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Abstract

We present a method for introducing a text
encoder into pre-training end-to-end speech
translation systems. It enhances the ability of
adapting one modality (i.e., source-language
speech) to another (i.e., source-language text).
Thus, the speech translation model can learn
from both unlabeled and labeled data, espe-
cially when the source-language text data is
abundant. Beyond this, we present a denoising
method for a robust text encoder that can deal
with both normal and noisy text data. Our sys-
tem sets new state-of-the-art on the MuST-C
En-De, En-Fr, and LibriSpeech En-Fr tasks.

1 Introduction

In Speech Translation (ST), End-to-End (E2E) neu-
ral approaches have gained attraction as a promis-
ing line of research towards systems with lower
latency and less error propagation. However, de-
veloping models of this type can be challenging
because the aligned speech-to-translation data is
scarce (Wang et al., 2020b; Dong et al., 2021b;
Zheng et al., 2021a; Tang et al., 2021a). This leads
researchers to explore methods that resort to large-
scale unlabeled data. A simple one is to use pre-
trained models to encode acoustic and/or textual
input (Pino et al., 2020; Ye et al., 2021), whereas
others train ST models using additional data of
either Automatic Speech Recognition (ASR) or
Machine Translation (MT), or both (Wang et al.,
2020c; Xu et al., 2021; Indurthi et al., 2021).

Such a paradigm provides an opportunity to
make use of both labeled and unlabeled data, say,
the speech, text, speech-to-transcription, text-to-
text, and speech-to-text data. For example, one can
feed all available data into an autoencoder to train
ST models (Zheng et al., 2021b). More recently,
stronger results have been reported in the work that
explicitly designs a text encoder to ease the train-
ing on the MT data (Li et al., 2021; Gallego et al.,
2021).
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Figure 1: Model architectures. Dotted boxes mean that
the items are dropped in ST tuning and inference. s =
acoustic signal sequence, ¢ = transcription, x = source-
language word sequence, and y = target-language word
sequence.

Here, we take a further step towards more ef-
fective use of both labeled and unlabeled data in
ST. We claim that the source-language text encoder
plays an important role in leveraging ASR and MT
although it is not involved in standard end-to-end
ST. We then develop a method (named as Multi-
Step Pre-training for Speech Translation, or MSP-
ST for short) to expose the text encoder to both
ASR and MT learning processes, and force them
to assist each other. Having the text encoder as the
bridge between ASR and MT is perhaps helpful:
the result ST system can learn acoustic and tex-
tual encoding simultaneously (see Figure 1). Note
that such a design also addresses the role mismatch
problem wherein the pre-trained ASR encoder does



not behave like what the target-language decoder
expects (Wang et al., 2020b; Xu et al., 2021). To
our knowledge, this is the first to discuss the prob-
lem in large-scale pre-training on all ASR, MT and
ST data.

Another improvement is that we denoise the text
encoder so that it is robust to the noisy transcription-
like input. In this way, the text encoder can deal
with both the normal text and the transcription.
This is beneficial when the text encoder is used
to supervise the learning of the ST encoder, where
the speech-to-transcription data is the input.

We implement our method in a Transformer-
based ST system. On the MuST-C and LibriSpeech
tasks, it outperforms very strong baselines signifi-
cantly. It achieves BLEU scores of 30.0 and 40.6
on the MuST-C En-De and En-Fr data and a BLEU
score of 21.4 on the LibriSpeech En-Fr data. These
results are new state-of-the-art on these tasks. The
performance is even comparable with that of the
unrestricted ST system on the LibriSpeech task.

2 Related Work

One aspect of ST where there has already been
substantial success is the cascaded model of ASR
and MT (Ney, 1999; Schultz et al., 2004; Matusov
et al., 2005; Mathias and Byrne, 2006). An obvi-
ous next step is towards end-to-end ST but initial
work attempting to develop fully end-to-end sys-
tems on limited labeled data has met with much
less success in competing the cascaded counterpart
(Bérard et al., 2016). This motivates an active line
of research on introducing unlabeled data into ST.
A straightforward method is to train ST models by
additional ASR and/or MT supervision signals, as
in multi-task learning (Anastasopoulos and Chiang,
2018; Le et al., 2020; Vydana et al., 2021; Tang
etal.,2021b; Han et al., 2021). Similar ideas can be
found in other related work, including pseudo data
generation (Pino et al., 2019, 2020), meta-learning
(Indurthi et al., 2020), knowledge distillation (Liu
et al., 2019; Jia et al., 2019) and curriculum learn-
ing (Wang et al., 2020c).

For stronger results, a number of recent studies
focus on pre-training components of ST systems
and fine-tuning them on labeled ST data (Weiss
et al., 2017; Bérard et al., 2018; Zheng et al.,
2021a; Li et al., 2021). Although these systems are
of different model designs, researchers are aware
that simply incorporating pre-trained ASR and MT
models into ST does not work (Wang et al., 2020b;

Xu et al., 2021), because there is a great length
difference between acoustic sequence and word se-
quence, and the two models have different scopes
of encoding, i.e., the ASR model is locally attentive,
while the MT model, which represents sentence se-
mantics, is more globally attentive.

Several research groups address this by using
an additional encoding network to adapt acoustic
encoding to text-like encoding (Dong et al., 2021b;
Tang et al., 2021a; Li et al., 2021; Xu et al., 2021).
Here we explicitly design a trainable text encoder
to link ASR and MT pre-training. Perhaps the most
related work to what is doing here is (Li et al.,
2021). Their system benefits from encoder-decoder
pre-training by a text-based BART-like method, but
the text encoder is discarded when they train the
ST encoder. In this work we find that the involve-
ment of the text encoder in the entire pre-training
pipeline is critical to achieve the state-of-the-art
performance. We thus share the text encoder in
both ASR-based and MT-based pre-training.

Also, it is well-known that silent moments of-
ten appear in the acoustic model output but not in
MT data. This is in general addressed by either
down-sampling the output sequence of the acoustic
model (Dong et al., 2021a; Liu et al., 2020b) or
converting the source text to the imitation of the
acoustic output by Connectionist Temporal Clas-
sification (CTC) paths (Wang et al., 2020b). Here
we instead develop a simple denoising method to
enhance the ability of the text encoder in dealing
with normal and noisy sentences.

3 Method

Our ST model is a standard encoder-decoder
model, following the Transformer model (Vaswani
et al., 2017). The encoder reads a sequence of
source-language acoustic signals, and the decoder
produces a sequence of target-language words.
Broadly speaking, like any encoder-decoder model,
one can train this architecture in a standard pre-
training + fine-tuning fashion (Lewis et al., 2020).
For example, the encoder is pre-trained by pure
acoustic data (Baevski et al., 2020), and/or en-
hanced by training an ASR encoder on speech-
to-transcription data. Likewise, the decoder is ini-
tialized by pre-trained models (for either the word
embedding component or the whole decoding net-
work). The final ST model is tuned on the labeled
data, i.e., pairs of speech and translation.

But such a model does not accept source-
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Figure 2: The end-to-end speech translation architecture with a text encoder. Circled numbers indicate training

steps.
Order | Name | Data | Trained Training
Type | Model
s s-enc. pre-train
1|Init. |z t-enc. pre-train
Y dec. pre-train
2| MT | (z,y) |t-enc+dec. |pre-train
3| ASR |(s,t) |s-enc + t-enc. | pre-train
4| ST (s,y) | s-enc. + dec. | fine-tune
Table 1: Data types used in training. s-enc. = ST en-

coder, t-enc = text encoder, and dec. = ST decoder.

language text as input, and it is non-trivial to learn
the model on source-language text data. One way
to use textual input is to have a sub-model, implicit
or explicit, to introduce source-language text sig-
nals into the ST model. To this end, we develop
a text encoder on the source-language side in ad-
dition to the ST encoder. In pre-training, it works
with both the ST encoder and decoder. After that,
the text encoder is absent, and the ST model is
tuned and then used for inference, as usual.

Formally, let s be an acoustic signal sequence,
t be a transcription of s, x be a source-language
word sequence, and y be a target-language word
sequence. There are many choices to build different
types of training data. For example, (s,y) is the
standard ST data, (z,y) is the MT data, z is the
monolingual data. Table 1 shows the data types
used here, ordered by the training pipeline of our
method. Note that the term "pre-training” is used in
many different ways. In this paper, the term refers

to any training process other than the final tuning
of the ST model on (s, y)".

Another note on notation. Not all these se-
quences are required to come in pairs. For example,
x in the monolingual data might not appear in the
MT data. Here we use these notations to emphasize
what type of data is used in training, but not the
actual data.

At the heart of our system is a design to guide
the ST model via textal information. Two intuitions
form the basis of this work:

* The text encoder can supervise the training
of the ST encoder so that the behavior of the
ST encoder is more consistent with that of a
standard MT encoder.

e The text encoder can be robust to ASR noise,
and can accept transcription as input.

To make use of these intuitions, we improve
the ST encoder and develop a contrastive training
method to incorporate the text encoder into the
ASR-based training. Beyond this, we propose a
denoising method to learn a text encoder that is
robust to either normal text or transcription.

3.1 ASR Training with the Text Encoder

An ST encoder in general shares a similar model
structure with ASR encoders. An advantage of
the ASR-based design for ST encoders is that it is

'Training on (z, ) and (s, t) is actually a "tuning” process
on the initialized/pre-trained model. Here we call them pre-
training to avoid the misuse of "tuning” because it is typically
used when tuning the model on the labeled target-task data.



better suited for processing acoustic signals and off-
the-shelf pre-trained acoustic models are straight-
forwardly available to ST. However, the ASR-like
encoder does not work with the target-language text
decoder because the decoder wants text-friendly
encoding instead of the acoustic encoding (Dong
etal., 2021b; Xu et al., 2021). A way to address this
modality-inconsistency issue is to stack adapters
on top of the acoustic model. Thus, the system can
learn to transform from one modality to another.
However, it remains undesirable that the supervi-
sion of the encoder is only from the decoder and
the vast number of source-language sentences are
ignored.

We propose to use the text encoder to supervise
the training of the ST encoder. See Figure 2 for the
model architecture. The core design is the adapters
for the ST encoder and the contrastive learning for
the two encoders.

3.1.1 Adapters for ST Encoding

For ST encoding, CTC-based training is neces-
sary for state-of-the-art performance (Graves et al.,
2006). A common way is to add the CTC-based
loss to the acoustic model. Then, an optional
adapter can be used to map the acoustic model out-
put to representations that the text decoder prefers
(Xu et al., 2021).

In our preliminary experiments, we found that it
was not easy to do alignment in CTC-based training
due to the big length difference between the acous-
tic model output and the word sequence. Thus,
we propose an alignment adapter and place it be-
tween the acoustic model and the CTC-based loss.
The adapter consists of n convolution networks to
shorten the sequence and a Conformer layer (Chen
et al., 2021) to filter the down-sampling output. To
make a stronger correlation with the text encoder,
we share the same vocabulary and the output layer
to predict each word in the representation space of
the textual model when generating the CTC path.
This way forces the acoustic representation space
to align to that of the text encoder.

Another encoding network (call it textual
adapter) is stacked upon the alignment adapter. It
consists of a single self-attention layer. We add
the position embedding before feeding the feature
into this adapter to fuse location information. The
textual adapter is intended to reduce the impact of
blank noise and produce a more text encoder-like
output, which is better suited for the input of the
decoder.

3.1.2 Contrastive Training

We train the ST encoder with the text encoder in
addition to the supervision signal from the decoder
side. This is a step before we fine-tune the ST
model. Here we choose contrastive training as a
way to connect the ST encoder and the text encoder.
More formally, let A(s) be the output of the ST en-
coder given the speech s, and M(t) be the output
of the pre-trained text encoder given the transcrip-
tion t. The loss function of the contrastive training
is defined to be:

m(A(s:),M(t:)) /7
e
Lor =~ log St s EACHMEN]T M)

Si

where 7(+,-) is a function that computes the sim-
ilarity of the input vectors. Here we choose the
cosine function for 7 (-, -). 7 is a scaler to control
the sharpness of the function output. For each s;,
we have its labeled transcription to form a positive
sample (s;, ;). Also, we use transcriptions other
than ¢; (i.e., t; for j # ¢) to form negative sam-
ples. Eq. 1 distinguishes the positive sample from
the negative samples (i.e., {(s;i,t;)|j # i}).Thus,
A(s;) would be close to M (t;) and far way from
other M(t;).

For more diverse training samples, we decode
a transcription t; by keeping blank labels in the
output of the alignment adapter. For (x;,t}), we
compute a loss £y, as in Eq. 1. The final loss
function of ASR training is defined as:

Lask = Lore + a(BLer + (1 - B) L) ()

where Lcrc is the CTC loss which is widely used
in ST task (Wang et al., 2020b; Dong et al., 2021b;
Xu et al., 2021), and « and 8 are coefficients for
interpolation.

3.2 Denoising the Text Encoder

There are two jobs for the text encoder:

* Encode real source-language sentences in MT
training

* Encode transcriptions in ASR training

As MT training is prior to ASR training, the
text encoder is primarily trained to address the first
point. This is potentially undesirable for a rea-
son: in ASR training, the input of the text encoder



MuST-C MuST-C LibriSpeech

Models Speech Text ASR MT En-De En-Fr En-Fr
Unrestricted MT (Xu et al., 2021) - - - - 31.1 41.9* 21.3
Transformer (Wang et al., 2020a) - - - - 22.7 32.9 16.7
VggT (Pino et al., 2020) v - v - 24.8 34.5 -
FAT-ST (Big) (Zheng et al., 2021b) v v v v 25.5 - -
VggTLarge (Pino et al., 2020) v - v - 25.6 - -
LUT (Dong et al., 2021b) - v v - - - 18.3
Chimera (Han et al., 2021) v - - v 26.3 35.6 19.4
JT (Tang et al., 2021a) - - - v 26.8 37.4 -
LNA-ED-Adapt (Gallego et al., 2021) v v v v 27.3 - -
XSTNET (Ye et al., 2021) v - - v 27.8 38.0 -
SATE (Xu et al., 2021) - - v v 28.1 - 20.8
TCN (Indurthi et al., 2021) - - v v 28.9 - -
Baseline v v v v 27.5 38.6 20.8
MSP-ST v v v v 30.0 40.6 214

Table 2: Performance on different data set. The baseline is LNA (Li et al., 2021) and add an additional adapter
(Géllego et al., 2021). * represents that we reproduce the result.

is a transcription, which often contains symbols
that never appear in MT data. The input will be
more noisy if we use self-generated transcriptions
in training (see Eq. 2).

We use denoising methods for a robust text en-
coder, of which the simplest one is to use a denois-
ing autoencoder (DAE) to take noise into account
(Lewis et al., 2020). Here we choose mBART as
the initial model (Liu et al., 2020a) for its potential
cross-lingual ability. Ho it is complicated to update
mBART for introducing ASR-related noise (such
as blank symbols) into DAE training. We there-
fore further denoise the encoder in the MT training
phase to make a Silence Insensitive DAE (SIDAE).
Our method is inspired by Consistency Regulariza-
tion (Zhang et al., 2020). In consistency regular-
ization, a “good” model should be less sensitive to
perturbation on the input. We design a perturbation
function g(-) that randomly adds blank symbols
into source-language sentences. The size of adding
blank is decided by the coefficient » multiply the
length of sentence. For each sentence pair (z,y),
we expect that the MT system can produce a cor-
rect prediction given both x and g(z) as input. The
loss function is described as:

Lyt = — Z logP(y | ¥)+1logP(y | g(x)) (3)
(z.y)

where P(y | -) is the MT system consisting of the
text encoder and the text decoder.

4 Experiments

4.1 Experiment Data

We run our experiments on English to German
(En—De) and English to French (En—Fr) transla-
tion tasks.

Unlabeled Data. For speech data, we use the
LibriVox (Baevski et al., 2020) to pre-train the
acoustic model. It consists of about 60k hours of
unlabelled speech. For text data, we followed Liu
et al. (2020a)’s work which covers 25 languages.

ASR and MT Data. We use LibriSpeech 960
hours (Panayotov et al., 2015) to train the pre-
trained acoustic model on the English ASR task.
To adapt the DAE model to MT tasks, we use Open-
subtitle En-De and WMT14 En-Fr datasets respec-
tively. We filter the parallel data by a max length
ratio 1.5 and a max length of 200. The final data
size is 18M for En-De translation. For En-Fr trans-
lation, we extract 10M sentence pairs from the
WMT14 En-Fr data, following Xu et al. (2021)’s
work. We use sentencepiece to segment the untok-
enized text into sub-words?. The sentence model
and the vocabulary are the same as in (Liu et al.,
2020a) and we remove words which do not appear
in all the corpora. The vocabulary size is set to 32K
for the MuST-C tasks and 25K for the LibriSpeech
En-Fr task.

Zhttps://github.com/google/sentencepiece



Model En-De En-Fr

Baseline 27.5 38.6
+ Alignment adapter ~ 28.1 38.8
+ Textual adapter 29.1 39.8
+ KDCL 29.5 40.2
+ SIDAE 30.0 40.6

Table 3: Ablation study on the MuST-ST En-De task.

ST Data. The MuST-C corpus is a multilingual
speech translation corpus extracted from TED talks.
The size of speech translation data is 400 hours
(230K utterances) for the En-De task and 484 hours
(270K utterances) for the En-Fr task. For the Lib-
riSpeech En-Fr task, the size of the training set
is 100 hours (44K utterances). We remove the
utterances of more than 3,000 frames in all the
experiments.

4.2 Model settings

We implement our systems by the Fairseq
toolkit(Ott et al., 2019; Wang et al., 2020a). For pre-
training of unlabeled speech data, we use the open-
source wav2vec2 model. For the DAE model, we
also utilize the open-source mBART.CC25 model.
For comparison, we re-implement the LNA method
(Li et al., 2021). For a stronger baseline, we follow
Gallego et al. (2021)’s to add an Adapter (Bapna
and Firat, 2019) to mitigate the gap between the
acoustic and textual model. We use speech as input
for our pre-trained model. For Transformer without
pre-training, the input speech is represented as 80D
log mel-filterbank coefficients that are computed
every 10ms with a 25ms window.

For pre-training of SIDAE, we set the coefficient
r to 0.3. We stop training until the perplexity con-
verges on the valid set. For the alignment adapter,
the size of the convolution layer n is set to 3, i.e.,
we use three 1D convolution layers with a stride of
2. Itresults in 8 times length compression. For each
Conformer layer, there are 1,024 hidden states, 16
attention heads and 4,096 FFN hidden states. For
the textual adapter, the configurations of the Con-
former layer are the same as the alignment adapter.
We freeze the pre-trained acoustic model in the first
5,000 training steps to warm up the two adapters.
The 7 and « are set to 0.1 and 0.3. The initial value
of 5 is 1. It then decreases by 0.1 per 5,000 steps
until 0. For fine-tuning on the ST task, we use the
Adam optimizer with 81 = 0.9 and G, = 0.98.
Also, we use Dropout (p = 0.1) and label smooth-

Model ST data Utterances Test
Transformer 65h 39K 64
Transformer 400h 230K 22.7
MSP-ST 10h 5K 159
MSP-ST 65h 39K 243
MSP-ST 400h 230K 30.0

Table 4: Sample efficiency on the MuST-C En-De task.

ing (p = 0.1) for robust training. We early stop the
training if the last five checkpoints do not improve.
We pre-train our model on the ASR and MT tasks
on 8 Nvidia Tesla-V100 GPUs. We fine-tune on the
ST task using 4 GPUS with a max token number of
10,000. For unrestricted MT, we first use the MT
data and then the ST data to fine-tune the DAE and
training settings following Xu et al. (2021)’s work.

When evaluating the model, we average the
weight of the last five checkpoints. For inference,
The beam size is set to 4 and the length penalty is
set to 1.0. We use SacreBLEU to evaluate the per-
formance (Post, 2018). Following previous work,
we report case-sensitive SacreBLEU for the MuST-
C tasks and case-insensitive SacreBLEU for the
LibriSpeech En-Fr task.

4.3 Results

Table 2 shows our experimental results. We see,
first of all, that our baselines which utilize all types
of data are very strong and achieve the SOTA per-
formance on two En-Fr tasks. While on the En-De
task, the baseline fails to outperform the methods
without using unlabeled data. Our method gains
remarkable improvements on two MuST-C tasks
compared with the baseline and achieves the SOTA
results without using any ST data-augmentation
method. Though our method only gains a +0.6
BLEU improvement on the LibriSpeech En-Fr task,
it is comparable with the MT baseline. Compared
with Xu et al. (2021)’s work, our method shows a
+1.9 higher BLEU score by using additional unla-
beled data. In particular, we use much less labeled
data compared with TCN(Indurthi et al., 2020) and
still yields 1.1 BLEU improvement. This also veri-
fies the potential of unlabeled data in ST.

5 Analysis
5.1 Ablation Study

We replace the adapters in the baseline system with
our alignment adapter. Table 3 shows that the align-
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Figure 4: Blank self-attention and other word cross
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ment adapter can achieve better performance. It
indicates our alignment adapter is a more effec-
tive way to convert the representation space of the
acoustic model to text model. Then, we introduce
our textual adapter into the system. The results
show that the textual adapter is the important for
satisfactory performance. Also, this results con-
firms that the semantic conversion and denoising
methods are important for ST. Also, we introduce
Loss’CL (denoted as KDCL) into training. It shows
that Knowledge distillation can reduce the difficulty
of semantic learning. The advances brought by
the textual adapter and KDCL are the same appar-
ently on the two tasks because the methods improve
the acoustic side and use the similar speech data.
We finally use a Silence Insensitive DAE to miti-
gate the impact of blank noise for textual adapter.
As expected, it helps. Our final MSP-ST method
achieves new SOTA results on the MuST-C En-De,
En-Fr and LibriSpeech En-Fr tasks.

5.2 Effect of Denoising

Figure 3 (a) compares the performance of DAE
and SIDAE. The performance on the clean test is
almost the same. The modest improvement of the
SIDAE model may be due to the stronger gener-
alization ability by perturbation training. When
the test text contains many blank labels, the vanilla
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Figure 6: The self-attention weights of alignment
adapter and textual adapter.

DAE model is degraded while the SIDAE is robust
to the noise. To explore the denosing influence
on ST, we split the test set into 2 sets according
to whether the blank label ratio is higher than 0.3.
Figure 3 (b) shows the performance of different
systems on the test sets. Here “Random” means
that the textual adapter is initialized in a random
manner. Its improvement is modest on the high
noise test set, while our textual adapter achieves a
bigger improvement on the BLEU score.

We further explore why the SIDAE model is not
impacted so much by blank symbols. As Figure
4 shows, the self-attention weight of blank label
focus on all blank labels, which means that the
output of this position is only with a blank message
and it is easy to be recognized in the cross-attention
module. The attention weights of cross-attention
confirm our conjecture, the position of silent speech
has a very low weight. Thus, the blank noise can
not affect the interference process. In the rest of
this paper, we use the SIDAE model to guide the
textual adapter.

5.3 Effects of the Alignment Adapter

Here we show the effectiveness of the alignment
adapter. We calculate the cosine similarity of word
representation between the acoustic model and tex-
tual model. The baseline model does not consider
the alignment of the acoustic model and the text
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encoder. Both the cross-modal and cross-lingual
similarities are almost around zero. The inconsis-
tency of representation space aggravates the gap
between acoustic and textual models. The align-
ment adapter boost the alignment between the two
models and can reduce the difficulty of contrastive
learning because the adapter does not need to con-
sider the transfer of the representation space. Be-
cause of the cross-lingual nature of multilingual
DAE, the cross-language alignment can also better
facilitate language transfer.

5.4 Effects of the Textual Adapter

To study the impact of the textual adapter, we com-
pare the attention wights between the alignment
adapter and the textual adapter. Figure 6 shows
that the textual adapter is helpful in adapting the
ST encoder to a text-friendly encoder. The weight
in the 1st position shows that the textual adapter
learns information which may be unimportant for
the cross-modal stage. This proves the difference
between the acoustic model and textual model dur-
ing the process of information extraction. Further,
the adapter focuses more on the first position which
is more important at the stage of translation. This
indicates that the adapter learns something better
suited to the MT model. Figure 6 also shows that
in many blank positions, the weights are lower than
those of the alignment adapter.

Figure 7 (a) shows our textual adapter can signif-
icantly mitigate the gap between the acoustic and
textual model. Figure 7 (b) and (c) show the aver-
age information entropy (IE) of attention weights.
Note the IE also consists of the noise information.
The IE of textual adapter is much lower due to the
inattention of noise. The random adapter learns
more semantic information but fails to drop the
noise so its IE is the highest. Figure 7 (c) shows the
usage of adapter can boost the decoder to extract
more information. It also proves our gains mainly
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Figure 8: Efficient of parameters. The stacked method
means stack the acoustic model and DAE.

can from improvement of encoder since the IEs of
the two adapters are similar.

5.5 Sample Efficiency

We study how different systems behave under dif-
ferent sized speech translation data. To do this, we
scale the training data by about 6.3 times each time.
Table 4 shows that our model obtains a good speech
translation result by only 10-hour labeled data,
which is better than vanilla Transformer (Wang
et al., 2020a) learned on 65-hour labeled data. The
improvement is still large when more data is used.

5.6 Parameter Efficiency

Using the pre-training model in general leads to a
significant increase of model parameters. To eval-
uate the efficiency of model size, we compare the
performance and parameter number of different
methods in Figure 8. The upper left of figure means
a higher efficiency. We see that our method is effi-
cient: it achieves the best BLEU score with a slight
increase of the parameters. From an aspect of per-
formance, the model which directly stacks the pre-
trained acoustic and the whole SIDAE model also
achieves comparable performance with our MSP-
ST. But our model is more parameter efficient.

6 Conclusions

We explore methods to pre-train all the components
of an ST model by labeled and unlabeled speech
and text data. To improve the ST encoder, we
develop an alignment adapter and textual adapter.
Then, we use a text-based pre-trained encoder to
bridge the acoustic model and text model. In ad-
dition, we use contrastive training and denoising
training to mitigate the influence of silent moments
in speech. Our system achieves SOTA results on
the MuST-C En-De, En-Fr and LibriSpeech En-Fr
tasks.
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