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Abstract

We introduce anticipation: a method for constructing a controllable generative model of a
temporal point process (the event process) conditioned asynchronously on realizations of a
second, correlated process (the control process). We achieve this by interleaving sequences of
events and controls, such that controls appear following stopping times in the event sequence.
This work is motivated by problems arising in the control of symbolic music generation. We
focus on infilling control tasks, whereby the controls are a subset of the events themselves,
and conditional generation completes a sequence of events given the fixed control events.
We train anticipatory infilling models using the large and diverse Lakh MIDI music dataset.
These models match the performance of autoregressive models for prompted generation,
with the additional capability to perform infilling control tasks, including accompaniment.
Human evaluators report that an anticipatory model produces accompaniments with similar
musicality to even music composed by humans over a 20-second clip.

1 Introduction
Imagine you are given a melody, and asked to compose a harmonizing accompaniment. This melody is an
example of a temporal point process: a sequence of (musical) events that arrive stochastically at points in time.
An accompaniment to this melody is also a temporal point process. The events in the accompaniment are
tightly correlated—but often asynchronous—with the events in the melody. Generating an accompaniment
to a given melody is an example of a control task: we seek the ability to generate an accompaniment (the
events) conditioned on a given melody (the controls). Models that generate symbolic music (i.e., compose)
subject to user-specified controls are of broad interest as tools for music co-creation (Louie et al., 2020).
Motivated by this example, we are interested in constructing generative models of a temporal point process
(the event process) that can be conditioned on realizations of a second, correlated point process (the control
process). Generating an accompaniment to a melody is an instance of a more general infilling task, whereby
we generate a complete realization of a temporal point process given partial observation of a subset of its
events. Infilling is a powerful control mechanism for music generation: previous work on musical infill-
ing (Huang et al., 2017) powered the J.S. Bach Google Doodle (Huang et al., 2019), an interactive music
experience with broad popular appeal.
The dynamics of a temporal point process can be captured by a neural autoregressive model trained to
predict the next event in a time-ordered sequence (Du et al., 2016). A natural extension of this paradigm to
conditional distributions is sequence-to-sequence modeling (Seq2Seq) (Sutskever et al., 2014), whereby the
control sequence is prepended to the sequence of events. For long sequences, Seq2Seq places time-localized
controls far from the events they describe. While there is substantial recent work on long-context modeling
(Child et al., 2019; Dao et al., 2022; Gu et al., 2022; Hawthorne et al., 2022), rather than brute-force the
learning of artificial long-range dependencies, we propose to structure conditional generation so that a control
on time t is located close to events near time t. Our premise is that the most relevant context for predicting
the next event is the recent event history (unidirectional context) and both recent and near-future controls
(bidirectional context).

Standard practice to efficiently train an autoregressive model relies on the observation that context for
prediction at one index in the sequence is a prefix of the context for predictions at future indices. This
allows us to update the model based on M − 1 predictions for each sequence of length M . Conditioning on
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Unconditional:     e1,                         …                       ,   ej  ,  ej+1,  ej+2, ej+3, ej+4, ej+5, ej+6,  ej+7, … 
Seq2Seq:              u1,  …  ,  uk, …, uk+5,    …   , e1,  …  ,   ej  ,  ej+1,  ej+2, ej+3, ej+4, ej+5, ej+6,  ej+7, … 

Sort Order:          e1, …, uk, uk+1, ej, uk+2, ej+1, ej+2, ej+3,  uk+3, uk+4, ej+4, ej+5, uk+5, ej+6, ej+7, …  
Anticipation:        e1, …, ej, uk, uk+1, ej+1, uk+2, ej+2, ej+3, ej+4, uk+3, uk+4, ej+5, ej+6, uk+5, ej+7, … 

Next Event Prediction:  p(ej+7 | Model Context) 

Serialized Sequence Structure
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Figure 1: We construct conditional generative models for sequences of events e1:N , conditioned on controls
u1:K . We serialize these paired sequences to define an autoregressive factorization of the joint distribution
over events and controls. Anticipation interleaves event and control sequences so that a control uk on time
sk appears in the recent history when predicting events near time sk. An anticipated control uk on time sk

appears as if it were at approximately time s′
k = sk−δ. For example, when predicting ej+7 above, the recent

context of the anticipation sequence contains contains past events and controls, as well as the future control
uk+5; we say that a model predicting ej+7 given this context anticipates the control uk+5, approximately δ
seconds in advance. Crucially, to be able to condition on controls, the index that immediately preceeds each
control in the serialized sequence must be a stopping time, a property that naively interleaving events and
controls using the sort order of times s′

k does not satisfy.

asynchronous controls by constructing an ad-hoc context (e.g., the M/2 previous events and M/2 nearest
controls) to predict each event would be computationally wasteful: we want to define a single, coherent
interleaved sequence of events and controls. This is straightforward if the events and controls are synchronous:
to condition on bidirectional control context [t − δ, t + δ] at time t, simply shift the control sequence by a
time offset δ and construct a joint sequence by interleaving events and controls at alternating sequence
positions. Or alternatively, construct an encoder-decoder model that ingests the paired control tokens
through a separate encoder (Raffel et al., 2020).

When events and controls are asynchronous, simple approaches to interleaving these sequences make sampling
from the ensuing joint model intractable. This includes the natural sort order, whereby we interleave a control
on time t as if it were at time t − δ. For tractable sampling, we will see in Section 3 that the index in the
interleaved sequence that immediately precedes a control must be a stopping time (Billingsley, 1995). We
propose a method for interleaving asynchronous events and controls such that a control on time t appears in
the interleaved sequence at a stopping time close to events near time t− δ. We call this method anticipation.
The interval δ > 0 is a hyperparameter chosen to be long enough to give the model time to account for (i.e.
anticipate) upcoming controls, but short enough to maintain proximity of events and controls (if δ =∞, we
recover Seq2Seq modeling). The interleaved structure of anticipation is visualized in Figure 1.

Contributions. We define an arrival-time encoding of temporal point processes that is amenable to
expressive autoregressive sequence modeling and facilitates anticipation (Section 2). We describe the
interleaved structure of an anticipatory autoregressive model, and how to train and sample from this
model (Section 3). We apply anticipation to construct anticipatory infilling models for music, trained
on the Lakh MIDI music dataset Raffel (2016). These models unlock new control capabilities for mu-
sic generation without sacrificing the performance of unconditional generation (Section 4). We will re-
lease all code for reproducing these models, along with pre-trained model weights. For audio samples, see
https://dblblnd.github.io/tmlr2023/.
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2 Music as a Temporal Point Process

A marked temporal point process consists of sparse events situated at points in continuous time (Daley &
Vere-Jones, 2007).
Definition 2.1. A marked temporal point process consists of time-ordered events ei = (ti, mi), where ti ∈ R+
(ti ≤ tj if i < j) is a point in time and mi ∈ V is a mark from a finite vocabulary V.

Given controls u1:K provided by a user, we say that we can control generation of the event process e1:N
with respect to u1:K if we can sample from p(e1:N |u1:K). We focus on infilling control, whereby the controls
u1:K share a vocabulary with the events e1:N . Given a user-specified set of K events u1:K , we would like
to generate a complete realization of the process e1:N such that u1:K ⊆ e1:N . This generalizes the span-
infilling task—which asks us to generate a missing contiguous span of events—previously studied in the
music literature (Ippolito et al., 2018; Chang et al., 2021; Tan et al., 2021; 2022).

Music can be described as a marked temporal point process, where the vocabulary of marks consists of
musical notes and other musical events. In this work, we restrict the vocabulary of musical events to notes
consisting of a pitch p, instrument class k, and duration d. Following the MIDI standard (International
MIDI Association, 1988), we quantize pitch p ∈ {0, . . . , 127} according to the 12-tone Western scale (p = 60
denotes “middle C”, or 261Hz); we represent instrument classes k ∈ {0, . . . , 128} using standard MIDI
instrument codes, including drums (code 128); we represent duration in units of seconds, quantized to 10ms
intervals with a maximum duration of 10 seconds. We represent combined pitch and instrument information
using a single value n = 128k + p. A mark is thus a note mi = (di, ni) ∈ V from a vocabulary of 17,512
marks, and music consists of these notes situated at points in time.

Modeling Arrival Times. Stochastic arrival times ti are the defining characteristic of a temporal point
process. In Section 2.1 we propose an arrival-time tokenization that represents a realization of a marked point
process as a sequence of (discretized) arrival times and marks. In Section 3 we exploit an invariance of this
sequence representation (context-free subsequences) to create anticipation. We also consider an interarrival-
time tokenization that is comparable to encodings used in recent work on music generation (Huang et al.,
2018; Donahue et al., 2019; Payne, 2019; Oore et al., 2020). Both of these encodings reduce point process
modeling to sequence density estimation. This allows us to directly apply the full modern machinery of
causal autoregressive transformers and large language models to modeling point process data. However,
only the proposed arrival-time encoding facilitates the construction of anticipation.

2.1 Encoding Music as Sequences

We represent arrival times ti using a finite vocabulary of 10,000 values, quantizing time in 10ms intervals
(the quantization proposed by Music Transformer Huang et al. (2018)) with a maximum time of 100 seconds.
While many musical performances are longer than 100 seconds, we relativize arrival times to the beginning of
the model context. The models described in this paper have context length M = 1024. Differences between
M successive arrival times that exceed 100 seconds appear in less than 0.1% of Lakh MIDI training examples;
we discard these examples during preprocessing. By quantizing time we reduce temporal point processes to
discrete sequences composed of successive pairs of times ti ≡ quantize(ti) and marks mi or, in the music
application, triplets of time, duration, and note (ti, di, ni).
Definition 2.2. The arrival-time tokenization of events e1:N is a sequence x1:3N defined by

x3i−2 = ti, x3i−1 = di, x3i = ni. (1)

The vocabulary has size |V| = 27,512: 10,000 quantized times, 1000 quantized durations, and 16,512
instrument-pitch pairs.

Crucially, the triplets (x3i−2, x3i−1, x3i) of these sequences are context-free: if we re-order the triplets, the
semantics of the sequence do not change. We can recover the original ordering by sorting these triplets
according to their arrival times x3i−2. We exploit the re-orderability of arrival time tokenized sequences
to construct anticipatory autoregressive infilling models in Section 3. A similar encoding has been used by
Gardner et al. (2021), but their work does not exploit this re-orderability.
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The more common practice in symbolic music modeling encodes music as a sequence of onset and offset
events, separated by interarrival times ∆ ∈ R+. For each event e = (t, m), we define onset on = (t, n) and
offset off = (t + d, n).
Definition 2.3. Given events e1:N , let x′

1:2N denote an interleaved sequence of onsets on1:N and offsets
off1:N , ordered by time, where values x′

i = (t′
i, n′

i) have interarrival times ∆i = t′
i+1 − t′

i. The interarrival-
time tokenization of events e1:N is a sequence x1:4N defined by

x2i−1 = x′
i, x2i = ∆i. (2)

Following standard practice, we omit interarrival tokens when ∆i = 0. The vocabulary has size |V| = 34,024:
16,512 note onsets, 16,512 note offsets, and 1000 quantized interarrival times.

In contrast to Definition 2.2, the interarrival-time tokenization described by Definition 2.3—and other com-
mon music encodings including including REMI (Huang & Yang, 2020) and OctupleMidi (Zeng et al.,
2021)—are context sensitive: the timings of tokens are determined contextually by their positions in the
sequence. Interarrival-time tokenization may appear less compact than arrival-time tokenization: each event
is encoded as an onset and an offset—each with an associated interarrival time—totaling 4 tokens, versus
a triplet of arrival time, duration, and note totaling 3 tokens. However, omitting zero-duration interrarival
times results in sequences of comparable length under either encoding for music datasets including Lakh
MIDI.

3 Anticipation

Given an anticipation interval δ > 0, we construct a sequence a1:N+K = interleaveδ(e1:N , u1:K) that
interleaves events e1:N and controls u1:K such that a control uk on time sk appears close to events near time
sk−δ; i.e., we anticipate uk, δ seconds in advance. We can then construct a standard autoregressive sequence
model over interleaved sequences a1:N+K . Model predictions under the anticipatory ordering a1:N+K combine
a filtering (i.e., causal) estimate based on the local history of events with a smoothing (i.e., bidirectional)
estimate based on local controls (Wiener et al., 1949). The value of δ is a hyperparameter that controls the
degree of smoothing. If δ is too short, then the model will be blind to upcoming control context. If δ is too
long, then time-locality of the sequence a1:N+K is broken.

The natural sort order that interleaves events and controls by merging a control on time sk between events
at times tj , tj+1 such that tj ≤ sk − δ < tj+1 makes inference intractable. During inference, we only have
access to prefixes of a1:N+K , and so the criterion that determines whether to condition on uk at index
i must be a function of the history a1:i−1. However, the sort order placement of a control uk depends
on both the event that precedes it and the event that follows it in the merged sequence, which requires
information that is unavailable at inference time. We formalize this problem using the concept of a stopping
time (Definition 3.3). Definition 3.1 describes a version of anticipation that interleaves controls uk at indices
τuk
∈ {1, . . . , N + K} after a stopping time τuk

− 1.
Definition 3.1. (Anticipation) Let e1:N be events with vocabulary V and let u1:K be controls with vocab-
ulary U . Given δ > 0, we define a combined sequence a1:N+K ≡ interleaveδ(e1:N , u1:K) with vocabulary
U ∪ V that interleaves these two sequences. We write tj , sk to indicate the arrival times of event ej and
control uk respectively. To simplify notation we define t0 = s0 = −∞. In the combined sequence a1:N+K ,
event ej and control uk appear (respectively) at indices

τej = j + arg max
0≤k≤K

{tj−1 ≥ sk − δ}, (3)

τuk
= k + arg min

0≤j≤N
{tj ≥ sk − δ}. (4)

Unpacking this definition, Equation (3) says that event ej appears in sequence a1:N+K after the first j − 1
events (term j in the sum) and after any controls that appear earlier in sequence a1:N+K (the arg max term,
mirroring Equation (4)). Equation (4) says that control uk appears after the first k − 1 controls and after
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the first event ej exceeding time sk − δ. The indices τ of events and controls in the sequence a1:N+K are
random variables, determined by stochastic realizations of e1:N and u1:K .

An anticipatory autoregressive model is an autoregressive model defined over sequences of events and controls
a1:N+K interleaved according to Equations (3) and (4):

p(a1:N+K) =
N+K∏
i=1

p(ai|a1:i−1). (5)

Example 3.2. Suppose t1 = 1, t2 = 3, t3 = 5, s1 = 7, and δ = 5. Then s1 − δ = 2 and
τe1 = 1 + arg max

k
{−∞ ≥ sk − δ} = 1, (6)

τe2 = 2 + arg max
k
{1 ≥ sk − δ} = 2, (7)

τe3 = 3 + arg max
k
{3 ≥ sk − δ} = 4, (8)

τu1 = 1 + arg min
j
{tj ≥ 2} = 3. (9)

Therefore a1:4 = (e1, e2, u1, e3). Contrast this order with the more natural sort order that interleaves u1 as
if it were an event at time s1− δ = 2: (e1, u1, e2, e3). Under the sort order, u1 appears before the first event
ej exceeding time s1 − δ. This position can only be determined retroactively (after observing the position
of e2) which precludes autoregressive inference. Formally, the problem here is that τu1 − 1 is not a stopping
time.

3.1 Stopping Times

Informally, a stopping time of a stochastic process x is a random index τ for which the occurrence of an event
{τ = i} can be determined based only on the information observed in the prefix x1:i (modeled by a sigma
algebra Fi). A classic example of a stopping time is a first hit time: the first index at which a stochastic
process x attains a value v. This is a stopping time because the condition {τ = i} can be determined at
time i simply by inspecting whether xi = v. An example of a random time that is not a stopping time is a
last exit time: the last index i at which xi = v. In contrast to the first hit time, the last exit time can only
be determined after observing the entire process x.
Definition 3.3. (Stopping Times) Let I be an ordered index set, let (Ω,F , (Fi)i∈I) be a filtered measurable
space, and let τ : Ω → I be a random index defined on this space. We say that τ is a stopping time if
{τ = i} ∈ Fi for all i ∈ I.

In our case, I = {1, . . . , N + K}, and τ is a random index into the sequence a1:N+K . The filtration (Fi)i∈I

consists of the sigma algebras Fi generated by the prefix sequences a1:i. While we adopt the conventional
terminology of stopping times, in this case it might be better to think of τ as a stopping index of a1:N+K ,
not to be confused with a (continuous) random time in the underlying point process.

To condition on a control uk, it is essential that τuk
− 1 is a stopping time: inference relies on a criterion

computed at each index i − 1 to determine whether to (temporarily) stop sampling and insert a control
ai = uk, or to continue sampling events ai ∼ p(ei|a1:i−1) (see Section 3.4). During inference, we only have
access to the prefix a1:i−1 and therefore the criterion that determines whether to condition on uk at index i
must be a function of this history. Whereas τuk

− 1 is a stopping time, examples of random indices that do
not appear after stopping times include:

1. σuk
= k + arg minj{tj+1 ≥ sk − δ}. This is where uk would appear in sort order, as if uk were at

time sk − δ (naively anticipating uk, δ seconds in advance).

2. σuk
= k + arg minj{tj+10 ≥ sk}. This is 10 indices before where uk would appear in sort order, as

if uk were an event at time sk (naively anticipating uk, 10 indices in advance).

In both cases, {σuk
= i} cannot be determined based on observation of the prefix a1:i−1. Each random index

depends on unobserved future events and therefore σuk
− 1 is not a stopping time.
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3.2 Sparse Sequences

The interleaving rule proposed in Definition 3.1 provides no guarantee that a control will appear some number
of seconds (or number of indices) in advance of the time that it controls. For very sparse sequences (relative
to δ) a control can even appear after the time that it controls.
Example 3.4. Suppose t1 = 1, t2 = 2, t3 = 5, s1 = 4.5, and δ = 2. Then s1 − δ = 2.5 and

τe1 = 1 + arg max
k
{−∞ ≥ sk − δ} = 1, (10)

τe2 = 2 + arg max
k
{1 ≥ sk − δ} = 2, (11)

τe3 = 3 + arg max
k
{3 ≥ sk − δ} = 3, (12)

τu1 = 1 + arg min
j
{tj ≥ 2.5} = 4. (13)

Therefore a1:4 = (e1, e2, e3, u1). And in particular, the control u1 on time s1 = 4.5 appears after event e3,
which occurs at time t3 = 5.
Definition 3.5. Given a sequence of events e1:N that occur at times t1:N , let ∆max denote the maximum
distance between adjacent events, i.e.

∆max = max{ti+1 − ti : 1 ≤ i < N}. (14)

We say that the sequence e1:N is ∆max-dense.

For a ∆max-dense sequence e1:N , we can guarantee that a control on time t appears at or before time
t − δ + ∆max using the sequence order given by Definition 3.1. If δ − ∆max > 0 is small, the model may
have little time to plan for anticipated controls; if ∆max > δ then we risk anticipating some controls after
the times that they are supposed to control, as in Example 3.4. To ensure dense sequences, we insert special
REST events into inter-event intervals that exceed a target density ∆∗: if n∆∗ < ti+1 − ti ≤ (n + 1)∆∗ then
we insert n REST events at times ti + ∆∗, ti + 2∆∗, . . . , ti + n∆∗. This is analogous to how a musician counts
out rests in a musical score.
Example 3.6. Continuing Example 3.4, we see that ∆max = 3 > 2 = δ. Inserting REST events to ensure
∆∗-density for ∆∗ = 1, the event sequence becomes e′

1:5, adding REST tokens at times 3 and 4 such that

e′
1 = e1, e′

2 = e2, e′
3 = (3, REST), e′

4 = (4, REST), e′
5 = e3. (15)

In this case, the anticipatory interleaving of u1 with e′
1:5 is a′ = (e′

1, e′
2, e′

3, u1, e′
4, e′

5).

And in this case, we anticipate the control u1 on time s1 = 4.5 between the event e′
3 at time 3 and the event

e′
4 at time 4. All the anticipatory models in this paper are trained with ∆∗ = 1 second.

3.3 Training Anticipatory Models

We train anticipatory autoregressive models using standard maximum likelihood estimation of the sequences
a1:N+K (Definition 3.1). We tokenize these sequences according to the encoding described in Definition 2.2:
x1:3(N+K) ≡ tokenize(a1:N+K). We follow a standard sequence packing procedure (see, e.g, Appendix B
of Brown et al. (2020)) to construct training examples of fixed length M (the model context) from variable-
length sequences x1:3(N+K), using a special event SEP as the sequence separator. We prepend each training
example with a single global control code z ∈ {0, 1} that indicates whether the example contains local
controls uk; setting z = 0 (no controls) facilitates comparisons between anticipatory and autoregressive
models. If the training example spans multiple sequences, then z describes the sequence preceding the first
SEP event. We randomly shuffle and mini-batch training examples for stochastic gradient training.

We can choose to either predict all of a1:N+K , learning a joint generative model over events and controls,
or alternatively just predict the events e1:N (by zeroing out the training losses at indices corresponding
to controls) and learn a conditional generative model over the events, given controls. In this paper, we
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Algorithm 1: Anticipatory Autoregressive Sampling
Parameters: Anticipatory autoregressive model p with context length M

Anticipation interval δ > 0
Input : Time-localized controls u1:K (monotone increasing in time)

Non-localized controls z (global control codes)
Output : A generated sequence a1:N+K

a0 ← SEP // A special sequence separator event
i← 1 // Index i tracks position in the generated sequence
k ← 0 // Index k tracks position in the control sequence
do

t← time(ai−1) // Get the time t of the previous event ai−1
while time(uk) ≤ t + δ // While there are controls before time t + δ
do

ai ← uk // Anticipate control uk at index i
i← i + 1 // Advance to index i + 1
k ← k + 1 // Consume control uk

end
Sample ai ∼ p(·|z, ai−M−Length(z):i−1) // Sample an event from the model
i← i + 1 // Advance to index i + 1

while ai ̸= SEP
return a1:i−1 // The value N+K = i-1

predict controls in addition to the events: this maximizes the number of predictions for each example (M−1
predictions for a training example of length M). For the infilling application (Section 3.5) predicting events
and predicting control are similar enough tasks that improvements in the two tasks ought to reinforce each
other; this reinforcement has been observed empirically in the language modeling domain (see Donahue et al.
(2020), Appendix C).

Dividing up a dataset into training examples of length M introduces boundary effects. For general autore-
gressive models, this procedure results in an “early token curse,” whereby predictions early in a training
example must be made with limited context (Press et al., 2021). For anticipatory autoregressive models,
more subtle boundary effects arise. For an anticipation interval δ, controls on first δ seconds of the training
example do not appear in the context: these controls appear at the end of the previous training example.
If δ is large relative to M then the boundary effects become severe: many event predictions will be made
without the relevant contextual controls, and vice-versa. This tempers the value of making predictions for
all M − 1 sequence indices, imposing a drag on training efficiency for large values δ relative to M . Like the
early token curse, this effect is mitigated with larger contexts M relative to δ; in practice, the maximum
practical anticipation interval δ is thus coupled with the context size of the model that we plan to train.

3.4 Anticipatory Inference

We draw conditional samples from an anticipatory autoregressive model p according to the procedure de-
scribed in Algorithm 1. If there are controls (K ̸= 0) we set z = 1 (anticipatory sampling mode). In the
outer loop, we sample ai ∼ p(·|a1:i−1). We impose three constraints upon the sampling distribution, all
implemented by logit masking: (1) each arrival time must equal or exceed the previous arrival time (mono-
tonicity) (2) a time token must follow a note token, a duration token must follow a time token, and a note
token must follow a duration token (proper ordering) and (3) the model must not generate a control token
(controls are pre-specified by the user).

Each time we draw a sample ai from the model, we note its time ti = time(ai) and check for controls
satisfying the condition given by Equation (4) (leveraging the fact that this condition is a stopping time).
We anticipate these controls by appending them to the generated output following ai. The sequence a1:N+K

returned by Algorithm 1 contains N events interleaved with K labels. We can postprocess this sequence by
stripping out the controls to recover the sequence of generated events e1:N .
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3.5 Anticipatory Infilling Models

We apply the anticipatory modeling framework to infilling control, whereby the labels u1:K consist of a
subset of the events e1:N . We duplicate the event vocabulary to distinguish between regular events e′

j ∈ V
and control events uk ∈ U ; let φ : V → U denote the (bijective) map between the event and control
vocabularies. In this case, the combined sequence a1:(N−K)+K = a1:N (Definition 3.1) is a re-ordering of
the event sequence e1:N , consisting of events e′

1:N−K ⊆ e1:N and controls u1:K , with φ−1(u1:K) ⊆ e1:N and
e1:N−K ∩ φ−1(u1:K) = ∅. Using an arrival-time tokenization of events (Definition 2.2) allows us to re-order
e1:N while preserving the semantics of the sequence. We can recover the original sequence by converting the
control events back to the event vocabulary and sorting all the events according to their arrival times:

e′
1:N−K , u1:K = split(a1:N ), (16)

e1:N = sort
(
e′

1:N−K ∪ φ−1(u1:K)
)

. (17)

We describe the precise encoding of U ∪ V that we use for music infilling models in Appendix C.

Previously we have assumed that the controls u1:K are given to us, separate from the the events e1:N . For
the infilling task, there is no distinction between events and controls in the training data; a user could specify
an arbitrary set of events to condition on at inference time. To train an infilling model, we must impose a
prior over the distribution over subsets of control events u1:K ⊆ e1:N . This prior should simulate common
infilling patterns, and generalize to accommodate patterns that we did not foresee during training. To that
end, we propose a distribution over control events consisting of a mixture of random spans of time, random
subgroups of instrument, and uniformly random events. We describe specific details of this prior distribution
in Appendix D.

We caution that the conditionals learned by an anticipatory infilling model are not consistent with a unique
joint distribution over sequences e1:N . Given controls u1:K , the map between the sequences e1:N and a1:N
defined by Equation (17) is a bijection. The probability distribution over sequences a1:N therefore also
defines a distribution over sequences e1:N . Every subset φ−1(u1:K) ⊆ e1:N can be used as infilling controls,
each resulting in a distinct anticipatory sequence a1:N . But the probability distributions p(e1:N ) implied
by sequences a1:N will not be the same. We rely on the model’s ability to well-approximate the underlying
distribution over sequences e1:N to ensure some degree of compatibility between these families of learned
distributions.

4 Anticipatory Infilling Models of Music

We train and release anticipatory infilling models on the Lakh MIDI dataset (Raffel, 2016). See Appendix B
for licensing information and Section A for a discussion of copyright considerations regarding models trained
on Lakh MIDI. The Lakh MIDI dataset consists of 178,561 MIDI files (event sequences) that we preprocess
into 663,555,310 events (1,990,665,930 tokens using arrival-time encoding) encompassing 8943 hours of music.
This dataset is orders of magnitude larger than other common music datasets (Dong et al., 2020), but orders
of magnitude smaller than the datasets used to train large models in other domains, e.g. language (Gao
et al., 2020) and vision (Schuhmann et al., 2022). For reference, the OpenWebText corpus that reproduces
the training set used to train GPT-2 contains approximately 10 billion tokens (Gokaslan & Cohen, 2019).
We describe training splits and additional information about Lakh MIDI and preprocessing in Appendix E.

We parameterize anticipatory infilling models using causal masked transformers (Vaswani et al., 2017)
(decoder-only models) with anticipation interval δ = 5 seconds. This allows the models to look ahead
(i.e. anticipate) controls up to 5 seconds before their arrival. Due to the high cost of training, we defer
systematic ablations of this hyper-parameter to future work. We train models at three scales, following
GPT-2 naming conventions (Radford et al., 2019): Small (128M parameters), Medium (360M parameters),
and Large (780M parameters). Because anticipatory models are trained like sequence models on the aug-
mented sequences a1:N+K (see Section 3.3) we are able to use standard libraries for training anticipatory
music transformers; in this work, we use the Levanter library for training.1 For additional details of models
and training procedures, see Appendix G.

1https://github.com/stanford-crfm/levanter
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Table 1: Evaluation Loss. All losses are reported on the Lakh MIDI test set sequences e1:N (without anticipa-
tion). For the arrival-time models, we define a per-event loss Le summed across event triples (Definition 2.2)
and report the per-event perplexity ppl(e) = exp (Le). This loss decomposes into Le = Lt + Ld + Ln
with corresponding perplexities for onsets t, durations d and notes n. The time-normalized bits per second
metric (bps) (Thickstun et al., 2019) is defined in Appendix F. Parameter counts differ between arrival and
interarrival models, due to the difference in vocabulary size. Anticipatory models are indicated by the ‘AM’
flag. For anticipatory models, we evaluate with z = 0 (see Section 3.3).

# Config Params Steps Encoding AM bps ppl(e) ppl(t) ppl(d) ppl(n)
1 Small 112M 100k interarrival ✗ 85.9 - - - -
2 Small 128M 100k arrival ✗ 80.4 14.9 1.59 3.90 2.40
3 Small 128M 100k arrival ✓ 80.7 15.0 1.58 3.98 2.40
4 Small 128M 800k arrival ✗ 75.7 12.7 1.53 3.65 2.27
5 Small 128M 800k arrival ✓ 75.0 12.4 1.52 3.64 2.24
6 Medium 360M 100k arrival ✓ 74.4 12.1 1.54 3.55 2.22
7 Medium 360M 200k arrival ✓ 71.5 11.1 1.51 3.39 2.16
8 Medium 360M 800k arrival ✓ 69.7 10.4 1.49 3.29 2.12
9 Large 780M 100k arrival ✓ 73.2 11.7 1.52 3.44 2.23

4.1 Automatic Metrics

See Table 1 for a summary of configurations and performance metrics derived from the log-loss for antic-
ipatory infilling models trained on Lakh MIDI. Arrival-time encoding appears more effective for training
autoregressive transformers than interarrival-time encoding (rows 1 and 2). Anticipatory training incurs a
small tax on performance compared to a baseline autoregressive model for short training schedules (compare
rows 2 and 3) however this gap disappears with a longer training schedule (compare rows 4 and 5). In this
sense, anticipation unlocks infilling control capabilities in autoregressive music models “for free.” Larger
models achieve significantly better perplexity on test (compare rows 3, 6, and 9) as do longer training sched-
ules (compare rows 2 and 4; 3 and 5; 6, 7, and 8). Therefore, despite the relatively small size of the Lakh
MIDI dataset compared to language modeling datasets, we do not appear to have saturated this dataset or
overfit: better results are likely achievable with larger-scale models, trained for longer.

4.2 Human Evaluation

We solicited human evaluation of generated music to ground the performance of these models in human
assessments of quality, to compare these models to other music generation systems, and to evaluate the
anticipatory capabilities of these models that are not captured by the predictive log-loss. We evaluate
generated outputs for two tasks—described below—following a similar procedure to Huang et al. (2018),
whereby we ask workers to identify which of two 20-second synthesized audio clips is more conventionally
musical. We recruited crowd workers on the Amazon Mechanical Turk platform to perform these tasks.
We paid workers $0.75 US dollars for each pairwise evaluation. Assuming that workers listen to each clip
twice—and spend an additional 40 seconds to make their decision and overhead time between tasks—this
amounts to two minutes of time per task, or a $22.50 hourly rate. We pre-qualified workers for by asking
them to distinguish between five pairs of human compositions versus melodies accompanied by the random
retrieval baseline (described below for the accompaniment task).

All samples from our models used for human evaluation are generated using nucleus sampling (Holtzman
et al., 2020) with top-p probability p = 0.95. We chose this threshold by manually inspecting music generated
from the 800k-step Medium model (Row 8 in Table 1) conditioned on prompts from the validation set and
using values of p ∈ {0.9, 0.95, 0.98, 1.0}. We chose the value p that most consistently produced high quality
music (in the authors’ judgement). Sampling with p < 1.0 generates less diverse music; anecdotally we
observe that music generated at p = 0.95 is more conservative than both music generated at p = 1.0 and
music composed by humans (e.g., sampling at p = 0.95 is less likely to introduce a new instrumental part).

9



Under review as submission to TMLR

Table 2: Human evaluation of generated continuations of three-bar musical prompts versus human compo-
sitions. P-values are reported using a Wilcoxon signed rank test. Row numbers reference Table 1.

Model Wins Ties Losses p-value
Medium (Row 8) 44 29 77 0.0027
Music Transformer (von Rütte et al., 2023) 13 18 119 2.806× 10−20

Small (Row 3) 43 23 84 0.0002
Small (Row 1) 31 16 103 4.976× 10−10

Table 3: Human evaluation of 15-second accompaniments versus human compositions. P-values are reported
using a Wilcoxon signed rank test.

Algorithm B Wins Ties Losses p-value
Anticipatory 18 31 11 0.194
Autoregressive 5 10 45 1.542× 10−08

Retrieval 2 6 52 1.017× 10−11

It is possible that our instruction for workers to identify the most conventionally musical clip favors this
more conservative generated music.

Prompt Continuation. Workers evaluated 50 clips, each consisting of a three-bar prompt—randomly
selected from the beginning of tracks in the Lakh MIDI test set—followed by a continuation generated by a
model or from the original human composition. See Table 2 for human evaluation of music generated from
prompts, compared to human compositions; for full pairwise comparison results, see Appendix J. We use this
task to compare our model in the standard autoregressive setting to a baseline Music Transformer (Huang
et al., 2018) as implemented by von Rütte et al. (2023) and trained on the Lakh MIDI dataset; we refer to
this as the FIGARO baseline. While continuing a prompt does not require anticipation, evaluators find that
music generated by anticipatory models given a prompt is considerably more musical than music generated
by the baseline FIGARO model (this should not be surprising; the FIGARO Music Transformer is a smaller,
30M parameter model). Human evaluators also prefer the Small arrival-time model (Row 3; Table 1) over
the Small interarrival-time model (Row 1; Table 1) which is consistent with the superior log-loss of the
arrival-time model.

Accompaniment. Workers evaluated 20 clips, each consisting of a five-second prompt (randomly selected
from tracks in the Lakh MIDI test set) followed by a 15-second accompaniment (i.e. infilling) conditioned
on the prompt and the full (20 seconds) melodic line. See Table 3 for human evaluation of generated music
accompaniments, compared to human compositions; for full pairwise comparison results, see Appendix J.
For this task, we crudely define melodic line to be the instrumental part with the highest pitch. This
task allows us to probe the infilling capabilities of our anticipatory autoregressive models. We compare
anticipation to two baseline accompaniment algorithms: random retrieval and autoregressive accompaniment.
Random retrieval is a simple baseline whereby we accompany the melody with a random 15-second clip
retrieved from elsewhere in the track. Autoregressive accompaniment is a best effort algorithmic attempt to
use autoregressive generation (without anticipation) to solve the accompaniment task; see Appendix I for
details. Both anticipatory and autoregressive accompaniments are generated using a Medium anticipatory
model (Row 8; Table 1). Evaluators express a mild preference for anticipatory accompaniments over the
human composition skyline. While this result is not statistically significant, it points to the effectiveness of
anticipation, especially in the more constrained accompaniment setting.

5 Related Work

Modeling Point Processes. In the temporal point processes literature, substantial work focuses on
modeling a conditional intensity function (Du et al., 2016; Omi et al., 2019; Zuo et al., 2020), e.g., the
Hawkes process (Mei & Eisner, 2017). In contrast, we directly model the point process itself (density
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estimation). In this regard, our work is most comparable to Shchur et al. (2020); but whereas that work
models continuous densities, we model discrete distributions over quantized time values. Older work on
music rasterizes time with a uniformly sampled grid (Boulanger-Lewandowski et al., 2012) (i.e., a piano-
roll). In the piano-roll setting, there are strong solutions to accompaniment and infilling tasks that avoid the
complexity of asynchronicity that we address in this paper (Hadjeres et al., 2017; Huang et al., 2017; Pati
et al., 2019; Chen et al., 2020). However, for diverse and rhythmically intricate music data (including Lakh
MIDI) piano-roll rasterization comes at a cost: if the rasterization is coarse then rhythmic detail is lost, and
if the rasterization is fine then the dimensionality of these piano-rolls becomes unwieldy.

Controllable Generative Modeling. Markov-chain Monte Carlo (MCMC) samplers are a natural candi-
date for conditional sampling tasks, and in particular infilling. Diffusion models have proven highly effective
as generative models of images with infilling capabilities (Ho et al., 2020; Lugmayr et al., 2022). Masked
language models can also be repurposed as MCMC samplers for infilling (Goyal et al., 2021; Mireshghallah
et al., 2022; Wang & Xia, 2021). These models are not easily applied to conditional point process gen-
eration, which requires the generation of variable numbers of events within a specified region of space or
time. MCMC models of symbolic music compromise by either discretizing time with piano-rolls (Hadjeres
et al., 2017; Huang et al., 2017) or modeling coarse, fixed-rate latent variables, without the ability to control
granular details of the variable-length sequence (Mittal et al., 2021).

Anticipatory infilling models are motivated in part by control capabilities of recent text infilling models (Zhu
et al., 2019; Du et al., 2022; Aghajanyan et al., 2022) and the growing empirical evidence that autoregressive
models can be augmented with infilling objectives without sacrificing unconditional modeling performance
(Donahue et al., 2020; Bavarian et al., 2022). An analogous approach to span-infilling for music using Seq2Seq
conditioning was proposed by Ippolito et al. (2018). Our discussion of anticipation draws inspiration from
the asynchronous control setting considered by Hassibi et al. (1999). Anticipatory infilling models also draw
inspiration from orderless NADE (Uria et al., 2014) and XLNet (Yang et al., 2019), which learn ensembles of
models over different autoregressive factorizations. Anticipatory infilling models differ from these methods
by (1) applying local rather than global permutations of the factorization order and (2) achieving this by
permuting the sequence itself (facilitated by context-free arrival-time encoding; Section 2.1) rather than
masking it.

Musical Accompaniment. In contrast to harmonization tasks, which seek to accompany a melody with
simple chords (Simon et al., 2008; Yeh et al., 2021; Chen et al., 2021; Wu et al., 2021; Rhyu et al., 2022),
here we seek to generate complete, asynchronous musical accompaniments to a given melody. Huang et al.
(2018) previously considered a solo-piano accompaniment generation task using Seq2Seq models; anticipatory
models generalize the Seq2Seq approach, motivated by the long multi-instrument sequences found in the Lakh
MIDI dataset. Dong et al. (2018) considered an accompaniment task using piano-roll encodings of the Lakh
MIDI dataset; see Section 2 for a discussion of the limitations of piano-roll encodings. Both Zhu et al. (2018)
and Ren et al. (2020) propose encoder-decoder architectures for conditional generation of accompaniments
given a melody: we discuss obstructions to efficiently training encoder-decoder models of music at scale in
Section 1. Shih et al. (2022) consider a more abstract form of conditioning, using a melody as thematic
material to generate an arrangement—rather than a literal accompaniment—of the given melody. Our
accompaniment task is also loosely analogous to recent work on vocal accompaniment in the audio domain
(Donahue et al., 2023).

6 Conclusion

Provided that locality continues to be an important inductive bias for learning, we believe that anticipa-
tion will be useful for modeling conditional temporal point processes. Locality is a perennial theme in the
machine learning literature. Popular model architectures including ConvNets (Forsyth et al., 1999) and
LSTM (Hochreiter & Schmidhuber, 1997) exploit locality as an inductive bias. Many long context Trans-
formers adopt local sparsity as an approximation to dense attention (Child et al., 2019; Beltagy et al., 2020;
Zaheer et al., 2020). Locality can be exploited to improve training efficiency via staged training (Press et al.,
2021; 2022). The local structure of anticipatory sequences is conducive to the broad class of methods that
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exploit or depend upon locality. Because anticipation only intervenes to modify the data, it can be seamlessly
combined with other modeling innovations, e.g., in the music space: the relative transformer (Huang et al.,
2018), the compound word transformer (Hsiao et al., 2021), and RIPO attention (Guo et al., 2022).

Generative music models have not yet reached a broad audience alongside generative models of language
(Brown et al., 2020) or images (Ramesh et al., 2022). Slow adoption of music models within creative
communities is partly attributable to the difficulty of controlling these models (Briot & Pachet, 2020). Users
value agency in human-AI collaborations, preferring to take an active role over more automated solutions (Oh
et al., 2018; Roy et al., 2019). We note the proliferation of recent work on music generation (primarily in
the audio domain) controlled by text (Forsgren & Martiros, 2022; Kreuk et al., 2022; Agostinelli et al., 2023;
Schneider et al., 2023; Huang et al., 2023b;a); we are intrigued by the possibility of applying anticipation to
generate symbolic music conditioned on localized text labels (e.g., lyrics). More broadly, we view symbolic
music generation and audio music synthesis as complementary, analogous to text generation and speech
synthesis. We hope that the Anticipatory Music Transformer may fill a role that is currently underdeveloped
in the construction of controllable music generation systems that support the human creative process.
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A Ethical Considerations for Generative Models of Music

We find it likely that generative models of music will become widely deployed and used within the next several
years (if not sooner). We are particularly concerned about the economic implications of this technology: how
will these models affect labor markets for creative work (Section A.1)? We are uncertain about the legal
status of these models: how will music created using models be treated by intellectual property and copyright
law (Section A.2)? We are also curious how the advent of these models will change our perceptions and
experience of art and creativity. Will widespread deployment of models trained on Western music reinforce
existing Western hegemony in music culture (Section A.3)? Could the use of these models lead to creative
stagnation, or loss of interest in music as an art form (Section A.4)? Analogous questions and concerns have
been raised in the broader context of research on generative models, but the focus of this discussion is often
grounded in generation of language or images. These discussions are worth revisiting in the specific context
of music generation.

A.1 The Creative Economy and Labor Markets

Music composition has economic value. What happens to the music economy—and to the people who rely
on it for their livelihoods—if its creative product can be automatically generated by a machine? Economic
research suggests that new technologies exert two countervailing effects on the labor market: a displacement
effect whereby automation reduces demand for labor, and a productivity effect whereby greater productivity
increases demand for labor (Acemoglu & Restrepo, 2018). It is unclear to us what the net effect of these two
forces will be on the size of the labor market for music composition. If latent demand for new music is high,
then decreasing the cost of music production could lead to more employment opportunities for composers.
That said, this reconfiguration of the music economy might be disruptive, and success in the new music
economy could require a new skillset that is difficult (or unappealing) for current workers to acquire. We
suspect that generative music technology will affect the current music economy, and may displace some
workers.

One response to concerns about labor displacement is that researchers should focus on building productivity-
enhancing systems that augment human capabilities, rather than automating them. This is an appealing
perspective for researchers, because it suggests that we can actively steer the development of generative
technologies towards pro-social outcomes. Indeed, the methods developed in this paper facilitate the creation
of controllable generative models that support the human creative process, rather than automating it. That
said, augmentative and productivity-enhancing technologies can still cause labor displacement. A system
that augments human capabilities can be used to replace a high-paid, high-skill worker with a low-paid,
low-skill worker; or to replace a team of workers with a single highly-productive worker. Augmentation can
also change the nature of creative work, potentially devaluing or automating aspects of the job that bring a
worker joy.

A.2 Copyright

While the use of copyrighted data to train models is often defensible under fair use doctrine (2d Circuit,
2015), the use of such data for generative modeling is an open legal question (Sobel, 2017; Henderson et al.,
2023). To evaluate the copyright status of generative music models, it may be helpful to distinguish between
the model itself (i.e. the parameters) and outputs generated by the model (McCann, 2021). It is unclear
how the law will ultimately view (the parameters of) a generative model. Is the model a transformative fair
use of the training data? Is the model itself a creative construct subject to copyright?

Regarding the outputs of a generative music model: generative models have been shown to plagiarize train-
ing data in both the language (Carlini et al., 2022) and vision (Somepalli et al., 2022) domains. Based on
this evidence, we are certain that generative models of music are similarly capable of plagiarism. Techni-
cal mitigation strategies to prevent this behavior based on differential privacy or near access-freeness are
nascent (Vyas et al., 2023), as are socio-technical strategies, such as providing copyright holders an opt-out
mechanism to exclude their content from training datasets (Henderson et al., 2023). The models trained in
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this paper provide no technical guarantees against plagiarism. Therefore, any outputs of this model should
be presumed to risk infringing on copyrighted material.

The Lakh MIDI dataset used to train models for this paper is licensed under the Creative Commons CC-BY
4.0 terms, which ostensibly allows free redistribution, reuse, remixing, and transformation of its content
for any purpose. However, the contents of this dataset consists of MIDI files aggregated from a variety of
sources and subject to their own (heterogeneous, mostly undocumented) copyright terms. In many cases,
these MIDI files are derivative work, transcribed from source material (e.g., pop music) which is itself subject
to copyright. Therefore, we presume that the copyright status of Lakh MIDI is more restrictive than its
license would suggest.

A.3 Western Bias

While the methods developed in this paper are broadly applicable to modeling diverse musical traditions,
the MIDI data format and the Lakh MIDI dataset used to train the anticipatory music transformer both
impose a strong bias towards the Western music tradition. In Section 2 we adopted a musical vocabulary that
describes musical pitch according to the 12-tone chromatic scale, which we inherit from the MIDI format of
our training data. Models trained using this vocabulary are incapable of expressing music outside the 12-tone
scale. This excludes, for example, the Koron and Sori quarter tones of Persian Dastgah music (Abdoli, 2011),
the 53 Koma of Turkish makam (Benetos & Holzapfel, 2013), and the continuous-pitch gamaka appearing
in Carnatic music (Viraraghavan et al., 2018). For further discussion of the consequences of modeling using
a 12-tone discrete scale, see Lenchitz (2021).

The Lakh MIDI dataset used to train anticipatory music transformers in Section 4 consists almost exclusively
of Western music. This inevitably biases the model’s predictions towards infilling completions that follow
Western rules of composition. We encourage work towards building models for other music traditions. We
believe that the primary obstruction to this work will be the limited availability of data. In this sense,
extending the work presented in this paper to other music traditions may be analogous to work in the
natural language processing community on low-resource language modeling (Hedderich et al., 2021).

A.4 Models and Art

If generated music becomes too good, might people lose interest in creating music altogether? We find
this unlikely. Our appreciation and emotional attachment to art is closely connected to its provenance, the
story behind its creation, and the story of its creator. Machine-generated music is unlikely to supplant high
art, although we expect that many artists may incorporate generative tools into their creative processes.
Economic pressures aside, artists are free to use generative tools or not. We expect many artists to embrace
these tools, but surely others will eschew them in favor of more traditional creative processes.

From a humanist perspective, we are optimistic for a future with generative models. Due to the high skill
required to compose music, most people are currently unable to create music at all. Lowering the barrier to
music creation is more likely to increase interest in music than to decrease it. A strong generative model of
music can be repurposed as a learning tool, providing feedback on compositions and ideas for how to improve
a composition (Huang et al., 2016). We draw an analogy to modern chess engines, which play the game
of chess at a far higher level than even the best human players. Despite this, public interest in the game
of chess has never been higher (CHESScom, 2023): we celebrate human performance, and it is irrelevant
that the computer on our phone could beat us every time. Chess engines offer universal access to a form of
chess education: whereas chess development previously required tutoring by a strong chess player (requiring
money and access) young players today can learn to play well by inspecting how the engine plays (Levinson,
2011). We anticipate similar opportunities for generative models to increase access to music education.

A.5 Releasing the Anticipatory Music Transformer

We see many opportunities for generative models to support human creativity and expression. At the same
time, we are concerned for the economic prospects of current participants in the music labor market, whose
work may disrupted or displaced by the deployment of generative music technologies. In our work, we strive
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to develop methods that maximize the humanistic potential for generative models of music. Specifically, we
focus on controllable generation, which places the expressive power of these models under the control of their
users. We focus on generation of intermediate symbolic music representations, which could be integrated as
an assistive tool—analogous to a writing assistant (Lee et al., 2022)—into the music sequencing and synthesis
workflow of a modern digital audio workstation. In contrast to audio models, symbolic music generation
could provide a less disruptive integration of generative music technologies into existing workflows and thus
support current participants in the music labor market. Nevertheless, we find it impossible to weigh the
opportunities presented by these models against the challenges this technology might pose for workers in the
music economy. Criticisms of capitalist economic structures—that accrue the windfalls of automation and
productivity-enhancing technologies neither to their inventors nor to workers whose labor they displace—are
beyond the scope of this paper. We welcome feedback on our decision to pursue this line of research; we
hope to foster a discussion of how we can steer future research in this area towards methods that serve and
support composers and musicians.

B Licensing

We release the code for constructing anticipatory infilling models and weights for the models discussed in
this paper under the Apache License, Version 2.0.

C Encoding Details for Anticipatory Infilling Models.

The tokenization of training examples (Section 3.3) for anticipatory infilling models using an arrival-time
encoding of events (Definition 2.2) is described by Definition C.1. As discussed in Section 3.5, we double
the base vocabulary to distinguish between anticipated events and non-anticipated events. We also include
a sequence separator token and global control codes z ∈ {AR, AAR} (Section 3.3) as well as the REST token
(Section 3.2).
Definition C.1. (Arrival-Time Training Example) Let a1:(M−1)/3 be a training example, possibly re-ordered
according to Definition 3.1 for infilling. An arrival-time tokenized training example is a sequence x1:M , defined
as follows. We define two special tokens REST = 27512 and SEP = 55025, and two control tokens AR = 55026
and AAR = 55027. Separation between two sequences is indicated by a triple of three SEP tokens. The first
token x1 in every training example encodes the global control code z:

x1 ∈ {AR, AAR}, (the anticipation control code). (18)

If ai is a non-anticipated event then

x3i−2 ∈ {0, . . . , 10000} ∪ {SEP}, (0− 100s, 10ms quantized) (19)
x3i−1 ∈ {10000, 10000 + 1000} ∪ {SEP}, (0− 10s, 10ms quantized) (20)
x3i ∈ {11000, . . . , 11000 + 16512} ∪ {SEP} ∪ {REST}, (instruments × pitches). (21)

Otherwise (if ai is an anticipated event)

x3i−2 ∈ {27513, . . . , 27513 + 10000} ∪ {SEP}, (0− 100s, 10ms quantized) (22)
x3i−1 ∈ {37513, 37513 + 1000} ∪ {SEP}, (0− 10s, 10ms quantized) (23)
x3i ∈ {38513, . . . , 38513 + 16512} ∪ {SEP} ∪ {REST}, (instruments × pitches). (24)

The total vocabulary size is 55028.
Example C.2. The arrival-time tokenization (processed for autoregressive training) of the first for bars of
the lullaby “Twinkle, Twinkle, Little Star,” played on a piano at tempo quarter=120:

x0:46 = [55026, 55025, 55025, 55025, 0, 10048, 11060, 50, 10048, 11060, 100, 10048, 11067,
150, 10048, 11067, 200, 10048, 11069, 250, 10048, 11069, 300, 10095, 11067, 400, 10048,
11065, 450, 10048, 11065, 500, 10048, 11064, 550, 10048, 11064, 600, 10048, 11062, 650,
10048, 11062, 700, 10095, 11060].
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See Table 4 for a structured description of this sequence.

The tokenization of training sequences for autoregressive models using an interarrival-time encoding (Defin-
tion 2.3) is described by Definition C.3. We double the base vocabulary of notes and instruments to distin-
guish between onsets and offsets. We truncate interarrival times longer than 10 seconds (to 10 seconds).
Definition C.3. (Interarrival-Time Training Example) Let e1:(M/4) be a training example of events (Defini-
tion 2.1). An interarrival-time tokenized training example is a sequence x1:M , defined as follows. We define
a single special token SEP = 34024. Separation between two sequences is indicated by a single SEP token.
Using the notation x′

1:(M/2) from Definition 2.3, if x′
i is an onset,

x2i ∈ {1000, . . . , 1000 + 16512}, (instruments × pitches). (25)

If x′
i is an offset,

x2i ∈ {17512, . . . , 17512 + 16512}, (instruments × pitches). (26)

And regardless,

x2i+1 ∈ {0, 1000}, (0− 10s, 10ms quantized). (27)

As described in Definition 2.3, we omit tokens x2i+1 = 0. The total vocabulary size is 34025.
Example C.4. The interarrival-time tokenization of the first for bars of the lullaby “Twinkle, Twinkle,
Little Star,” played on a piano at tempo quarter=120:

x0:56 = [34024, 1060, 48, 17572, 2, 1060, 48, 17572, 2, 1067, 48, 17579, 2, 1067, 48, 17579,
2, 1069, 48, 17581, 2, 1069, 48, 17581, 2, 1067, 95, 17579, 5, 1065, 48, 17577, 2, 1065, 48,
17577, 2, 1064, 48, 17576, 2, 1064, 48, 17576, 2, 1062, 48, 17574, 2, 1062, 48, 17574, 2, 1060,
95, 17572].

In this case there are no interarrival times of length zero and this tokenization is slightly less compact than
arrival-time tokenization. But if we were to extend the length of each note to a full beat, the interarrival-time
tokenization becomes:

x0:43 = [34024, 1060, 50, 17572, 1060, 50, 17572, 1067, 50, 17579, 1067, 50, 17579, 1069, 50,
17581, 1069, 50, 17581, 1067, 100, 17579, 1065, 50, 17577, 1065, 50, 17577, 1064, 50, 17576,
1064, 50, 17576, 1062, 50, 17574, 1062, 50, 17574, 1060, 100, 17572]

And in this case, interarrival-time tokenization is slightly more compact.

D A Prior over Music Infilling Controls

We propose three types of anticipation, i.e., distributions over events to condition on as controls. First we
propose span anticipation, whereby we anticipate all tokens in a given span in order to explicitly promote the
model’s ability to fill-in-the-middle. Second, we propose instrument anticipation, whereby we anticipate all
tokens except for a specified instrumental part, supporting a workflow whereby supplemental instrumental
parts are generated to complement a pre-existing ensemble. And third, we propose random anticipation,
whereby we randomly anticipate events at some fixed rate to accommodate a broader possible range of
user-specified anticipation patterns.

We apply apply these patterns of anticipation to training data according to the following distributions:

• Span anticipation. We randomly anticipate consecutive subsequences of events spanning δ seconds,
at an exponential rate λ. We fix λ = .05, and at interarrival times i ∼ Exp(λ) we anticipate the
events ei:j where j = min{tj : tj > ti + δ}.
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Table 4: Arrival-time tokenization of “Twinkle, Twinkle, Little Star,” played on a piano at tempo quar-
ter=120. For clarity, we group the sequence of tokens tokens into triplets (one event per row).

Token Values Event Description
Arrival Time Duration Note t d p k

55,025 55,025 55,025 Sequence Separator Event
0 10,048 11,060 0s 480ms C4 piano
50 10,048 11,060 0.5s 480ms C4 piano
100 10,048 11,067 1s 480ms G4 piano
150 10,048 11,067 1.5s 480ms G4 piano
200 10,048 11,069 2s 480ms A4 piano
250 10,048 11,069 2.5s 480ms A4 piano
300 10,095 11,067 3.5s 950ms G4 piano
400 10,048 11,065 4s 480ms F4 piano
450 10,048 11,065 4.5s 480ms F4 piano
500 10,048 11,064 5s 480ms E4 piano
550 10,048 11,064 5.5s 480ms E4 piano
600 10,048 11,062 6s 480ms D4 piano
650 10,048 11,062 6.5s 480ms D4 piano
700 10,095 11,060 7s 950ms C4 piano

• Instrument anticipation. For an event sequence with J unique instrument parts, we uniformly
sample j ∈ {1, . . . , J − 1} and randomly sample j instrumental parts without replacement. We
anticipate all events in the sequence associated with these j parts.

• Random anticipation. We uniformly sample a rate r ∈ {0.1, . . . , 0.9} for each event sequence. We
randomly anticipate an r fraction of events in the sequence.

We balance the overall training distribution using the following mix: 10% without anticipation (standard
autoregressive training), 10% with span anticipation, 40% with instrument anticipation, and 40% with
random anticipation.

These anticipation patterns facilitate interaction with an anticipatory music transformer via user-specified
control sequences. For example, the accompaniment task evaluated in Section 4 is modeled by instrument
anticipation when j = 1. Note that the prior over infilling controls facilitates much more general interaction
patterns than the prompt continuation and melodic accompaniment tasks studied in Section 4. We defer
further study of the capabilities of anticipatory infilling models to future work.

To train an anticipatory infilling model, we augment the training dataset using the distribution of anticipation
patterns specified above. We perform these augmentations during preprocessing, resulting in an augmented
dataset derived from the original data. In particular, augment the Lakh MIDI dataset by a factor of 30.
Using the prior distribution described above, this augmented dataset contains (i) 3 copies of the original
dataset, verbatim; (ii) 3 augmented copies of the dataset with different random anticipated spans; (iii)
12 augmented copies of the dataset with different randomly anticipated instrument subsets for each event
sequence; and (iv) 12 augmented copies of the dataset with different randomly anticipated events at different
rates for each event sequence.

Augmenting by a factor of 30 results in an arrival-time encoded Lakh MIDI train set of approximately 52B
tokens. For training examples of length 1024 and batch size 512, this results in approximately one epoch
per 100,000 optimization steps. For models trained with larger step counts, we take multiple passes over
the augmented dataset. Given the relatively small size of the Lakh MIDI dataset, anticipation may be of
interest as a regularization technique (see Appendix K for some evidence of possible regularizing effects
attributable to anticipation). In this case, it could be fruitful to (i) increase the augmentation factor further
during training, and (ii) place a smaller weight on training without anticipation, to minimize the amount of
duplication of the original (unaugmented) dataset within the augmented dataset.
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E Details of the Lakh MIDI Dataset

The Lakh MIDI dataset includes no metadata, so we have little fine-grained or quantitative insight into the
origins and contents of this dataset. Based on a randomly sampling of the dataset’s contents, we observe
that it contains many arrangements of modern pop music, transcripts of classical western compositions, and
original compositions (with varying degrees of quality).

Preprocessing Out of the 178,561 sequences in the Lakh MIDI dataset, we were able to successfully
parse 174,046 sequences.2 We discard 7032 sequences that are shorter than 100 events or 10 seconds in
length. We also discard 40 event sequences that are longer than one hour in length (inspection reveals that
many of these sequences are corrupt). Finally, we discard 2227 sequences that contain more than 16 unique
instrument parts: representing music with more than 16 parts as MIDI (for synthesizing outputs) requires
multiplexing multiple instruments onto MIDI channels; we avoid this complexity by simply excluding very
large ensembles. The resulting dataset consists of 164,747 event sequences. We split this dataset in to train,
validation, and test splits according to the leading hexadecimal digit of each file’s MD5 hash:

• Train: hashes 0–d, 144,202 event sequences, 7827 hours of music.

• Validation: hash e, 10,212 event sequences, 555 hours of music.

• Test: hash f, 10,333 event sequences, 561 hours of music.

We tokenize the dataset using the arrival-time and interarrival-time encodings described in Section 2.1. As
seen in Table 5, the interarrival-time tokenization is slightly more compact. To illustrate the long, variable-
rate nature of symbolic music event sequences, we plot the distributions of sequence length (Figure 2) and
event rate (Figure 3) for the Lakh MIDI validation split.

Table 5: The number of tokens in the Lakh MIDI dataset, using tokenizations described in Section 2.1.

Encoding Train Validation Test Overall
arrival 1,741,830,387 123,785,046 125,050,497 1,990,665,930

interarrival 1,612,129,280 114,519,040 115,409,920 1,842,058,240

Figure 2: The distribution of sequence lengths calculated for the arrival-time tokenized Lakh MIDI validation
split. Mean sequence length is 12,071 tokens, with a standard deviation of 9711 tokens.

2We parse Midi files using the Mido library: https://github.com/mido/mido.
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Figure 3: The distribution of instantaneous tokens/second calculated for the arrival-time tokenized Lakh
MIDI validation split. Mean instantaneous tokens/second for the Lakh MIDI dataset is 68 with a standard
deviation of 51 events/second.

F Measuring Cross-Entropy in Bits per Second

Because the arrival-time tokenization (Definition 2.2) and the interarrival-time tokenization (Defintion 2.3)
describe nearly equivalent information, the log-loss of models trained using either encoding can be meaning-
fully compared via a unit conversion. To make comparison agnostic to encoding, we report losses in units
of bits per second: this is the total log-loss of the test set, divided by the number of seconds of music in the
test set. Concretely, given a per-token loss L reported in nats per token, conversions for interrarival time
and arrival time encodings of the test set defined in Section E are:

bpsarrival(L) = L× 1
log(2) × (test_tokensarrival/(test_hours× 3600)), (28)

bpsinterarrival(L) = L× 1
log(2) × (test_tokensinterarrival/(test_hours× 3600)). (29)

Concretely, for the Lakh MIDI dataset, from Table 5 we have test_tokensarrival = 125,050,497,
text_tokensinterarrival = 115,409,920, and the length of the test set (independent of encoding) is
test_hours = 560.98 hours. The remaining factors convert units from nats to bits (the log(2) factor)
and from hours to seconds (the 3600 factor). This normalized form of the log-loss is analogous to the bits
per dimension loss commonly reported for image generation (Salimans et al., 2017) and the bits per beat
loss for musical scores (Thickstun et al., 2019).

Truncations during tokenization (see Section 2.1) result in slightly different information content between an
arrival-time tokenized sequence and the corresponding interarrival-time tokenized sequence. In particular,
0.05% of note durations in the Lakh MIDI dataset exceed 10 seconds, and are truncated (to 10 seconds)
under arrival-time tokenization. Likewise, a total of 3947 interarrival times (0.00%) in the Lakh MIDI dataset
exceed 10 seconds, and are truncated (to 10 seconds) under interarrival-time tokenization. Finally, 0.09%
of training examples under arrival-time tokenization exceed 100 seconds in length, and are discarded from
the arrival-time tokenized dataset. These instances are sufficiently rare that they exert a negligible effect
on the information content (and therefore on bits per second comparisons) between the arrival-time and
interarrival-time tokenized sequences.

G Hyperparameters and Resources

All models are parameterized by standard, decoder-only causally masked transformers with GeLU non-
linearities (Hendrycks & Gimpel, 2016). The models are implemented in Jax (Bradbury et al., 2018) and
trained on Google TPU v3 hardware. We observe that large-scale pseudorandom number generation in Jax
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Table 6: Model Configurations.

Small Medium Large
Architecture Hyperparameters

Layers 12 24 36
Attention Heads 12 16 20
Hidden Dimensions 768 1024 1280
Sequence Length 1024 tokens
Residual Dropout 0.1
Embedding Dropout 0.1
Attention Dropout 0.0
Weight Decay 0.1

Optimizer Hyperparameters
Max Learning Rate 0.0006 0.0003 0.0002
Optimizer AdamW (Loshchilov & Hutter, 2018)

(β1, β2, ϵ) (0.9, 0.999, 1× 10−8)
Batch Size 512 sequences (= 524,288 Tokens)
Warmup 1000 steps (≈ 50M tokens)
Learning Rate Schedule Cosine decay (no restarts) (Loshchilov & Hutter, 2017)
Gradient Clipping Clipping above ∥∇∥ = 1 (Rae et al., 2021)

Training Resources
Throughput (tokens/second) 690,000 260,000 140,000
Throughput (seconds/iteration) 0.76 2.02 3.74
Hardware Google TPU v3-32 pod slice

is slow, and therefore eschew the standard attention dropout regularization. The models are optimized using
AdamW (Loshchilov & Hutter, 2018). The learning rate schedule consists of a 1000 step linear warmup to
a maximum learning rate, followed by a single cycle of cosine decay (Loshchilov & Hutter, 2017) over the
remaining steps to a final learning rate of zero. Following Chinchilla compute-optimality recommendations,
we train each model for a number of steps that is approximately proportional to the model’s size (Hoffmann
et al., 2022). Configuration details of the models and optimization are presented in Table 6.

Most of these models were trained on TPU v3-32 pod slices, which in practice are approximately equivalent
to a GPU machine with 8 NVIDIA A100’s. Training throughput for each model configuration using a v3-32
is reported in Table 6. Conversions of these throughput statistics to wall-clock estimates of training time
for the models featured in Section 4 are shown in Table 7. Thus, the total training time on v3-32’s for the
models featured in this paper was approximately

1121 hours = 3× 21 hours + 2× 169 hours + 56 hours + 112 hours + 448 hours + 104 hours. (30)

In addition to training the models featured in this paper, substantial additional TPU hours were consumed
during the development phase of this research. We crudely estimate that total TPU-hours consumed for this
work were approximately 3-5 times the hours reported in Equation (30).

H Details of the FIGARO Music Transformer Baseline

We compare our models to the implementation of Music Transformer (Huang et al., 2018) described by von
Rütte et al. (2023). We use the official public implementation for training and sampling from this model.3
While both our models and this baseline are based on the Transformer architecture and trained on Lakh
MIDI, there are at several notable distinctions. The FIGARO Music Transformer architecture implements
the relative attention mechanism proposed by (Huang et al., 2018). The FIGARO Music Transformer inputs

3https://github.com/dvruette/figaro
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Table 7: Estimated wall-clock training time for the Small, Medium, and Large model configurations described
in Table 6, using a Google TPU v3-32 pod slice.

Config Training Steps Hours of Training
Small 100k 21
Small 800k 169
Medium 100k 56
Medium 200k 112
Medium 800k 448
Large 100k 104

are tokenized using a REMI encoding that accounts for metrical structure (Huang & Yang, 2020). The
FIGARO Music Transformer is also a smaller-scale model than the other models considered in this paper:
a six-layer transformer (approximately 30M parameters) trained for 100k iterations on sequences of length
256. Some of these factors (e.g., model scale, sequence length) clearly favor the models presented in this
paper; others (e.g., relative attention) may favor the FIGARO model. With so many uncontrolled variables,
we caution against drawing conclusions about individual engineering choices in the design of the FIGARO
Music Transformer versus the models proposed in this paper.

While pre-trained checkpoints of the FIGARO models are available, the training and evaluation splits used
for the pre-trained checkpoints are incompatible with the splits defined in Section E. Therefore, we re-train
our own version of the model using hashes 0–d as the training split. A comparison of our re-trained model
and the reference model checkpoint are presented in Figure 8. For definitions and discussion of the evaluation
metrics compared here, see von Rütte et al. (2023). Our version of the FIGARO model matches or slightly
outperforms the reference model on these metrics.

Neither our arrival-time tokenization (Definition 2.2) nor FIGARO’s REMI encode all the nuances of music
described in, e.g., a MIDI file. Because FIGARO explicitly models the metrical structure of music, we
prompt using a fixed number of measures (three bars) rather than a fixed amount of time: this is six seconds
of prompt material for music in 4/4 time when quarter=120. We select three-bar prompts for the study in
the range of 4-6 seconds, thus excluding music with a very fast or slow tempo. To create fair comparisons
between music composed by humans, FIGARO, and the Anticipatory Music Transformer, we apply the
following procedure for constructing prompts:

• Human compositions: we encode human compositions (initially expressed as MIDI) using the FI-
GARO tokenizer, and then re-encode these samples using our own tokenizer.

• FIGARO samples: we encode prompts using the FIGARO tokenizer, and re-encode completions of
these prompts generated by FIGARO using our own tokenizer.

• Anticipatory Music Transformer: we encode prompts using the FIGARO tokenizer, re-encode the
prompts using our own tokenizer, and generate completions from our own models using these re-
encoded prompts.

All music is thus restricted to the musical vocabulary of our arrival-time tokenization.

Table 8: Quantitative evaluation metrics for the FIGARO implementation (von Rütte et al., 2023) of Music
Transformer (Huang et al., 2018) trained on the FIGARO training data split, vs. the split defined in
Section E.

Train Split I ↑ C ↑ TS ↑ ND ↓ P ↑ V ↑ D ↑ sc ↑ sg ↑
(FIGARO split) 0.191 0.048 0.751 2.192 0.563 0.153 0.312 0.306 0.510

Hashes 0—d 0.207 0.050 0.770 1.523 0.564 0.158 0.289 0.305 0.517
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I A Baseline Autoregressive Infilling Algorithm

Algorithm 2 describes the baseline autoregressive infilling algorithm evaluated in Table 3. Without the
ability to anticipate future controls, this algorithm proceeds by sampling from the model until the time of
the sampled event time exceeds the time of the next control. At this point, we insert this control (and any
other controls prior to the sampled event) into the sequence prior to the sampled event. We then proceed
to continue sampling from the model.

This algorithm is naive because the model cannot condition on upcoming controls until after the time at
which they occur. In the most optimistic scenario, because the model is a good predictor of events, we
hope that it will assign high probability to the upcoming control events and therefore that the model will
generate events that are consistent with (reasonable, unsurprising) controls. But ultimately there is entropy
in the music process, and the model will necessarily sometimes generate events that are inconsistent with
upcoming controls. To make matters worse, these inconsistencies are then written into the history and the
model makes subsequent predictions conditioned on these mistakes; this has a tendency to compound the
errors over time, creating highly dissonant music.

A more subtle instance of this failure of compounding errors is the algorithm’s tendency to double the control
events. It is relatively common for the model will exactly predict an upcoming control event. In this case,
two copies of the event are written into the history. When subsequent controls are inserted into the history,
the model exhibits a tendency to perpetuate this doubling, generating new events that copy every control
that we insert into the history, like a vexing child copying a sibling’s every word.

Algorithm 2: Autoregressive Sampling (Baseline)
Parameters: Autoregressive model p with context length M
Input : Time-localized controls u1:K (monotone increasing in time)
Output : A generated sequence a1:N+K

a0 ← SEP ; // A special sequence separator event
i← 1 ; // Index i tracks position in the generated sequence
k ← 0 ; // Index k tracks position in the control sequence
do

Sample e ∼ p(·|ai−M :i−1) ; // Sample an event from the model
t← Time(e) ; // Get the time t of the event e
while Time(uk) ≤ t ; // While there are controls before time t
do

ai ← uk ; // Anticipate control uk at index i
i← i + 1 ; // Advance to index i + 1
k ← k + 1 ; // Consume control uk

end
ai ← e ; // Append the newly sampled event
i← i + 1 ; // Advance to index i + 1

while ai ̸= SEP;
return a1:i−1 ; // Index i− 1 is N + K

J Details of Human Evaluation

Workers chosen to evaluate generated music were selected from a pool of crowd workers on the Amazon Me-
chanical Turk platform, according to the qualification procedure described below. Evaluators were provided
with the interface shown in Figure 4 and instructed to judge the relative musicality of two 20-second music
clips. We presented the music as audio, synthesized using Apple’s DLSMusicDevice sound system. Each
pair of clips begins with the same prompt: three bars for the prompted completion task and five seconds
for the accompaniment task. Evaluators were instructed to judge which clip is more musical. Based on
feedback from a pilot study, we clarified in the detailed instructions that we are interested in musicality in
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Figure 4: The interface used by evaluators to assess the relative musicality of paired music clips.

a conventional sense. We allowed evaluators to indicate that the two clips are equally musical, avoiding a
forced choice between the two clips.

All prompts and melodies used for evaluation are sampled randomly from the test set. A notable confounder
in this evaluation is that the Lakh MIDI contains many popular, recognizable songs. Study participants
remarked that they recognized the origin of certain prompts. In these cases, we instructed the participants
to "Please try to rate the clips based on their musicality rather than recognition." However, it may be difficult
to set aside knowledge of the canonical completion in these cases.

Details of qualification, prompt continuation, and accompaniment evaluations are described below. For
an illustration of the prompt continuation and accompaniment tasks, see Figure 5. For complete pairwise
evaluations of models in the prompt continuation task, see Table 9. For complete pairwise evaluations of
algorithms in the accompaniment tasks, see Table 10. For each task, we collected evaluations from three
unique workers; we defer an analysis of worker agreement to future work.

Qualification Workers who correctly identified music composed by humans as more musical than random
retrieval in at least 4/5 comparisons were deemed qualified to participate in subsequent model evaluations:
15 out of 20 workers who participated in qualification advanced to the main prompt continuation and
accompaniment evaluations. Workers performed a total of 100 comparisons.

Prompt Continuation We compare continuations of four models: (i) the Small interarrival-time model
(Row 1, Table 1) (ii) the Small anticipatory model (Row 3, Table 1) (iii) the large anticipatory model (Row
5, Table 1) and (iv) the FIGARO Music Transformer. We also compare to (v) human compositions (skyline).
For each of 50 prompts, we create 50 ×

(5
2
)

= 500 pairwise comparisons between continuations (as well as
the baseline and skyline) we asked three human evaluators to indicate which clip is more musical, or that
the clips are equally musical. Workers performed a total of 1500 comparisons.
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Prompt and Melody

Prompt Continuation

Accompaniment

Prompt (5s) Continuation (15s)

+

+

Generation 

=

Generation
+ =

+ =

Figure 5: Visualizations of 20-second music clips. Each rectangle indicates a musical event with an onset time,
duration (width), and pitch (height). Colors indicate distinct instrumental parts. For the accompaniment
task, events in the blue instrumental part are used as control events. Top: a five-second prompt followed
by the original continuation of only the melodic instrumental line (highest; blue). Middle: the five-second
prompt followed by a generated autoregressive continuation, ignoring the original melodic line. Bottom: the
prompt followed by a generated anticipatory accompaniment of the original melodic instrumental line.

Accompaniment We compare accompaniments using (i) anticipatory autoregressive sampling (Algo-
rithm 1) versus (ii) baseline autoregressive sampling. We also compare to (iii) baseline completions randomly
sampled from the test set and (iv) skyline human compositions. When sampling without anticipation, we
insert events from the melody into the conditional history of the model once generation passes them; we
describe this modified sampling procedure formally in Appendix I. For each of 20 three-bar prompts and
single-part continuations, we generated accompaniments from each model. For each of the 20 ×

(4
2
)

= 120
pairwise comparisons between continuations (as well as the baseline and skyline) we asked three human
evaluators to indicate which clip is more musical, or that the clips are equally musical. Workers performed
a total of 360 comparisons.

K Training Optimization Logs

Figure 6 and Figure 7 plot estimates of the train set and test-set losses over the course of optimization for
the arrival-time models considered in Section 4. Losses are computed every 10,000 steps from logged model
checkpoints; the intermediate checkpoints for all 8 of these models (as well as the small interarrival-time
model) are available on request.

Training loss is significantly lower than test for all models, evidence of some amount of overfitting during
many epochs of optimization on the Lakh MIDI dataset. Nevertheless, we observe better test set performance
for larger models, trained longer, indicating that we have not completely saturated performance on the Lakh
MIDI dataset using this scale of models and computational resources. That said, the relative test set loss
improvements vs train set improvements when we increase the model size from Small to Medium are much
larger than the relative gains of increasing the model size from Medium to Large: compare train vs. test
loss of the Small (Row 3) Medium (Row 6) and Large (Row 9) models at 100k steps. This might suggest
that we are approaching the point of diminishing returns for scaling the compute (steps) and size of models
trained on Lakh MIDI, and that more data would be needed to effectively train substantially larger models.
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Table 9: Human evaluation of paired completions of 3-bar musical prompts generated by different algorithms,
and human compositions. P-values are reported using a Wilcoxon signed rank test. Row numbers reference
Table 1.

Model A Model B Wins (A) Ties Wins (B) p-value
Human Composition Medium (Row 8) 77 29 44 0.0027

Music Transformer 119 18 13 2.806× 10−20

Small (Row 3) 84 23 43 0.0002
Small (Row 1) 103 16 31 4.976× 10−10

Medium (Row 8) Music Transformer 95 24 31 1.187× 10−08

Small (Row 3) 65 27 58 0.528
Small (Row 1) 96 17 37 3.122× 10−7

Music Transformer Small (Row 3) 36 16 98 8.509× 10−08

Small (Row 1) 46 18 86 0.0005
Small (Row 3) Small (Row 1) 82 17 51 0.0071

Table 10: Human evaluation of paired 15-second accompaniments generated by different models, and human-
composed accompaniments. P-values are reported using a Wilcoxon signed rank test.

Algorithm A Algorithm B Wins (A) Ties Wins (B) p-value
Human Composition Anticipatory 11 31 18 0.194

Autoregressive 45 10 5 1.542× 10−08

Retrieval 52 6 2 1.017× 10−11

Anticipatory Autoregressive 47 6 7 5.230× 10−8

Retrieval 45 11 4 4.709× 10−9

Autoregressive Retrieval 33 12 15 0.009

For the Small models, we observe that autoregressive training results in slightly better test-set performance at
100,000 optimization steps. But at 800,000 steps the situation reverses, and the anticipatory model performs
slightly better. We suspect that this is evidence of anticipatory training having a regularizing effect on the
optimization. The Small, 800k step anticipatory model also exhibits some training instability in these plots.
We observed similar instabilities during training the other anticipatory and autoregressive models, but they
do not appear at the 10,000-step granularity pictured here. We undertook no measures to adjust for these
instabilities, simply letting the optimizations run to completion without intervention.
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Figure 6: Mean per-token train set log-loss Ltoken (in nats) of models, estimated every 10,000 steps over the
course of training. The estimates are computed using a 1/100 subset of the train set. The per-token loss
Ltoken is related the event loss reported in Table 1 by the relationship Ltoken = log(Le)/3.
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Figure 7: Mean per-token test set log-loss Ltoken (in nats) of models, estimated every 10,000 steps over the
course of training. The estimates are computed using a 1/10 subset of the test set. The per-token loss Ltoken
is related the event loss reported in Table 1 by the relationship Ltoken = log(Le)/3.
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