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Abstract

We present a method for introducing a text001
encoder into pre-training end-to-end speech002
translation systems. It enhances the ability of003
adapting one modality (i.e., source-language004
speech) to another (i.e., source-language text).005
Thus, the speech translation model can learn006
from both unlabeled and labeled data, espe-007
cially when the source-language text data is008
abundant. Beyond this, we present a denoising009
method for a robust text encoder that can deal010
with both normal and noisy text data. Our sys-011
tem sets new state-of-the-art on the MuST-C012
En-De, En-Fr, and LibriSpeech En-Fr tasks.013

1 Introduction014

In Speech Translation (ST), End-to-End (E2E) neu-015

ral approaches have gained attraction as a promis-016

ing line of research towards systems with lower017

latency and less error propagation. However, de-018

veloping models of this type can be challenging019

because the aligned speech-to-translation data is020

scarce (Wang et al., 2020b; Dong et al., 2021b;021

Zheng et al., 2021a; Tang et al., 2021a). This leads022

researchers to explore methods that resort to large-023

scale unlabeled data. A simple one is to use pre-024

trained models to encode acoustic and/or textual025

input (Pino et al., 2020; Ye et al., 2021), whereas026

others train ST models using additional data of027

either Automatic Speech Recognition (ASR) or028

Machine Translation (MT), or both (Wang et al.,029

2020c; Xu et al., 2021; Indurthi et al., 2021).030

Such a paradigm provides an opportunity to031

make use of both labeled and unlabeled data, say,032

the speech, text, speech-to-transcription, text-to-033

text, and speech-to-text data. For example, one can034

feed all available data into an autoencoder to train035

ST models (Zheng et al., 2021b). More recently,036

stronger results have been reported in the work that037

explicitly designs a text encoder to ease the train-038

ing on the MT data (Li et al., 2021; Gállego et al.,039

2021).040
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(a) 1 universal encoder (Zheng et al., 2021b)
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(c) 2 correlated encoders + denoising (this work)

Figure 1: Model architectures. Dotted boxes mean that
the items are dropped in ST tuning and inference. s =
acoustic signal sequence, t = transcription, x = source-
language word sequence, and y = target-language word
sequence.

Here, we take a further step towards more ef- 041

fective use of both labeled and unlabeled data in 042

ST. We claim that the source-language text encoder 043

plays an important role in leveraging ASR and MT 044

although it is not involved in standard end-to-end 045

ST. We then develop a method (named as Multi- 046

Step Pre-training for Speech Translation, or MSP- 047

ST for short) to expose the text encoder to both 048

ASR and MT learning processes, and force them 049

to assist each other. Having the text encoder as the 050

bridge between ASR and MT is perhaps helpful: 051

the result ST system can learn acoustic and tex- 052

tual encoding simultaneously (see Figure 1). Note 053

that such a design also addresses the role mismatch 054

problem wherein the pre-trained ASR encoder does 055
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not behave like what the target-language decoder056

expects (Wang et al., 2020b; Xu et al., 2021). To057

our knowledge, this is the first to discuss the prob-058

lem in large-scale pre-training on all ASR, MT and059

ST data.060

Another improvement is that we denoise the text061

encoder so that it is robust to the noisy transcription-062

like input. In this way, the text encoder can deal063

with both the normal text and the transcription.064

This is beneficial when the text encoder is used065

to supervise the learning of the ST encoder, where066

the speech-to-transcription data is the input.067

We implement our method in a Transformer-068

based ST system. On the MuST-C and LibriSpeech069

tasks, it outperforms very strong baselines signifi-070

cantly. It achieves BLEU scores of 30.0 and 40.6071

on the MuST-C En-De and En-Fr data and a BLEU072

score of 21.4 on the LibriSpeech En-Fr data. These073

results are new state-of-the-art on these tasks. The074

performance is even comparable with that of the075

unrestricted ST system on the LibriSpeech task.076

2 Related Work077

One aspect of ST where there has already been078

substantial success is the cascaded model of ASR079

and MT (Ney, 1999; Schultz et al., 2004; Matusov080

et al., 2005; Mathias and Byrne, 2006). An obvi-081

ous next step is towards end-to-end ST but initial082

work attempting to develop fully end-to-end sys-083

tems on limited labeled data has met with much084

less success in competing the cascaded counterpart085

(Bérard et al., 2016). This motivates an active line086

of research on introducing unlabeled data into ST.087

A straightforward method is to train ST models by088

additional ASR and/or MT supervision signals, as089

in multi-task learning (Anastasopoulos and Chiang,090

2018; Le et al., 2020; Vydana et al., 2021; Tang091

et al., 2021b; Han et al., 2021). Similar ideas can be092

found in other related work, including pseudo data093

generation (Pino et al., 2019, 2020), meta-learning094

(Indurthi et al., 2020), knowledge distillation (Liu095

et al., 2019; Jia et al., 2019) and curriculum learn-096

ing (Wang et al., 2020c).097

For stronger results, a number of recent studies098

focus on pre-training components of ST systems099

and fine-tuning them on labeled ST data (Weiss100

et al., 2017; Bérard et al., 2018; Zheng et al.,101

2021a; Li et al., 2021). Although these systems are102

of different model designs, researchers are aware103

that simply incorporating pre-trained ASR and MT104

models into ST does not work (Wang et al., 2020b;105

Xu et al., 2021), because there is a great length 106

difference between acoustic sequence and word se- 107

quence, and the two models have different scopes 108

of encoding, i.e., the ASR model is locally attentive, 109

while the MT model, which represents sentence se- 110

mantics, is more globally attentive. 111

Several research groups address this by using 112

an additional encoding network to adapt acoustic 113

encoding to text-like encoding (Dong et al., 2021b; 114

Tang et al., 2021a; Li et al., 2021; Xu et al., 2021). 115

Here we explicitly design a trainable text encoder 116

to link ASR and MT pre-training. Perhaps the most 117

related work to what is doing here is (Li et al., 118

2021). Their system benefits from encoder-decoder 119

pre-training by a text-based BART-like method, but 120

the text encoder is discarded when they train the 121

ST encoder. In this work we find that the involve- 122

ment of the text encoder in the entire pre-training 123

pipeline is critical to achieve the state-of-the-art 124

performance. We thus share the text encoder in 125

both ASR-based and MT-based pre-training. 126

Also, it is well-known that silent moments of- 127

ten appear in the acoustic model output but not in 128

MT data. This is in general addressed by either 129

down-sampling the output sequence of the acoustic 130

model (Dong et al., 2021a; Liu et al., 2020b) or 131

converting the source text to the imitation of the 132

acoustic output by Connectionist Temporal Clas- 133

sification (CTC) paths (Wang et al., 2020b). Here 134

we instead develop a simple denoising method to 135

enhance the ability of the text encoder in dealing 136

with normal and noisy sentences. 137

3 Method 138

Our ST model is a standard encoder-decoder 139

model, following the Transformer model (Vaswani 140

et al., 2017). The encoder reads a sequence of 141

source-language acoustic signals, and the decoder 142

produces a sequence of target-language words. 143

Broadly speaking, like any encoder-decoder model, 144

one can train this architecture in a standard pre- 145

training + fine-tuning fashion (Lewis et al., 2020). 146

For example, the encoder is pre-trained by pure 147

acoustic data (Baevski et al., 2020), and/or en- 148

hanced by training an ASR encoder on speech- 149

to-transcription data. Likewise, the decoder is ini- 150

tialized by pre-trained models (for either the word 151

embedding component or the whole decoding net- 152

work). The final ST model is tuned on the labeled 153

data, i.e., pairs of speech and translation. 154

But such a model does not accept source- 155
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Figure 2: The end-to-end speech translation architecture with a text encoder. Circled numbers indicate training
steps.

Order Name Data Trained Training
Type Model
s s-enc. pre-train

1 Init. x t-enc. pre-train
y dec. pre-train

2 MT (x, y) t-enc + dec. pre-train
3 ASR (s, t) s-enc + t-enc. pre-train
4 ST (s, y) s-enc. + dec. fine-tune

Table 1: Data types used in training. s-enc. = ST en-
coder, t-enc = text encoder, and dec. = ST decoder.

language text as input, and it is non-trivial to learn156

the model on source-language text data. One way157

to use textual input is to have a sub-model, implicit158

or explicit, to introduce source-language text sig-159

nals into the ST model. To this end, we develop160

a text encoder on the source-language side in ad-161

dition to the ST encoder. In pre-training, it works162

with both the ST encoder and decoder. After that,163

the text encoder is absent, and the ST model is164

tuned and then used for inference, as usual.165

166

Formally, let s be an acoustic signal sequence,167

t be a transcription of s, x be a source-language168

word sequence, and y be a target-language word169

sequence. There are many choices to build different170

types of training data. For example, (s, y) is the171

standard ST data, (x, y) is the MT data, x is the172

monolingual data. Table 1 shows the data types173

used here, ordered by the training pipeline of our174

method. Note that the term "pre-training” is used in175

many different ways. In this paper, the term refers176

to any training process other than the final tuning 177

of the ST model on (s, y)1. 178

Another note on notation. Not all these se- 179

quences are required to come in pairs. For example, 180

x in the monolingual data might not appear in the 181

MT data. Here we use these notations to emphasize 182

what type of data is used in training, but not the 183

actual data. 184

At the heart of our system is a design to guide 185

the ST model via textal information. Two intuitions 186

form the basis of this work: 187

• The text encoder can supervise the training 188

of the ST encoder so that the behavior of the 189

ST encoder is more consistent with that of a 190

standard MT encoder. 191

• The text encoder can be robust to ASR noise, 192

and can accept transcription as input. 193

To make use of these intuitions, we improve 194

the ST encoder and develop a contrastive training 195

method to incorporate the text encoder into the 196

ASR-based training. Beyond this, we propose a 197

denoising method to learn a text encoder that is 198

robust to either normal text or transcription. 199

3.1 ASR Training with the Text Encoder 200

An ST encoder in general shares a similar model 201

structure with ASR encoders. An advantage of 202

the ASR-based design for ST encoders is that it is 203

1Training on (x, y) and (s, t) is actually a "tuning” process
on the initialized/pre-trained model. Here we call them pre-
training to avoid the misuse of "tuning” because it is typically
used when tuning the model on the labeled target-task data.
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better suited for processing acoustic signals and off-204

the-shelf pre-trained acoustic models are straight-205

forwardly available to ST. However, the ASR-like206

encoder does not work with the target-language text207

decoder because the decoder wants text-friendly208

encoding instead of the acoustic encoding (Dong209

et al., 2021b; Xu et al., 2021). A way to address this210

modality-inconsistency issue is to stack adapters211

on top of the acoustic model. Thus, the system can212

learn to transform from one modality to another.213

However, it remains undesirable that the supervi-214

sion of the encoder is only from the decoder and215

the vast number of source-language sentences are216

ignored.217

We propose to use the text encoder to supervise218

the training of the ST encoder. See Figure 2 for the219

model architecture. The core design is the adapters220

for the ST encoder and the contrastive learning for221

the two encoders.222

3.1.1 Adapters for ST Encoding223

For ST encoding, CTC-based training is neces-224

sary for state-of-the-art performance (Graves et al.,225

2006). A common way is to add the CTC-based226

loss to the acoustic model. Then, an optional227

adapter can be used to map the acoustic model out-228

put to representations that the text decoder prefers229

(Xu et al., 2021).230

In our preliminary experiments, we found that it231

was not easy to do alignment in CTC-based training232

due to the big length difference between the acous-233

tic model output and the word sequence. Thus,234

we propose an alignment adapter and place it be-235

tween the acoustic model and the CTC-based loss.236

The adapter consists of n convolution networks to237

shorten the sequence and a Conformer layer (Chen238

et al., 2021) to filter the down-sampling output. To239

make a stronger correlation with the text encoder,240

we share the same vocabulary and the output layer241

to predict each word in the representation space of242

the textual model when generating the CTC path.243

This way forces the acoustic representation space244

to align to that of the text encoder.245

Another encoding network (call it textual246

adapter) is stacked upon the alignment adapter. It247

consists of a single self-attention layer. We add248

the position embedding before feeding the feature249

into this adapter to fuse location information. The250

textual adapter is intended to reduce the impact of251

blank noise and produce a more text encoder-like252

output, which is better suited for the input of the253

decoder.254

3.1.2 Contrastive Training 255

We train the ST encoder with the text encoder in 256

addition to the supervision signal from the decoder 257

side. This is a step before we fine-tune the ST 258

model. Here we choose contrastive training as a 259

way to connect the ST encoder and the text encoder. 260

More formally, let A(s) be the output of the ST en- 261

coder given the speech s, and M(t) be the output 262

of the pre-trained text encoder given the transcrip- 263

tion t. The loss function of the contrastive training 264

is defined to be: 265

LCL = −
∑
si

log
eπ(A(si),M(ti))/τ∑

tj :j ̸=i e
π(A(si),M(tj))/τ

(1) 266

where π(·, ·) is a function that computes the sim- 267

ilarity of the input vectors. Here we choose the 268

cosine function for π(·, ·). τ is a scaler to control 269

the sharpness of the function output. For each si, 270

we have its labeled transcription to form a positive 271

sample (si, ti). Also, we use transcriptions other 272

than ti (i.e., tj for j ̸= i) to form negative sam- 273

ples. Eq. 1 distinguishes the positive sample from 274

the negative samples (i.e., {(si, tj)|j ̸= i}).Thus, 275

A(si) would be close to M(ti) and far way from 276

other M(tj). 277

For more diverse training samples, we decode 278

a transcription t′i by keeping blank labels in the 279

output of the alignment adapter. For (xi, t′i), we 280

compute a loss L′
CL as in Eq. 1. The final loss 281

function of ASR training is defined as: 282

LASR = LCTC + α(βLCL + (1− β)L′
CL) (2) 283

where LCTC is the CTC loss which is widely used 284

in ST task (Wang et al., 2020b; Dong et al., 2021b; 285

Xu et al., 2021), and α and β are coefficients for 286

interpolation. 287

3.2 Denoising the Text Encoder 288

There are two jobs for the text encoder: 289

• Encode real source-language sentences in MT 290

training 291

• Encode transcriptions in ASR training 292

As MT training is prior to ASR training, the 293

text encoder is primarily trained to address the first 294

point. This is potentially undesirable for a rea- 295

son: in ASR training, the input of the text encoder 296
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Models Speech Text ASR MT
MuST-C
En-De

MuST-C
En-Fr

LibriSpeech
En-Fr

Unrestricted MT (Xu et al., 2021) - - - - 31.1 41.9∗ 21.3
Transformer (Wang et al., 2020a) - - - - 22.7 32.9 16.7
VggT (Pino et al., 2020) ✓ - ✓ - 24.8 34.5 -
FAT-ST (Big) (Zheng et al., 2021b) ✓ ✓ ✓ ✓ 25.5 - -
VggTLarge (Pino et al., 2020) ✓ - ✓ - 25.6 - -
LUT (Dong et al., 2021b) - ✓ ✓ - - - 18.3
Chimera (Han et al., 2021) ✓ - - ✓ 26.3 35.6 19.4
JT (Tang et al., 2021a) - - - ✓ 26.8 37.4 -
LNA-ED-Adapt (Gállego et al., 2021) ✓ ✓ ✓ ✓ 27.3 - -
XSTNET (Ye et al., 2021) ✓ - - ✓ 27.8 38.0 -
SATE (Xu et al., 2021) - - ✓ ✓ 28.1 - 20.8
TCN (Indurthi et al., 2021) - - ✓ ✓ 28.9 - -
Baseline ✓ ✓ ✓ ✓ 27.5 38.6 20.8
MSP-ST ✓ ✓ ✓ ✓ 30.0 40.6 21.4

Table 2: Performance on different data set. The baseline is LNA (Li et al., 2021) and add an additional adapter
(Gállego et al., 2021). ∗ represents that we reproduce the result.

is a transcription, which often contains symbols297

that never appear in MT data. The input will be298

more noisy if we use self-generated transcriptions299

in training (see Eq. 2).300

We use denoising methods for a robust text en-301

coder, of which the simplest one is to use a denois-302

ing autoencoder (DAE) to take noise into account303

(Lewis et al., 2020). Here we choose mBART as304

the initial model (Liu et al., 2020a) for its potential305

cross-lingual ability. Ho it is complicated to update306

mBART for introducing ASR-related noise (such307

as blank symbols) into DAE training. We there-308

fore further denoise the encoder in the MT training309

phase to make a Silence Insensitive DAE (SIDAE).310

Our method is inspired by Consistency Regulariza-311

tion (Zhang et al., 2020). In consistency regular-312

ization, a “good” model should be less sensitive to313

perturbation on the input. We design a perturbation314

function g(·) that randomly adds blank symbols315

into source-language sentences. The size of adding316

blank is decided by the coefficient r multiply the317

length of sentence. For each sentence pair (x, y),318

we expect that the MT system can produce a cor-319

rect prediction given both x and g(x) as input. The320

loss function is described as:321

LMT = −
∑
(x,y)

log P(y | x)+log P(y | g(x)) (3)322

where P(y | ·) is the MT system consisting of the323

text encoder and the text decoder.324

4 Experiments 325

4.1 Experiment Data 326

We run our experiments on English to German 327

(En→De) and English to French (En→Fr) transla- 328

tion tasks. 329

Unlabeled Data. For speech data, we use the 330

LibriVox (Baevski et al., 2020) to pre-train the 331

acoustic model. It consists of about 60k hours of 332

unlabelled speech. For text data, we followed Liu 333

et al. (2020a)’s work which covers 25 languages. 334

ASR and MT Data. We use LibriSpeech 960 335

hours (Panayotov et al., 2015) to train the pre- 336

trained acoustic model on the English ASR task. 337

To adapt the DAE model to MT tasks, we use Open- 338

subtitle En-De and WMT14 En-Fr datasets respec- 339

tively. We filter the parallel data by a max length 340

ratio 1.5 and a max length of 200. The final data 341

size is 18M for En-De translation. For En-Fr trans- 342

lation, we extract 10M sentence pairs from the 343

WMT14 En-Fr data, following Xu et al. (2021)’s 344

work. We use sentencepiece to segment the untok- 345

enized text into sub-words2. The sentence model 346

and the vocabulary are the same as in (Liu et al., 347

2020a) and we remove words which do not appear 348

in all the corpora. The vocabulary size is set to 32K 349

for the MuST-C tasks and 25K for the LibriSpeech 350

En-Fr task. 351

2https://github.com/google/sentencepiece
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Model En-De En-Fr

Baseline 27.5 38.6
+ Alignment adapter 28.1 38.8
+ Textual adapter 29.1 39.8
+ KDCL 29.5 40.2
+ SIDAE 30.0 40.6

Table 3: Ablation study on the MuST-ST En-De task.

ST Data. The MuST-C corpus is a multilingual352

speech translation corpus extracted from TED talks.353

The size of speech translation data is 400 hours354

(230K utterances) for the En-De task and 484 hours355

(270K utterances) for the En-Fr task. For the Lib-356

riSpeech En-Fr task, the size of the training set357

is 100 hours (44K utterances). We remove the358

utterances of more than 3,000 frames in all the359

experiments.360

4.2 Model settings361

We implement our systems by the Fairseq362

toolkit(Ott et al., 2019; Wang et al., 2020a). For pre-363

training of unlabeled speech data, we use the open-364

source wav2vec2 model. For the DAE model, we365

also utilize the open-source mBART.CC25 model.366

For comparison, we re-implement the LNA method367

(Li et al., 2021). For a stronger baseline, we follow368

Gállego et al. (2021)’s to add an Adapter (Bapna369

and Firat, 2019) to mitigate the gap between the370

acoustic and textual model. We use speech as input371

for our pre-trained model. For Transformer without372

pre-training, the input speech is represented as 80D373

log mel-filterbank coefficients that are computed374

every 10ms with a 25ms window.375

For pre-training of SIDAE, we set the coefficient376

r to 0.3. We stop training until the perplexity con-377

verges on the valid set. For the alignment adapter,378

the size of the convolution layer n is set to 3, i.e.,379

we use three 1D convolution layers with a stride of380

2. It results in 8 times length compression. For each381

Conformer layer, there are 1,024 hidden states, 16382

attention heads and 4,096 FFN hidden states. For383

the textual adapter, the configurations of the Con-384

former layer are the same as the alignment adapter.385

We freeze the pre-trained acoustic model in the first386

5,000 training steps to warm up the two adapters.387

The τ and α are set to 0.1 and 0.3. The initial value388

of β is 1. It then decreases by 0.1 per 5,000 steps389

until 0. For fine-tuning on the ST task, we use the390

Adam optimizer with β1 = 0.9 and β2 = 0.98.391

Also, we use Dropout (p = 0.1) and label smooth-392

Model ST data Utterances Test

Transformer 65h 39K 6.4
Transformer 400h 230K 22.7
MSP-ST 10h 5K 15.9
MSP-ST 65h 39K 24.3
MSP-ST 400h 230K 30.0

Table 4: Sample efficiency on the MuST-C En-De task.

ing (p = 0.1) for robust training. We early stop the 393

training if the last five checkpoints do not improve. 394

We pre-train our model on the ASR and MT tasks 395

on 8 Nvidia Tesla-V100 GPUs. We fine-tune on the 396

ST task using 4 GPUS with a max token number of 397

10,000. For unrestricted MT, we first use the MT 398

data and then the ST data to fine-tune the DAE and 399

training settings following Xu et al. (2021)’s work. 400

When evaluating the model, we average the 401

weight of the last five checkpoints. For inference, 402

The beam size is set to 4 and the length penalty is 403

set to 1.0. We use SacreBLEU to evaluate the per- 404

formance (Post, 2018). Following previous work, 405

we report case-sensitive SacreBLEU for the MuST- 406

C tasks and case-insensitive SacreBLEU for the 407

LibriSpeech En-Fr task. 408

4.3 Results 409

Table 2 shows our experimental results. We see, 410

first of all, that our baselines which utilize all types 411

of data are very strong and achieve the SOTA per- 412

formance on two En-Fr tasks. While on the En-De 413

task, the baseline fails to outperform the methods 414

without using unlabeled data. Our method gains 415

remarkable improvements on two MuST-C tasks 416

compared with the baseline and achieves the SOTA 417

results without using any ST data-augmentation 418

method. Though our method only gains a +0.6 419

BLEU improvement on the LibriSpeech En-Fr task, 420

it is comparable with the MT baseline. Compared 421

with Xu et al. (2021)’s work, our method shows a 422

+1.9 higher BLEU score by using additional unla- 423

beled data. In particular, we use much less labeled 424

data compared with TCN(Indurthi et al., 2020) and 425

still yields 1.1 BLEU improvement. This also veri- 426

fies the potential of unlabeled data in ST. 427

5 Analysis 428

5.1 Ablation Study 429

We replace the adapters in the baseline system with 430

our alignment adapter. Table 3 shows that the align- 431
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ment adapter can achieve better performance. It432

indicates our alignment adapter is a more effec-433

tive way to convert the representation space of the434

acoustic model to text model. Then, we introduce435

our textual adapter into the system. The results436

show that the textual adapter is the important for437

satisfactory performance. Also, this results con-438

firms that the semantic conversion and denoising439

methods are important for ST. Also, we introduce440

Loss
′

CL (denoted as KDCL) into training. It shows441

that Knowledge distillation can reduce the difficulty442

of semantic learning. The advances brought by443

the textual adapter and KDCL are the same appar-444

ently on the two tasks because the methods improve445

the acoustic side and use the similar speech data.446

We finally use a Silence Insensitive DAE to miti-447

gate the impact of blank noise for textual adapter.448

As expected, it helps. Our final MSP-ST method449

achieves new SOTA results on the MuST-C En-De,450

En-Fr and LibriSpeech En-Fr tasks.451

5.2 Effect of Denoising452

Figure 3 (a) compares the performance of DAE453

and SIDAE. The performance on the clean test is454

almost the same. The modest improvement of the455

SIDAE model may be due to the stronger gener-456

alization ability by perturbation training. When457

the test text contains many blank labels, the vanilla458
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DAE model is degraded while the SIDAE is robust 459

to the noise. To explore the denosing influence 460

on ST, we split the test set into 2 sets according 461

to whether the blank label ratio is higher than 0.3. 462

Figure 3 (b) shows the performance of different 463

systems on the test sets. Here “Random” means 464

that the textual adapter is initialized in a random 465

manner. Its improvement is modest on the high 466

noise test set, while our textual adapter achieves a 467

bigger improvement on the BLEU score. 468

We further explore why the SIDAE model is not 469

impacted so much by blank symbols. As Figure 470

4 shows, the self-attention weight of blank label 471

focus on all blank labels, which means that the 472

output of this position is only with a blank message 473

and it is easy to be recognized in the cross-attention 474

module. The attention weights of cross-attention 475

confirm our conjecture, the position of silent speech 476

has a very low weight. Thus, the blank noise can 477

not affect the interference process. In the rest of 478

this paper, we use the SIDAE model to guide the 479

textual adapter. 480

5.3 Effects of the Alignment Adapter 481

Here we show the effectiveness of the alignment 482

adapter. We calculate the cosine similarity of word 483

representation between the acoustic model and tex- 484

tual model. The baseline model does not consider 485

the alignment of the acoustic model and the text 486
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encoder. Both the cross-modal and cross-lingual487

similarities are almost around zero. The inconsis-488

tency of representation space aggravates the gap489

between acoustic and textual models. The align-490

ment adapter boost the alignment between the two491

models and can reduce the difficulty of contrastive492

learning because the adapter does not need to con-493

sider the transfer of the representation space. Be-494

cause of the cross-lingual nature of multilingual495

DAE, the cross-language alignment can also better496

facilitate language transfer.497

5.4 Effects of the Textual Adapter498

To study the impact of the textual adapter, we com-499

pare the attention wights between the alignment500

adapter and the textual adapter. Figure 6 shows501

that the textual adapter is helpful in adapting the502

ST encoder to a text-friendly encoder. The weight503

in the 1st position shows that the textual adapter504

learns information which may be unimportant for505

the cross-modal stage. This proves the difference506

between the acoustic model and textual model dur-507

ing the process of information extraction. Further,508

the adapter focuses more on the first position which509

is more important at the stage of translation. This510

indicates that the adapter learns something better511

suited to the MT model. Figure 6 also shows that512

in many blank positions, the weights are lower than513

those of the alignment adapter.514

Figure 7 (a) shows our textual adapter can signif-515

icantly mitigate the gap between the acoustic and516

textual model. Figure 7 (b) and (c) show the aver-517

age information entropy (IE) of attention weights.518

Note the IE also consists of the noise information.519

The IE of textual adapter is much lower due to the520

inattention of noise. The random adapter learns521

more semantic information but fails to drop the522

noise so its IE is the highest. Figure 7 (c) shows the523

usage of adapter can boost the decoder to extract524

more information. It also proves our gains mainly525
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Figure 8: Efficient of parameters. The stacked method
means stack the acoustic model and DAE.

can from improvement of encoder since the IEs of 526

the two adapters are similar. 527

5.5 Sample Efficiency 528

We study how different systems behave under dif- 529

ferent sized speech translation data. To do this, we 530

scale the training data by about 6.3 times each time. 531

Table 4 shows that our model obtains a good speech 532

translation result by only 10-hour labeled data, 533

which is better than vanilla Transformer (Wang 534

et al., 2020a) learned on 65-hour labeled data. The 535

improvement is still large when more data is used. 536

5.6 Parameter Efficiency 537

Using the pre-training model in general leads to a 538

significant increase of model parameters. To eval- 539

uate the efficiency of model size, we compare the 540

performance and parameter number of different 541

methods in Figure 8. The upper left of figure means 542

a higher efficiency. We see that our method is effi- 543

cient: it achieves the best BLEU score with a slight 544

increase of the parameters. From an aspect of per- 545

formance, the model which directly stacks the pre- 546

trained acoustic and the whole SIDAE model also 547

achieves comparable performance with our MSP- 548

ST. But our model is more parameter efficient. 549

6 Conclusions 550

We explore methods to pre-train all the components 551

of an ST model by labeled and unlabeled speech 552

and text data. To improve the ST encoder, we 553

develop an alignment adapter and textual adapter. 554

Then, we use a text-based pre-trained encoder to 555

bridge the acoustic model and text model. In ad- 556

dition, we use contrastive training and denoising 557

training to mitigate the influence of silent moments 558

in speech. Our system achieves SOTA results on 559

the MuST-C En-De, En-Fr and LibriSpeech En-Fr 560

tasks. 561
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