN(0, t). For a density f ∈ Fα, denote p(x, t) = (f ∗
φt)(x) and its (spatial) derivative ∂xp(x, t) = (f ∗ φt)

′(x).
Given i.i.d. data µ1, ..., µn ∼ f , the goal is to estimate the
Fisher information It := I(f ∗ φt) given by (1). Our main

contribution is to show that for α ≥ 1 and t > 0 such that
t ≤ c or t ≥ C for some sufficiently small universal con-
stant c > 0 and sufficiently large universal constant C > 0,
the sharp minimax rate is

inf
Ît

sup
f∈Hα

E
(∣∣∣Ît − It

∣∣∣) ≍ 1√
nt2

∧ 1√
nt3/4

∧ n−
α

2α+1

√
t

.

(4)
Remark 1.1. The rate (4) essentially exhibits three regimes.
In the very high noise regime t ≳ 1, the rate is of order
1/(

√
nt2). In the high noise regime n−2/(2α+1) ≲ t ≲ 1,

the rate is of order 1/(
√
nt3/4), and the rate specializes to

n−α/(2α+1)/
√
t in the low noise regime t ≲ n−2/(2α+1). In

Section 2, three separate estimators are proposed to address
each regime separately; all are essentially of plug-in type.
Remark 1.2. The minimax rate blows up as t → 0, and
this is because the Fisher information itself blows up. Con-
sider the simple example f(µ) = 1

21{|µ|≤1}. Note It =∫∞
−∞(∂xp(x, t))

2/p(x, t) dx = 1
2

∫∞
−∞(φt(x+1)−φt(x−

1))2/P {|N(x, t)| ≤ 1} dx ≳
∫
|x−1|≤

√
t
φt(x − 1)2 dx

where the last inequality follows from P{|N(x, t)| ≤ 1} ≍
1 for |x| ≤ 1+C

√
t as t < 1. We have also used that φt(x+

1) ≤ cφt(x−1) for |x−1| ≤
√
twhere c < 1 is a small uni-

versal constant, since t is small. Consider
∫
|x−1|≤

√
t
φt(x−

1)2 dx ≍ 1√
t

∫
|x−1|≤

√
t

1√
t
e−(x−1)2/t dx ≍ 1√

t
→ ∞ as

t → 0. The conceptual reason for the blowup is that f is
supported on [−1, 1] with a sharp discontinuity at the end-
points since f(−1), f(1) ≥ cd yet f(x) = 0 for |x| > 1.
On the other hand, for any t > 0 no matter how small,
f ∗ φt is positive everywhere. Consequently, the derivative
(f ∗ φt)

′ explodes near the endpoints as t→ 0, causing the
Fisher information to blow up.
Remark 1.3. As worked out in (Laurent, 1997), the minimax
rate at t = 0 (ignoring conditions like periodicity and others
stipulated in (Laurent, 1997)) in absolute error is 1√

n
+

n−4(α−1)/(4α+1) provided α > 1. A quick comparison to
(4) shows there exists some critical threshold of t under
which the estimation problem becomes harder and over
which it becomes easier. This result provides a caveat to
Gaussian smoothing, proposed in (Goldfeld et al., 2020b)
to alleviate the curse of dimensionality, even in the one-
dimensional setting.
Remark 1.4. Under Gaussian smoothing, the Fisher informa-
tion It can be related to the mutual information I(f ; f ∗φt)
as well as the entropies h(f ∗ φt) and h(f) through the
celebrated I-MMSE and de Bruijn identities (Guo et al.,
2005; Stam, 1959). In Section 4, we show the parametric
rate of convergence for estimating these functionals can be
achieved through a simple plug-in of the rate-optimal Fisher
information estimator, despite the blowup in the optimal
rate of Fisher information estimation as t→ 0.
Remark 1.5. There is a gap in our results for c < t < C.
Our minimax upper bound actually goes through for all
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t > 0. Rather, it is our analysis of the minimax lower bound
which introduces the slack. We conjecture the gap is an
artifact of our proof, and that a sharper argument could
show a 1√

n
lower bound for c < t < C.

2. Minimax upper bound
As noted earlier, it turns out a simple plug-in strategy for
estimating It is rate-optimal. Recall the notation p(x, t) =
(f ∗ φt)(x) and ∂xp(x, t) = (f ∗ φt)

′(x) for the diffused
density and its (spatial) derivative. Define the function
Υ : (0,∞)× R → R with

Υ(u, v) =
v2

u
. (5)

Note It =
∫∞
−∞ Υ(p(x, t), ∂xp(x, t)) dx. By a plug-in type

estimator, we mean an estimator of the form

Ît =
∫ ∞

−∞
Υ
(
p̂(x, t), ∂̂xp(x, t)

)
dx,

where p̂ and ∂̂xp are some estimators of p and ∂xp respec-
tively.

Section 2.1 and Section 2.2 describe plug-in type estima-
tors for the high noise (n−2/(2α+1) < t < 1) and the low
noise (t ≤ n−2/(2α+1)) regimes respectively. Section 2.3
addresses the very high noise regime (t ≥ 1), where a
plug-in strategy is essentially employed but with a slight
modification to achieve the sharp rate; it is thus presented
last for expositional clarity.

2.1. High noise regime

In the high noise regime n−
2

2α+1 < t < 1, it is intuitive
to estimate p(x, t) = (f ∗ φt)(x) with the unbiased esti-
mator p̂(x, t) = 1

n

∑n
i=1 φt(x − µi). It directly follows

∂xp̂(x, t) = 1
n

∑n
i=1 φ

′
t(x − µi), which is unbiased for

∂xp(x, t). Though it is appealing to use unbiased estima-
tors, it turns out some truncation is convenient. Define

ε(x, t) := cd

∫ 1

−1

φt(x− µ) dµ, (6)

ε(x, t) := Cd

∫ 1

−1

φt(x− µ) dµ, (7)

and note ε(x, t) ≤ p(x, t) ≤ ε(x, t) since f ∈ Fα implies
cd ≤ f(µ) ≤ Cd for |µ| ≤ 1. Likewise, define

ε′(x, t) :=

cdφt(x+ 1)− Cdφt(x− 1)− L

∫ 1

−1

φt(x− µ) dµ,
(8)

ε′(x, t) :=

Cdφt(x+ 1)− cdφt(x− 1) + L

∫ 1

−1

φt(x− µ) dµ.
(9)

Here, recall |f ′(µ)| ≤ L for all |µ| < 1 (recall α ≥ 1 is
assumed throughout) as stated in (3). To motivate the def-
initions (8) and (9), consider integration by parts yields
∂xp(x, t) = (f ∗ φ′

t)(x) =
∫ 1

−1
f(µ)φ′

t(x − µ) dµ =

f(−1)φt(x+1)−f(1)φt(x−1)+
∫ 1

−1
f ′(µ)φt(x−µ) dµ,

and so ε′(x, t) ≤ ∂xp(x, t) ≤ ε′(x, t). Finally, define the
truncated estimators

p̂ε(x, t) := (p̂(x, t) ∨ ε(x, t)) ∧ ε(x, t), (10)

∂̂xp
ε
(x, t) := (∂xp̂(x, t) ∨ ε′(x, t)) ∧ ε′(x, t). (11)

Theorem 2.1. If α ≥ 1 and t < 1, then there exists C =
C(α,L) such that

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≤ C√
nt3/4

,

where

Ît :=
∫ ∞

−∞
Υ
(
p̂ε(x, t), ∂̂xp

ε
(x, t)

)
dx,

with p̂ε and ∂̂xp
ε

given by (10) and (11) respectively.

The optimality of a plug-in estimator is notable since such
a strategy is not optimal (with some other conditions such
as periodicity of f and f ′) for estimating the Fisher infor-
mation I(f) of the unsmoothed density (Laurent, 1997).
Instead, Laurent (1997) employs a second order debiasing
strategy to achieve the minimax rate, and even the optimal
asymptotic variance in the regime where the parametric rate
is achieved.

2.2. Low noise regime

In the low noise regime t ≤ n−
2

2α+1 , the diffused density
and its derivative will be estimated via a kernel smoothing.
Suppose we have access to, say, a kernel-based density
estimator f̂ such that

E(|f̂(µ)− f(µ)|2) ≲ n−
2α

2α+1 for all |µ| ≤ 1,

E(|f̂ ′(µ)− f ′(µ)|2) ≲ n−
2(α−1)
2α+1 for all |µ| < 1,

which is standard (Tsybakov, 2009; Giné & Nickl, 2016).
Define the preliminary estimators

p̂(x, t) = (f̂ ∗ φt)(x), (12)

∂̂xp(x, t) = f̂(−1)φt(x+ 1)− f̂(1)φt(x− 1)

+

∫ 1

−1

f̂ ′(µ)φt(x− µ) dµ. (13)

The definition of ∂̂xp is motivated by noting that integration
by parts implies the estimand can be written as ∂xp(x, t) =
(f ∗φ′

t)(x) =
∫ 1

−1
f(µ)φ′

t(x−µ) dµ = f(−1)φt(x+1)−
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f(1)φt(x − 1) +
∫ 1

−1
f ′(µ)φt(x − µ) dµ. To construct a

plug-in estimator of It, we will truncate the preliminary
estimators as in the high noise regime,

p̂ε(x, t) = (p̂(x, t) ∨ ε(x, t)) ∧ ε(x, t), (14)

∂̂xp
ε
(x, t) =

(
∂̂xp(x, t) ∨ ε′(x, t)

)
∧ ε′(x, t). (15)

where the truncation levels are given by (6), (7), (8), and
(9).

Theorem 2.2. If α ≥ 1 and t < 1, then there exists C =
C(α,L) such that

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≤ C

(
n−

α−1
2α+1 +

n−
α

2α+1

√
t

)

where

Ît :=
∫ ∞

−∞
Υ
(
p̂ε(x, t), ∂̂xp

ε
(x, t)

)
dx,

with p̂ε and ∂̂xp
ε

given by (14) and (15) respectively.

The dominating term in the upper bound established by The-
orem 2.2 is n−α/(2α+1)/

√
t in the regime t ≤ n−2/(2α+1).

In the high noise regime n−2/(2α+1) < t < 1, the rate
1√

nt3/4
achieved by the estimator in Theorem 2.1 is faster;

in other words, Theorems 2.1 and 2.2 together imply the

minimax upper bound 1√
nt3/4

∧ n
− α

2α+1√
t

for t < 1.

2.3. Very high noise regime

In the very high noise regime t ≥ 1, we will slightly modify
the plug-in strategy used in Sections 2.1 and 2.2. Consider
∂xp(x, t) = (f ∗φ′

t)(x) =
∫ 1

−1
−x−µ

t φt(x−µ)f(µ) dµ =

−x
t p(x, t) +

1
t

∫ 1

−1
µφt(x− µ)f(µ) dµ. Therefore,

It =
∫ ∞

−∞

(∂xp(x, t))
2

p(x, t)
dx

=
1

t2

∫ ∞

−∞
x2p(x, t) dx

− 2

t2

∫ ∞

−∞

∫ 1

−1

xµφt(x− µ)f(µ) dµ dx

+

∫ ∞

−∞
Υ

(
p(x, t),

1

t

∫ 1

−1

µφt(x− µ)f(µ) dµ

)
dx

=

(
1

t
− 1

t2

∫ 1

−1

µ2f(µ) dµ

)
+

∫ ∞

−∞
Υ

(
p(x, t),

1

t

∫ 1

−1

µφt(x− µ)f(µ) dµ

)
dx

=: L1 + L2.

The two terms will be estimated separately. The first two
terms can be simply estimated through unbiased estimators,

L̂1 :=
1

t
− 1

nt2

n∑
i=1

µ2
i . (16)

L2 is estimated via plug-in, namely

L̂2 :=

∫ ∞

−∞
Υ(p̂ε(x, t), q̂ε(x, t)) dx (17)

where p̂ε is given by (10) and

q̂ε(x, t) :=

1

t

(((
1

n

n∑
i=1

µiφt(x− µi)

)
∧ ε(x, t)

)
∨ −ε(x, t)

)
(18)

with ε(x, t) given by (7). The regularization in q̂ε(x, t) is ap-
plied since the target satisfies

∣∣∣∫ 1

−1
µφt(x− µ)f(µ) dµ

∣∣∣ ≤
ε(x, t).

Theorem 2.3. If c > 0, then for t ≥ c, we have

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≲
1 + c−1/2

√
nt2

,

where Ît := L̂1 + L̂2 given by (16) and (17).

Theorems 2.1, 2.2, and 2.3 collectively establish the upper
bound in (4).

3. Minimax lower bound
Theorem 3.1 states a minimax lower bound for the high and
low noise regimes, which establishes the optimality of the
plug-in methodology described in Sections 2.1 and 2.2.

Theorem 3.1. There exists a sufficiently small universal
constant c > 0 such that the following holds. If α ≥ 1, then

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≳

(
1√
nt3/4

∧ n−
α

2α+1

√
t

)
for t ≤ c.

The proof of Theorem 3.1 employs a two-point construction.
However, standard constructions (Tsybakov, 2009) appear
not to deliver the sharp minimax lower bound, particularly
for t ≳ n−2/(2α+1). Instead, we employ an idea introduced
by Dou et al. (2024), who established sharp minimax lower
bounds for score matching in score-based diffusion models
(i.e. estimation of the score function ∂x log p(x, t) of the
diffused density).

Let K : R → R denote a symmetric (i.e. even) probability
density function (i.e. K ≥ 0 and

∫∞
−∞K(x) dx = 1) which

5
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Figure 1. A cartoon of f0 and f1.

is supported on [−1, 1] such that K ∈ C∞(R), ||K||∞ is
bounded by a universal constant, K’s first ⌈α⌉ derivatives
have L∞ norm bounded by a constant (which may depend
on α and L), and K(0) = supx∈RK(x). The two data-
generating densities deployed in the proof are

f0(µ) =
1

2
1{|µ|≤1}, (19)

f1(µ) = f0(µ) + g(µ) (20)

where

g(µ) =

(
−ϵαK

(
µ

ρ

)
+ ϵαK

(
µ− 1

ρ

)
+ϵαK

(
µ+ 1

ρ

))
1{|µ|≤1}.

(21)

Here, 0 < ϵ ≤ ρ < 1 are parameters to be tuned in the
course of the proof. It is clear f0 ∈ Fα. To check f1 ∈ Fα,
the Hölder condition must be verified. The constraint ρ ≥
ϵ ensures f1 is Hölder smooth. Traditional constructions
(Tsybakov, 2009) do not introduce an extra free parameter
ρ, but rather implicitly take ρ = ϵ; the idea to introduce
another tunable parameter is due to Dou et al. (2024) as
noted earlier. Further, f1 integrates to 1 since Lemma E.2
asserts that g integrates to 0, and so provided ϵ ≤ ρ are
chosen smaller than a sufficiently small universal constant,
it is straightforward to verify f1 ∈ Fα. In the course of
the proof of Theorem 3.1, the optimal choices of the tuning

parameters turn out to be ρ ≍
√
t ∨ ϵ and ϵ ≍

(
1

n
√
t

) 1
2α ∧

n−
2

2α+1 .

The intuition for the construction is similar to the intuition
described in Remark 1.2 for the blowup of (4) as t →
0. Namely, the endpoints of the interval [−1, 1] are the
problematic points which can cause large estimation error.
Thus, f0 and f1 are chosen such that they are different near

Figure 2. A cartoon of f0 and f2.

the boundary of [−1, 1]. Since f1 needs to integrate to 1
since it is a density, some mass needs to be displaced from
somewhere else to compensate for the mass difference at
the boundary; we thus take mass out near zero as shown in
Figure 1.

Theorem 3.2 states a lower bound for the very high noise
regime t ≳ 1 which matches the upper bound presented in
Section 2.3.

Theorem 3.2. There exists a sufficiently large universal
constant C > 0 such that the following holds. If α ≥ 1,
then

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≳
1√
nt2

for t ≥ C.

A two-point construction is also used to prove Theorem
3.2. Let ψ : R → R denote a function such that ψ ∈
C∞(R), ψ is supported on [−1, 1], ||ψ||∞ is bounded by
a universal constant, ψ’s first ⌈α⌉ derivatives have L∞
norm bounded by a constant (which may depend on α
and L),

∫∞
−∞ ψ(ν) dν = 0,

∫∞
−∞ ψ(ν)ν dν = 0, and∣∣∣∫∞

−∞ ψ(ν)ν2 dν
∣∣∣ ≥ c where c > 0 is some universal con-

stant. The two-point construction we use are f0 given by
(19) and

f2(µ) = f0(µ) + ϵαψ

(
µ

ρ

)
(22)

where 0 < ϵ ≤ ρ < 1 are parameters to be tuned. Figure
2 presents a cartoon of f0 and f2. It is straightforward to
verify f2 ∈ Fα provided ϵ ≤ ρ are chosen smaller than a
sufficiently small universal constant. It turns out the optimal
choices are ρ ≍ 1 and ϵ ≍ n−

1
2α .

In the very high noise regime, t happens to be large enough
to smooth out the discontinuities of f at the endpoints of
[−1, 1] that it does not cause fundamental slowdowns in the
estimation rate. From the perspective of the lower bound

6
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construction, it turns out we can select our two points f0
and f2 which actually agree near the boundary of [−1, 1]
and still obtain a sharp lower bound. Hence, we make
the choice (22), where the perturbation µ 7→ ϵαψ (µ/ρ) is
localized near 0 and does not affect the boundary. This kind
of perturbation will be readily recognized as standard to
the expert, excepting the aforementioned idea of Dou et al.
(2024) to introduce ρ.

4. Estimation of mutual information and
entropy: plug-in achieves the parametric
rate

The additive Gaussian white noise channel is a canon-
ical model in information theory and estimation theory.
In this context, the Fisher information is related to other
information-theoretic quantities of fundamental interest; we
will focus on mutual information and entropy here. As a
consequence of our results on Fisher information estima-
tion, it can be shown through the I-MMSE (Guo et al., 2005)
and de Bruijn’s (Stam, 1959) identities (which are actually
equivalent (Guo et al., 2005)) that a simple plug-in type
estimator can estimate at parametric rate both the mutual
information between a signal and its noisy measurement
through an additive Gaussian white noise channel, as well
as the entropy of the source distribution. The idea to plug in
an estimator of the Fisher information into these identities
has appeared before in the literature (Cao et al., 2020).

Suppose a clean signal µ ∼ f is passed through an additive
Gaussian noise channel to yield the measurement Xt |µ ∼
N(µ, t). Given i.i.d. data µ1, ..., µn ∼ f , consider the
problem of estimating the mutual information I(Xt;µ). The
I-MMSE identity (Guo et al., 2005) coupled with Brown’s
identity (Brown, 1971) relates the Fisher information of
the smoothed density f ∗ φt to the mutual information of
interest, as asserted by Theorem 4.1, whose proof is deferred
to Appendix F.

Theorem 4.1. For t > 0, we have the identity

It =
1

t

(
1 + 2t

d

dt
I(Xt;µ)

)
. (23)

Since I(Xt;µ) → 0 as t→ ∞, it follows by the fundamen-
tal theorem of calculus that

I(Xt;µ) =
1

2

∫ ∞

t

1

s
− Is ds.

Plugging in our estimator of the Fisher information (depend-
ing on the regime of s) and integrating yields the parametric
rate.

Theorem 4.2. Suppose α ≥ 1. Let Îs be the estimator in
Theorem 2.3 for s ≥ 1, Theorem 2.1 for n−

2
2α+1 < s < 1,

and Theorem 2.2 for 0 < s ≤ n−
2

2α+1 . Fix any t > 0.
Define the estimator

̂I(Xt;µ) :=
1

2

∫ ∞

t

1

s
− Îs ds.

If t > 0, then there exists C = C(α,L) such that

sup
f∈Fα

E
(∣∣∣ ̂I(Xt;µ)− I(Xt;µ)

∣∣∣) ≤ C√
n
.

Proof. By (23) along with Theorems 2.3, 2.1, and
2.2, it directly follows E(| ̂I(Xt;µ) − I(Xt;µ)|) ≲

C
∫∞
t

1√
ns2

∧ 1√
ns3/4

∧ n
− α

2α+1√
s

ds ≲ C√
n

∫∞
1

1
s2 ds +

C√
n

∫ 1

n
− 2

2α+1

1
s3/4

ds + Cn−
α

2α+1
∫ n

− 2
2α+1

t
1√
s
ds ≲ C√

n
+

Cn−
α+1
2α+1 . Since α+1

2α+1 > 1
2 , the dominating term is

1√
n

.

Estimation of the entropy of the smoothed density follows
immediately since

h(f∗φt) = I(Xt;µ)−h(Xt |µ) = I(Xt;µ)−
1

2
log (2πet)

by the well-known property I(U ;V ) = h(U) − h(U |V )
for continuous random variables U and V . It is immediate
to see that the parametric rate can be achieved, as we state
in Corollary 4.3 without proof.

Corollary 4.3. Suppose α ≥ 1. Let ̂I(Xt;µ) be the estima-
tor from Theorem 4.2 and define

̂h(f ∗ φt) := ̂I(Xt;µ)−
1

2
log(2πet).

If t > 0, then there exists C = C(α,L) such that

sup
f∈Fα

E
(∣∣∣ ̂h(f ∗ φt)− h(f ∗ φt)

∣∣∣) ≤ C√
n
.

The upper bound stated in Corollary 4.3 notably does not
blow up as t → 0. This is in stark contrast to the upper
bound obtained by Goldfeld et al. (2020b) for the estimator
̂h(f ∗ φt) = h

(
1
n

∑n
i=1 δµi

∗ φt

)
; the constant in (33) of

Goldfeld et al. (2020b) is explicitly characterized in (63),
where it is plainly seen to diverge as t→ 0.

Via de Bruijn’s identity (Stam, 1959),

It = 2
d

dt
h(f ∗ φt), (24)

an estimator can also be directly constructed for the entropy
of the unsmoothed data density f (i.e. the case t = 0). The

7
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fundamental theorem of calculus1 yields

h(f) = h(f ∗ φt)−
1

2

∫ t

0

Is ds.

Again, it is straightforward to see a plug-in type estima-
tor achieves the parametric rate, as stated in Corollary 4.4
without proof.
Corollary 4.4. Suppose α ≥ 1. Let Is denote the estima-
tor of the Fisher information defined in Theorem 4.2 and
̂h(f ∗ φt) denote the estimator defined in Corollary 4.3. Fix

any t > 0. Define

ĥ(f) = ̂h(f ∗ φt)−
1

2

∫ t

0

Îs ds.

Then there exists C = C(α,L) such that

sup
f∈Fα

E
(∣∣∣ĥ(f)− h(f)

∣∣∣) ≤ C√
n
.

5. Proof ideas
This section briefly sketches the essence of the proof strate-
gies, which is to examine Taylor expansions of Υ.

5.1. Upper bound: bounding the estimation error

To establish Theorems 2.1, 2.2, and 2.3, the estimation errors
will be bounded through a Taylor expansion of Υ defined in
(5). The proof of Proposition 5.1 is deferred to Appendix A.
Proposition 5.1. If (u, v), (u0, v0) ∈ (0,∞)× R, then

Υ(u, v) = Υ(u0, v0) + Γu0,v0(u, v)

where the remainder Γu0,v0(u, v) satisfies

|Γu0,v0(u, v)|

≤ C

(
(|v| ∨ |v0|)2

(|u| ∧ |u0|)2
|u− u0|+

|v| ∨ |v0|
|u| ∧ |u0|

|v − v0|
)

where C > 0 is some universal constant.

In Appendix C, Proposition 5.1 is employed to obtain
bounds on the estimation error, by recognizing∣∣∣Ît − It

∣∣∣
=

∣∣∣∣∫ ∞

−∞
Υ(p̂ε(x, t), ∂̂xp

ε
(x, t))−Υ(p(x, t), ∂xp(x, t)) dx

∣∣∣∣
≤
∫ ∞

−∞
|Γp(x,t),∂xp(x,t)(p̂

ε(x, t)), ∂̂xp
ε
(x, t))| dx.

1The careful reader may be concerned about the continuity
condition h(f∗φt) → h(f) as t → 0 needed in order to invoke the
(second) fundamental theorem of calculus. The desired continuity
has been used implicitly in the literature and might be considered
folklore by some, but an explicit discussion and a proof can be
found in Theorem 6.2 and Remark 10 of (Wang & Madiman, 2014)
(see also (Rioul, 2017) for a discussion of other works containing
this result).

Bounding the estimation error amounts to carefully bound-
ing the remainder term Γ.

5.2. Lower bound: bounding the functional separation

As mentioned in Section 3, the lower bounds are proved
through two-point constructions and applications of Le
Cam’s method. A crucial ingredient is to obtain lower
bounds on separation of the Fisher informations of the
two constructed densities. For discussion, let us first fo-
cus on bounding |I(f1 ∗ φt)− I(f0 ∗ φt)| from below in
the proof of Theorem 3.1.

From the upper bound perspective, the dominating term
in the estimation error appears to be the linear term in the
Taylor expansion of Υ. Therefore, it is natural in the lower
bound to pursue an argument asserting the order of the
functional separation is dominated by this first order term.
To carry out such an argument, the linear term will need to
be computed explicitly, and the remainder must be argued
to be of smaller order. Proposition 5.2 gives the expansion,
and its proof is deferred to Appendix B.

Proposition 5.2. If (u, v), (u0, v0) ∈ (0,∞)× R, then

Υ(u, v) = Υ(u0, v0)−
v20
u20

(u−u0)+
2v0
u0

(v−v0)+Γu0,v0(u, v)

where the remainder satisfies

|Γu0,v0(u, v)|

≤ C

(
|v|2 ∨ |v0|2

|u|3 ∧ |u0|3
|u− u0|2 +

1

|u| ∧ |u0|
|v − v0|2

+
|v| ∨ |v0|

|u|2 ∧ |u0|2
|u− u0||v − v0|

)
.

To illustrate the use of Proposition 5.2, consider it yields

I(f1 ∗ φt)− I(f0 ∗ φt)

≈ −
∫ ∞

−∞

(∂xp0(x, t))
2

p0(x, t)2
(p1(x, t)− p0(x, t)) dx

+ 2

∫ ∞

−∞

∂xp0(x, t)

p0(x, t)
(∂xp1(x, t)− ∂xp0(x, t)) dx.

In Appendix B, the right hand side is carefully examined to
yield a lower bound on the separation of the Fisher informa-
tion. Jumping to the punchline, it is essentially shown

I(f1 ∗ φt)− I(f0 ∗ φt)

≈
∫ ∞

0

φt(x− 1)2

p0(x, t)

(
2g(1)− g(x, t)

2p0(x, t)

)
dx

where p0(x, t) = (f0 ∗ φt)(x) and g(x, t) = (g ∗
φt)(x). The posterior expectation can be quickly recog-
nized g(x,t)

2p0(x,t)
= E(g(µ) |Xt = x) in the Bayes model
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µ ∼ f0 and Xt |µ ∼ N(µ, t). The above display
further motivates the choice of g made in (21) and de-
picted in Figure 1, namely we wish to choose g such that
2g(1) − E(g(µ) |Xt = x) is bounded away from zero. A
sufficient choice is to select g which attains its maximum
at {1,−1} and is bounded away from zero here; this is
congruent with the intuition offered in Section 3.

A similar Taylor expansion strategy is used in the proof
of Theorem 3.2 for bounding |I(f2 ∗ φt) − I(f0 ∗ φt)|.
However, it turns out some simple manipulation enables the
use of the simpler expansion of Proposition 5.1. This can
be related to the intuition offered in Section 3, which notes
the endpoints of [−1, 1] no longer cause a slowdown in the
estimation rate since there is much smoothing in the very
high noise regime. We defer the details to Appendix B.2.
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Appendices to “Sharp optimality of simple, plug-in estimation of the Fisher
information of a smoothed density”

A. Proofs: upper bound
Theorems 2.1 and 2.2 involve plug-in estimators of the form

Ît =
∫ ∞

−∞
Υ(p̂ε(x, t), ∂̂xp

ε
(x, t)) dx,

Before using Proposition 5.1 to bound the error, we first present its proof.

Proof of Proposition 5.1. Observe ∇Υ(u, v) =
(
− v2

u2 ,
2v
u

)
. For (u, v), (u0, v0) ∈ (0,∞) × R, consider that Υ(u, v) =

Υ(u0, v0)+
(
− ξ2v

ξ2u
(u− u0) +

2ξv
ξu

(v − v0)
)

for some point (ξu, ξv) on the line segment {(u0+λ(u−u0), v0+λ(v−v0)) ∈
R2 : 0 ≤ λ ≤ 1}. The claimed result follows immediately.

Proposition 5.1 yields∣∣∣Ît − It
∣∣∣ = ∣∣∣∣∫ ∞

−∞
Υ(p̂ε(x, t), ∂̂xp

ε
(x, t))−Υ(p(x, t), ∂xp(x, t)) dx

∣∣∣∣ ≲ ∫ ∞

−∞
R1(x, t) +R2(x, t) dx (25)

where

R1(x, t) =
(|∂̂xp

ε
(x, t)| ∨ |∂xp(x, t)|)2

(|p̂ε(x, t)| ∧ |p(x, t)|)2
|p̂ε(x, t)− p(x, t)|, (26)

R2(x, t) =
|∂̂xp

ε
(x, t)| ∨ |∂xp(x, t)|

|p̂ε(x, t)| ∧ |p(x, t)|
|∂̂xp

ε
(x, t)− ∂xp(x, t)|. (27)

To prove Theorems 2.1 and 2.2, we will focus on bounding (25) in expectation. Theorem 2.3 involves a slightly different
estimator, but though the term of focus is different in Section A.3, the essence of the argument still involves the Taylor
expansion given by Proposition 5.1.

A.1. Proof of Theorem 2.1

Recall p̂ε and ∂̂xp
ε

are given by (10) and (11) respectively in Theorem 2.1. Examining the terms (26) and (27), it is clear
that error bounds of these estimators will be needed; Proposition A.1 delivers suitable bounds, and its proof is deferred to
Appendix C.

Proposition A.1. If α ≥ 1, then

E
(
|p̂ε(x, t)− p(x, t)|2

)
≲
ε(x, t)

n
√
t

(
1{|x|≤1} + e−

(|x|−1)2

2t 1{|x|>1}

)
,

E

(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)
∣∣∣2) ≲

ε(x, t)

nt3/2
,

where p̂ε and ∂̂xp
ε

are given by (10) and (11) respectively.

Furthermore, estimates on the size of p and ∂xp are needed as seen in (26) and (27). The proofs of Lemmas A.2 and A.3 are
deferred to Appendix E.

Lemma A.2. If t < 1, then

p(x, t) ≍

{
1 if |x| ≤ 1,(
1 ∧

√
t

|x|−1

)
e−

(|x|−1)2

2t if |x| > 1.

11
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Lemma A.3. If α ≥ 1, then

|∂xp(x, t)|2 ≲ φt(x+ 1)2 + φt(x− 1)2 + ε(x, t)

(
1{|x|≤1} +

e−
(|x|−1)2

2t

√
t

1{|x|>1}

)
.

With these estimates in hand, we are in position to bound (25) in expectation.

Proposition A.4. If α ≥ 1 and t < 1, then E
(∫∞

−∞ R1(x, t) dx
)
≲ 1√

nt3/4
, where R1 is given by (26).

Proof. By ε(x, t) ≤ p(x, t) ≤ ε(x, t) and Lemmas A.3, E.1, we have

E(R1(x, t)) ≤
E

((
|∂̂xp

ε
(x, t)| ∨ |∂xp(x, t)|

)2
· |p̂ε(x, t)− p(x, t)|

)
ε(x, t)2

≤
φt(x+ 1)2 + φt(x− 1)2 + ε(x, t)

(
1{|x|≤1} +

e−
(|x|−1)2

2t√
t

1{|x|>1}

)
ε(x, t)

· E (|p̂ε(x, t)− p(x, t)|)
ε(x, t)

. (28)

Looking at the first term in the product (28), note ε(x, t) ≍ 1 for |x| ≤ 1 and ε(x, t) ≍
(
1 ∧

√
t

|x|−1

)
e−

(|x|−1)2

2t for |x| > 1

as implied by Lemma A.2 since p(x, t) ≍ ε(x, t). Furthermore, φt(x+1)2 ≲ 1√
t
φt(x+1) and φt(x−1)2 ≲ 1√

t
φt(x−1).

Therefore,

φt(x+ 1)2 + φt(x− 1)2 + ε(x, t)

(
1{|x|≤1} +

e−
(|x|−1)2

2t√
t

1{|x|>1}

)
ε(x, t)

≲

(
1√
t
(φt(x+ 1) + φt(x− 1)) + 1

)
1{|x|≤1} +

(
φt(x+ 1)2 + φt(x− 1)2

ε(x, t)
+
e−

(|x|−1)2

2t

√
t

)
1{|x|>1}

≲

(
1 +

1√
t
(φt(x+ 1) + φt(x− 1))

)
1{|x|≤1} +

((
1 ∨ |x| − 1√

t

)
· 1
t
e−

(|x|−1)2

2t +
e−

(|x|−1)2

2t

√
t

)
1{|x|>1}.

Let us examine the second term appearing in the product (28). It follows by Jensen’s inequality, Proposition A.1, and Lemma
A.2 along with p(x, t) ≍ ε(x, t) that

E (|p̂ε(x, t)− p(x, t)|)
ε(x, t)

≤
√
E (|p̂ε(x, t)− p(x, t)|2)

ε(x, t)

≤
1{|x|≤1} + e−

(|x|−1)2

2t 1{|x|>1}√
nε(x, t)t1/4

≲
1√
nt1/4

1{|x|≤1} +
1√
nt1/4

(
1 ∨ (|x| − 1)1/2

t1/4

)
e−

(|x|−1)2

4t 1{|x|>1}.

Therefore,

E

(∫ ∞

−∞
R1(x, t) dx

)

≲
∫ ∞

−∞

((
1 +

1√
t
(φt(x+ 1) + φt(x− 1))

)
1{|x|≤1} +

((
1 ∨ |x| − 1√

t

)
· 1
t
e−

(|x|−1)2

2t +
e−

(|x|−1)2

2t

√
t

)
1{|x|>1}

)

·
(

1√
nt1/4

1{|x|≤1} +
1√
nt1/4

(
1 ∨ (|x| − 1)1/2

t1/4

)
e−

(|x|−1)2

4t 1{|x|>1}

)
dx

=
1√
nt1/4

∫
|x|≤1

1 +
φt(x+ 1) + φt(x− 1)√

t
dx

12
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+
1√
nt3/4

∫
|x|>1

(
1 ∨ |x| − 1√

t

)(
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

3(|x|−1)2

4t dx

+
1√
nt1/4

∫
|x|>1

(
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

3(|x|−1)2

4t dx

≲
1√
nt1/4

(
1 +

1√
t

)
+

1√
nt3/4

(
1 +

√
t√
t
+
t1/4

t1/4

)
+

1√
nt1/4

(
1 +

t1/4

t1/4

)
≍ 1√

nt3/4
.

The proof is complete.

Proposition A.5. If α ≥ 1 and t < 1, then E
(∫∞

−∞ R2(x, t) dx
)
≲ 1√

nt3/4
, where R2 is given by (27).

Proof. By ε(x, t) ≤ p(x, t) ≤ ε(x, t) and Lemmas A.3, E.1, we have

E(R2(x, t))

≤
E
(
|∂̂xp

ε
(x, t)| ∨ |∂xp(x, t)| · |∂̂xp

ε
(x, t)− ∂xp(x, t)|

)
ε(x, t)

≤
φt(x+ 1) + φt(x− 1) +

√
ε(x, t)

(
1{|x|≤1} +

e−
(|x|−1)2

4t

t1/4
1{|x|>1}

)
√
ε(x, t)

·
E
(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)

∣∣∣)√
ε(x, t)

. (29)

Looking at the first term in the product (29), note ε(x, t) ≍ 1 for |x| ≤ 1 and ε(x, t) ≍
(
1 ∧

√
t

|x|−1

)
e−

(|x|−1)2

2t for |x| > 1

as implied by Lemma A.2 since p(x, t) ≍ ε(x, t). Therefore,

φt(x+ 1) + φt(x− 1) +
√
ε(x, t)

(
1{|x|≤1} +

e−
(|x|−1)2

4t

t1/4
1{|x|>1}

)
√
ε(x, t)

≲ (1 + φt(x+ 1) + φt(x− 1))1{|x|≤1} +

(
φt(x+ 1) + φt(x− 1)√

ε(x, t)
+
e−

(|x|−1)2

4t

t1/4

)
1{|x|>1}

≲ (1 + φt(x+ 1) + φt(x− 1))1{|x|≤1} +

((
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t +
t1/4√
t
e−

(|x|−1)2

2t

)
1{|x|>1}.

Let us examine the second term appearing in the product (29). It follows by Jensen’s inequality and Proposition A.1 that

E
(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)

∣∣∣)√
ε(x, t)

≤

√
E

(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)
∣∣∣2)√

ε(x, t)
≤ 1√

nt3/4
.

Therefore,

E

(∫ ∞

−∞
R2(x, t) dx

)
≲

1√
nt3/4

∫
|x|≤1

1 + φt(x+ 1) + φt(x− 1) dx+
1√
nt3/4

∫
|x|>1

(
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t +
t1/4√
t
e−

(|x|−1)2

2t dx

=
1√
nt3/4

+
1√
nt3/4

(
1 +

t1/4

t1/4
+ t1/4

)
≍ 1√

nt3/4
.

The proof is complete.

13



Plug-in Estimation of the Fisher Information of a Smoothed Density

Theorem 2.1 follows as a direct consequence.

Proof of Theorem 2.1. Proposition 5.1 yields (25). It immediately follows from Propositions A.4 and A.5 that
supf∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≲ 1√
nt3/4

, as claimed.

A.2. Proof of Theorem 2.2

In Theorem 2.2, recall p̂ε and ∂̂xp
ε

are given by (14) and (15). As they are constructed from preliminary estimators which
smooth, an analogous version of Proposition A.1 is needed; Proposition A.6 is such a version, and its proof is deferred to
Appendix C.

Proposition A.6. If α ≥ 1, then

E
(
|p̂ε(x, t)− p(x, t)|2

)
≲ n−

2α
2α+1 ε(x, t),

E

(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)
∣∣∣2) ≲ n−

2(α−1)
2α+1 ε(x, t) + (φt(x+ 1)2 + φt(x− 1)2)n−

2α
2α+1 ,

where p̂ε and ∂̂xp
ε

are given by (14) and (15) respectively.

As described in Section A, the proof of Theorem 2.2 proceeds by furnishing a suitable bound for (25) in expectation.

Proposition A.7. If α ≥ 1 and t < 1, then E
(∫∞

−∞ R1(x, t) dx
)
≲ n

− α
2α+1√
t

, where R1 is given by (26).

Proof. By the same calculation leading up to (28), but now using Proposition A.6, we have

E (R1(x, t))

≲
φt(x+ 1)2 + φt(x− 1)2 + ε(x, t)

(
1{|x|≤1} +

e−
(|x|−1)2

2t√
t

1{|x|>1}

)
ε(x, t)

· E (|p̂ε(x, t)− p(x, t)|)
ε(x, t)

≲

((
1√
t
(φt(x+ 1) + φt(x− 1)) + 1

)
1{|x|≤1} +

(
φt(x+ 1)2 + φt(x− 1)2

ε(x, t)
+

1√
t
e−

(|x|−1)2

2t

)
1{|x|>1}

)
· n

− α
2α+1√
ε(x, t)

≲

((
1√
t
(φt(x+ 1) + φt(x− 1)) + 1

)
1{|x|≤1} +

((
1 ∨ |x| − 1√

t

)
· 1
t
e−

(|x|−1)2

2t +
1√
t
e−

(|x|−1)2

2t

)
1{|x|>1}

)
· n−

α
2α+1

(
1{|x|≤1} +

(
1 ∨ (|x| − 1)1/2

t1/4

)
e

(|x|−1)2

4t 1{|x|>1}

)
Integrating over x yields

E

(∫ ∞

−∞
R1(x, t) dx

)
≲ n−

α
2α+1

(
1√
t
+ 1

)
+
n−

α
2α+1

√
t

∫
|x|>1

(
1 ∨ (|x| − 1)1/2

t1/4

)(
1 ∨ |x| − 1√

t

)
· 1√

t
e−

(|x|−1)2

4t dx

+ n−
α

2α+1

∫
|x|>1

(
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t dx

≲
n−

α
2α+1

√
t

+
n−

α
2α+1

√
t

+ n−
α

2α+1

≍ n−
α

2α+1

√
t

.

The proof is complete.

14
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Proposition A.8. If α ≥ 1 and t < 1, then E
(∫∞

−∞ R2(x, t) dx
)
≲ n−

α−1
2α+1 + n

− α
2α+1√
t

, where R2 is given by (27).

Proof. By the same calculation leading up to (29), but now using Proposition A.6, we have

E (R2(x, t))

≲
φt(x+ 1) + φt(x− 1) +

√
ε(x, t)

(
1{|x|≤1} +

e−
(|x|−1)2

4t

t1/4
1{|x|>1}

)
√
ε(x, t)

·
E
(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)

∣∣∣)√
ε(x, t)

≲

(
(1 + φt(x+ 1) + φt(x− 1))1{|x|≤1} +

((
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t +
t1/4√
t
e−

(|x|−1)2

4t

)
1{|x|>1}

)
·
n−

α
2α+1 (φt(x+ 1) + φt(x− 1)) + n−

(α−1)
2α+1

√
ε(x, t)√

ε(x, t)

≲

(
(1 + φt(x+ 1) + φt(x− 1))1{|x|≤1} +

((
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t +
t1/4√
t
e−

(|x|−1)2

4t

)
1{|x|>1}

)
·
(
n−

α
2α+1

(
(φt(x+ 1) + φt(x− 1))1{|x|≤1} +

(
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t 1{|x|>1}

)
+ n−

α−1
2α+1

)
Integrating over x yields

E

(∫ ∞

−∞
R2(x, t) dx

)
≲ n−

α−1
2α+1 + n−

α
2α+1 + n−

α
2α+1

∫
|x|≤1

φt(x+ 1)2 + φt(x− 1)2 dx

+ n−
α−1
2α+1

∫
|x|>1

(
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t +
t1/4√
t
e−

(|x|−1)2

4t dx

+ n−
α

2α+1

∫
|x|>1

((
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t

)((
1 ∨ (|x| − 1)1/2

t1/4

)
· 1√

t
e−

(|x|−1)2

4t +
t1/4√
t
e−

(|x|−1)2

4t

)
dx

≲ n−
α−1
2α+1 +

n−
α

2α+1

√
t

+ n−
α−1
2α+1

(
1 + t1/4

)
+
n−

α
2α+1

√
t

(
1 + t1/4

)
≍ n−

α−1
2α+1 +

n−
α

2α+1

√
t

.

The proof is complete.

Proof of Theorem 2.2. It immediately follows from (25) (which is furnished from Proposition 5.1) along with Propositions

A.7 and A.8 that supf∈Fα
E
(∣∣∣Ît − It

∣∣∣) ≲ n−
α−1
2α+1 + n

− α
2α+1√
t

.

A.3. Proof of Theorem 2.3

To prove Theorem 2.3, the estimation errors of L̂1 and L̂2 given by (16) and (17) will be bounded separately. It is immediate
to bound the error of L̂1 since it is unbiased; the bound is stated in Proposition A.9 without proof.

Proposition A.9. We have E
(∣∣∣L̂1 − L1

∣∣∣) ≲ 1√
nt2

where L̂1 is given by (16).

To bound the estimation error of L̂2, an argument involving the Taylor expansion of Υ given in Proposition 5.1 will be
employed. Proposition 5.1 gives∣∣∣L̂2 − L2

∣∣∣ = ∣∣∣∣∫ ∞

−∞
Υ(p̂ε(x, t), q̂ε(x, t))−Υ

(
pε(x, t),

1

t

∫ 1

−1

µφt(x− µ)f(µ) dµ

)
dx

∣∣∣∣
≲
∫ ∞

−∞
R1(x, t) +R2(x, t) dx (30)

15
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where

R1(x, t) =

(
1
t

∫ 1

−1
µφt(x− µ)f(µ) dµ

)2
∨ |q̂ε(x, t)|2

(|p̂ε(x, t)| ∧ |p(x, t)|)2
|p̂ε(x, t)− p(x, t)|, (31)

R2(x, t) =

∣∣∣ 1t ∫ 1

−1
µφt(x− µ)f(µ) dµ

∣∣∣ ∨ |q̂ε(x, t)|

|p̂ε(x, t)| ∧ |p(x, t)|

∣∣∣∣q̂ε(x, t)− 1

t

∫ 1

−1

µφt(x− µ)f(µ) dµ

∣∣∣∣ . (32)

To bound (30), bounds on the plugged-in estimator’s errors are useful. Proposition A.1 already gives a bound on the error of
p̂ε given by (10), and the following lemma (whose proof is deferred to Appendix C) provides an error bound for q̂ε.

Lemma A.10. We have

E

(∣∣∣∣q̂ε(x, t)− 1

t

∫ 1

−1

µφt(x− µ)f(µ) dµ

∣∣∣∣2
)

≲
ε(x, t)

nt5/2
,

where q̂ε is given by (18) and ε(x, t) by (6).

With these preliminary ingredients in place, (30) can be bounded in expectation.

Proposition A.11. Suppose c > 0. If t ≥ c, then E
(∫∞

−∞ R1(x, t) dx
)
≲ 1+c−1/2

√
nt2

, where R1 is given by (31).

Proof. Since p(x, t) ∧ p̂ε(x, t) ≳ ε(x, t) and
∣∣∣ 1t ∫ 1

−1
µφt(x− µ)f(µ) dµ

∣∣∣ ∨ |q̃ε(x, t)| ≤ ε(x,t)
t ≍ ε(x,t)

t , we have after

invoking Proposition A.1, E (R1(x, t)) ≲ 1
t2E (|p̂ε(x, t)− p(x, t)|) ≲ 1

t2 · ε(x,t)1/2√
nt1/4

. Integration yields

∫ ∞

−∞
E (R1(x, t)) dx ≲

1√
nt2

∫ ∞

−∞

1√
t

(∫ 1

−1

e−
(x−µ)2

2t dµ

)1/2

dx

≲
c−1/2

√
nt2

+
1√
nt2

∫
|x|>1

1√
t

(∫ 1

−1

e−
(x−µ)2

2t dµ

)1/2

dx

≲
c−1/2

√
nt2

+
1√
nt2

∫
|x|>1

1√
t
e−

(|x|−1)2

4t dx

≲
c−1/2 + 1√

nt2
,

as claimed.

Proposition A.12. Suppose c > 0. If t ≥ c, then E
(∫∞

−∞ R2(x, t) dx
)
≲ 1+c−1/2

√
nt2

, where R2 is given by (32).

Proof. The proof is very similar to the proof of Proposition A.11, except Lemma A.10 is invoked in place of Proposition
A.1. By the same reasoning in that proof, we have

E (R2(x, t)) ≲
1

t
E

(∣∣∣∣q̂ε(x, t)− 1

t

∫ 1

−1

µφt(x− µ)f(µ)dµ

∣∣∣∣) ≲
1

t
· ε(x, t)

1/2

√
nt5/4

≲
1

t2
· ε(x, t)

1/2

√
nt1/4

.

Integrating and repeating the calculations in the proof of Proposition A.11 yields the desired claim.

Theorem 2.3 follows immediately.

Proof of Theorem 2.3. It follows from Proposition A.9 that E
(∣∣∣Ît − It

∣∣∣) ≲ 1√
nt2

+ E
(∣∣∣L̂2 − L2

∣∣∣). Proposition 5.1
yields (30), and (30) is bounded in expectation by Propositions A.11 and A.12, which yields the desired result.

B. Proofs: lower bound
This section contains the proofs of Theorem 3.1 and Theorem 3.2.
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B.1. Proof of Theorem 3.1

The proof of Theorem 3.1 proceeds through Le Cam’s two point method applied to f0 and f1 given by (19) and (20)
respectively.

Proposition B.1. If f0, f1 ∈ Fα, then

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≳ |I(f0 ∗ φt)− I(f1 ∗ φt)| · e−n dKL(f1 || f0).

Proof. The desired result follows as a straightforward consequence of standard and well-known results (Tsybakov, 2009).

Proposition B.2. We have dKL(f1 || f0) ≲ ϵ2αρ.

Proof. By Lemma 2.7 of (Tsybakov, 2009), it follows dKL(f1 || f0) ≤ χ2(f1 || f0) =
∫ 1

−1
(f1(µ)−f0(µ))

2

f0(µ)
dµ ≍∫ 1

−1
g(µ)2 dµ ≲ ϵ2α

∫∞
−∞K

(
µ
ρ

)2
dµ ≍ ϵ2αρ, as claimed.

To furnish a lower bound on the separation of the Fisher information, namely

|I(f1 ∗ φt)− I(f0 ∗ φt)| =
∣∣∣∣∫ ∞

−∞
Υ(p1(x, t), ∂xp1(x, t))−Υ(p0(x, t), ∂xp0(x, t)) dx

∣∣∣∣ ,
we will use Proposition 5.2. Before doing so, we first present its proof here.

Proof of Proposition 5.2. The proof follows from a direct application of Taylor’s theorem once the gradient and Hessian

are computed. A direct calculation shows ∇Υ(u, v) = (− v2

u2 ,
2v
u ) and ∇2Υ(u, v) =

(
2v2

u3 − 2v
u2

− 2v
u2

2
u

)
. The proof is

complete.

Recall throughout this section and throughout Appendix D.1, we denote p0(x, t) := (f0∗φt)(x) and p1(x, t) := (f1∗φt)(x).
Proposition 5.2 yields the expansion

I(f1 ∗ φt)− I(f0 ∗ φt) = −
∫ ∞

−∞

(∂xp0(x, t))
2

p0(x, t)2
(p1(x, t)− p0(x, t)) dx

+ 2

∫ ∞

−∞

∂xp0(x, t)

p0(x, t)
(∂xp1(x, t)− ∂xp0(x, t)) dx

+

∫ ∞

−∞
Γp0(x,t),∂xp0(x,t)(p1(x, t), ∂xp1(x, t)) dx.

(33)

Proposition B.3 bounds the remainder term in (33). Its proof is deferred to Appendix D.1.1.

Proposition B.3. If α ≥ 1 and 0 < t, ρ < 1, then∣∣∣∣∫ ∞

−∞
Γp0(x,t),∂xp0(x,t)(p1(x, t), ∂xp1(x, t)) dx

∣∣∣∣ ≲ ϵ2α√
t
+
ϵ2α

ρ2
.

With the remainder term handled, attention will now be directed towards the main terms of (33). Lemma B.4 simplifies the
first term and Lemma B.5 simplifies the second term; their proofs are deferred to Appendix D.1.2.

Lemma B.4. There exists some universal constant c > 0 such that for t < 1, we have∣∣∣∣(−∫ ∞

−∞

(∂xp0(x, t))
2

p0(x, t)2
(p1(x, t)− p0(x, t)) dx

)
−
(
−1

2

∫ ∞

0

φt(x− 1)2

p0(x, t)
· g(x, t)
p0(x, t)

dx

)∣∣∣∣ ≲ ϵαe−
c
t

where g(x, t) := (g ∗ φt)(x).

17
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Lemma B.5. There exists some universal constant c > 0 such that for t < 1, we have∣∣∣∣2 ∫ ∞

−∞

∂xp0(x, t)

p0(x, t)
(∂xp1(x, t)− ∂xp0(x, t)) dx− 2g(1)

∫ ∞

0

φt(x− 1)2

p0(x, t)
dx

∣∣∣∣ ≲ ϵα

ρ
+ ϵαe−

c
t .

Putting together Proposition B.3 with Lemmas B.4 and B.5 delivers the following functional separation.
Theorem B.6. For α ≥ 1 and 0 < t, ρ < 1, we have

|I(f1 ∗ φt)− I(f0 ∗ φt)| ≥
cϵα√
t
− C

(
ϵα

ρ
+ ϵαe−

c′
t +

ϵ2α√
t
+
ϵ2α

ρ2

)
for some universal constants C, c, c′ > 0.

Proof. By Proposition B.3 and Lemmas B.4, B.5, we have∣∣∣∣(I(f1 ∗ φt)− I(f0 ∗ φt))−
(∫ ∞

0

φt(x− 1)2

p0(x, t)
·
(
2g(1)− g(x, t)

2p0(x, t)

)
dx

)∣∣∣∣ ≤ C

(
ϵα

ρ
+ ϵαe−

c′
t +

ϵ2α√
t
+
ϵ2α

ρ2

)
for some universal constants C, c′ > 0. We can recognize the posterior expectation

g(x, t)

2p0(x, t)
=

1
2

∫ 1

−1
g(µ)φt(x− µ) dµ

1
2

∫ 1

−1
φt(x− µ) dµ

= E(g(µ) |Xt = x)

from the Bayes model µ ∼ f0 and Xt |µ ∼ N(µ, t). Since g(µ) ≤ g(1) (because K is maximized at the origin), it follows
that g(1)− g(x,t)

2p0(x,t)
≥ 0. Therefore,∫ ∞

0

φt(x− 1)2

p0(x, t)
·
(
2g(1)− g(x, t)

2p0(x, t)

)
dx ≥

∫ ∞

0

φt(x− 1)2

p0(x, t)
· g(1) dx ≥ cϵα√

t

for some universal constant c > 0. The proof is complete.

With Theorem B.6 in hand, the stage is set to prove Theorem 3.1.

Proof of Theorem 3.1. Let c > 0 be a sufficiently small universal constant and suppose t ≤ c. Set ρ = C
(√
t ∨ ϵ

)
where

C > 0 is a sufficiently large universal constant and

ϵ =
1

C2

((
1

n
√
t

) 1
2α

∧ n−
1

2α+1

)
.

Since C is sufficiently large and ρ ≳ ϵ, it is straightforward to verify f1 ∈ Fα. It is also obvious f0 ∈ Fα. Therefore,
Proposition B.1 yields

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≳ |I(f0 ∗ φt)− I(f1 ∗ φt)|.

Here, we have used ndKL(f1 || f0) ≲ 1 from ϵ2αρ ≤ C−(4α−1)

n and Proposition B.2. Theorem B.6 thus yields, for some
universal constants C ′, c′, c′′ > 0,

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≥ c′ϵα√
t
− C ′

(
ϵα

ρ
+ ϵαe−

c′′
t +

ϵ2α√
t
+
ϵ2α

ρ2

)
.

By taking C > 0 to be larger than a sufficiently large universal constant, we can ensure c′ϵα

8
√
t
≥ C′ϵ2α√

t
. Furthermore, consider

C ′ ϵ2α
ρ2 ≤ C′

C
ϵ2α√
tρ

≤ 8C′

Cc′
ϵα

ρ · c′ϵα

8
√
t
≤ 8C′

Cc′ ϵ
α−1 · c′ϵα

8
√
t
≤ c′ϵα

8
√
t

where the last inequality follows from α ≥ 1 and C > 0 being

chosen sufficiently large. Likewise, taking C > 0 sufficiently large gives C′ϵα

ρ ≤ c′ϵα

8
√
t
. Furthermore, since t ≤ c and c is

sufficiently small, we have c′ϵα

8
√
t
≥ C ′ϵαe−

c′′
t . Therefore, it follows

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≥ c′ϵα√
t
− 4 · c

′ϵα

8
√
t
≍ ϵα√

t
≍ 1√

nt3/4
∧ n−

α
2α+1

√
t

,

as claimed.
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B.2. Proof of Theorem 3.2

Le Cam’s method (stated in Proposition B.7 without proof) is applied to f0 and f2 given by (19) and (22) respectively.
Denote p2(x, t) = (f2 ∗ φt)(x) throughout this section.

Proposition B.7. If f0, f2 ∈ Fα, then

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≳ |I(f0 ∗ φt)− I(f2 ∗ φt)| · e−n dKL(f2 || f0).

Proposition B.8. We have dKL(f2 || f0) ≲ ϵ2αρ.

Proof. The proof is the same as the proof of Proposition B.2.

To bound the Fisher information separation |I(f2 ∗ φt) − I(f0 ∗ φt)|, a Taylor expansion reminiscent of the proof of
Theorem 3.1 will be employed after some simplification. Since ∂xp2(x, t) = −x

t p2(x, t) +
1
t

∫ 1

−1
µφt(x− µ)f2(µ) dµ, we

have

I(f2 ∗ φt) =

∫ ∞

−∞

(∂xp2(x, t))
2

p2(x, t)
dx

=

∫ ∞

−∞

x2

t2
p2(x, t) dx− 2

t2

∫ ∞

−∞

∫ 1

−1

xµφt(x− µ)f2(µ) dµ dx+
1

t2

∫ ∞

−∞

(∫ 1

−1
µφt(x− µ)f2(µ) dµ

)2
p2(x, t)

dx

=

∫ 1

−1

µ2 + t

t2
f2(µ) dµ− 2

t2

∫ 1

−1

µ2f2(µ) dµ+
1

t2

∫ ∞

−∞

(∫ 1

−1
µφt(x− µ)f2(µ) dµ

)2
p2(x, t)

dx

=
1

t
− 1

t2

∫ 1

−1

µ2f2(µ) dµ+
1

t2

∫ ∞

−∞

(∫ 1

−1
µφt(x− µ)f2(µ) dµ

)2
p2(x, t)

dx.

The same expression holds for I(f0 ∗ φt) with f0 and p0 in place of f2 and p2. Therefore,

I(f2 ∗ φt)− I(f0 ∗ φt) =
1

t2

∫ 1

−1

µ2(f0(µ)− f2(µ)) dµ+
1

t2

∫ ∞

−∞
Υ(p2(x, t), N2(x, t))−Υ(p0(x, t), N0(x, t)) dx,

where Υ is given by (5), N2(x, t) =
∫ 1

−1
µφt(x− µ)f2(µ) dµ, and N0(x, t) =

∫ 1

−1
µφt(x− µ)f0(µ) dµ. Taylor expansion

(Proposition 5.1) yields

I(f2 ∗ φt)− I(f0 ∗ φt) =
1

t2

∫ 1

−1

µ2(f0(µ)− f2(µ)) dµ+
1

t2

∫ ∞

−∞
Γp0(x,t),N0(x,t)(p2(x, t), N2(x, t)) dx

= −ϵ
α

t2

∫ 1

−1

µ2ψ

(
µ

ρ

)
dµ+

1

t2

∫ ∞

−∞
Γp0(x,t),N0(x,t)(p2(x, t), N2(x, t)) dx

= −ϵ
αρ3

t2

(∫ ∞

−∞
ν2ψ(ν) dν

)
+

1

t2

∫ ∞

−∞
Γp0(x,t),N0(x,t)(p2(x, t), N2(x, t)) dx, (34)

where 1
t2 |Γp0(x,t),N0(x,t)(p2(x, t), N2(x, t))| ≤ C (R1(x, t) +R2(x, t)) with

R1(x, t) =
1

t2
· N0(x, t)

2 ∨N2(x, t)
2

p0(x, t)2 ∧ p2(x, t)2
|p2(x, t)− p0(x, t)| , (35)

R2(x, t) =
1

t2
· |N0(x, t)| ∨ |N2(x, t)|

p0(x, t) ∧ p2(x, t)
|N2(x, t)−N0(x, t)|. (36)

The terms (35) and (36) are lower order terms as asserted by Lemmas B.9 and B.10.

Lemma B.9. Suppose c > 0. If t ≥ c, then there exists C depending only on c such that
∫∞
−∞ R1(x, t) dx ≤ Cϵαρ3

t3 where
R1 is given by (35).
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Lemma B.10. Suppose c > 0. If t ≥ c, then there exists C depending only on on c such that
∫∞
−∞ R2(x, t) dx ≲ Cϵαρ3

t5/2

where R2 is given by (36).

The proofs of Lemmas B.9 and B.10 are deferred to Appendix D.2. We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let C > 0 be a sufficiently large universal constant and let t ≥ C. Set ρ = 1
2 and ϵ = n− 1

2α

C . Since
ρ ≳ ϵ, it is straightforward to verify f2 ∈ Fα. Since f0 ∈ Fα also, it follows by Proposition B.7 that

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≳ |I(f0 ∗ φt)− I(f2 ∗ φt)|.

Here, we have used Proposition B.8 and ϵ2αρ ≲ 1
n to obtain ndKL(f2 || f0) ≲ 1. Therefore, it follows from (34) along with

Lemmas B.9 and B.10 that for some universal constants C ′, c′ > 0, we have

inf
Ît

sup
f∈Fα

E
(∣∣∣Ît − It

∣∣∣) ≥ ϵαρ3

t2

(
c′ −

(
C ′

t
+

C ′

t1/2

))
≳

1√
nt2

.

Here, we have used t ≥ C for C > 0 a sufficiently large universal constant. We have also used
∣∣∣∫∞

−∞ ψ(ν)ν2 dν
∣∣∣ ≳ 1. The

proof is complete.

C. Technical tools: upper bound
This section contains the proofs of Proposition A.1, Proposition A.6, and Lemma A.10, which give error bounds for the
plugged-in preliminary estimators. They deal respectively with the high noise regime, the low noise regime, and the very
high noise regime.

Proof of Proposition A.1. It is clear truncation only improves the estimation error, and so it is immediate that E(|p̂ε(x, t)−

p(x, t)|2) ≤ E(|p̂(x, t) − p(x, t)|2) and E
(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)

∣∣∣2) ≤ E
(
|∂xp̂(x, t)− ∂xp(x, t)|2

)
. Therefore, it

suffices to focus on p̂ and ∂xp̂. Note p̂(x, t) and ∂xp̂(x, t) are unbiased estimators for p(x, t) and ∂xp(x, t) respectively, so
it suffices to compute their variances to establish the desired results. By direct calculation,

Var(p̂(x, t)) =
1

n2

n∑
i=1

Var(φt(x− µi)) ≤
1

2πtn

∫ 1

−1

e−
(x−µ)2

t f(µ) dµ ≲
1

n
√
2πt

∫ 1

−1

1√
2πt

e−
(x−µ)2

t dµ

For |x| ≤ 1, we directly obtain the bound Var(p̂(x, t)) ≲ ε(x,t)

n
√
t

since e−
(x−µ)2

t ≤ e−
(x−µ)2

2t . Suppose |x| > 1. Then

1

n
√
2πt

∫ 1

−1

1√
2πt

e−
(x−µ)2

t dµ ≲
e−

(|x|−1)2

2t

n
√
t

∫ 1

−1

1√
2πt

e−
(x−µ)2

2t dµ ≍ e−
(|x|−1)2

2t ε(x, t)

n
√
t

,

which completes the proof for the claimed bound of Var(p̂(x, t)).

Next, we examine estimation of the derivative ∂xp(x, t). Observe

Var(∂xp̂(x, t)) =
1

n2

n∑
i=1

Var(φ′
t(x− µi))

=
1

n

∫ 1

−1

|x− µ|2

t2
· 1

2πt
e−

(x−µ)2

t f(µ)dµ

≲
1

nt3/2

∫ 1

−1

|x− µ|2

t
· 1√

t
e−

(x−µ)2

t dµ

≲
1

nt3/2

∫ 1

−1

1√
2πt

e−
(x−µ)2

2t dµ

≍ ε(x, t)

nt3/2
.
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Here, we have used the inequality y ≤ ey
2/2.

Proof of Proposition A.6. Recall that p̂ε and ∂̂xp
ε

given by (14) and (15) are obtained by truncating p̂ and ∂̂xp given
respectively by (12) and (13). Since the truncation only improves estimation error, it follows by Jensen’s inequality that

E
(
|p̂ε(x, t)− p(x, t)|2

)
≤ E

(
|p̂(x, t)− p(x, t)|2

)
≤
∫ 1

−1

|f̂(µ)− f(µ)|2φt(x− µ) dµ ≲ n−
2α

2α+1 ε(x, t),

as desired.

To prove the remaining claim, observe

E

(∣∣∣∂̂xpε(x, t)− ∂xp(x, t)
∣∣∣2)

≲ E

(∣∣∣∂̂xp(x, t)− ∂xp(x, t)
∣∣∣2)

≲ |f̂(−1)− f(−1)|2φt(x+ 1)2 + |f̂(−1)− f(−1)|2φt(x− 1)2 +

∫ 1

−1

|f̂ ′(µ)− f ′(µ)|2φt(x− µ) dµ

≲ n−
2α

2α+1
(
φt(x+ 1)2 + φt(x− 1)2

)
+ n−

2(α−1)
2α+1 ε(x, t),

where we have used Jensen’s inequality to obtain the penultimate line. The proof is complete.

Proof of Lemma A.10. Since
∣∣∣∫ 1

−1
µφt(x− µ)f(µ) dµ

∣∣∣ ≤ ε(x, t) and since truncation only improves the estimation error,
it follows

E

(∣∣∣∣q̂ε(x, t)− 1

t

∫ 1

−1

µφt(x− µ)f(µ) dµ

∣∣∣∣2
)

≤ E

∣∣∣∣∣ 1nt
n∑

i=1

µiφt(x− µi)−
1

t

∫ 1

−1

µφt(x− µ)f(µ) dµ

∣∣∣∣∣
2


= Var

(
1

nt

n∑
i=1

µiφt(x− µi)

)

≤ 1

nt2
E(µ2

1φt(x− µ1)
2)

≲
1

nt5/2

∫ 1

−1

1√
2πt

e−
|x−µ|2

t dµ

≲
ε(x, t)

nt5/2
,

as claimed.

D. Technical tools: lower bound
Appendix D.1 contains the deferred proofs of results stated in the main text as well as technical lemmas used in the proof of
Theorem 3.1. Likewise, the deferred material for the minimax lower bound in the very high noise regime (Theorem 3.2) is
contained in Appendix D.2.

D.1. High noise and low noise regimes

This section contains a useful auxiliary lemma stating some properties of f0(µ) = 1
21{|µ|≤1} and p0(x, t) := (f0 ∗ φt)(x).

Appendices D.1.1 and D.1.2 respectively contain the deferred proofs for bounding the remainder term in the Taylor expansion
of Proposition 5.2 and bounding the functional separation.
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Lemma D.1. Let f0(µ) = 1
21{|µ|≤1} and p0(x, t) = (f0 ∗ φt)(x). We have

p0(x, t) =
1

2
P {|N(x, t)| ≤ 1} ,

∂xp0(x, t) =
φt(x+ 1)− φt(x− 1)

2
,

∂xxp0(x, t) =
−x+1

t φt(x+ 1) + x−1
t φt(x− 1)

2
.

Proof. The definition directly yields p0(x, t) =
∫ 1

−1
f0(µ)φt(x−µ) dµ = 1

2P {|N(x, t)| ≤ 1}. The second claim is proved

through integration by parts, ∂xp0(x, t) = (f0 ∗φ′
t)(x) = f0(−1)φt(x+1)− f0(1)φt(x− 1)+

∫ 1

−1
f ′0(µ)φt(x−µ) dµ =

1
2 (φt(x+ 1)− φt(x− 1)). With the second claim in hand, direct differentiation yields the third claim.

D.1.1. PROOF OF PROPOSITION B.3

In this section, we prove Proposition B.3. From Proposition 5.2, we have

|Γp0(x,t),∂xp0(x,t)(p1(x, t), ∂xp1(x, t))| ≤ C(R1(x, t) +R2(x, t) +R3(x, t)) (37)

where

R1(x, t) =
|∂xp0(x, t)|2 ∨ |∂xp1(x, t)|2

|p0(x, t)|3 ∧ |p1(x, t)|3
|p1(x, t)− p0(x, t)|2, (38)

R2(x, t) =
1

|p0(x, t)| ∧ |p1(x, t)|
|∂xp1(x, t)− ∂xp0(x, t)|2, (39)

R3(x, t) =
|∂xp0(x, t)| ∨ |∂xp1(x, t)|
|p0(x, t)|2 ∧ |p1(x, t)|2

|p1(x, t)− p0(x, t)||∂xp1(x, t)− ∂xp0(x, t)|. (40)

In order to prove Proposition B.3, it suffices to furnish suitable bounds on R1,R2, and R3. The following preliminary
result is a crucial ingredient.

Lemma D.2. We have

|p1(x, t)− p0(x, t)|2 ≲ ϵ2αε(x, t)2,

|∂xp1(x, t)− ∂xp0(x, t)|2 ≲ ϵ2α
(
φt(x+ 1)2 + φt(x− 1)2 +

ε(x, t)2

ρ2

)
.

Proof. By direct examination and that K is bounded by a universal constant, we have

|p1(x, t)− p0(x, t)|2 = |(g ∗ φt)(x)|2

≲ ϵ2α
∣∣∣∣∫ 1

−1

K

(
µ

ρ

)
φt(x− µ) dµ

∣∣∣∣2 + ϵ2α
∣∣∣∣∫ 1

−1

K

(
µ− 1

ρ

)
φt(x− µ) dµ

∣∣∣∣2
+ ϵ2α

∣∣∣∣∫ 1

−1

K

(
µ+ 1

ρ

)
φt(x− µ) dµ

∣∣∣∣2
≲ ε2αε(x, t)2.
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To prove the second claim, observe that we can apply integration by parts to obtain

|∂xp1(x, t)− ∂xp0(x, t)|2 = |(g ∗ φt)
′(x)|2

=

∣∣∣∣g(−1)φt(x+ 1)− g(1)φt(x− 1) +

∫ 1

−1

g′(µ)φt(x− µ) dµ

∣∣∣∣2
≲ |g(−1)|2φt(x+ 1)2 + |g(1)|2φt(x− 1)2 +

∣∣∣∣∫ 1

−1

g′(µ)φt(x− µ) dµ

∣∣∣∣2
≲ ϵ2α

(
φt(x+ 1)2 + φt(x− 1)2 +

ε(x, t)2

ρ2

)

Here, we have used that K ′ is bounded by a universal constant. The proof is complete.

We can now bound the three terms R1,R2, and R3.

Lemma D.3. If α ≥ 1 and t < 1, then
∫∞
−∞ R1(x, t) dx ≲ ϵ2α√

t
where R1 is given by (38).

Proof. Let us examine the cases |x| ≤ 1 and |x| > 1 separately. Suppose |x| ≤ 1. Lemmas A.3 and D.2 then yield

R1(x, t) ≲
φt(x+ 1)2 + φt(x− 1)2 + ε(x, t)

ε(x, t)3
· ϵ2αε(x, t)2 ≲

ϵ2α√
t
(φt(x+ 1) + φt(x− 1)) + ϵ2α.

Here, we have used ε(x, t) ≍ 1 for |x| < 1 since t < 1, as implied by Lemma A.2. We have also used φt(x − 1)2 ≲
1√
t
φt(x− 1) and φt(x+ 1)2 ≲ 1√

t
φt(x+ 1). Now suppose |x| > 1. Then

R1(x, t) ≲ ϵ2α · φt(x+ 1)2 + φt(x− 1)2

ε(x, t)
+
ϵ2α√
t
e−

(|x|−1)2

2t ≲ ϵ2α
(
1 ∨ |x| − 1√

t

)
1

t
e−

(|x|−1)2

2t +
ϵ2α√
t
e−

(|x|−1)2

2t .

Here, we have used ε(x, t) ≍
(
1 ∧

√
t

|x|−1

)
e−

(|x|−1)2

2t as implied by Lemma A.2. We have also used φt(x− 1)2 + φt(x+

1)2 ≍ 1
t e

− (|x|−1)2

t .

Putting together the bounds, we obtain
∫∞
−∞ R1(x, t) dx ≲ ϵ2α√

t
+ ϵ2α√

t
+ ϵ2α ≍ ϵ2α√

t
, as desired.

Lemma D.4. If t < 1, then
∫∞
−∞ R2(x, t) dx ≲ ϵ2α√

t
+ ϵ2α

ρ2 , where R2 is given by (39).

Proof. As in the proof of Lemma D.3, we analyze the cases |x| ≤ 1 and |x| > 1 separately. Suppose |x| ≤ 1. Then since
p0(x, t) ∧ p1(x, t) ≍ ε(x, t) ≍ 1, it follows from Lemma D.2 that

R2(x, t) ≍ |∂xp1(x, t)− ∂xp0(x, t)|2 ≲
ϵ2α√
t
(φt(x+ 1) + φt(x− 1)) +

ϵ2α

ρ2
.

Here, we have used φt(x+ 1)2 ≲ 1√
t
φt(x+ 1) and φt(x− 1)2 ≲ 1√

t
φt(x− 1).

Now suppose |x| > 1. Then ε(x, t) ≍
(
1 ∧

√
t

|x|−1

)
e−

(|x|−1)2

2t as implied by Lemma A.2. Therefore,

R2(x, t) ≲ ϵ2α · φt(x+ 1)2 + φt(x− 1)2

ε(x, t)
+
ϵ2α

ρ2
ε(x, t) ≲ ϵ2α

(
1 ∨ |x| − 1√

t

)
1

t
e−

(|x|−1)2

2t +
ϵ2α

ρ2
p0(x, t) dx.

Putting together our bounds, we obtain
∫∞
−∞ R2(x, t) dx ≲ ϵ2α√

t
+ ϵ2α

ρ2 , as claimed.

Lemma D.5. If α ≥ 1 and t < 1, then
∫∞
−∞ R3(x, t) dx ≲ ϵ2α√

t
+ ϵ2α

ρ , where R3 is given by (40).
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Proof. As in the proofs of Lemmas D.3 and D.4, we separately analyze the cases |x| ≤ 1 and |x| > 1. Suppose |x| ≤ 1.
Then p0(x, t) ≍ p1(x, t) ≍ ε(x, t) ≍ 1 as implied by Lemma A.2, and so Lemmas A.3 and D.2 yield

R3(x, t) ≲ ϵ2α (φt(x+ 1) + φt(x− 1) + 1)

(
φt(x+ 1) + φt(x− 1) +

1

ρ

)
≲

(
ϵ2α√
t
+
ϵ2α

ρ
+ ϵ2α

)
(φt(x+ 1) + φt(x− 1)) +

ϵ2α

ρ
.

Now suppose |x| > 1. Then Lemma A.3 yields

R3(x, t) ≲ ϵ2α
φt(x+ 1) + φt(x− 1) + ε(x, t) 1√

t
e−

(|x|−1)2

2t

ε(x, t)2
· ε(x, t) ·

(
φt(x− 1) + φt(x+ 1) +

ε(x, t)

ρ

)
≍ ϵ2α

φt(x− 1)2 + φt(x+ 1)2

ε(x, t)
+ ϵ2α

(
1√
t
e−

(|x|−1)2

2t +
1

ρ

)
(φt(x− 1) + φt(x+ 1))

+ ϵ2α
ε(x, t)

ρ
· 1√

t
e−

(|x|−1)2

2t

≲ ϵ2α
(
1 ∨ |x| − 1√

t

)
1

t
e−

(|x|−1)2

2t +

(
ϵ2α√
t
+
ϵ2α

ρ

)
(φt(x− 1) + φt(x+ 1)) +

ϵ2α

ρ
· 1√

t
e−

(|x|−1)2

2t .

Here, we have used ε(x, t) ≍
(
1 ∧

√
t

|x|−1

)
e−

(|x|−1)2

2t as implied by Lemma A.2. The final expression follows from the fact

ε(x, t) ≲ 1. Putting together our bounds yields
∫∞
−∞ R3(x, t) dx ≲ ϵ2α√

t
+ ϵ2α

ρ , as claimed. Here, we have used ρ ≲ 1 to

obtain ϵ2α

ρ ≳ ϵ2α.

With these bounds in hand, we are in position to prove Proposition B.3.

Proof of Proposition B.3. By Proposition 5.2 along with Lemmas D.3, D.4, and D.5 we have∣∣∣∣∫ ∞

−∞
Γp0(x,t),∂xp0(x,t)(p1(x, t), ∂xp1(x, t)) dx

∣∣∣∣
≲

(∫ ∞

−∞
R1(x, t) dx

)
+

(∫ ∞

−∞
R2(x, t) dx

)
+

(∫ ∞

−∞
R3(x, t) dx

)
≲
ϵ2α√
t
+
ϵ2α

ρ2
+
ϵ2α

ρ

≍ ϵ2α√
t
+
ϵ2α

ρ2
,

since ρ ≲ 1, yielding the claimed result.

D.1.2. PROOFS OF LEMMA B.4 AND LEMMA B.5

This section contains the deferred proofs of Lemmas B.4 and B.5, which are used in Theorem B.6 to establish a separation
in the Fisher informations.

Proof of Lemma B.4. Note since g is an even function, the mapping x 7→ g(x, t) is an even mapping. Therefore, we have
−
∫∞
−∞

(∂xp0(x,t))
2

p0(x,t)2
(p1(x, t)− p0(x, t)) dx = −2

∫∞
0

(∂xp0(x,t))
2

p0(x,t)2
g(x, t) dx. Then, from Lemma D.1, it follows

− 2

∫ ∞

0

(∂xp0(x, t))
2

p0(x, t)2
g(x, t) dx

= −2

∫ ∞

0

1
4 (φt(x+ 1)− φt(x− 1))2

p0(x, t)2
g(x, t) dx
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= −1

2

∫ ∞

0

φt(x− 1)2 + φt(x+ 1)2 − 2φt(x− 1)φt(x+ 1)

p0(x, t)
· g(x, t)
p0(x, t)

dx

= −1

2

∫ ∞

0

φt(x− 1)2

p0(x, t)
· g(x, t)
p0(x, t)

dx− 1

2

∫ ∞

0

φt(x+ 1)2

p0(x, t)
· g(x, t)
p0(x, t)

dx+

∫ ∞

0

φt(x− 1)φt(x+ 1)

p0(x, t)
· g(x, t)
p0(x, t)

dx.

Since K is bounded, it is clear |g(x, t)| ≲ ϵαp0(x, t). Then by Lemma A.2 we have∣∣∣∣−1

2

∫ ∞

0

φt(x+ 1)2

p0(x, t)
· g(x, t)
p0(x, t)

dx

∣∣∣∣ ≲ ϵα
∫ ∞

0

1

2πt
e−

(x+1)2

t

(
1{|x|≤1} +

(
1 ∨ x− 1√

t

)
e−

(x−1)2

2t 1{|x|>1}

)
dx ≲ ϵαe−

c
t

for some universal constant c > 0. Here, we have used t < 1. The proof is complete.

Proof of Lemma B.5. Let us abuse notation and write g(x, t) := (g ∗ φt)(x) as in Lemma B.4. Integration by parts gives
∂xg(x, t) = g(−1)φt(x + 1) − g(1)φt(x − 1) +

∫ 1

−1
g′(µ)φt(x − µ) dµ. Since x 7→ ∂xg(x, t) and x 7→ ∂xp0(x, t) are

both odd mappings, it follows their product is an even mapping, and so Lemma D.1 gives

2

∫ ∞

−∞

∂xp0(x, t)

p0(x, t)
(∂xp1(x, t)− ∂xp0(x, t)) dx

= 4

∫ ∞

0

∂xp0(x, t)

p0(x, t)
∂xg(x, t) dx

= 2

∫ ∞

0

φt(x+ 1)− φt(x− 1)

p0(x, t)

(
g(−1)φt(x+ 1)− g(1)φt(x− 1) +

∫ 1

−1

g′(µ)φt(x− µ) dµ

)
dx

= 2g(1)

∫ ∞

0

φt(x− 1)2

p0(x, t)
dx− 2

∫ ∞

0

φt(x− 1)

p0(x, t)

(∫ 1

−1

g′(µ)φt(x− µ) dµ

)
dx+O

(
ϵαe−

c
t

)
.

Here, we have used t < 1 and the reasoning similar to that employed in the proof of Lemma B.4. Since K ′ is bounded, we
have ∣∣∣∣2 ∫ ∞

0

φt(x− 1)

p0(x, t)

(∫ 1

−1

g′(µ)φt(x− µ) dµ

)
dx

∣∣∣∣ ≲ ϵα

ρ

∫ ∞

0

φt(x− 1)

p0(x, t)
P {|N(x, t)| ≤ 1} dx

≍ ϵα

ρ

∫ ∞

0

φt(x− 1)

p0(x, t)
p0(x, t) dx

≲
ϵα

ρ
,

completing the proof.

D.2. Very high noise regime

This section contains the proofs of Lemmas B.9 and B.10, which are used to show the remainder term in the Taylor expansion
(34) is negligible.

Proof of Lemma B.9. Since f2(µ) ≍ f0(µ) ≍ 1 for |µ| ≤ 1 because f0, f2 ∈ Fα, it follows by Jensen’s inequality

|N0(x, t)|2∨|N2(x, t)|2 ≲
(∫ 1

−1
|µ|φt(x− µ) dµ

)2
. Likewise, we have p2(x, t)∧p0(x, t) ≍

∫ 1

−1
φt(x−µ) dµ. Therefore,

|N0(x,t)|2∨|N1(x,t)|2
p0(x,t)2∧p0(x,t)2

≲ 1. Therefore, it follows from the power series expansion φt(x− µ) =
∑∞

k=0(−1)k
φ

(k)
t (x)
k! µk that∫ ∞

−∞
R1(x, t) dx ≲

1

t2

∫ ∞

−∞
|p2(x, t)− p0(x, t)| dx

=
ϵα

t2

∫ ∞

−∞

∣∣∣∣∫ 1

−1

ψ

(
µ

ρ

)
φt(x− µ) dµ

∣∣∣∣ dx
≤ ϵα

t2

∞∑
k=0

1

k!

∣∣∣∣∫ 1

−1

ψ

(
µ

ρ

)
µk dµ

∣∣∣∣ ∫ ∞

−∞
|φ(k)

t (x)| dx
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=
ϵα

t2

∞∑
k=2

1

k!

∣∣∣∣∫ 1

−1

ψ

(
µ

ρ

)
µk dµ

∣∣∣∣ ∫ ∞

−∞
|φ(k)

t (x)| dx.

Here, we have used that ρ < 1, ψ is supported on [−1, 1],
∫∞
−∞ ψ(ν) dν = 0, and

∫∞
−∞ ψ(ν)ν dν = 0 since ψ is even.

Therefore, it follows from Lemma D.6∫ ∞

−∞
R1(x, t) dx ≲

ϵα

t2

∞∑
k=2

ρk+1

k! · tk/2

∣∣∣∣∫ ∞

−∞
ψ(ν)νk dν

∣∣∣∣ ∫ ∞

−∞

∣∣∣∣Hek ( x√
t

)∣∣∣∣φt(x) dx

≲
ϵα

t2

∞∑
k=2

ρk+1

k! · tk/2
(√

2π · k!
)1/2

≤ Cϵαρ3

t3
,

for some C > 0 depending only on c. Here, we have used ρ < 1 and t ≥ c to obtain the final line.

Proof of Lemma B.10. The proof is very similar to the proof of Lemma B.9. From that proof, we have |N0(x,t)|∨|N1(x,t)|
p0(x,t)∧p0(x,t)

≲ 1.

Using the power series expansion φt(x− µ) =
∑∞

k=0(−1)k
φ

(k)
t (x)
k! , it follows∫ ∞

−∞
R2(x, t) dx ≲

1

t2

∫ ∞

−∞
|N2(x, t)−N0(x, t)| dx

=
ϵα

t2

∞∑
k=0

1

k!

∣∣∣∣∫ 1

−1

ψ

(
µ

ρ

)
µk+1

∣∣∣∣ ∫ ∞

−∞
|φ(k)

t (x)| dx

≲ 0 +
ϵα

t2

∞∑
k=1

ρk+2

k! · tk/2

∣∣∣∣∫ 1

−1

ψ(ν)νk+1 dν

∣∣∣∣ ∫ ∞

−∞

∣∣∣∣Hek ( x√
t

)∣∣∣∣φt(x) dx

≲
ϵα

t2

∞∑
k=1

ρk+2

k! · tk/2
(√

2π · k!
)1/2

≲
Cϵαρ3

t5/2
,

for some C > 0 depending only on c. As in the proof of Lemma B.9, we have used ρ < 1 and t ≥ c to obtain the final
line.

Lemma D.6. Let φt(x) =
1√
2πt

e−
x2

2t denote the probability density function of N(0, t). If k ≥ 1 is an integer, then

φ
(k)
t (x) =

(−1)k

tk/2
·Hek

(
x√
t

)
φt(x),

where Hek is the k-th (probabilist’s) Hermite polynomial.

Proof. Let φ(x) := φ1(x) denote the density of the standard Gaussian distribution. Recall that Hek is given by φ(k)(x) =

(−1)kHek(x)φ(x). Therefore, φ(k)
t (x) = dk

dxk
1√
t
φ
(

x√
t

)
= 1√

t
· 1
tk/2φ

(k)
(

x√
t

)
= (−1)k

tk/2 Hek

(
x√
t

)
· 1√

t
φ
(

x√
t

)
=

(−1)k

tk/2 Hek

(
x√
t

)
φt(x) as claimed.

E. Auxiliary results
This section contains some useful assertions as well as deferred proofs of technical results.

Proof of Lemma A.2. Since cd ≤ f ≤ Cd on its support, it follows

p(x, t) =

∫ 1

−1

φt(x− µ) f(µ) dµ ≍ P {|N(x, t)| ≤ 1} .
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If |x| ≤ 1, then clearly P {|N(x, t)| ≤ 1} ≍ 1, and so the claim is proved for this case. The second claim is Lemma 132

from (Dou et al., 2024).

Proof of Lemma A.3. Since α ≥ 1, it follows f is differentiable on (−1, 1) and |f ′(µ)| ≤ C for some universal constant
C > 0. Therefore, integration by parts yields

|∂xp(x, t)|2 =

∣∣∣∣f(−1)φt(x+ 1)− f(1)φt(x− 1) +

∫ 1

−1

f ′(µ)φt(x− µ) dµ

∣∣∣∣2
≲ φt(x+ 1)2 + φt(x− 1)2 +

∣∣∣∣∫ 1

−1

f ′(µ)φt(x− µ) dµ

∣∣∣∣2 .
Suppose |x| ≤ 1. Then let us apply Jensen’s inequality by treating φt(x− µ) as a density in µ to obtain∣∣∣∣∫ 1

−1

f ′(µ)φt(x− µ) dµ

∣∣∣∣2 =

∣∣∣∣∫ ∞

−∞
f ′(µ)1{|µ|≤1}φt(x− µ) dµ

∣∣∣∣2
≤
∫ ∞

−∞
|f ′(µ)|21{|µ|≤1}φt(x− µ) dµ

≲ ε(x, t),

which yields the desired result in this case. Now suppose |x| > 1. Let us apply Jensen’s inequality in a different way by
treating 1{|µ|≤1} as a finite measure in µ to obtain

∣∣∣∣∫ 1

−1

f ′(µ)φt(x− µ) dµ

∣∣∣∣2 ≤
∫ 1

−1

|f ′(µ)|2φt(x− µ)2 dµ ≲
1√
t

∫ 1

−1

1√
t
e−

(x−µ)2

t dµ ≲
e−

(|x|−1)2

2t

√
t

ε(x, t),

as claimed. The proof is complete.

Lemma E.1. With probability one,
∣∣∣∂̂xpε(x, t)∣∣∣2 ≲ φt(x+ 1)2 + φt(x− 1)2 + ε(x, t) where ∂̂xp

ε
is given by (11).

Proof. The proof is immediate by the definition of ∂̂xp
ε
.

Lemma E.2. If ρ ∈ (0, 1), then function g is even and
∫∞
−∞ g(µ) dµ = 0.

Proof. Since K is symmetric (i.e. even), it immediately follows g(µ) = g(−µ) for all µ ∈ R. To show the next claim, note
that direct calculation yields∫ ∞

−∞
g(µ) dµ = −ϵα

∫ ∞

−∞
K

(
µ

ρ

)
1{|µ|≤1} dµ+ ϵα

∫ ∞

−∞
K

(
µ− 1

ρ

)
1{|µ|≤1} dµ

+ ϵα
∫ ∞

−∞
K

(
µ+ 1

ρ

)
1{|µ|≤1} dµ

= −ϵα
∫ ρ

−ρ

K

(
µ

ρ

)
dµ+ ϵα

∫ 1

1−ρ

K

(
µ− 1

ρ

)
, dµ

+ ϵα
∫ −1+ρ

−1

K

(
µ+ 1

ρ

)
dµ

= −ϵαρ
∫ 1

−1

K(ν) dν + ϵαρ

∫ 0

−1

K (ν) dν + ϵαρ

∫ 1

0

K(ν) dν

= 0,

as claimed.
2Note the statement of Lemma 13 has a typo, but its proof yields the expression stated in Lemma A.2.
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F. Proof of Theorem 4.1
Proof of Theorem 4.1. Consider µ ∼ f and Xt := µ+

√
tZ with Z ∼ N(0, 1) drawn independently of µ. Let X̃t :=

Xt√
t
,

that is to say, we have just standardized for convenience to obtain X̃t = 1√
t
µ + Z. Note that the density of µ̃ is

f̃ given by f̃(u) :=
√
tf(

√
tu). It follows directly that tI(f ∗ φt) = I(f̃ ∗ φ1) = 1 − 1

tE
(
(µ− E(µ | X̃t))

2
)

,
where the latter equality is Brown’s identity (Brown, 1971). Next, the I-MMSE identity (Guo et al., 2005) asserts

d
d(1/t)I(X̃t;µ) = 1

2E((µ − E(µ | X̃t))
2). Since we have the identity I(Xt;µ) = I(X̃t;µ) for all t > 0, it fol-

lows d
dtI(Xt;µ) =

(
− 1

t2

)
d

d(1/t)I(X̃t;µ) = − 1
2t2E((µ − E(µ | X̃t))

2). Therefore, we have It = I(f ∗ φt) =

1
t

(
1− 1

tE((µ− E(µ | X̃t))
2)
)
= 1

t

(
1 + 2t d

dtI(Xt;µ)
)

as claimed.

G. Notation
For a, b ∈ R the notation a ≲ b denotes the existence of a universal constant c > 0 such that a ≤ cb. The notation
a ≳ b is used to denote b ≲ a. Additionally a ≍ b denotes a ≲ b and a ≳ b. The symbol := is frequently used
when defining a quantity or object. Furthermore, we frequently use a ∨ b := max(a, b) and a ∧ b := min(a, b). We
generically use the notation 1A to denote the indicator function for an event A. For two probability measures P and Q on a
measurable space (X ,A), the total variation distance is defined as dTV(P,Q) := supA∈A |P (A)−Q(A)|. The Kullback-
Leibler divergence between P and Q is denoted as dKL(P ||Q) =

∫
log (dP/dQ) dP if P is absolutely continuous with

respect to Q and dKL(P ||Q) = ∞ otherwise. For a probability measure P with a density p, the entropy is denoted
h(P ) = −

∫
p(x) log p(x) dx. We will frequently abuse notation and use the same symbols with densities or random

variables in place of measures. For random variables U ∼ PU and V ∼ PV with joint distribution (U, V ) ∼ PUV , the
mutual information is I(U ;V ) = dKL(PUV ||PU ⊗ PV ).

H. Related work on smoothed Fisher information and a finite-sample analysis of location
estimation

The smoothed Fisher information has also been recently shown to play a critical role in a finite-sample analysis of the
fundamental statistical task of mean estimation (Gupta et al., 2022; 2023a;b). Gupta et al. (2023b) make the following,
insightful observation. Consider the problem of estimating the mean θ of a density f with variance σ2, given n i.i.d.
samples X1, ..., Xn. Sample mean is an obvious choice of estimator, and by the central limit theorem, it has the asymptotic
distribution

√
n(X̄ − θ) =⇒ N(0, σ2). However, in some cases of f , the mean θ might also coincide with the location,

and some location estimators might outperform the sample mean. For example, consider the Laplace distribution centered
at θ with variance 2, which has density f(x) ∝ e−|x−θ|. Note θ is both the mean and the location (which is also the
median in this case). It turns out that the sample median, expressed as X(n/2) in order-statistic notation, beats X̄ since√
n(X(n/2) − θ) =⇒ N(0, 1) whereas

√
n(X̄ − θ) =⇒ N(0, 2). The asymptotic variance of sample median is half that

of sample mean; in fact, sample median is the maximum likelihood estimator and is thus optimal for estimation of θ in this
example.

More generally, better asymptotic variance than σ2 can be achieved in the location estimation problem. The location
estimation problem is the problem of estimating the ground truth location parameter θ∗ in the parametric family {f(x−
θ)}θ∈R, where f is some known density. It is classical (Vaart, 1998) that the maximum likelihood estimator is asymptotically
normal, centered around θ∗, and with variance given by the reciprocal of the Fisher information of f . This variance can
be substantially smaller than σ2. However, f needs to be known up to translation. Gupta et al. (2023b) ask the intriguing
question of whether it is possible, in the case of an unknown density f that is symmetric about its mean and, whether it is
also possible to attain a Fisher-information like speedup in finite-samples.

Gupta et al. (2023b) construct an estimator θ̂ which, with probability at least 1− δ and with n ≳ log (1/δ) samples, achieves

|θ̂ − θ| ≤ (1 + η)
√

2 log(2/δ)
nI(f∗φt)

for t ≍ σ2 and η = (log(1/δ)/n)1/13. Specifically, their bound involves the smoothed Fisher

information of f and asserts a speedup since 1
I(f∗φt)

≤ σ2 + t. Their results build upon earlier work (Gupta et al., 2022;
2023b) which show that the smoothed Fisher information is a fundamental quantity in a finite-sample analysis of the location
estimation problem (where f is assumed known up to translation).

The work of Gupta et al. (2023b) gives a point estimator which enjoys faster convergence rates. The natural problem to
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consider next is hypothesis testing, or equivalently, construction of confidence intervals. When f is not known, then the error
bound of µ̂ is not computable since I(f ∗ φt) is itself not known. Consequently, it is desirable to estimate the smoothed
Fisher information I(f ∗ φt) to address these subsequent problems.
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