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ABSTRACT

The progress in reinforcement learning algorithm development is at one of its
highest points starting from the initial study that enabled sequential decision mak-
ing from high-dimensional observations. Currently, deep reinforcement learning
research has had quite recent breakthroughs from learning without the presence
of rewards to learning functioning policies without even knowing the rules of the
game. In our paper we focus on the underlying premises that are actively used in
deep reinforcement learning algorithm development. We theoretically demonstrate
that the performance profiles of the algorithms developed for the data-abundant
regime do not transfer to the data-limited regime monotonically. We conduct large-
scale experiments in the Arcade Learning Environment and our results demonstrate
that the baseline algorithms perform significantly better in the data-limited regime
compared to the set of algorithms that were initially designed and compared in the
data-abundant regime.

1 INTRODUCTION

Reinforcement learning research achieved high acceleration upon the proposal of the initial study on
approximating the state-action value function via deep neural networks (Mnih et al., 2015). Following
this initial study several different highly successful deep reinforcement learning algorithms have
been proposed (Hasselt et al., 2016b; Wang et al., 2016; Hessel et al., 2018; 2021) from focusing
on different architectural ideas to employing estimators targeting overestimation, all of which were
designed and tested in the high-data regime (i.e. two hundred million frame training).

An alternative recent line of research with an extensive amount of publications focused on pushing
the performance bounds of deep reinforcement learning policies in the low-data regime (Yarats
et al., 2021; Ye et al., 2021; Kaiser et al., 2020; van Hasselt et al., 2019; Kielak, 2019) (i.e. with
one hundred thousand environment interaction training). Several different unique ideas in current
reinforcement learning research, from model-based reinforcement learning to increasing sample
efficiency with observation regularization, gained acceleration in several research directions based on
policy performance comparisons demonstrated in the Arcade Learning Environment 100K benchmark.
In this paper, we demonstrate that there is a significant overlooked underlying premise driving this line
of research without being explicitly discussed: that the performance profiles of deep reinforcement
learning algorithms have a monotonic relationship with different sample-complexity regions. This
implicit assumption, that is commonly shared amongst a large collection of low-data regime studies,
carries a significant importance due to the fact that these studies shape future research directions with
incorrect reasoning while influencing the overall research efforts put in for particular research ideas
for several years following. Thus, in our paper we target these underlying premises and aim to answer
the following questions:

• How can we theoretically explain the relationship between asymptotic sample complexity
versus the low-data regime sample complexity in deep reinforcement learning?

• How would the performance profiles of deep reinforcement learning algorithms designed
for the high-data regime transform to the low-data regime?

• Can we expect the performance rank of algorithms to hold with variations on the number of
samples used in policy training?
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Hence, to be able to answer the questions raised above in our paper we focus on sample complexity
in deep reinforcement learning and make the following contributions:

• We provide theoretical foundation on the non-transferability of the performance profiles of
deep reinforcement learning algorithms designed for the high-data regime to the low-data
regime.

• We theoretically demonstrate that the performance profile has a non-monotonic relationship
with the asymptotic sample complexity and the low-data sample complexity region. Fur-
thermore, regarding the central focus of the large scale implicit assumption instances, we
prove that the sample complexity of the algorithm family that learns the state-action value
distribution is higher than the sample complexity of baseline deep Q-network algorithms.

• We conduct large scale extensive experiments for a variety of deep reinforcement learning
baseline algorithms in both the low-data regime and the high-data regime Arcade Learning
Environment benchmark.

• We highlight that recent algorithms proposed and evaluated in the Arcade Learning En-
vironment 100K benchmark are significantly affected by the implicit assumption on the
relationship between performance profiles and sample complexity.

2 BACKGROUND AND PRELIMINARIES

The reinforcement learning problem is formalized as a Markov Decision Process (MDP) represented
as a tuple 〈S,A,P,R, γ, ρ0〉 where S represents the state space, A represents the set of actions,
P : S ×A→ ∆(S) represents the transition probability kernel that maps a state and an action pair
to a distribution on states,R : S ×A→ R represents the reward function, and γ ∈ (0, 1] represents
the discount factor. The aim in reinforcement learning is to learn an optimal policy π(s, a) that
outputs the probability of taking action a in state s, π : S × A → R that will maximize expected
cumulative discounted rewards R = Eat∼π(st,·),st+1∼P(·|st,at)

∑
t γ

tR(st, at, st+1). This objective
is achieved by constructing a state-action value function that learns for each state-action pair the
expected cumulative discounted rewards that will be obtained if action a ∈ A is executed in state
s ∈ S.

Q(st, at) = R(st, at, st+1) + γ
∑
st

P(st+1|st, at)V(st+1).

In settings where the state space and/or action space is large enough that the state-action value
function Q(s, a) cannot be held in a tabular form, a function approximator is used. Thus, for deep
reinforcement learning the Q-function is approximated via deep neural networks.

θt+1 = θt + α(R(st, at, st+1) + γQ(st+1, arg max
a

Q(st+1, a; θt); θt)−Q(st, at; θt))∇θtQ(st, at; θt).

Dueling Architecture: At the end of convolutional layers for a given deep Q-Network, the dueling
architecture outputs two streams of fully connected layers for both estimating the state values V(s)
and the advantage A(s, a) for each action in a given state s, A(s, a) = Q(s, a)−maxaQ(s, a). In
particular, the last layer of the dueling architecture contains the forward mapping

Q(s, a; θ, α, β) = V(s; θ, β) +
(
A(s, a; θ, α)−max

a′∈A
A(s, a′; θ, α)

)
(1)

where θ represents the parameters of the convolutional layers and α and β represent the parameters
of the fully connected layers outputting the advantage and state value estimates respectively.

Learning the State-Action Value Distribution: The initial algorithm proposed to learn the state-
action value distribution is C51. The projected Bellman update for the ith atom is computed as

(ΦT Zθ(st, at))i =

N−1∑
j

[
1−
|[T zj ]vmax

vmin
− zi|

∆z

]1
0
τj(st+1,max

a∈A
EZθ(st+1, a)) (2)

where Zθ(st, at) is the value distribution, zi = vmin + i∆z : 0 ≤ i < N represents the set of atoms
in categorical learning, and the atom probabilities are learnt as a parametric model

τi(st,max
a∈A

EZθ(st, a)) =
eθi(st,at)∑
j e
θj(st,at)

, ∆z :=
vmax − vmin

N − 1
(3)
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Following this baseline algorithm the QRDQN algorithm is proposed to learn the quantile projection
of the state-action value distribution

T Z(st, at) = R(st, at, st+1) + γZ(st+1, arg max
a∈A

Ez∼Z(st+1,at+1)[z]) (4)

with st+1 ∼ P(·|st, at) where Z ∈ Z represents the quantile distribution of an arbitrary value
function. Following this study the IQN algorithm is proposed (i.e. implicit quantile networks) to learn
the full quantile function instead of learning a discrete set of quantiles as in the QRDQN algorithm.
The IQN algorithm objective is to minimize the loss function

L =
1

K

K∑
i=1

K′∑
j=1

ρδ(R(st, at, st+1) + γZδj ′(st+1, arg max
a∈A

Qβ(st, at))−Zδi(st, at)) (5)

where ρδ represents the Huber quantile regression loss, and Qβ =
∫ 1

0
F−1Z (δ)dβ(δ). Note that

Zδ = F−1Z (δ) is the quantile function of the random variable Z at δ ∈ [0, 1].

3 LOW-DATA REGIME VERSUS ASYMPTOTIC PERFORMANCE

The high-level message of our empirical results is that comparing the asymptotic performance of
two reinforcement learning algorithms does not necessarily give useful information on their relative
performance in the low-data regime. In this section we provide mathematical motivation for this claim
in the setting of optimizing non-stationary policies (i.e. rewards and transitions can vary with each
step in an episode) in undiscounted, finite-horizon MDPs with linear function approximation. This is
a setting that has seen recent progress in provable regret bounds with function approximation (Zanette
et al., 2020). In particular, a finite horizon MDP is represented as a tuple 〈S,A,P,R,H〉 where S is
the set of states, and A represents the set of actions. For each timestep t ∈ [H] = {1, . . . ,H}, state s,
and action a the transition probability kernel Pt(st+1|st, at) gives the probability distribution over
the next state, and the rewardRt(st, at, st+1) gives the immediate rewards. A non-stationary policy
π = (π1, . . . , πH) induces a state-action value function given by

Qπt (st, at) = Rt(st, at, st+1) + Est∼Pt(st+1|st,at),at∼π

[ H∑
h=t+1

Rt(sh, πh(sh), sh+1)

∣∣∣∣st, at
]

(6)

where we let π(s) be the action taken by the policy π in state s, and the corresponding value function
Vπt (st) = Qt(st, π(st)). The optimal non-stationary policy π∗ has value function V∗t (st) = Vπ∗t (st)
satisfying V∗t (st) = supπ Vπt (st). The objective is to learn a sequence of non-stationary policies πk
for k ∈ {1, . . . ,K} while interacting with an unknown MDP in order to minimize the regret, which
is measured asymptotically over K episodes of lengthH

REGRET(K) =

K∑
k=1

(
V∗1 (sk1)− Vπ

k

1 (sk1)
)

(7)

where sk1 ∈ S is the starting state of the k-th episode. In words, regret sums up the gap between
the expected rewards obtained by the sequence of learned policies πk and those obtained by π∗
when learning for K episodes. In the linear function approximation setting there is a feature map
φt : S ×A→ Rdt for each t ∈ [H] that sends a state-action pair (s, a) to the dt-dimensional vector
φt(s, a). Then, the state-action value function Qt(st, at) is parameterized by a vector θt ∈ Rdt so
that Qt(θt)(st, at) = φt(s, a)>θt. Recent theoretical work in this setting gives an algorithm along
with a lower bound that matches the regret achieved by the algorithm up to logarithmic factors.
Theorem 3.1 (Zanette et al. (2020)). Under appropriate normalization assumptions there is an
algorithm that learns a sequence of policies πk achieving regret

REGRET(K) = Õ

( H∑
t=1

dt
√
K +

H∑
t=1

√
dtIK

)
, (8)

where I is the intrinsic Bellman error. Furthermore, this regret bound is optimal for this setting up to
logarithmic factors in dt,K andH whenever K = Ω((

∑H
t=1 dt)

2), in the sense that for any level of
intrinsic Bellman error I and sequence of feature dimensions {dt}Ht=1, there exists a class of MDPs
C(I, {dt}Ht=1) where any algorithm achieves at least as much regret on at least one MDP in the class.
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The class of MDPs C(I, {dt}Ht=1) constructed in Theorem 3.1 additionally satisfies the following
properties. First, every MDP in ∪I,{dt}Ht=1

C(I, {dt}Ht=1) has the same transitions (up to renaming of
states and actions). Second, for each fixed value of the intrinsic Bellman error I and the dimensions
{dt}Ht=1, every MDP in C(I, {dt}Ht=1) utilizes the same feature map φt(st, at). Thus one can view
the class C(I, {dt}Ht=1) as encoding one "underlying" true environment (defined by the transitions),
with varying values of I and {dt}Ht=1 corresponding to varying levels of function approximation
accuracy, and model capacity for the underlying environment. For simplicity of notation we will
focus on the setting where dt = d for all t ∈ {1, . . . H} and write C(I, d) for the class of MDPs
constructed in Theorem 3.1 for this setting. Utilizing this point of view, we can then prove the
following proposition on the relationship between the performance in the asymptotic and low-data
regimes.

Theorem 3.2. For any ε > 0, let dα be any feature dimension, and let dβ = d
1−ε/2
α . Then there exist

thresholds Klow < Khigh and intrinsic Bellman error levels Iβ > Iα such that

1. There is an algorithm achieving regret REGRETlow(K) when K < Klow for all MDPs in

C(Iβ , dβ). However, every algorithm has regret at least Ω̃
(
d
ε/2
β REGRETlow(K)

)
when

K < Klow on some MDP M ∈ C(Iα, dα).

2. There is an algorithm achieving regret REGREThigh(K) when K > Khigh for all MDPs in
C(Iα, dα). However, every algorithm has regret at least Ω̃ (dεαREGREThigh(K)) on some
MDP M ∈ C(Iβ , dβ) when K > Khigh.

Proof. Let ε > 0 and consider dβ = d
1− ε2
α , Iβ = 1

dεα
√
dβ
, Iα = 1

d
1
2
+2ε

α

,Klow = d2+εα ,Khigh = d2+4ε
α

We begin with the proof of part 1. Therefore, for K < Klow,√
dβIβK = d−εα K < d

1− ε2
α

√
K = dβ

√
K. (9)

Therefore, by Theorem 3.1 there exists an algorithm achieving regret

REGRETlow(K) = Õ
(
Hdβ
√
K +H

√
dβIβK

)
= Õ

(
dβ
√
K
)

(10)

in every MDP M ∈ C(Iβ , dβ). Further, since Klow = d2+εα > Ω̃
(
d2α
)
, the lower bound from

Theorem 3.1 applies to the class of MDPs C(Iα, dα) for all K ∈
[
Ω̃
(
d2α
)
,Klow

]
. In particular, every

algorithm receives regret at least

REGRET(K) = Ω̃
(
Hdα
√
K +H

√
dαIαK

)
> Ω̃

(
Hd

1
1−ε/2
β

√
K
)
> Ω̃

(
Hd

ε/2
1−ε/2
β dβ

√
K
)

> Ω̃
(
d
ε/2
β REGRETlow(K)

)
.

For part 2, note that for K > Khigh we have both√
dαIαK = d−2εα K > d−2εα

√
K · Khigh > dα

√
K

and √
dβIβK > d−εα

√
K · Klow = d1+εα

√
K > dβ

√
K.

Therefore again by Theorem 3.1 that for K > Klow there exists an algorithm achieving regret

REGREThigh(K) = Õ
(
Hdα
√
K +H

√
dαIαK

)
= Õ

(
H
√
dαIαK

)
. (11)

for every MDP M ∈ C(Iα, dα). However, by the lower bound in Theorem 3.1, for K > Klow every
algorithm receives regret at least

REGRET(K) = Ω̃
(
Hdβ
√
K +H

√
dβIβK

)
> Ω̃

(
H
√
dβIβK

)
= Ω̃

(
Hd−εα K

)
= Ω̃

(
dεαHd−2εα K

)
= Ω̃

(
dεαH

√
dαIαK

)
> Ω̃ (dεαREGREThigh(K))
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Theorem 3.2 shows that in the linear function approximation setting, there is a provable trade-
off between performance in the low-data regime (i.e. K < Klow) and the high-data regime (i.e.
K > Khigh). In particular, in the low-data regime lower capacity function approximation (lower
feature dimension dβ) with larger approximation error (larger intrinsic Bellman error Iβ) can provably
outperform larger capacity models (feature dimension dα) with smaller approximation error (intrinsic
Bellman error Iα). Furthermore, the relative performance is reversed in the high-data regime
K > Khigh. Thus, comparisons between algorithms in the asymptotic/high-data regime are not
informative when trying to understand algorithm performance with limited data.

4 LOWER BOUNDS FOR LEARNING THE STATE-ACTION VALUE
DISTRIBUTION

The instances of the implicit assumption that the performance profile of an algorithm in the high-data
regime will translate to the low-data regime monotonically appear in almost all of the studies con-
ducted in the low-data regime. In particular, we see that when this line of work was being conducted
the best performing algorithm in the high-data regime was based on learning the state action value
distribution. Hence, there are many cases in the literature (e.g. DRQ, OTR, DER, CURL, SimPLE,
Efficient-Zero) where all the newly proposed algorithms in the low-data regime are being compared
to an algorithm that learns the state-action value distribution, under the implicit assumption that the
algorithm that learns the state-action value distribution must achieve the current best performance in
the low-data regime. The large scale experiments provided in Section 5 demonstrate the impact of
this implicit assumption in the low-data regime deep reinforcement learning algorithm design. In
particular, the results reported in Section 5 prove that the performance profile of an algorithm in the
high-data regime does not monotonically transfer to the low-data regime. Due to this extensive focus
throughout the literature on low-data regime comparisons to algorithms that learn the state action
value distribution, we provide additional theoretical justification for the empirically observed sample
complexity results in the low to high-data regime in deep reinforcement learning.

To obtain theoretical insight into the larger sample complexity exhibited by learning the state-action
value distribution we consider the fundamental comparison between learning the distribution of
a random variable X versus only learning the mean E[X ]. In the base algorithm that learns the
state-action value distribution the goal is to learn a distribution over state-action values that has
finite support. It is well-known that learning a discrete distribution to error ε in total variation
distance requires more samples than estimating the mean to within error epsilon (see Proposition
A.1). Although this fact implies that learning the state-action value distribution has an intrinsically
higher sample complexity than that of standard Q-learning, it does not provide insights into the
comparison of an error of ε in the mean with an error of ε in total variation distance. Hence, the
following proposition demonstrates a precise justification of the comparison: whenever there are two
different actions where the true mean state-action values are within ε, an approximation error of ε
in total variation distance for the state-action value distribution of one of the actions is sufficient to
reverse the order of the means.

Proposition 4.1. Fix a state s and consider two actions a, a′. Let X (s, a) be the random vari-
able distributed as the true state-action value distribution of (s, a), and X (s, a′) be the same for
(s, a′). Suppose that E[X (s, a)] = E[X (s, a′)] + ε. Then there is a random variable Y such that
dTV (Y,X (s, a)) ≤ ε and E[X (s, a′)] ≥ E[Y].

Proof. Let τ∗ ∈ R be the infimum τ∗ = inf{τ ∈ R | P[X (s, a) ≥ τ ] = ε} i.e. τ∗ is the first point in
R such that X (s, a) takes values at least τ∗ with probability exactly ε. Next let the random variable
Y be defined by the following process. First, sample the random variable X (s, a). If X (s, a) ≥ τ∗,
then output τ∗ − 1. Otherwise, output the sampled value of X (s, a). Observe that the probability
distributions of Y and X (s, a) are identical except at the point τ∗ − 1 and on the interval [τ∗,∞).
Let µ be the Lebesgue measure on R. By construction of Y the total variation distance is given by

dTV (Y,X ) =
1

2

∫
R

∣∣P[X (s, a) = z]− P[Y = z]
∣∣ dµ(z) =

1

2

∣∣P[X (s, a) = τ∗ − 1]− P[Y = τ∗ − 1]
∣∣

+
1

2

∫
[τ∗,∞)

∣∣P[X (s, a) = z]− P[Y = z]
∣∣ dµ(z) =

ε

2
+
ε

2
= ε.
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Next note that the expectation of Y is given by

E[Y] = ε(τ∗ − 1) +

∫
(−∞,τ∗]

zP[X (s, a) = z] dµ(z)

= ε(τ∗ − 1) +

∫
R
zP[X (s, a) = z] dµ(z)−

∫
(τ∗,∞]

zP[X (s, a) = z] dµ(z)

≤ ε(τ∗ − 1) + E[X (s, a)]− ετ∗ = E[X (s, a)]− ε

where the inequality follows from the fact that X takes values larger than τ∗ with probability ε.

To summarize, Proposition 4.1 shows that, in the case where the mean state-action values are within
ε, unless the state-action value distribution is learned to within total-variation distance ε, the incorrect
action may be selected by the policy that learns the state-action value distribution. Therefore, it is
natural to compare the sample complexity of learning the state-action value distribution to within
total-variation distance ε with the sample complexity of simply learning the mean to within error ε,
as is done in Proposition A.1.

4.1 SAMPLE COMPLEXITY WITH UNKNOWN SUPPORT

The setting considered in Proposition A.1 most readily applies to the base algorithm that learns
the state-action value distribution C51, which attempts to directly learn a discrete distribution
with known support in order to approximate the state-action value distribution. However, further
advances in learning the state-action value distribution includingQRDQN and IQN do away with the
assumption that the support of the distribution is known. This allows a more flexible representation
in order to more accurately represent the true distribution on state-action values, but, as we will
show, potentially leads to a further increase in the sample complexity. The QRDQN algorithm
models the distribution of state-action values as a uniform mixture of N Dirac deltas on the reals i.e.
Z(s, a) = 1

N
∑N
i=1 δθi(s,a), where θi(s, a) ∈ R is a parametric model.

Proposition 4.2. Let N > M ≥ 2, ε > M
4N , and θi ∈ R for i ∈ [N ]. The number of samples

required to learn a distribution of the form Z = 1
N
∑N
i=1 δθi to within total variation distance ε is

Ω
(M
ε2

)
.

The proof is provided in the appendix. Depending on the choice of parameters, the lower bound in
Proposition 4.2 can be significantly larger than that of Proposition A.1. For example if the desired
approximation error is ε = 1

8 one can takeM = N
2 . In this case if the value of k in Proposition A.1

satisfies k = o(N ), then the sample complexity in Proposition 4.2 is asymptotically larger than that
of Proposition A.1.

5 LARGE SCALE EXPERIMENTAL INVESTIGATION

The experiments are conducted in the Arcade Learning Environment (ALE) (Bellemare et al., 2013).
The Double Q-learning algorithm is trained via Double Deep Q-Network (Hasselt et al., 2016a)
initially proposed by van Hasselt (2010). The dueling algorithm is trained via Wang et al. (2016). The
prior algorithm refers to the prioritized experience replay algorithm proposed by Schaul et al. (2016).
The policies that learn the state-action value distribution are trained via the C51 algorithm, IQN and
QRDQN. To provide a complete picture of the sample complexity we conducted our experiments
in both low-data, i.e. the Arcade Learning Environment 100K benchmark, and high data regime,
i.e. baseline 200 million frame training. All of the results are reported with the standard error of
the mean in all of the tables and figures in the paper. The experiments are run with JAX (Bradbury
et al., 2018), with Haiku as the neural network library, Optax (Hessel et al., 2020) as the optimization
library, and RLax for the reinforcement learning library (Babuschkin et al., 2020). More details on
the hyperparameters and direct references to the implementations can be found in the supplementary
material. Note that human normalized score is computed as follows:

ScoreHN =
Scoreagent − Scorerandom

Scorehuman − Scorerandom
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Alien Amidar Assault Asterix

BankHeist ChopperCommand Hero JamesBond

Kangaroo CrazyClimber MsPacman FrostBite

RoadRunner Seaquest UpNDown Qbert

Figure 1: The learning curves of Alien, Amidar, Asterix, BankHeist, ChopperCommand, Hero,
CrazyClimber, JamesBond, Kangaroo, MsPacman, FrostBite, Qbert, RoadRunner, Seaquest and
UpNDown with dueling architecture, C51, IQN and QRDQN algorithms in the Arcade Learning
Environment with 100K environment interaction training.

Figure 1 reports learning curves for the IQN, QRDQN, dueling architecture and C51 for every MDP
in the Arcade Learning Environment low-data regime 100K benchmark. These results demonstrate
that the simple base algorithm dueling performs significantly better than any algorithm that focuses
on learning the distribution when the training samples are limited. For a fair, direct and transparent
comparison we kept the hyperparameters for the baseline algorithms in the low-data regime exactly
the same with the DRQICLR paper (see supplementary material for the full list and high-data regime
hyperparameter settings). Note that the DRQ algorithm uses the dueling architecture without any
distributional reinforcement learning. One intriguing takeaway from the results provided in Table
1 and the Figure 41 is the fact that the simple base algorithm dueling performs 15% better than the
DRQNeurIPS implementation, and 11% less than the DRQICLR implementation. Note that the original
paper of the DRQICLR algorithm provides comparison only to data-efficient Rainbow (DER) (van
Hasselt et al., 2019) which inherently learns the state-action value distribution. The fact that the
original paper that proposed data augmentation for deep reinforcement learning (i.e. DRQICLR)
on top of the dueling architecture did not provide comparisons with the pure simple base dueling
architecture (Wang et al., 2016) resulted in inflated performance profiles for the DRQICLR algorithm.

More intriguingly, the comparisons provided in the DRQICLR paper to the DER and OTR algorithms
report the performance gained by DRQICLR over DER is 82% and over OTR is 35%. However, if a
direct comparison is made to the simple dueling algorithm as Table 1 demonstrates with the exact
hyperparameters used as in the DRQICLR paper the performance gain is utterly restricted to 11%.
Moreover, when it is compared to the reproduced results of DRQNeurIPS it turns out that there is
a performance decrease due to utilizing the DRQ algorithm over dueling architecture. Thus, the
fact that our paper provides foundations on the non-monotonicity of the performance profiles from

1DER2021 refers to the re-implementation with random seed variations of the original paper data-efficient
Rainbow (i.e. DER2019) by van Hasselt et al. (2019). OTR refers to further implementation of the Rainbow
algorithm by Kielak (2019). DRQNeurIPS refers to the re-implementation of the original DRQ algorithm published
in ICLR as a spotlight presentation with the goal of achieving reproducibility with variation on the number of
random seeds (Agarwal et al., 2021).
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Median Mean 20th Percentile

Median Mean 20th Percentile
Figure 2: Up: Human normalized median, mean and 20th percentile results for the dueling algorithm,
C51, IQN and QRDQN in the Arcade Learning Environment 100K benchmark. Down: Human
normalized median, mean, and 20th percentile results for the dueling algorithm, C51, IQN and
QRDQN in the high-data regime towards 200 million frame.
Table 1: Large scale comparison of Q-based deep reinforcement learning algorithms with human
normalized mean, median and 20th percentile results in the Arcade Learning Environment 100K
benchmark for DQN (Mnih et al., 2015), deep Double-Q learning (Hasselt et al., 2016a), dueling
architecture (Wang et al., 2016), Prior (Schaul et al., 2016), C51, QRDQN and IQN.

Algorithms Human Normalized Median Human Normalized Mean 20th Percentile

DQN 0.0481±0.0036 0.1535±0.0119 0.0031±0.0032
Double-Q 0.0920±0.0181 0.3169±0.0196 0.0341±0.0042
Dueling 0.2304±0.0061 0.2923±0.0060 0.0764±0.0037
C51 0.0941±0.0081 0.3106±0.0199 0.0274±0.0024
QRDQN 0.0820±0.0037 0.2171±0.0098 0.0189±0.0031
IQN 0.0528±0.0058 0.2050±0.0123 0.0091±0.0011
Prior 0.0840±0.0018 0.2792±0.0123 0.0267±0.0042

large-data regime to low-data regime can influence future research to have more concrete and accurate
performance profiles for algorithm development in the low-data regime. Table 1 reports the human
normalized median, human normalized mean, and human normalized 20th percentile results over all
of the MDPs from the 100K Arcade Learning Environment benchmark for DQN, Double-Q, dueling,
C51,QRDQN, IQN and prior. One important takeaway from the results reported in the Table 1 is the
fact that one particular algorithm performance profile in 200 million frame training will not directly
transfer to the low-data region. Figure 2 reports the learning curves of human normalized median,
human normalized mean and human normalized 20th percentile for the dueling algorithm, C51,
QRDQN, and IQN in the low-data region. These results once more demonstrate that the performance
profile of the simple base algorithm dueling is significantly better than any other algorithm that learns
the state-action value distribution when the number of environment interactions are limited.

The left and center plots of Figure 3 report regret curves corresponding to the theoretical analysis in
Theorem 3.2 for various choices of the feature dimensionality d and the intrinsic Bellman error I. In
particular, the left plot shows the low-data regime where the number of episodes K < 1000, while the
right plot shows the high-data regime where K is as large as 500000. Notably, the relative ordering
of the regret across the different choices of d and I is completely reversed in the high-data regime
when compared to the low-data regime. Recall from Theorem 3.1 that the intrinsic Bellman error is a
measure of the accuracy of function approximation under the Bellman operator corresponding to an
MDP. Thus, the varying values of I and d in Figure 3 correspond to a natural setting where increasing
the number of model parameters (i.e. increasing d) corresponds to an increase in the accuracy of
function approximation (i.e. a decrease in I). Thus the results reported in Figure 3 demonstrate that,
even in the natural setting where increased model capacity leads to increased accuracy, there can be a
complete reversal in the ordering of algorithm performance between the low and high-data regimes.
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Regret in the Low-data Regime Regret in the High-data Regime Distributional vs Baseline Q
Figure 3: Left: Regret in the low-data regime. Center: Regret in the high-data regime. Right:
Distributional vs baseline Q comparison of algorithms that were proposed and developed in the
high-data regime in the Arcade Learning Environment in both high-data regime and low-data regime.

Sample Complexity of C51 Sample Complexity of IQN Overall Comparison
Figure 4: Left: Number of samples (i.e. environment interactions) required by the base algorithm that
learns the state-action value distribution to achieve the performance level achieved by the dueling
algorithm. Center: Number of samples required by IQN to achieve the performance level achieved
by dueling. Right: Overall comparison of algorithms recently developed in the low-data regime ALE
100K benchmark to the dueling algorithm that was designed in the high-data region.

Figure 4 reports results on the number of samples required for training with the baseline algorithm
that learns the state-action value distribution to reach the same performance levels achieved by the
dueling algorithm for each individual MDP from ALE low-data regime benchmark. These results
once more demonstrate that to reach the same performance levels with the dueling algorithm, the
baseline algorithm that learns the state-action value distribution requires orders of magnitude more
samples to train on. As discussed in Section 4.1, more complex representations for broader classes of
distributions come at the cost of a higher sample complexity required for learning. One intriguing
fact is that the original SimPLE paper provides a comparison in the low-data regime of their proposed
algorithm with the Rainbow algorithm which is essentially an algorithm that is designed in the
high-data region by having the implicit assumption that the state-of-the art performance profile must
transfer monotonically to the low-data region. These instances of implicit assumptions also occur
in DRQICLR, CURL, SPR and Efficient-Zero even when comparisons are made for more advanced
algorithms such as MuZero. Note that these implicit assumptions give faulty signals on why and what
makes these algorithms work when designed for the low-data regime, and hence affect future research
directions while misdirecting research efforts from ideas that could have worked in the algorithm
design process.

6 CONCLUSION

In this paper we aimed to answer the following questions: (i) Do the performance profiles of deep
reinforcement learning algorithms designed for certain data regimes translate monotonically to a
different sample complexity region?, and (ii) What is the underlying theoretical relationship between
the performance profiles and sample complexity regimes? To be able to answer these questions we
provide theoretical investigation on the sample complexity of the baseline deep reinforcement learning
algorithms. We conduct extensive experiments both in the low-data region 100K Arcade Learning
Environment and high-data regime baseline 200 million frame training. Our results demonstrate
that the performance profiles of deep reinforcement learning algorithms do not have a monotonic
relationship across sample complexity regimes. The underlying premise of the monotonic relationship
of the performance characteristics and the sample complexity regions that exists in many recent
state-of-the-art studies has been assumed incorrectly. Thus, our results demonstrate that several
baseline Q algorithms are almost as high performing as recent variant algorithms that have been
proposed and shown as the state-of-the-art.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 29304–29320, 2021.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky, David
Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin, Chris
Jones, Tom Hennigan, Matteo Hessel, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael
King, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, John Quan, George
Papamakarios, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener,
Stephen Spencer, Srivatsan Srinivasan, Wojciech Stokowiec, and Fabio Viola. The DeepMind JAX
Ecosystem, 2020. URL http://github.com/deepmind.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael. Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research., pp.
253–279, 2013.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Clément L. Canonne. A short note on learning discrete distributions. 2020. URL http://arxiv.
org/abs/2002.11457. cite arxiv:2002.11457Comment: This is a review article; its intent is
not to provide new results, but instead to gather known (and useful) ones, along with their proofs,
in a single convenient location.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. Association for the Advancement of Artificial Intelligence (AAAI), 2016a.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016b.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger
(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3215–3222. AAAI Press, 2018.

Matteo Hessel, David Budden, Fabio Viola, Mihaela Rosca, Eren Sezener, and Tom Hennigan. Optax:
composable gradient transformation and optimisation, in jax!, 2020. URL http://github.
com/deepmind/optax.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado van Hasselt. Muesli: Combining improvements in policy optimiza-
tion. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 4214–4226. PMLR, 2021.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learni:ng
for atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Kacper Piotr Kielak. Do recent advancements in model-based deep reinforcement learning really
improve data efficiency? CoRR, 2019.

10

http://github.com/deepmind
http://github.com/google/jax
http://arxiv.org/abs/2002.11457
http://arxiv.org/abs/2002.11457
http://github.com/deepmind/optax
http://github.com/deepmind/optax


Under review as a conference paper at ICLR 2024

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, arc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518:
529–533, 2015.

Tom Schaul, John Quan, Ioannis Antonogloua, and David Silver. Prioritized experience replay.
International Conference on Learning Representations (ICLR), 2016.

Hado van Hasselt. Double q-learning. In John D. Lafferty, Christopher K. I. Williams, John Shawe-
Taylor, Richard S. Zemel, and Aron Culotta (eds.), Advances in Neural Information Processing
Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings
of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada, pp. 2613–2621.
Curran Associates, Inc., 2010.

Hado van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in reinforce-
ment learning? In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pp. 14322–14333, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando. De Freitas.
Dueling network architectures for deep reinforcement learning. Internation Conference on Machine
Learning ICML., pp. 1995–2003, 2016.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Weirui Ye, Li:u Shaohuai, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Masteri:ng atari games
wi:th limited data. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 25476–25488, 2021.

Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 10978–10989. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/zanette20a.html.

11

http://proceedings.mlr.press/v119/zanette20a.html
http://proceedings.mlr.press/v119/zanette20a.html


Under review as a conference paper at ICLR 2024

A MEAN ESTIMATION VERSUS LEARNING THE DISTRIBUTION

To get a fundamental understanding of the additional cost of learning the state-action value distribution,
we compare the sample complexity of learning the distribution of a finitely supported random variable
with that of estimating the mean.
Proposition A.1 (Canonne (2020)). Let X be a real-valued random variable with support on exactly
k known values. Further, assume |X | < 1 and let ε > 0. Any algorithm that learns the distribution
P(X ) within total variation distance ε requires Ω(k/ε2) samples, while there exists an algorithm to
estimate E[X ] to within error ε using only O(1/ε2) samples.

Proof. Learning a distribution with known discrete support of size k requires Ω(k/ε2) samples to
achieve total variation distance at most ε with constant probability (Canonne, 2020). On the other
hand, let X1, . . . ,Xn be independent samples of the random variable X and consider the sample
mean

X̄ =
1

n

n∑
i=1

Xi. (12)

The expectation is given by E[X̄ ] = E[X ] and the variance is σ2(X̄ ) = 1
nσ

2(X ). Further, since
|X | < 1 we have that σ2(X) < 1 and so σ2(X̄ ) ≤ 1

n . Hence, by Chebyshev’s inequality

P
[
|X̄ − E[X ]| > ε

]
≤ 1

ε2n
. (13)

Thus with n = O( 1
ε2 ) samples, X̄ is within ε of E[X ] with constant probability.

B SAMPLE COMPLEXITY WITH UNKNOWN SUPPORT

Proposition B.1. Let N > M ≥ 2, ε > M
4N , and θi ∈ R for i ∈ [N ]. The number of samples

required to learn a distribution of the form Z = 1
N
∑N
i=1 δθi to within total variation distance ε is

Ω
(M
ε2

)
.

Proof. LetM ≥ 2 and D = {1, 2, · · · ,M} ⊆ R. First we will show that any distribution p(z)
supported on z ∈ D is within total-variation distance k

4N of a distribution of a random variable of the
form Z = 1

N
∑N
i=1 δθi for numbers θi ∈ D. Indeed we can construct such a distribution as follows.

First let p̃(z) be the rounded distribution obtained by rounding each probability p(z) to the nearest
integer multiple of 1

N . The total variation distance between p(z) and p̃(z) is given by

1

2

M∑
z=1

|p(z)− p̃(z)| ≤ 1

2

M∑
z=1

1

2N
≤ M

4N
. (14)

Next partition the set of θi intoM groups G1,G2, . . . ,GM, where group Gz has sizeN p̃(z) (this size
is an integer by construction of p̃). Finally, for each θi ∈ Gz assign θi = z. Thus forZ = 1

N

∑N
i=1 δθi

we have for each z ∈ D
P[Z = z] =

1

N

N∑
i=1

1[θi = z] =
1

N
|Gz| = p̃(z). (15)

Therefore, any distribution p(z) can be approximated to within total variation distance M4N by a
distribution Z of the prescribed form. Thus, by the sample complexity lower bounds for learning a
discrete distribution with known support, for any ε > M

4N at least Mε2 samples are required to learn a
distribution of the form Z = 1

N
∑N
i=1 δθi .

C RESULTS ON THE COMPLETE LIST OF GAMES FROM THE ARCADE
LEARNING ENVIRONMENT 100K BASELINE

Table 2 reports the average scores obtained by the human player, random player, baseline Q-based
algorithm dueling architecture, baseline algorithm C51 that focuses on learning the distribution,

12
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QRDQN and IQN across all the games in the Arcade Learning Environment 100K baseline. These
results once more demonstrate that the baseline Q-based algorithm performs significantly better than
any algorithm that aims to learn the distribution as has also been explained in detail in Section 5 in
the main body of the paper.
Table 2: Average returns for human, random, dueling Wang et al. (2016), C51, QRDQN and IQN
across all the games in the Arcade Learning Environment 100K benchmark.

Games Human Random C51 QRDQN IQN Dueling

Alien 7127.7 227.8 547.16 509.57 330.81 705.58
Amidar 1719.5 5.8 78.41 55.70 74.98 199.31
Assault 742.0 222.4 465.30 314.58 488.55 503.82
Asterix 8503.3 210.0 475.90 367.32 286.26 705.16
BankHeist 753.1 14.2 22.81 21.53 18.17 243.19
BattleZone 37187.5 2360.0 2728.52 6238.27 3105.70 6880.37
Boxing 12.1 0.1 9.60 2.03 12.41 1.68
Breakout 30.5 1.7 11.35 16.50 15.09 8.28
ChopperCommand 7387.8 811.0 831.83 752.51 629.04 1313.90
CrazyClimber 35829.4 10780.5 71776.14 21366.42 22649.44 17039.44
DemonAttack 1971.0 152.1 789.09 198.01 1035.17 694.42
Freeway 29.6 0.0 20.42 5.98 19.37 5.93
FrostBite 4334.7 65.2 215.25 218.11 192.33 259.18
Gopher 2412.5 257.6 791.83 576.19 466.81 429.85
Hero 30826.4 1027.0 7097.42 1108.44 1322.63 8210.53
Jamesbond 302.8 29.0 43.85 108.71 26.23 296.46
Kangaroo 3035.0 52.0 301.01 120.60 294.46 1914.86
Krull 2665.5 1598.0 3744.04 2040.50 2319.74 2867.78
KungFuMaster 22736.3 258.5 6877.62 11574.02 1526.76 5367.90
Mspacman 6951.6 307.3 917.78 749.29 533.98 1355.21
Pong 14.6 -20.7 11.17 -7.49 -10.86 -4.20
PrivateEye 69571.3 24.9 -103.30 -6.32 33.83 100.00
Qbert 13455.0 163.9 528.30 590.05 582.72 1710.23
RoadRunner 7845.0 11.5 3993.34 400.59 1202.20 6031.80
Seaquest 42054.7 68.4 163.69 183.25 213.87 351.10
UpNdDown 11693.2 533.4 1970.28 1622.67 1552.27 3553.12

Figure 5 reports the learning curves of the complete list of the games in the Arcade Learning
Environment 100K benchmark; in particular, for Alien, Amidar, Asterix, BankHeist, BattleZone,
Boxing, Breakout, ChopperCommand, Hero, CrazyClimber, JamesBond, Kangaroo, PrivateEye,
MsPacman, FrostBite, Qbert, RoadRunner, Seaquest, Pong, Gopher, DemonAttack, Krull, and
UpNDown with dueling architecture Wang et al. (2016), C51, IQN and QRDQN algorithms with
100K environment interaction training. The learning curves reported in Figure 5 demonstrate that the
number of samples required to obtain the performance level achieved via the simple base dueling
architecture is significantly higher for any reinforcement learning algorithm that learns the distribution.
Note that the baseline reinforcement learning algorithm C51 focuses on learning the distribution
represents the state-action value distribution as a discrete probability distribution supported on 51
fixed atoms evenly spaced between a pre-specified minimum and maximum value. In contrast, QR-
DQN represents the value distribution as the uniform distribution over a larger number of atoms with
variable positions on the real line. Thus, QR-DQN is able to more accurately approximate a broader
class of state-action value distributions. Finally, IQN parameterizes the quantile function of the
state-action value distribution via a deep neural network, leading to a yet more flexible representation
of the state-action value distribution. As discussed in Section 4, more complex representations for
broader classes of distributions come at the cost of a higher sample complexity required for learning.

C.1 REPRODUCIBILITY AND CONFIGURATION DETAILS

The hyperparameter settings of all of the algorithms in our paper, double-Q, dueling, QRDQN,
and IQN for the high-data region are exactly the same with the original papers that proposed these
algorithms in the high-data region. See the hyperparameter settings in Hasselt et al. (2016) for
double-Q, Wang et al. (2016) for dueling architecture, Bellemare et al. (2017) for C51, Dabney et al.
(2018a) for QRDQN, and Dabney et al. (2018b) for IQN.
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Alien Amidar Assault Asterix

BankHeist BattleZone Boxing BreakOut

ChopperCommand DemonAttack Hero JamesBond

Kangaroo Krull CrazyClimber MsPacman

FrostBite RoadRunner Seaquest UpNDown

Pong Gopher Qbert PrivateEye

Figure 5: The learning curves of Alien, Amidar, Asterix, BankHeist, BattleZone, Boxing, Breakout,
ChopperCommand, Hero, CrazyClimber, JamesBond, Kangaroo, PrivateEye, MsPacman, FrostBite,
Qbert, RoadRunner, Seaquest, Pong, Gopher, DemonAttack, Krull, and UpNDown with dueling archi-
tecture Wang et al. (2016), C51, IQN and QRDQN algorithms in the Arcade Learning Environment
with 100K environment interaction training.

For a fair and transparent comparison, we kept the hyperparameters exactly the same with the
DRQICLR paper for all of the baseline Q algorithms in the low-data region. Note that DRQ is
an observation regularization study; hence the hyperparameters in the DRQ paper are specifically
tuned for the purpose of the paper besides tuning for the Arcade Learning Environment 100K low-
data regime. We did not tune any of the hyperparameters for the baseline algorithms (i.e. dueling
architecture). Hence, it is even further possible to conduct hyperparameter tuning and get better
performance profile results with the simple baseline dueling architecture. For the purpose of this
paper we kept the hyperparameters exactly the same with the DRQICLR paper. However, we would
strongly encourage further research to conduct hyperparameter optimization to obtain better results
from the baseline dueling architecture in the low-data regime.

We have also tried the hyperparameter settings reported in the data efficient Rainbow (DER) paper for
C51, IQN and QRDQN in the low-data regime. The performance results are provided in Table 4 for
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Table 3: Hyperparameter settings and architectural details for the dueling algorithm, double-Q
learning, C51, QRDQN, and IQN in the low-data regime of the Arcade Learning Environment.

Hyperparameters Settings

Grey-scaling True
Observation down-sampling (84, 84)
Action repetitions 4
Frames stacked 4
Batch Size 32
Update Double-Q
Max Frames per episode 108000
Evaluation exploration epsilon 0.01
Min replay size for sampling 1600
Max gradient norm 10
Discount factor 0.99
Maximum absolute rewards 1
Training steps 100000
Evaluation steps 125000
Exploration epsilon decay frame fraction 0.0125
Gradient error bound 0.03125
Optimizer Adam
Replay period every 1
n-step length 10
Exploration ε-greedy
ε-decay 5000
Number of atoms 51
Number of quantiles 201
vmax 10

Q-Network channels 32,64,64
Q-Network filter size 8× 8, 4× 4, 3× 3
Q-Network stride (4, 4), (2, 2), (1, 1)
Q-Network hidden units 512

Table 4: Human normalized mean, human normalized median, and human normalized 20th percentile
results for the C51 algorithm, QRDQN, and IQN in the low-data regime of the Arcade Learning
Environment with the hyperparameter settings reported in the DER paper.

Algorithms Human Normalized Median Human Normalized Mean Human Normalized 20th Percentile

C51 0.0490±0.0038 0.1352±0.0057 0.0163±0.0029
QRDQN 0.0203±0.0033 0.0778±0.0101 -0.0012±0.0053
IQN 0.0202±0.0020 0.0590±0.0139 -0.0035±0.0031

the hyperparameter settings of DER. As can be seen, the hyperparameter settings of DRQICLR gave
better performance results also for C51, IQN andQRDQN in the low-data region. The results in Table
4 also align with the claims of the DER paper in which there has not been extensive hyperparameter
tuning conducted to achieve the results provided, and it is possible to obtain better results by further
hyperparameter tuning.

15


	Introduction
	Background and Preliminaries
	Low-data Regime versus Asymptotic Performance
	Lower Bounds for Learning the State-Action Value Distribution
	Sample Complexity with Unknown Support

	Large Scale Experimental Investigation
	Conclusion
	Mean Estimation versus Learning the Distribution
	Sample Complexity with Unknown Support
	Results on the Complete List of Games from the Arcade Learning Environment 100K Baseline
	Reproducibility and Configuration Details


