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Abstract

Recent advancements in vision-language models (VLMs) have improved perfor-
mance by increasing the number of visual tokens, which are often significantly
longer than text tokens. However, we observe that most real-world scenarios do
not require such an extensive number of visual tokens. While the performance
drops significantly in a small subset of OCR-related tasks, models still perform
accurately in most other general VQA tasks with only 1/4 resolution. Therefore,
we propose to dynamically process distinct samples with different resolutions,
and present a new paradigm for visual token reduction, namely, VisionThink. It
starts with a downsampled image and smartly decides whether it is sufficient for
problem solving. Otherwise, the model could output a special token to request
the higher-resolution image. Compared to existing Efficient VLM methods that
reduce tokens using fixed pruning ratios or thresholds, VisionThink autonomously
decides whether to reduce tokens case by case. As a result, it demonstrates strong
fine-grained visual understanding capability on OCR-related tasks, and meanwhile
saves substantial visual tokens on simpler tasks. We adopt reinforcement learning
and propose the LLM-as-Judge strategy to successfully apply RL to general VQA
tasks. Moreover, we carefully design a reward function and penalty mechanism
to achieve a stable and reasonable image resize call ratio. Extensive experiments
demonstrate the superiority, efficiency, and effectiveness of our method.

1 Introduction

Recently, Vision-Language Models (VLMs) [31, 30, 33, 9, 3] have achieved remarkable performance
in general visual question answering (General VQA) and various real-world scenarios by projecting
and adapting visual tokens into the LLM space [66, 1, 102, 4]. However, as the performance of
VLMs continues to advance, the consumption of visual tokens has grown exponentially. For instance,
a 2048×1024 image captured by a smartphone requires 2,678 visual tokens in Qwen2.5-VL [5],
which significantly exceeds the number of text tokens. This leads to substantial memory consumption
and notable latency, further constraining the deployment of VLMs on edge devices. Therefore, it is
imperative to minimize the excessive use of visual tokens.

Numerous works on visual token reduction have been proposed [71, 59, 18, 22, 8, 100, 80]. Most
approaches prune or merge a fixed number of visual tokens using predetermined thresholds. However,
redundancy levels vary across different questions and images, leading to a natural question: Should
we really apply a uniform token reduction ratio across all scenarios?

To answer this question, we simply reduced the image resolution to decrease the number of visual
tokens and evaluated Qwen2.5-VL’s[5] performance on several benchmarks. As shown in the left
of Fig. 1, we found that for most real-world scenarios (general VQA scenarios), such as MME
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Figure 1: Our key observations and VisionThink performance and efficiency. Left: We find that
in most general scenarios, even reducing visual tokens by a factor of four results in only minimal
performance drop. However, token reduction leads to a significant performance drop on strong
OCR-related benchmarks. Right: Our VisionThink significantly outperforms previous work in both
performance and efficiency.

and RealWorldQA, even reducing the image resolution by a factor of four, which significantly cuts
visual tokens by 75%, has minimal impact on the model’s performance. However, as shown in
the right of Fig. 1, for OCR-realted scenarios such as ChartQA and OCRBench, which require
detailed understanding and OCR-related capabilities, reducing the number of visual tokens leads
to a significant drop in performance. Based on these observations, we find that most real-world
questions do not require high-resolution images with long visual tokens, while a small subset of
OCR-related tasks demand such detailed input much. And a uniform token reduction ratio should not
be applied across all tasks. Therefore, there is significant potential for efficiency optimization if we
can dynamically distinguish between samples that require high-resolution processing and those that
do not.

In this paper, we propose VisionThink, a new EfficientVLM paradigm that leverages the model’s
reasoning capabilities. Unlike prior methods that process full images and later discard redundant
tokens, VisionThink directly inputs reduced visual tokens and allows the model to request the
original high-resolution image when needed. This enables more efficient inference in most real-world
scenarios, and meanwhile preserving performance on OCR-related tasks.

Although VisionThink offers a promising way to handle samples with varying levels of visual
redundancy smartly, it still faces two key challenges:

Effective Reinforcement Learning for General VQA. Conventional rule-based reinforcement
learning algorithms, typically used to optimize reasoning process, struggle with the diversity and
complexity of general VQA. To overcome this issue, we propose the LLM-as-Judge approach,
enabling semantic matching. Experiments show performance improvement across several general
VQA benchmarks, highlighting the potential to extend vision-based reinforcement learning beyond
visual math reasoning to broader VQA tasks.

Determine When High Resolution is Worth. To improve efficiency without compromising perfor-
mance, the model must accurately determine when high-resolution input is necessary. We achieve
this by carefully designing a balanced reward function to prevent the model from collapsing into
always requiring high-resolution images or always using low-resolution images. With this mecha-
nism, VisionThink maintains strong performance on OCR benchmarks while delivering significant
speed-ups on non-OCR benchmarks, achieving up to 100% for DocVQA.

Overall, we present a simple yet effective pipeline—VisionThink. It introduces a new approach to
visual token reduction by dynamically determining reduction based on the content of each sample,
thereby achieving efficiency gains at the sample level. Consequently, it is compatible with other
advanced spatial-level methods. We hope our work sheds new light on this area.
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2 Preliminary

2.1 Large Language Models and Reinforcement Learning

Recent progress in improving the reasoning ability of large language models (LLMs)[16, 21] has
shown that Reinforcement Learning (RL) is an effective training approach. In this work, we use
Group Relative Policy Optimization (GRPO)[56] as our training method. GRPO removes the need
for a separate critic model by using group scores to estimate baselines. This reduces computation
cost, improves training stability, and leads to faster and more reliable performance gains.

During the training process, GRPO samples a group of outputs {o1, o2, · · · , oG} based on the given
question q from the old policy πθold and then optimizes the policy model πθ by maximizing the
following objective:

JGRPO(θ) = E[q∼D,{oi}G
i=1∼πθold

(·|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL (πθ||πref )

)
(1)

DKL (πθ||πref ) =
πref (oi|q)
πθ(oi|q)

− log
πref (oi|q)
πθ(oi|q)

− 1, (2)

where q represents the input questions drawn from the dataset D, and o denotes the generated text
response. DKL is the KL-divergence measure, while ϵ and β are hyper-parameters. Ai indicates the
advantage, computed using a group of rewards {r1, r2, . . . , rG} corresponding to the outputs within
each group.

2.2 Computation Complexity

To evaluate the computational complexity of VLMs, we analyze key components, including the
self-attention mechanism and the feedforward network (FFN). The total floating-point operations
(FLOPs) are given by:

Total FLOPs = T × (4nd2 + 2n2d+ 2ndm)

where T denotes the number of transformer layers, n is the sequence length, d is the size of the
hidden dimension, and m is the intermediate size of the FFN.

This equation indicates that computational complexity is largely determined by the sequence length n.
In general VLM tasks, the total sequence length can be expressed as n = nsys+nimg+nquestion, where
nimg—the number of image tokens—is typically much larger than the other two components, often
reaching hundreds or even thousands. As a result, the prefilling stage dominates the total inference
time in most VLM scenarios.Hence, controlling the number of image tokens is key to achieving VLM
efficiency.

3 Methodology

3.1 Overview

Our objective is to develop a smart and efficient VLM, capable of autonomously determining whether
the information in the given image is sufficient to answer the question accurately. As shown in
Fig. 2, the pipeline first processes a low-resolution image to minimize the computataion cost. It then
smartly requests original high-resolution inputs when the information in the downsampled image is
insufficient to answer the question. Ideally, this strategy maintains high performance while sharply
reducing computational load. To achieve this goal, we must address two key challenges:

Effective RL on General VQA. Due to the diversity and complexity of general VQA, traditional
rule-based RL algorithms are not directly applicable. To address this, we propose an LLM-as-Judge
strategy, in which a large language model guides and evaluates the RL training process (Sec. 3.2).
We further extend the Multi-Turn GRPO algorithm to suit our setting (Sec. 3.3).
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Figure 2: Framework of VisionThink. (a) The left image illustrates VisionThink processing an
image with resolution reduced by a factor of four, where the VLM directly provides an answer.
(b) The right image shows a case where the model detects insufficient information and requests a
high-resolution image to answer the question.

Enabling the model to decide when high resolution is necessary. The model must learn to assess
whether a downsampled image contains sufficient information to answer the question if the original
high-resolution image is required. So that the model could balance the efficiency and performance.
To this end, we design a reward function that encourages optimal resolution decisions (Sec. 3.4) and
collect training data across multiple resolutions to support effective learning (Sec. 3.5).

3.2 LLM-as-Judge for General VQA

Challenges. One of the central challenges in applying reinforcement learning to General VQA
lies in evaluating model responses, especially when answers are open-ended or context-dependent.
Most existing multi-modal RL efforts remain limited to structured tasks such as visual math, where
ground-truth answers can be easily defined and verified via rules or exact matching. However, this
approach breaks down in General VQA settings, where the diversity and ambiguity of valid answers
make rule-based verification infeasible.

Pure Text Accuracy Judgement. To address this, we employ an external LLM as a judgment
evaluator. Leveraging its broad knowledge and language understanding, the LLM assesses the
correctness of model outputs in a human-aligned and flexible manner. Importantly, the evaluation
is conducted purely in text by comparing the model’s answer with the ground-truth. This design
avoids biases from visual content and the limitations of VLM performance. Furthermore, to minimize
potential misjudgment by the evaluator, the reward is discrete (either 0 or 1) rather than continuous.
The detailed judgment prompt is shown in Appendix B.1.

Effectiveness. The LLM-as-Judge is flexible, one advantage is that most of the SFT data could be
used. To verify the effectiveness of our proposed LLM-as-Judge, we collected 130K samples (filtered
from the open-sourced datasets), which can be directly used to train the model with GRPO, without
requiring any cold-start process. The results show significant improvement compared to the base
model, Qwen2.5VL-Instruct. Further details are provided in Appendix B.5.

3.3 Mutli-Turn Training Algorithm

Multi-Turn GRPO. In our VisionThink framework, we first input the question and the downsampled
image into the VLM. If the information is insufficient to answer the current question, the model
will autonomously request a higher-resolution image and generate a new response. This process is
essentially a multi-turn interaction. Therefore, we extend the original GRPO (Eq. 1) to a multi-turn
GRPO, as shown in Eq. 3:

4



What is the difference in value 

between Green bar and Orange bar?
The answer is 0.24.

To find the difference in value between the 

Green bar and the Orange bar, I need to 

identify the values represented by each bar.

<Upscale Image to Original Resolution>

The Green bar represents Cameroon with 

a GPI of 0.79, and the Orange bar 

represents Low Income with a GPI of 

0.71. To find the difference, let me 

subtract the value of the Orange bar from 

the value of the Green bar.

The answer is 0.08.0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80Step

Im
ag

e
 R

e
si

ze
 C

a
ll

 R
a
ti

o

w/o Penalty

Ratio=0.2

All Penalty

(a) Impact of Penalty Ratio (b) Visualization Example

Figure 3: (a) Impact of the Penalty Ratio. Applying a penalty to all resize image requests or removing
the penalty entirely will both lead to model collapse. (b) VisionThink correctly solves OCR-related
problems by autonomously requesting high-resolution images.

JGRPO(θ) =Eq∼D,{oi}G
i=1∼πold(·|q;I)

[
1

G

G∑
i=1

1∑|oi|
t=1 I(oi,t)

|oi|∑
t=1

I(oi,t)

·min

(
pi,tÂi,t, clip

(
pi,t, 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL [πθ||πref]

]
,

(3)

where pi,t =
πθ(oi,t|q,oi,<t;I)
πold(oi,t|q,oi,<t;I) , and I(ot) is the token loss masking operation such that I(ot) = 1 if

ot is the generated token from LLM and I(ot) = 0 if ot is the response token from the called tools.
Intuitively, we masked all text and image tokens from the user and performed optimization solely
based on the multi-turn output tokens generated by the VLM.

How does the model signal the need for a high-resolution image? To determine when the model
requires a high-resolution image, we modify the prompt to instruct the model to output specific
special tokens. Notably, this is a non-trivial process because our training does not introduce any
cold-start phase, which leads to a performance drop in general VQA (Appendix C.2). Therefore,
selecting an appropriate and effective prompt at the early stage of training is crucial. The prompt
must ensure that the model is capable of outputting the required special tokens during multi-turn
rollouts in a zero-shot setting. Otherwise, GRPO will fail to optimize correctly due to the absence
of gradients. We conduct comparative ablation studies in Appendix C.3 and find that the Agent
Prompt recommended by Qwen-2.5VL [5] suits VisionThink best. The prompt details are provided
in Appendix B.1.

3.4 Reward Design

Different reward functions can lead the model toward different optimization directions and final
performance outcomes. The reward function in our VisionThink framework consists of three compo-
nents:

Roverall = Raccuracy +Rformat − Pcontrol, (4)

where R represents the reward and P represents the penalty.

Accuracy Reward. We utilize the LLM-as-Judge strategy to evaluate whether the generated answers
are correct, where 0 denotes an incorrect answer and 1 denotes a correct one. The detailed design of
the accuracy reward follows the description in Sec. 3.2.

Format Reward. To maintain the model’s instruction-following capability and ensure that the trained
model can more accurately call the image resize function, we apply a format reward. Specifically,
we require the reasoning process to be enclosed in “<think></think>” tags, the final answer in
“<answer></answer>” tags, and the function call to conform to the JSON format specified in Appendix
B. If any of these formats are incorrect, the format score is 0. Only when all formats are correct can
the model achieve the full format score of 0.5.

Penalty Control. The design of the penalty is a key component of the reward function. As shown in
Fig. 3(a), since using high-resolution images generally improves performance, without any penalty,
the model tends to collapse into always requesting high-resolution images. To prevent this, we initially
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Table 1: Effective Performance Compared to the Sota Model. Our model is based on Qwen2.5-
VL-7B-Instruct. VisionThink‡ represents a model trained on general VQA tasks using full image
resolution with the LLM-as-Judge strategy, which does not contain efficiency capabilities. Qwen2.5-
VL-7B∗ reports the results evaluate by lmms-eval[94].

Method
MMMU MMMU-Pro MMBench RealWorldQA POPE MME MathVista MathVerse MMVet

val test en_test test test test testmini testmini test

Closed-Source Model

GPT-4o [50] 69.1 54.0 83.4 58.6 85.6 2329 63.8 50.2 69.1

Claude-3.5 Sonnet [2] 68.3 55.0 82.6 59.9 - 1920 67.7 41.2 70.1

Gemini-1.5-Pro [62] 62.2 49.4 73.9 70.4 88.2 - 63.9 - 64.0

Open-Source General Model

Cambrain-1-8B [65] 42.7 - 75.9 60.0 86.4 1803 49.0 - -

InternVL2-8B [12] 49.3 32.5 81.7 64.4 84.2 2210 58.3 - 60.0

LLaVA-OneVision-7B [28] 48.8 - - 66.3 88.4 1998 63.2 - 57.5

MiniCPM-Llama-V-2.5-8B [89] 45.8 19.6 77.2 63.0 86.7 2025 54.3 - -

MiniCPM-V-2.6-8B [89] 49.8 27.2 78.0 65.0 83.2 2348 60.6 - -

IXC-2.5 [95] 42.9 - 82.2 67.8 - 2229 63.8 - 51.7

InternVL2.5-8B [11] 56.0 38.2 84.6 70.1 90.6 2344 64.4 39.5 62.8

Reasoning Model

LLaVA-CoT-11B [78] - - 75.0 - - - 54.8 - 60.3

LLaVA-Reasoner-8B [97] - - - - - - 50.6 - -

Insight-V-8B [14] 50.2 24.9 82.3 - - 2312 59.9 - -

Mulberry-7B [86] 55.0 - - - - 2396 63.1 - -

Vision-R1-LlamaV-CI-11B [19] - - - - - 2190 62.7 27.1 -

VisionThink

Qwen2.5-VL-7B∗ [5] 50.3 37.7 82.6 68.6 86.7 2316 68.2 46.3 61.6

VisionThink ‡ 51.0 40.1 82.9 68.6 87.9 2307 71.2 48.8 67.5

VisionThink 51.2 38.9 80.0 68.5 86.0 2400 67.5 48.0 67.1

followed Search-R1 [23] and applied a 0.1 penalty for correct answers that relied on high-resolution
images. However, this approach causes the model to favor direct answers, leading to a collapse where
the model relies solely on direct answers, as indicated by the purple line in Fig. 3. The reason is that
even blurry, low-resolution images sometimes allow the model to guess the correct answer, and the
0.1 penalty unintentionally reinforced this preference for direct answering.

To address this, we introduce a threshold to control the phenomenon of “lucky guesses”. When the
probability of correctly answering with a low-resolution image is low, we apply a 0.1 penalty to direct
answers to encourage high-resolution requests; conversely, when the probability is high, we penalize
high-resolution requests with a 0.1 penalty. In summary, the penalty is designed as below:

Pcontrol = 0.1 · [1directI(r < θ) + 1highI(r ≥ θ)] , r =
Cdirect

Cdirect + Chigh
, (5)

where Cdirect and Chigh are the correct-answer counts for low- and high-resolution inputs, respectively,
and 1action is the indicator of the chosen action, and we set θ as 0.2 here. We will discuss the impact
of the threshold in Appendix C.3.

3.5 Data Preparation

To enable our model can decide when high resolution is necessary, we collect corresponding VQA
samples, including both cases requiring high-resolution images and cases adequately answered
using downsampled images. To achieve this, we use our base policy model, Qwen2.5VL-Instruct,
to perform multiple rollouts on the training dataset and classify the samples based on accuracy.
Specifically, we set the temperature to 1 and roll out each sample 8 times. If both the high-resolution
and downsampled images yield correct answers in all 8 rollouts, we classify the sample as solvable
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using low resolution. Conversely, if the number of correct answers using the high-resolution image
exceeds that of the downsampled image by 6 or more, we classify the sample as requiring high
resolution. By using the above method, we selected 10K samples that require high-resolution images
and 10K samples that do not, to train our model.

4 Experiments

4.1 Evaluation Setup

Benchmarks. We evaluate VisionThink on several general VQA benchmarks, including
ChartQA [45], OCRBench [37], MathVista [42], MMVet [91], RealWorldQA [74], and Math-
Verse [96], etc. Notably, benchmarks such as ChartQA, OCRBench, and MathVista are strongly
OCR-related, requiring the model to possess a high level of detail comprehension. The detailed
descriptions of these benchmarks are shown in Appendix B.4.

Implementation Details. We conduct experiments based on Qwen2.5-VL-7B-Instruct[5]. For
training, we employ veRL[58] framework and use a total batch size of 512, with a mini-batch size
of 32, we set the policy LLM learning rate to 1e− 6 and sample 16 responses per prompt, ensuring
a stable and effective training process. For inference, we use the vLLM framework and set the
temperature to 0. Further details are shown in Appendix B.3.

4.2 Reinforcement Learning Enables VLM to Be More Effective

Main Results. To demonstrate the effectiveness of our VisionThink, we compare our VisionThink
with the current open-source and closed-source state-of-the-art (sota) method. As shown in Table 6,
VisionThink ‡ is used to demonstrate the effectiveness of the LLM-as-Judge strategy on general
VQA tasks. It represents a model trained with full image resolution using only accuracy and format
rewards, and thus does not incorporate efficiency capabilities. The results show that our VisionThink
achieves comparable or even superior performance on general VQA tasks while being more efficient.
Specifically, MathVerse and MMVet achieve scores of 48.0 and 67.1, representing improvements of
3.7% and 8.9%, respectively, over the base model. Furthermore, our model performs comparably to
closed-source models on several benchmarks such as MathVista and MMBench, and even surpasses
all closed-source models on MME, achieving a score of 2400. Besides, as shown in Fig. 3(b), by
introducing the LLM-as-Judge for test-time scaling, VisionThink’s answer outperforms the vanilla
model’s short direct answer. Moreover, we scale up the data size to 130K, and further demonstrate
the effectiveness of LLM-as-Judge on General VQA Tasks. The results are shown in Appendix B.5.

4.3 Reinforcement Learning Enables VLM to Be More Efficient

Comparison with the Reasoning Model. To demonstrate the efficiency of our model, we first
compare our VisionThink with QwenRL and QwenRL 1/4, both of which are reasoning models
trained using the LLM-as-Judge strategy based on Qwen2.5-VL-7B Instruct. QwenRL and QwenRL
1/4 represent inference using the full-resolution image and the 1/4-resolution image, respectively.
As shown in Fig. 4, we compare the inference time costs of the three models. Notably, the reported
inference times reflect the actual time consumed during vLLM inference, which we believe best rep-
resents efficiency in real-world applications. The results show that on most benchmarks, our model’s
inference time is close to that of QwenRL 1/4, which uses 1/4 of the image tokens, and significantly
better than the QwenRL model that processes all image tokens. Specifically, on the DocVQA bench-
mark, our VisionThink model is more than twice as fast as QwenRL. It also outperforms the baseline
by approximately one-third in terms of inference time on benchmarks such as MME and POPE. It is
worth noting that on strongly OCR-dependent benchmarks like ChartQA, our model consumes more
time than the baseline QwenRL. This is because VisionThink identifies that most questions cannot be
answered correctly at low resolution and thus autonomously requests high-resolution images. As a
result, the total number of image tokens used by VisionThink exceeds that of the baseline, which we
consider reasonable. However, such strongly OCR-dependent benchmarks are relatively rare, so the
overall efficiency of VisionThink remains high.

Comparison with the Previous Efficient VLM. To further show the effectiveness of our Vision-
Think, we compare it with the previous Efficient VLM method FastV and SparseVLM. Notably, all
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Qwen2.5-VL-Instruct Model and inference on full resolution image and 1/4 resolution image, respec-
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these methods require computing attention scores to prune visual tokens, which makes them difficult
to optimize with FlashAttention2 and may lead to increased memory usage. Furthermore, they are
not directly compatible with the efficient inference framework vLLM. Therefore, to ensure a fair
comparison, we evaluate model performance while keeping visual token consumption as consistent
as possible. As shown in Table 2, our VisionThink outperforms previous methods on average across
nine benchmarks. Furthermore, previous approaches require a predefined pruning ratio threshold,
whereas our method can autonomously decide whether to reduce tokens based on the question and
image content. As a result, on OCR-Related benchmarks such as ChartQA and OCR Bench, our
method significantly surpasses FastV and SparseVLM by 9.0% and 8.3%, respectively.

4.4 Reinforcement Learning Enables VLM to Be Smarter

Apply Resize Direct Answer

ChartQA

79%

21%

OCRBench

Apply Resize Direct Answer

62%

Strong OCR-Related Benchmarks

Apply Resize Direct Answer

31%

69%
38%

MME
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DocVQA

Weak OCR-Related Benchmarks
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93%

Figure 5: VisionThink smartly determine the high-resolution image ratio. Apply Resize indicates
that the model autonomously requests to view the original high-resolution image, while Direct Answer
indicates that the model is able to answer the question using only the 1/4-sized image.

In this section, we present the proportion of samples across different benchmarks for which our
VisionThink gives direct answers versus those for which it requests high-resolution images. This
illustrates the model’s ability to smartly determine whether the information in the downsampled
image is sufficient. As shown in Fig. 5, we observe that on benchmarks such as ChartQA and
OCRBench, which require detailed visual understanding, our model shows a higher ratio of requests
for high-resolution images. In contrast, for benchmarks like MME and DocVQA, at least 70% of
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Table 2: Comparison with Traditional Efficient VLM Methods. Vanilla represents the Qwen2.5-
VL-7B-Instrcut. The retained ratio of the baseline methods is a predefined hyperparameter, while
for VisionThink, the ratio is determined autonomously by the model and reported as a statistical
value. Note that Down-Sample refers to the model’s performance when directly fed images with their
resolution reduced by half. Additional baseline comparison results (VisionZip [80]) are shown in
Table. 7

Method
ChartQA† OCRBench DocVQA MME MMVet RealWorldQA POPE MathVista MathVerse

Avg.
test test val test test test test testmini testmini

Retain 100% Visual Tokens Across All Benchmarks

Vanilla
79.8 81.5 95.1 2316 61.6 68.6 86.7 68.2 46.3

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 25% Visual Tokens Across All Benchmarks

Down-Sample
62.9 68.8 94.3 2270 54.5 68.8 82.8 62.2 43.1

92.1%
78.8% 84.4% 99.1% 98.0% 88.5% 100.3% 95.5% 91.2% 93.1%

Retain 50% Visual Tokens Across All Benchmarks

SparseVLM [100]
73.2 75.6 66.8 2282 51.5 68.4 85.5 66.6 45.1

92.2%
91.7% 92.7% 70.2% 98.5% 83.6% 99.7% 98.6% 97.6% 97.4%

FastV [8]
72.6 75.8 93.6 2308 52.8 68.8 84.7 63.7 45.0

95.8%
91.0% 93.0% 98.4% 99.6% 85.7% 100.3% 97.7% 93.4% 97.2%

Retain 70% Visual Tokens Across All Benchmarks

SparseVLM (ICML 2025)
75.8 79.3 68.7 2276 53.7 68.5 85.4 66.3 45.1

93.6%
94.9% 97.3% 72.2% 98.3% 87.2% 99.8% 98.5% 97.2% 97.4%

FastV (ECCV 2024)
77.2 82.2 94.4 2342 56.0 68.6 85.9 65.9 46.9

98.4%
96.7% 100.8% 99.3% 101.1% 90.9% 100% 99.1% 96.6% 101.3%

Retain Approximately 51.3% Visual Tokens Across All Benchmarks

VisionThink
79.8 80.8 94.4 2400 68.5 67.1 86.0 67.5 48.0

101.4%
100% 99.1% 99.3% 103.6% 111.2% 97.8% 99.2% 99.0% 103.7%

the samples can be answered directly using low-resolution images at 1/4 of the original resolution.
These results align with human intuition: most daily questions do not require high-resolution images,
and only OCR-related tasks truly depend on them. Furthermore, to better demonstrate the ‘smart’
capabilities of VisionThink, we conduct case studies in Appendix D.

4.5 Relationship of the EfficientVLM methods and VisionThink.

Key Differences. Traditional EfficientVLM methods take a redundant image as input and attempt to
remove the redundancy during inference. However, this process typically relies on fixed thresholds,
which may yield acceptable performance on standard VQA tasks but result in poor performance
on OCR-related or detail-sensitive scenarios, limiting their practical applicability. In contrast,
VisionThink inputs reduced visual tokens and enables the model to autonomously determine whether
a higher-resolution image is needed. Ideally, this approach avoids any performance degradation.

Integration Potential. Our proposed VisionThink essentially introduces a new paradigm for
reading images, which can be integrated with existing Efficient VLMs. In this paper, to provide a
straightforward validation of VisionThink, we chose to use image resizing perform token reduction.
We believe that adopting more advanced token reduction techniques could further improve the model’s
direct answering accuracy, consequently, enhance its overall efficiency. Further discussions are shown
in Appendix C.

5 Related Works

Vision Language Model Reasoning. With the advancement of LLM reasoning capabilities [17],
many studies have aimed to improve the reasoning abilities of VLMs [98, 48, 43]. One common
approach is using Chain-of-Thought (CoT) prompting to construct SFT datasets. However, the CoTs
generated often lack natural human cognitive processes, limiting their effectiveness and generalization.
Furthermore, inspired by DeepSeek-R1 [17], some studies have attempted to transfer this reasoning
paradigm to vision tasks [87, 64, 20, 85]. However, most current approaches remain limited to the
visual math and fail to generalize to general VQA tasks. In contrast, VisionThink successfully applies
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effective reinforcement learning to general VQA by leveraging the LLM-as-Judge strategy. Due to
space limitations, additional related work on efficient VLMs and LLM-based reasoning is presented
in Appendix A.

6 Concluding Remarks

6.1 Summary

In this work, we introduce VisionThink, a novel paradigm for General VQA that enhances efficiency
and performance. By initially processing a downsampled image and using reinforcement learning to
selectively upscale to higher resolution when needed, VisionThink optimizes computational resources
while preserving accuracy. Leveraging the LLM-as-Judge strategy and a tailored reward function, our
approach outperforms prior state-of-the-art models across diverse VQA benchmarks, particularly in
tasks requiring fine-grained details like OCR. We believe VisionThink demonstrates the potential of
reinforcement learning in vision-language models and encourages the development of more effective
and efficient AI systems.

6.2 Limitations and Future work

In this work, we focus on the setting of 2x resolution upscaling and at most two turns of conversations
and yield promising results. However, it has not been extended to the setting of flexible resolution
upscaling. Besides, incorporating more visual tools such as cropping would further bring benefits in
both efficiency and performance. Furthermore, multi-turn (for example, more than 5 turns) image
tool calls could gain more in solving complex visual problems.

Additionally, our paper utilizes image resizing to reduce the number of visual tokens. This simple
method achieves a good balance between performance and efficiency via reinforcement learning. We
hope this work inspires further research in the field of efficient reasoning vision language models,
especially on making models smarter and more human-like. We will continue to explore the path
toward building more general, powerful, and efficient vision-language models.
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A Related Works

A.1 Efficient Vision Language Models

Large Language Models (LLMs) have demonstrated remarkable progress in language understanding
and generation [1, 66, 4, 51, 13, 29]. Building on their success, VLMs have rapidly advanced by
integrating visual information into LLM architectures [33, 34, 31, 65, 67, 35, 102, 26, 82]. Prominent
models such as LLaVA [33] utilize visual encoders followed by the projection layers to convert images
into token sequences compatible with LLMs. However, as the performance of vision-language models
continues to improve, the number of visual tokens grows rapidly, leading to increased computational
costs. This trend limits the practical deployment of such models in scenarios like edge computing,
autonomous driving, medical analysis, and robotics [24, 36, 54, 81, 83, 89, 55, 61, 52, 99, 53, 68, 84].
Therefore, it is imperative to avoid the excessive use of visual tokens.

Recently, some studies [8, 100, 77, 71, 59, 18, 80, 101] have also recognized the redundancy in visual
tokens and proposed various methods to address it. Most of these works input images containing
redundancy and use the attention scores assigned by the model to prune or merge tokens for token
reduction. Furthermore, they typically apply a fixed threshold to reduce the same proportion of
redundant tokens across all data samples. Although these methods maintain good performance on
general VQA tasks, they perform poorly on OCR-related benchmarks. In contrast to previous works,
our proposed VisionThink initially inputs reduced tokens and allows the model to autonomously
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determine whether token reduction is sufficient or if a high-resolution image is required. Through
this approach, our method achieves efficiency while maintaining strong performance on OCR-related
benchmarks. Additionally, VisionThink is not a specific token-level reduction strategy but represents
a new paradigm that can be integrated with existing EfficientVLM methods.

A.2 Large Language Model Reasoning

Recent advances in large language models (LLMs) [70, 44, 49, 63, 17, 73, 62, 79] have signifi-
cantly improved their reasoning capabilities through methods that simulate human-like stepwise
thinking. One foundational technique, Chain-of-Thought (CoT) prompting [69], encourages mod-
els to decompose complex tasks into intermediate steps, enhancing performance on a variety of
reasoning benchmarks. Furthermore, researchers have explored more structured and dynamic reason-
ing paradigms, such as Tree-of-Thought and Graph-of-Thought [88, 7], which organize reasoning
as branching or interconnected processes. Complementary approaches like Program-of-Thought
(PoT) [10] further improve reasoning fidelity by integrating external computational tools to verify or
simplify logic steps.

Besides, recent work has also shifted attention from model architecture design and train-time scaling
to test-time scaling [60], such as Monte Carlo Tree Search (MCTS) [76], stepwise preference
optimization [27], and reinforcement learning [44] are used to refine outputs during inference.
Models such as DeepSeek-R1 [17], OpenAI-O1 [49] demonstrate the effectiveness of combining
large-scale RL with reward functions that prioritize both correctness and reasoning quality. Although
LLMs have shown remarkable progress in structured reasoning, extending these abilities to Vision
Language Models remains an open challenge.

A.3 Vision Language Model Reasoning

With the advancement of LLM reasoning capabilities [17], many studies have aimed to improve the
reasoning abilities of VLMs [98, 48, 43]. One common approach is using Chain-of-Thought (CoT)
prompting to construct SFT datasets. However, the CoTs generated often lack natural human cognitive
processes, limiting their effectiveness and generalization. Furthermore, inspired by DeepSeek-R1 [17],
several studies have attempted to transfer this reasoning paradigm to vision tasks [87, 64, 20, 85,
38, 57, 47, 41, 72, 40, 39]. Most of these efforts, by collecting CoT data to perform a cold start and
then training the model using a reinforcement learning strategy such as GRPO. While this approach
achieves performance improvements on specific tasks, it significantly degrades the model’s general
performance. Moreover, current methods remain limited to visual math or segmentation tasks, failing
to generalize to broader general VQA tasks. In this paper, we propose VisionThink, which effectively
applies reinforcement learning to general VQA tasks by leveraging the LLM-as-Judge strategy.

B Additional Experiments

B.1 Prompt Details

B.1.1 LLM-as-Judge Prompt Design

In this section, we detail the prompt design for our LLM-as-Judge strategy. As shown in Table 3, the
placeholders Ground Truth and Prediction are dynamically replaced with the corresponding question,
ground truth answer, and model prediction during evaluation. Specifically, the judgment process is
conducted entirely in text. Our findings indicate that, compared to VLMs, current LLMs achieve
higher judgment accuracy and exhibit fewer hallucinations. Moreover, by eliminating the need for
visual token inputs, it significantly reduce the overall evaluation cost.

Furthermore, we require the LLM to return a discrete value, with 1 indicating a correct prediction and
0 indicating an incorrect one, rather than a continuous score representing the degree of correctness.
This binary format further reduces the likelihood of misjudgment. In a user study of 1,000 cases, no
misclassifications were observed.
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Table 3: Judgment Prompt Template. Question, Ground Truth and Prediction are dynamically
replaced with the specific question, ground truth and model prediction during evaluation.

SYSTEM PROMPT:
You are an intelligent chatbot designed for evaluating the correctness of generative outputs for
question-answer pairs.
Your task is to compare the predicted answer with the correct answer and determine if they
match meaningfully. Here’s how you can accomplish the task:
INSTRUCTIONS:
- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to the answer.

USER PROMPT:
I will give you a question related to an image and the following text as inputs:
1. **Question Related to the Image**: Question
2. **Ground Truth Answer**: Ground Truth
3. **Model Predicted Answer**: Prediction
Your task is to evaluate the model’s predicted answer against the ground truth answer, based
on the context provided by the question related to the image. Consider the following criteria
for evaluation:
- **Relevance**: Does the predicted answer directly address the question posed, considering
the information provided by the given question?
- **Accuracy**: Compare the predicted answer to the ground truth answer. You need to
evaluate from the following two perspectives:
(1) If the ground truth answer is open-ended, consider whether the prediction accurately
reflects the information given in the ground truth without introducing factual inaccuracies. If
it does, the prediction should be considered correct.
(2) If the ground truth answer is a definitive answer, strictly compare the model’s prediction to
the actual answer. Pay attention to unit conversions such as length and angle, etc. As long as
the results are consistent, the model’s prediction should be deemed correct.
**Output Format**:
Your response should include an integer score indicating the correctness of the prediction: 1
for correct and 0 for incorrect. Note that 1 means the model’s prediction strictly aligns with
the ground truth, while 0 means it does not.
The format should be Score: 0 or 1

B.1.2 VisionThink Image Resize Prompt

As shown in Table 4, we present the detailed system and user prompts used in our proposed Vision-
Think. Specifically, we integrate image resizing as a tool-call function. Following the Qwen2.5-VL
cookbook [6], we employ an Agent Prompt that enables the model to output special tokens to trigger
image resizing. This prompt design allows the model to exhibit distinct behaviors such as requesting
image resizing or directly answering the question. These behaviors introduce differentiable gradients,
which make it feasible to apply the GRPO algorithm. Furthermore, we analyze the impact of different
prompts in Sec. C.3.

B.2 Details of the Format Reward

The format reward has a total score of 0.5, which is awarded only when all formatting requirements
are fully satisfied. Specifically, as shown in the VisionThink Prompt (Table. 4), the first requirement
is that the model’s output must include both the the <answer></answer> and <think></think> tags,
which denote the final answer and the reasoning process, respectively. The second requirement states
that for responses involving an image resize operation, the model must output a correctly formatted
<tool_call></tool_call> tag containing a valid JSON content.
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Table 4: VisionThink Image Resize Prompt Template. Question will be replaced with the specific
question during training and inference.

SYSTEM PROMPT:
You are a helpful assistant.
# Tools
You may call the function tool shown below to assist with the user query.
You are provided with the function signature within <tools></tools> XML tags:
<tools>
{

"type": "function",
"function":{

"name_for_human": "resize_image",
"name": "resize_image",
"description": "Resize the image resolution.",

"parameters": {
"properties": {

"action": {
"description": "The action to perform. The available actions are:

resize: Double the resolution of the current image. You should only use this
tool if you are unable to obtain the critical information needed to answer the question from the
current resolution.",

"enum": ["resize"],
"type": "string"
}

}
"required": ["action"],
"type": "object",

},
"args_format": "Format the arguments as a JSON object."
}

}
</tools>
For each function call, return a json object with the function name and the corresponding
argument within <tool_call></tool_call> XML tags:
<tool_call> {"name": <function-name>, "arguments": <args-json-object>} </tool_call>

USER PROMPT:
Answer the question based on the image provided. You must conduct reasoning within
<think> and </think> first in each of your reasoning steps. You may call ONE function tool
per step to help you better solve the problem. Place the function tool within <tool_call>
and </tool_call> at the end of each step to perform a function call. You should continue
your reasoning process based on the content returned by the function tool. Once you confirm
your final answer, place the final answer inside <answer> and </answer>. For mathematical
or multiple-choice problem, wrap the answer value or choice with \boxed{}. Here is the
image and question: Question.

B.3 Implementation Details

Training Details. In this paper, we conduct experiments using Qwen2.5-VL-7B-Instruct [5] as the
base model, trained with the veRL framework [58]. We use a total batch size of 512 with mixed-
precision (FP16) training. The mini-batch size is set to 32, and the KL divergence coefficient is
0.001. The policy model is optimized using an initial learning rate of 1× 10−6. For each prompt, we
generate 16 candidate responses using a temperature of 1.0, and apply duplicate and empty response
filtering, similar to DAPO [90].

Inference Details. In this paper, we use the lmms-eval [94] to evaluate the model’s performance.
Besides, in order to save the GPU memory and improve the inference speed, we utilize the vLLM[25]
framework and set the temperature to zero for inference.
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𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏: What's the gap 

percent between the bad and the 

better scenarios being studied?

𝑮𝑻: 47

𝑷𝒓𝒆𝒅𝟏: 47

𝑷𝒓𝒆𝒅𝟐: 46

𝑷𝒓𝒆𝒅𝟑: 47%

𝑷𝒓𝒆𝒅𝟑: 0.47

Figure 6: An example illustrating the original evaluation method used in ChartQA.

B.4 Benchmark Datasets and Evaluation Metrics

We conduct experiments on these widely used visual understanding benchmarks.

ChartQA. ChartQA [45] is a benchmark designed to evaluate how well multimodal models answer
questions about charts, emphasizing both visual understanding and logical reasoning. It includes
various chart types, such as bar charts and line graphs, with a mix of human-written and automatically
generated questions to assess complex reasoning abilities. Notably, ChartQA is a strongly OCR-
dependent benchmark that requires fine-grained visual understanding, as models must extract textual
information from charts and reason over it.

1def _to_float(text: str):
2try:
3if text.endswith("%"):
4return float(text.rstrip("%")) / 100.0
5else:
6return float(text)
7except ValueError:
8return None
9

10prediction_float = _to_float(prediction)
11target_float = _to_float(target)
12

13if prediction_float is not None and target_float is not None:
14relative_change = abs(prediction_float - target_float) / abs(

target_float)
15return relative_change <= max_relative_change # 0.05
16else:
17return prediction.lower () == target.lower ()

Listing 1: Core evaluation code from the original ChartQA assessment method..

Furthermore, we observe that the evaluation process of ChartQA in lmms-eval [94] relies on a
float-value comparison method, which presents several limitations in practical evaluation scenarios.
The corresponding implementation is shown in Listing 1, and an illustrative example is provided in
Fig. 6 for further analysis.

As shown in Fig. 6, for the question “What’s the gap percent between the bad and the better scenarios
being studied?”, the intuitive answer derived from the image is 47%. And the _to_float() function
(Line 1 in Listing 1) converts both 0.47 and 47% to 0.47, while converting the ground truth value 47
to 47.0. Hence, the comparison at Line 14 treats both 0.47 and 47% as incorrect predictions, leading
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to an erroneous evaluation result. Moreover, when the model incorrectly predicts 46, the current
evaluation method still considers it correct, as the relative error compared to the ground truth 47 is:

|46− 47|
47

= 0.02 < 0.05.

which is also a wrong judgment result of the evaluation.

Based on this observation, all ChartQA evaluations in this paper are conducted using a combination
of GPT-4o-Judge and human verification, denoted as ChartQA†.

MME. The MME benchmark [15] assesses multimodal models on 14 subtasks that reflect both
perceptual processing and cognitive reasoning abilities. By utilizing carefully crafted instruction-
response pairs, MME aims to minimize the risk of training data contamination, ensuring a fair and
rigorous evaluation process.

OCRBench. OCRBench [37] is a comprehensive benchmark for evaluating the OCR capabilities of
vision language models. It covers five key tasks: text recognition, scene text-centric VQA, document-
oriented VQA, key information extraction, and handwritten mathematical expression recognition.
With 29 datasets and 10,000 human-verified QA pairs across 31 scenarios. Its scenarios span street
scenes, receipts, and formulas, testing models on multilingual, handwritten, non-semantic, and
mathematical text.

DocVQA. DocVQA [46] is a dataset for VQA on document images, comprising 50,000 questions
defined on over 12,000 document images. It covers various document types, including forms, receipts,
and scientific papers, testing models’ ability to understand and reason about document content, such
as textual information, tables, and visual elements.

RealWorldQA. RealWorldQA [74] is a benchmark designed to evaluate the real-world spatial
understanding capabilities of VLMs. It consists of over 700 images, each accompanied by a question
and a verifiable answer, drawn from real-world scenarios, including those captured from vehicles. The
benchmark assesses how well models comprehend physical environments and spatial relationships,
which are crucial for applications in navigation, robotics, and general AI assistance.

MMVet. MMVet [92] introduces a structured framework to assess six foundational vision-language
skills: recognition, OCR, knowledge, language generation, spatial awareness, and math. These
capabilities are combined in 16 evaluation configurations to test how well multimodal systems can
integrate them for solving complex tasks, offering a detailed and quantitative performance analysis.

POPE. POPE [32] is designed to measure object hallucination in vision-language models using
binary-choice questions that verify whether specific objects are present in given images. It employs
metrics such as Accuracy, Recall, Precision, and F1 Score across three distinct sampling strategies,
delivering a robust and fine-grained evaluation of hallucination tendencies. In our paper, the result of
POPE is F1-score.

MMMU. MMMU [93] serves as a benchmark for assessing multimodal models on intricate, college-
level tasks that demand both extensive knowledge and reasoning capabilities. It comprises 11.5K
carefully selected questions sourced from exams, quizzes, and academic textbooks, spanning six broad
fields: Art & Design, Business, Science, Health & Medicine, Humanities & Social Sciences, and
Technology & Engineering. These questions encompass 30 academic subjects and 183 specialized
areas, incorporating a wide variety of visual formats such as diagrams, graphs, and chemical formulas.
MMMU is designed to push models toward expert-level performance by testing their ability to
understand and reason across disciplines and modalities.

MathVista. MathVista [42] is a benchmark for evaluating the mathematical reasoning capabilities
of foundation models within visual contexts. It includes 6,141 examples, derived from 28 existing
multimodal datasets involving mathematics and three newly created datasets: IQTest, FunctionQA,
and PaperQA. These tasks require fine-grained visual understanding and compositional reasoning,
often involving the interpretation of graphs, equations, and other mathematical visuals. MathVista
aims to systematically study the ability of VLMs to solve mathematical problems presented in
visual formats, highlighting the need for models that can seamlessly integrate visual perception with
mathematical reasoning.
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MathVerse. MathVerse [96] is a benchmark for rigorously evaluating the capabilities of VLMs in
interpreting and reasoning with visual information in mathematical problems. MathVerse consists of
2,612 high-quality, multi-subject math problems with diagrams, each transformed into six distinct
versions with varying degrees of information content in multi-modality, resulting in 15,000 test
samples.

B.5 Scaling-up Reinforcement Learning on General VQA Tasks

Due to the diversity and complexity inherent in general VQA tasks, traditional rule-based reinforce-
ment learning algorithms are not directly applicable. To overcome this limitation, we introduce an
LLM-as-Judge strategy, which enables our model to be trained via reinforcement learning on the
General VQA task. To further demonstrate the effectiveness of our method, we scale up the dataset
size to 130K to validate its effectiveness.

Dataset. Since the LLM-as-Judge approach is flexible, one advantage is that most of the SFT data
can be utilized. Therefore, we only filter out subjective open-ended questions whose answers are not
unique and can be correctly addressed from different perspectives, such as image descriptions, essay
writing, and similar tasks. Based on this, we ultimately filtered 130K QA pairs to train the VLM via
reinforcement learning, without requiring any cold-start phase. All the data will be open-sourced.

Prompt. To verify the effectiveness of the LLM-as-Judge strategy on general VQA tasks, we conduct
experiments with minimal modifications to both the system and user prompts. The detailed prompts
are provided in Table 5.

Reward. Since the entire training process in this setting does not involve any decision-making
regarding the need for high-resolution images, the total reward function in reinforcement learning
is designed to focus solely on answer quality and response formatting. Specifically, the reward
comprises two components: The first component is an accuracy reward, evaluated by the LLM-as-
Judge. This component assesses the correctness of the model’s answer against the ground truth, with
a maximum of 1 point awarded for a fully correct response. The second component is a formatting
reward, worth 0.5 points. This is granted when the model correctly wraps its response using both
the <answer></answer> and <think></think> tags. These tags are critical for maintaining consistent
output formatting and enabling downstream interpretability.

Table 5: Prompt Template for VisionThink♠. VisionThink♠ refers to a model trained on general
VQA tasks using full image resolution and the LLM-as-Judge strategy. The Question placeholder is
replaced with the actual question during training and inference.

SYSTEM PROMPT:
You FIRST think about the reasoning process as an internal monologue and then provide the
final answer.
The reasoning process MUST BE enclosed within <think> </think> tags. The final answer
MUST BE put within <answer> </answer> tags. For mathematical or multiple-choice
problems, wrap the answer value or choice with \boxed{}.

USER PROMPT:
Question.

Experimental Results. As shown in Table 6, we compare our model against state-of-the-art open-
source and closed-source vision-language models across several general VQA benchmarks. In this
evaluation, VisionThink ♠ denotes our model variant trained using the proposed LLM-as-Judge
strategy with the above reward function and 130K QA pairs.

The experimental results demonstrate that our method outperforms the baseline model, Qwen2.5VL-
7B-Instruct, across multiple benchmarks. The improvement is particularly notable on the MMVet,
where our model achieves a significant performance gain of 7.9% over the baseline. This highlights
the model’s superior capability in handling general VQA tasks. Furthermore, on the recently popular
benchmark MathVista [42], which is designed to assess both mathematical reasoning and general
visual question answering reasoning abilities, our model achieves a score of 71.2. This result not
only surpasses all existing open-source models but also outperforms several closed-source models.
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Table 6: Effectiveness of LLM-as-Judge Accuracy Reward Design. VisionThink♠ is a model we
developed by training with the LLM-as-Judge on 130K filtered General VQA datasets and leverages
Qwen2.5-VL-7B-Instruct as the base model. Qwen2.5-VL-7B∗ reports the results evaluate by lmms-
eval[94].

Method
MMMU MMMU-Pro MMBench RealWorldQA POPE MME MathVista MathVerse MMVet

val test en_test test test test testmini testmini test

Closed-Source Model

GPT-4o [50] 69.1 54.0 83.4 58.6 85.6 2329 63.8 50.2 69.1

Claude-3.5 Sonnet [2] 68.3 55.0 82.6 59.9 - 1920 67.7 41.2 70.1

Gemini-1.5-Pro [62] 62.2 49.4 73.9 70.4 88.2 - 63.9 - 64.0

Open-Source General Model

Cambrain-1-8B [65] 42.7 - 75.9 60.0 86.4 1803 49.0 - -

InternVL2-8B [12] 49.3 32.5 81.7 64.4 84.2 2210 58.3 - 60.0

LLaVA-OneVision-7B [28] 48.8 - - 66.3 88.4 1998 63.2 - 57.5

MiniCPM-Llama-V-2.5-8B [89] 45.8 19.6 77.2 63.0 86.7 2025 54.3 - -

MiniCPM-V-2.6-8B [89] 49.8 27.2 78.0 65.0 83.2 2348 60.6 - -

IXC-2.5 [95] 42.9 - 82.2 67.8 - 2229 63.8 - 51.7

InternVL2.5-8B [11] 56.0 38.2 84.6 70.1 90.6 2344 64.4 39.5 62.8

Reasoning Model

LLaVA-CoT-11B [78] - - 75.0 - - - 54.8 - 60.3

LLaVA-Reasoner-8B [97] - - - - - - 50.6 - -

Insight-V-8B [14] 50.2 24.9 82.3 - - 2312 59.9 - -

Mulberry-7B [86] 55.0 - - - - 2396 63.1 - -

Vision-R1-LlamaV-CI-11B [19] - - - - - 2190 62.7 27.1 -

VisionThink

Qwen2.5-VL-7B∗ [5] 50.3 37.7 82.6 68.6 86.7 2316 68.2 46.3 61.6

VisionThink ♠ 52.7 41.1 83.4 66.5 88.6 2314 71.2 48.3 69.5

These findings provide strong empirical evidence for the effectiveness and generalizability of our
LLM-as-Judge strategy in enhancing the reasoning capabilities of VLMs across general VQA tasks.

B.6 Comparison with Previous Efficient VLM

To further demonstrate the effectiveness of our proposed VisionThink, we conduct a comparative
analysis against an additional efficient Vision-Language Model (VLM), VisionZip [80]. While
previous methods such as FastV [8] and SparseVLM [100] perform token reduction within the
language model component based on attention scores, VisionZip applies reduction directly within the
vision encoder using a similar attention-based mechanism.

As shown in Table 7, although previous efficient VLM methods achieve competitive performance on
general VQA benchmarks, their accuracy drops significantly on OCR-related tasks. This degradation
is particularly evident even when a substantial portion of the visual token is retained (70%), as
demonstrated on the ChartQA dataset.

In contrast, our proposed model, VisionThink, can smartly decide whether to request the original
high-resolution image based on the complexity and demands of each sample. This adaptive strategy
enables the model to maintain high accuracy on general VQA tasks while substantially improving per-
formance on benchmarks requiring detailed textual recognition. Through this capability, VisionThink
demonstrates stronger fine-grained visual understanding and addresses a key limitation of previous
efficient VLMs—namely, their poor performance on OCR-related tasks, which has constrained their
applicability in real-world scenarios.

Notably, VisionZip‡ refers to the variant fine-tuned on the 130K dataset [80]. However, compared
to the training-free version of VisionZip, this fine-tuned model does not show any performance
improvement. We attribute this to the limited coverage and diversity of the fine-tuning dataset,
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Table 7: Comparison with Previous Efficient VLM Methods. Vanilla represents the Qwen2.5-
VL-7B-Instrcut. The retained ratio of the baseline methods is a predefined hyperparameter, while
for VisionThink, the ratio is determined autonomously by the model and reported as a statistical
value. Note that Down-Sample refers to the model’s performance when directly fed images with their
resolution reduced by half. VisionZip‡ represents using the 130K data to finetuning the model.

Method
ChartQA† OCRBench DocVQA MME MMVet RealWorldQA POPE MathVista MathVerse

Avg.
test test val test test test test testmini testmini

Retain 100% Visual Tokens Across All Benchmarks

Vanilla
79.8 81.5 95.1 2316 61.6 68.6 86.7 68.2 46.3

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 25% Visual Tokens Across All Benchmarks

Down-Sample
62.9 68.8 94.3 2270 54.5 68.8 82.8 62.2 43.1

92.1%
78.8% 84.4% 99.1% 98.0% 88.5% 100.3% 95.5% 91.2% 93.1%

Retain 50% Visual Tokens Across All Benchmarks

FastV (ECCV 2024)
72.6 75.8 93.6 2308 52.8 68.8 84.7 63.7 45.0

95.8%
91.0% 93.0% 98.4% 99.6% 85.7% 100.3% 97.7% 93.4% 97.2%

SparseVLM (ICML 2025)
73.2 75.6 66.8 2282 51.5 68.4 85.5 66.6 45.1

92.2%
91.7% 92.7% 70.2% 98.5% 83.6% 99.7% 98.6% 97.6% 97.4%

VisionZip (CVPR 2025)
73.4 70.5 93.8 2209 57.0 68.6 86.3 63.7 45.1

95.0%
92.0% 86.5% 98.6% 95.4% 92.5% 100% 99.5% 93.4% 97.4%

VisionZip‡ (CVPR 2025)
77.3 77.9 93.8 2244 50.1 69.2 91.2 63.1 39.4

95.0%
96.9% 95.6% 98.6% 96.9% 81.3% 100.9% 107.5% 92.5% 85.1%

Retain 70% Visual Tokens Across All Benchmarks

FastV (ECCV 2024)
77.2 82.2 94.4 2342 56.0 68.6 85.9 65.9 46.9

98.4%
96.7% 100.8% 99.3% 101.1% 90.9% 100.0% 99.1% 96.6% 101.3%

SparseVLM (ICML 2025)
75.8 79.3 68.7 2276 53.7 68.5 85.4 66.3 45.1

93.6%
94.9% 97.3% 72.2% 98.3% 87.2% 99.8% 98.5% 97.2% 97.4%

VisionZip (CVPR 2025)
76.8 80.9 94.5 2334 60.0 68.2 86.4 68.9 45.8

99.1%
96.2% 99.3% 99.4% 100.8% 97.4% 99.4% 99.7% 101.0% 98.9%

VisionZip‡ (CVPR 2025)
78.2 81.3 94.1 2230 52.5 68.6 92.5 64.8 41.8

96.7%
98.0% 99.8% 98.9% 96.3% 85.3% 100% 106.7% 95.0% 90.3%

Retain Approximately 51.3% Visual Tokens Across All Benchmarks

VisionThink
79.8 80.8 94.4 2400 68.5 67.1 86.0 67.5 48.0

101.4%
100.0% 99.1% 99.3% 103.6% 111.2% 97.8% 99.2% 99.0% 103.7%

which falls short of the supervised fine-tuning data used by the official Qwen team. This observation
indirectly suggests that, compared to supervised fine-tuning, reinforcement learning provides better
generalization, which we further discuss in Sec. C.1.

B.7 Additional Discussion Experiments

Stronger perception tasks. We adopt the widely used CV-Bench, introduced in Cambrian-1 [65],
and follow its official setting and prompt for the counting task. Besides, we do not introduce any
additional data for task-specific training. All models used are same to those in the main paper.

As shown in Table 8a, both VisionThink and VisionThink‡ outperform the base model (Qwen2.5VL-
7B) on the counting benchmark, demonstrating that our approach retains strong performance even on
stronger visual perception tasks.

Compared to the keyword-based method. Our VisionThink can automatically detect when the
visual information is insufficient and decide when to resize the image accordingly. This naturally
raises an interesting question: could we leverage keyword-based detection to determine when a
large-sized image is needed to provide more information, and when a smaller image would be
sufficient?
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Table 8: Additional Discussion Experiments.

(a) Results on stronger perception tasks.

Task Qwen2.5VL-7B VisionThink VisionThink‡

Counting 63.1% 65.7% 67.4%

(b) Comparison with Keyword-Based method.

Task Qwen-RL VisionThink Keyword-Based

ChartQA 79.8% 79.8% 67.6%

Table 9: VisionThink results on MiMO-VL.

MiMo-VL ChartQA OCRBench MME

Vanilla 91.3 86.6 2330
Down-Sample 69.8 73.1 2300
VisionThink (MiMo) 88.7 86.5 2326

Hence, to further assess the value of VisionThink, we compare it against a keyword-based resolution
selection approach. First, we use GPT-4o to generate 100 single-word fine-grained/OCR-related
keywords (e.g., counting, value, locate) and 100 short phrases (e.g., how many, fine detail). Then,
the system defaults to Qwen-RL (1/4) for efficient inference. When a keyword is detected in the
question, it switches to full-resolution inference via Qwen-RL. This simulates a keyword-triggered
token selection policy.

As shown in Table 8b, due to the diversity in question phrasing, keyword-based strategies generalize
poorly and result in suboptimal performance. Moreover, in real-world deployment, VisionThink only
requires deploying a single model, while keyword-based approaches require maintaining two separate
models, leading to increased resource consumption.

Adding VisionThink to additional VLMs. Recently, the MiMO team proposed MiMO-VL-SFT [75],
which achieves strong performance across several benchmarks. To further demonstrate the general-
ization ability of our proposed VisionThink, we integrate it into MiMO-VL. As shown in Table 9, our
method also achieves strong performance on MiMO-VL, highlighting the broad applicability and
generalization capability of VisionThink.

VisionThink trained with rule-based reward on easily verifiable tasks. To explore whether our
proposed method can be further optimized on easily verifiable tasks using rule-based approaches, we
conduct additional investigations.

Datasets. We filtered structured QA samples from our training set where answers can be validated
using huggingface/math-verify or string match. These samples are primarily from OCR-related
datasets, where answer verification is reliable.

Reward. Instead of relying on the LLM-as-Judge for binary rewards, we use rule-based verification
huggingface/math-verify and string match to provide the reward.

Results. As shown in Table 10, the first two models (Qwen-RL and VisionThink) are same as the
main paper that trained with LLM-as-Judge. The final column shows VisionThink (Rule-Based)
trained via rule-based reward only. It maintains strong accuracy and efficiency on verifiable tasks like
ChartQA and DocVQA.

Discussion. We used the LLM-as-Judge in the main paper to handle general QA scenarios, where
reliable rule-based supervision is difficult to define. However, as this experiment shows, for easily
verifiable tasks such as OCR-related QA, VisionThink can be effectively trained with rule-based
reinforcement learning alone.

Results on more fine-grained benchmarks. In the main paper, ChartQA, OCRBench, and
MathVista are fine-grained benchmarks that typically require the model to resize images to obtain
more detailed information. In contrast, benchmarks such as DocVQA, MME, RealWorldQA, and
POPE represent more general scenarios where image resizing is unnecessary, as low-resolution
images are sufficient for the model to complete the tasks.
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Table 10: VisionThink trained with rule-based reward.

Task Metric Qwen-RL VisionThink VisionThink (Rule-Based)

ChartQA Accuracy 79.8 79.8 80.8
Time (s) 447 746 778

DocVQA Accuracy 95.1 94.4 94.7
Time (s) 3076 1355 1824

OCRBench Accuracy 81.5 80.8 79.8
Time (s) 253 211 183

Table 11: Results on more fine-grained benchmarks.

Model V∗ Bench MME-RealWorld-Lite HR-Bench-4K HR-Bench-8K TreeBench Avg.

Resolution (W×H) 2246×1583 2076×1434 4023×3503 5727×4430 2152×1615
Token Usage 43% 110% 58.0% 51.0% 115%

Vanilla 72.3 45.1 71.4 67.6 39.5 100%
Down-Sample 69.0 39.4 69.4 66.0 37.3 94.4%
VisionThink 72.3 48.4 70.2 67.3 42.5 102.6%

In this section, we explore the model’s performance on more fine-grained benchmarks, including V*
Bench, MME-RealWorld-Lite, HR-Bench-4K, HR-Bench-8K, and TreeBench, all of which contain
high-resolution images with relatively large image sizes.

As shown in Table 11, on HR-Bench, where image resolutions are extremely high, we observe that
even the downsampled versions maintain sufficient visual clarity. Consequently, performance does
not degrade significantly when the resolution is reduced. On MME-RealWorld-Lite and TreeBench,
our VisionThink not only substantially outperforms the Down-Sample baseline (which uses the
same input resolution), but even slightly surpasses Vanilla, which performs inference on 2× higher-
resolution inputs. We hypothesize that this phenomenon occurs because, in cases where upscaling is
triggered, the model effectively views the same image at two different resolutions, thereby gaining
a dual-perspective understanding. This process may serve as a form of implicit data augmentation,
leading to improved performance. Overall, this is an exciting finding—it suggests that VisionThink
not only enhances efficiency in general scenarios but also has the potential to improve performance
on fine-grained tasks.

C Further Discussions

C.1 Why Use RL Instead of SFT?

In this paper, we train a smart and efficient vision-language model via reinforcement learning. A
natural question arises: why use reinforcement learning instead of supervised fine-tuning to achieve
this goal?

To answer this question, we conduct a comparative SFT experiment. Firstly, we construct the SFT
training set. Specifically, compared to RL, which can directly utilize QA pairs and autonomously learn
both the reasoning process and whether a high-resolution image is needed, SFT requires manually
crafting both the reasoning steps and dialogue that involves high-resolution image requests. To
overcome this limitation, we use GPT-4o to simulate both the high-resolution image requests and the
corresponding reasoning process, enabling the SFT training data to closely approximate the behavior
of the RL-trained model. Finally, we convert the original RL training data into a format compatible
with SFT, maintaining a 1:1 ratio between high-resolution requests and direct answers.

As shown in Table 12, we compare the proportion of high-resolution image requests made by the SFT
and RL models across evaluation benchmarks. Compared to the RL-trained model, which can smartly
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Table 12: Comparison of image resize call ratios for RL and SFT trained models over multiple
evaluation benchmarks.

Method ChartQA† OCRBench DocVQA MME RealWorldQA POPE

RL 79.1% 62.3% 6.5% 30.7% 29.9% 9.5%

SFT 95.1% 64.0% 14.1% 39.0% 62.1% 37.8%

Table 13: Performance comparison of the cold start model and no cold start model. The without
cold start model represents our VisionThink.

Method Type ChartQA† OCRBench DocVQA MME MMVet RealWorldQA POPE

w/o Cold Start RL 79.8 80.8 94.4 693/1707 68.5 67.1 86.0

Cold Start (2K)
Base 76.4 78.7 92.4 444/1354 58.3 47.2 86.6

RL 77.7 80.2 93.0 622/1624 62.3 52.8 86.2

Cold Start (8K)
Base 76.8 78.2 90.5 525/1368 60.5 36.5 84.8

RL 79.2 79.4 92.5 609/1637 66.2 55.8 85.6

decide when to answer directly and when to request a high-resolution image, the SFT model exhibits
a significantly higher image resize calling ratio across all benchmarks. This behavior is especially
evident in the RealWorldQA benchmark, where high-resolution images are generally unnecessary,
yet the SFT model still issues requests 62.1% of the time.

Based on this observation, we find that SFT does not enable the model to become “smart” enough to
accurately determine whether a high-resolution image is necessary and also requires constructing the
training set using GPT-4o. In contrast, RL makes the VLM smarter and more generalizable, and can
directly use the original QA pairs without additional formatting.

C.2 Why not Cold-Start?

Currently, most explorations of RL in VLMs require a cold start stage. In this section, we explore
why we do not use a cold start and instead train the model directly with RL.

To investigate this problem, we collect datasets of 2K and 8K samples to cold start our model. The
cold-start data are constructed similarly to Sec. C.1, where GPT-4o is used to simulate both the
requests for high-resolution images and the corresponding reasoning processes, enabling the SFT
training data to closely mimic the behavior of the model trained via RL.

We first compare the performance of the cold-started models before RL training, as shown in the
‘Base’ lines of Table 13. Although performance improves with increasing data size, the cold-start
models still fall short of the original Qwen2.5VL. We believe this is primarily due to the limited
diversity and coverage of our data compared to the SFT data used by the Qwen team, resulting in the
observed performance gap.

Furthermore, we compare the performance of models after RL training, using the same RL setup
as VisionThink, as shown in the ‘RL’ lines of Table 13. While RL improves the performance of
cold-start models, they still fall short compared to models trained from vanilla Qwen2.5VL with RL.

Based on this observation, we conclude that due to the lower diversity and coverage of the cold-start
data compared to the original Qwen2.5VL SFT data, introducing cold-start training may improve
performance in specific domains covered by the cold-start data but significantly reduces the model’s
general capability. This limitation restricts its broader applicability. Therefore, in this paper, we do
not utilize the cold-start stage.
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C.3 Different Prompt Impact

Since we do not adopt a cold-start stage, designing an appropriate initial prompt becomes crucial to
ensure the model begins from a good starting point. The base model Qwen2.5VL-Instruct, which
has not undergone RL training, typically tends to answer questions directly and lacks the ability to
smartly request high-resolution images when needed.
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Figure 7: Impact of Prompt Choice. Prompts lead to substantial variation in image resize call ratios,
with the Qwen official agent prompt demonstrating the most effective performance.

Therefore, it is essential for the base model, when conditioned on our prompt, to show some preference
for calling image resizing. Otherwise, if it is overly biased toward direct answering, the GRPO
training process will fail to optimize effectively and may collapse into the direct-answering mode. To
address this, we compare three prompt settings. The first is the official agent prompt from Qwen’s
cookbook, shown in Table 4. The other two are our custom-designed prompts, detailed in Table 14.

Table 14: Two custom prompts for analyzing the impact of different prompts. The Question
placeholder will be replaced with the specific question during training and inference.

Simple Resize System Prompt:
You are a helpful assistant.
Simple Resize User Prompt:
Answer the user’s question based on the image provided. You can place <resize></resize>
at the end of your response to call the image resize tool, it will return the resized image with
its resolution doubled to help you better answer the question. Once you confirm your final
answer, place the final answer inside <answer> and </answer>.
Here is the image and question: Question.

Simple Think Resize System Prompt:
You are a helpful assistant. Answer the user’s question based on the image provided. You can
place <resize> at the end of your response to call the image resize tool, it will return the
resized image with its resolution doubled to help you better answer the question. Once you
confirm your final answer, place the final answer inside <answer> and </answer>.
Simple Think Resize User Prompt:
Enclose reasoning in <think></think>
Question.
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Figure 8: Ablation Study on Penalty Ratio Threshold. As the threshold increases, the model
progressively favors requesting image resizing instead of providing direct answers.

As shown in Fig. 7, our model using the official agent prompt demonstrates a higher image resize
call ratio on the effective batch, which consists of an equal mix of high-resolution-required samples
and direct-answer samples. In contrast, the other two custom-designed prompts perform poorly, both
in their initial behavior and in the final trained model’s ability to correctly request image resizing,
and ultimately collapse into consistently producing direct answers. Based on these analyses, we find
that the Qwen official agent prompt, likely optimized during the pretraining or supervised fine-tuning
stages by the Qwen team, is more suitable for VisionThink.

C.4 Ablation Study on Penalty Control Threshold

In the main paper Eq. 5, we design the penalty ratio as below:

Pcontrol = 0.1 · [1directI(r < θ) + 1highI(r ≥ θ)] , r =
Cdirect

Cdirect + Chigh
, (6)

where θ is the threshold.

Intuitively, the larger the value of θ, the more likely the model is to penalize direct answers, thereby
encouraging it to request high-resolution images. Conversely, a smaller θ leads the model to penalize
responses that call for image resizing, thus promoting direct answers. Based on this intuition,
we experimented with different threshold values and recorded the proportion of high-resolution
image requests within the effective batch. The results are shown in Fig. 8. As indicated by the Eq. 6,
increasing the threshold gradually shifts the model’s behavior from favoring direct answers to favoring
image resizing requests. Eventually, the model collapses into always requesting high-resolution
images. However, within an appropriate range, the model’s behavior is not highly sensitive to the
exact threshold value.

Besides, as shown in the Table. 15, we report the performance and inference time of models trained
with different penalty ratios. Overall, the trends are consistent with Fig. 8: as the penalty ratio
increases, the model becomes more inclined to resize the input image, leading to higher inference
time.

In general VQA scenarios, model performance does not significantly improve with increased inference
time. However, for fine-grained understanding scenarios (e.g., ChartQA, OCRBench), increasing
the penalty ratio encourages more image resizing, which results in both longer inference time and
improved performance.
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Table 15: Benchmark performance under different penalty ratios. Perf denotes the model
performance, and Time indicates the real-world inference time.

Penalty ChartQA OCRBench MathVista MME MMMU RealWorldQA

Perf Time (s) Perf Time (s) Perf Time (s) Perf Time (s) Perf Time (s) Perf Time (s)

ratio=0 63.0 353.2 70.3 146.0 65.6 1097.1 2272 405.5 50.1 308.5 64.8 112.3
ratio=0.15 74.1 629.5 75.8 184.7 65.7 1306.5 2347 465.2 49.4 504.7 66.8 198.4
ratio=0.2 79.8 746.1 80.8 211.8 67.5 1745.5 2400 653.0 51.2 608.4 67.1 235.6
ratio=0.25 80.2 725.0 83.5 425.5 67.9 1334.6 2278 938.3 50.7 570.0 67.5 361.9
ratio=0.3 81.0 1033.4 84.8 435.6 66.6 1666.0 2235 1932.7 49.0 866.9 69.3 492.8
w/o Penalty 82.1 1093.6 85.3 437.1 67.5 1721.9 2354 1843.8 50.7 820.5 68.0 436.1

Table 16: Bias influence of LLM-as-Judge. We compare the results of several LLM models.

Model MMMU MMMU-Pro MMBench RealWorldQA POPE MME MathVista MMVet

GPT-4o 52.7 41.1 83.4 66.5 88.6 2314 71.2 69.5
Qwen2.5-72B-Instruct 52.6 40.2 84.2 66.1 88.4 2360 70.3 69.1
Qwen2.5-3B-Instruct 51.9 38.5 82.6 66.9 87.7 2379 70.6 68.9
Qwen3-1.7B 51.8 38.1 82.8 67.7 87.9 2210 69.1 66.8

C.5 The Bias Influence of LLM-as-Judge

VisionThink employs an LLM-as-Judge paradigm to assess textual answers in open-ended VQA
tasks. This naturally raises a question: does the inherent bias of the LLM influence the evaluation
results? To mitigate potential biases, we adopt the following three design strategies:

(1) Using the LLM-as-Judge not the VLM-as-Judge. Since LLMs generally have stronger capabil-
ities than VLMs, employing an LLM reduces hallucinations and improves reliability.

(2) Filtering the dataset. We filter out subjective open-ended questions that have multiple valid
answers, such as image descriptions. The remaining questions have clear ground truth, e.g., Q:
<image> Who is the author of this book? A: Dewey Lambdin.

(3) Carefully designing the prompt. Our prompt requires the LLM to return a discrete value: 1
for a correct answer and 0 for an incorrect one, instead of a continuous score. This binary format
minimizes ambiguity and reduces the chance of misjudgment.

Furthermore, as shown in the Table 16, we conduct additional experiments to further investigate this
issue. Specifically, we compare the judgments made by GPT-4o and Qwen2.5-72B with those from
smaller models such as Qwen2.5-3B and Qwen3-1.7B. While larger models achieve slightly better
performance, the smallest model, Qwen3-1.7B, still achieves comparable results under our carefully
designed setup. This indicates that LLM model bias has limited influence on our VisionThink.

C.6 Discussion about Zoom-in Strategy

With the release of GPT-O4, many researchers have begun to focus on zoom-in strategies. Therefore,
in this section, we provide a brief discussion on this topic.

Zoom-in methods rely heavily on strong localization capabilities, which current models such as
Qwen2.5VL-7B do not yet fully possess. Inaccurate localization may lead to suboptimal region
selection, thereby degrading overall performance. Moreover, zoom-in strategies often require multiple
iterative refinement steps due to imperfect region proposals, which can result in even higher total
token consumption compared to our approach.

Nevertheless, we acknowledge that this is a highly promising research direction and have already
included it as part of our future work.
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D Qualitative Results

In this section, we present a case study comparing our proposed VisionThink with other efficient
VLM methods: FastV [8], SparseVLM [100], and VisionZip [80]. As shown in the three cases
below, for OCR-related or detail-intensive samples, our proposed VisionThink model can smartly
determine when a high-resolution image is needed. In contrast to previous efficient VLMs, which
suffer performance degradation due to fixed reduction ratios, VisionThink avoids such issues by
making adaptive decisions based on the input, thereby maintaining strong performance.

FastV：The answer is 6.

The graph shows the ACSI (American Customer Satisfaction 

Index) score over the years. To determine how many years 

the ACSI score is 70, I'll examine the data point for each year.

For how many years the value of the ACSI score is 70?

<Upscale Image to Original Resolution>

From the graph, the ACSI score is 70 in the following years: 

2008, 2009, 2010, 2012, 2016, 2018, and 2019. This means the 

ACSI score is 70 for 7 years.

The answer is 7.

SparseVLM：The answer is 9.

VisionZip：The answer is 8.

[Think]

[Think]

[Answer]

VisionThink：

E Broader Impact Statement

This paper is conducted solely for academic research purposes. All data used in this work were
collected through compliant and ethical channels, ensuring adherence to relevant data protection
and usage guidelines. Furthermore, all models employed in this study comply with their respective

33



FastV：No

The image shows a street scene with cars, buildings, and some 

urban infrastructure. To determine if there are fire hydrants, I'll 

need to carefully examine the image for any visible fire hydrants.

Are there any fire hydrants here?

<Upscale Image to Original Resolution>

Upon reviewing the resized image, I can see a fire hydrant on the 

right side of the image, near the curb. This is evident from the 

orange color and shape typical of fire hydrants.

Yes

SparseVLM：No

VisionZip：No

[Think]

[Think]

[Answer]

VisionThink：

license agreements. As such, this research upholds high standards of integrity and responsibility, with
no foreseeable negative societal impact.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately include the contributions and scope of this paper in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We specially discuss the limitations of this work in the limitation section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not involve theoretical results, and most of the results are based
on our experiments and experiences or inspired by previous works.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include all necessary information for reproduction in the sections of imple-
mentation details, e.g., the hyper-parameters settings, datasets, data processing procedures,
training details, and benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We need to seek approval of the company for code and data release. We
promise to open-source our code and data once approved.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We introduce all necessary training and testing details in the experiment
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We cannot afford the expensive repeated experiments required for calculating
the error bar. We follow previous evaluation conventions to report all the metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the necessary compute resources needed for reproduction in the
experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conform in every respect with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For open-source models, datasets and codebases that we use, we cite the
original paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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