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Abstract

Unsupervised constituency parsing has been001
explored much but is still far from being002
solved as currently mainstream unsupervised003
constituency parser only captures the unlabeled004
structure of sentences. Properties in the substi-005
tution of constituents make it possible to detect006
constituents in a particular label. We propose007
an unsupervised and training-free labeling pro-008
cedure by leveraging a newly introduced metric,009
Neighboring Distribution Divergence (NDD),010
which evaluates semantic changes caused by011
editions. We develop NDD into Dual POS-012
NDD (DP-NDD) and build templates called013
"molds" to extract labeled constituents from014
sentences. We show that DP-NDD labels con-015
stituents precisely and inducts more accurate016
unlabeled constituency trees than all previous017
unsupervised methods. Following two frame-018
works for labeled constituency trees inference,019
we set the new state-of-the-art for unlabeled020
F1 and labeled F1. Further studies show our021
approach can be scaled to other span labeling022
problems, i.e., named entity recognition.023

1 Introduction024

Constituency parsing is a basic but crucial parsing025

task in natural language processing. Constituency026

parsers are required to build parsing trees for sen-027

tences consisting of spans representing constituents028

such as noun phrases and verb phrases. Parsed con-029

stituency trees can be applied to many downstream030

systems (Lee et al., 2013; Chen et al., 2015; Zhong031

et al., 2020).032

Since the introduction of deep learning into nat-033

ural language processing, supervised neural net-034

works have achieved remarkable success in con-035

stituency parsing (Kitaev and Klein, 2018; Liu036

et al., 2018; Nguyen et al., 2020; Zhang et al.,037

2020b). Unfortunately, the need for large annotated038

datasets limits the performance of supervised sys-039

tems on languages of low resources. As the result,040

many unsupervised systems have been proposed041

The cat jumps into the hole .

The crow falls on the ground .

The cat

The cat jumps

jumps into the hole .The crow

falls on the ground .

on the ground .

(NP→NP)

(VP→VP)

(PP→PP)

NDD = 0.78; POS-NDD = 0.08

The cat jumps falls on the .

(Not Match)

NDD = 1.04; POS-NDD = 0.01

NDD = 3.97; POS-NDD = 0.59

NDD = 13.22; POS-NDD = 8.33

(Initial Sentences)

Figure 1: Examples for substitution property of con-
stituents among sentences. Neighboring Distribution
Divergence performs well on detecting plausible substi-
tutions.

[NP] falls on the ground .

The crow .

The crow falls .

[VP]

[PP]

Figure 2: Molds constructed from examples in Figure 1.

for constituency parsing (Drozdov et al., 2019b; 042

Kim et al., 2020; Shen et al., 2021; Sahay et al., 043

2021) by exploiting unlabeled corpus. 044

Current unsupervised constituency parsing sys- 045

tems are still far from the complete procedure, 046

mainly because most of these systems only in- 047

duct an unlabeled structure of the constituency tree. 048

Rare attention has been paid to label constituents 049

except for clustering (Drozdov et al., 2019a). Con- 050

stituents have fine properties which mitigate the 051

difficulty of unsupervised detection and labeling. 052

Labels of constituents are very different from labels 053

in other classification tasks since they represent syn- 054

tactic roles. For a noun phrase in a sentence, it will 055

be of high probability to play as a plausible noun 056

phrase in another sentence, as shown in Figure 1. 057

This phenomenon is also true for verb phrases and 058

preposition phrases. 059

Towards better unsupervised full constituency 060
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Figure 3: Calculating procedure for POS-NDD.

parsing, we leverage a recently proposed metric,061

Neighboring Distribution Divergence (NDD) (Peng062

et al., 2021), to automatically detect labeled con-063

stituents in sentences. NDD is a Pre-trained Lan-064

guage Model-based (PLM-based) (Devlin et al.,065

2019) metric and is initially proposed to detect se-066

mantic changes caused by editions.067

In practice, we construct very few templates068

called "molds" as shown in Figure 2. We judge069

whether a span to be a constituent by fill it into070

the phrase mask ([NP], [VP], ...) and using NDD071

to detect the semantic similarity between the filled072

sentence and the initial sentence. If NDD is under a073

certain threshold, our method will predict the span074

to be a constituent.075

To further boost the efficiency and performance076

of our method, we modify NDD into POS-NDD,077

which only considers the likeliness of part-of-078

speech (POS) sequences since the initial NDD is079

too sensitive to precise semantic differences. Also,080

we use a dual detecting method that evaluates both081

the substitution to mold and substitution from082

mold to better link constituents with the same label083

together. We named our final metric Dual POS-084

NDD (DP-NDD).085

We experiment on Penn Treebanks to construct086

labeled constituency trees and label predicted087

treebanks from other unsupervised constituency088

parsers. Results from our experiments verify089

DP-NDD to be capable of inducting labeled con-090

stituency trees and labeling unlabeled constituents.091

Based on DP-NDD molds, we introduce two novel092

frameworks for unsupervised constituency parsing. 093

Our algorithm parses by following simple rules 094

but results in remarkable results which outperform 095

all previous unsupervised parsers on the WSJ test 096

dataset. Our algorithms set the first strong base- 097

line in recent years for labeled F1 score. Our main 098

contributions are concluded as follows: 099

• We propose an unsupervised method other 100

than clustering for full constituency parsing, 101

which involves constituent labeling. 102

• We introduce novel frameworks for unsuper- 103

vised constituency parsing, which set a new 104

state-of-the-art for unlabeled F1 and strong 105

baselines for labeled F1. 106

• We introduce variants of NDD, POS-NDD, 107

and DP-NDD, which are less sensitive to se- 108

mantic differences between sentences and per- 109

form well for constituent detecting. 110

• We first model parsing in an editing form, 111

which is different from the conventional prac- 112

tice, which aids editions with parsing results. 113

2 Neighboring Distribution Divergence 114

2.1 Background 115

We briefly describe the NDD metric in this section 116

as the background for further discussion. More 117

details like motivation and explanation can be re- 118

ferred to (Peng et al., 2021). 119

Given a W sentence with n-word W = 120

[w1, w2, · · · , wn], we use an edition E to convert 121
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W to an edited sentence W ′ = E(W ). As we122

only use substitution for unsupervised constituency123

parsing, we limit E to a substituting operation124

which substitutes i-th to j-th word in W with a125

span V = [v1, v2, · · · , vm].126

W ′ = E(W )

=[w1, · · · , wi−1, v1, · · · , vm, wj+1, · · · , wn]
127

Then we evaluate the semantic disturbance on128

the overlapped part [w1, · · · , wi−1, wj+1, · · · , wn]129

between the initial and edited sentences. For esti-130

mation, we use a masked language model to get131

the distribution of predicted words for each masked132

position before and after the edition.133

Wmask
i = [w1, · · · , wi−1, [MASK], wi+1, · · · , wn];

R = PLM(Wmask
i ); di = softmax(Ri) ∈ Rc

134

We first mask the i-th word in W and use the135

PLM to predict the distribution di on the masked136

position. Here, di is a Rc tensor, which refers137

to the existence probability of the words in a c-138

word dictionary of the PLM. We do this for the139

overlapped part mentioned above, both in W and140

W ′.141

After we get the predicted distributions for W142

and W ′, we use KL divergence to calculate the143

difference between the two distributions.144

divi = DKL(d
′
i||di) =

c∑
j=1

d′ij log(
d′ij
dij

)145

Finally, we integrate the divergence values via a146

mean pooling layer.147

NDD(W,W ′) =
∑

k∈[1,··· ,i−1,j+1,··· ,n]

divk
n− (j − i+ 1)148

According to the cases in (Peng et al., 2021),149

NDD is capable of capturing precise semantics150

changes. We will show in Section 2.3 how to use151

modified NDD to construct molds for unsupervised152

constituency parsing.153

2.2 POS-NDD154

NDD performs well on supervising editions, but155

it might be too sensitive to some precise semantic156

difference as in the explanation for Table 1 later.157

To adapt NDD to constituency parsing, we modify158

Sentence Sem. Str. POS-NDD NDD

The spider built its nest in the cave. - - 0.00 0.00

The spider made its nest in the cave. % % 0.69 2.67
The spider caught the pests in the cave. ! % 0.81 7.45
The spider a wasted bridge in the cave. ! ! 6.42 18.39

Table 1: Comparison between NDD and POS-NDD for
semantic and structural change detection. The initial
sentence is "The spider built its nest in the cave." Sem.:
If there is a semantic change. Str.: If there is a structural
change.

NDD’s calculating procedure to concentrate on the 159

structural rather than semantic difference. 160

To do so, we gather the predicted words with the 161

same POS together by summing up their existence 162

probability. For implementation, we construct a 163

word-to-POS matrix M as shown in Figure 3. M 164

is a 2-dimension tensor of shape Rp×c where p is 165

the number of POS classes, and c is the scale of 166

PLM’s dictionary. M is constructed following the 167

rule as follows: 168

Mij =

{
0, if j-th word dictionary not in i-th POS class
1, if j-th word dictionary in i-th POS class

169

With M , we gather the existence probability of 170

words in the same POS class together and calculate 171

the KL divergence for POS-NDD. The weighted 172

sum in POS-NDD calculation is the same as in 173

NDD. 174

qi = Mdi, q
′
i = Md′i

divposi = DKL(q
′
i||qi) =

p∑
j=1

q′ij log(
q′ij
qij

)
175

The comparison between the initial NDD and 176

modified POS-NDD is presented in Table 1. In the 177

first example, we edit the sentence while keeping 178

both the semantics and structure unchanged—the 179

edition results in rather low values for both NDD 180

and POS-NDD. In the second example, our edition 181

does not convert the sentence’s structure but dif- 182

ferent semantics. Initial NDD is sensitive to this 183

change as its value raises to nearly ×3. In contrast, 184

POS-NDD is less likely to be affected by semantics 185

and concentrates more on sentence structure. The 186

last example includes an edition that breaks the sen- 187

tence’s structure by substituting a verb phrase with 188

a probable noun phrase. As the value of POS-NDD 189

raises to almost ×8, POS-NDD is verified to detect 190

this anomaly. 191
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Figure 4: Dual mold for detecting constituents.

2.3 NDD-based Dual Mold192

Based on POS-NDD, we build "molds" that can193

discern constituents in sentences. Our mold is de-194

fined as a quaternion (W, i, j, l) where W is an195

n-word sentence. i, j refers to the start and end196

position of the span for substitution. l refers to the197

constituent’s label. Suppose we want to evaluate198

the probability of a span V [s : t] (words from s-199

th to t-th position in an m-word sentence V ) to a200

constituent with the label l. In that case, we will201

substitute W [i : j] with V [s : t] and calculate the202

POS-NDD between the sentence before and after203

the substitution.204

Sl,tm
s,t = POS-NDD(W,W ′)

W ′ = [w1, · · · , wi−1, vs, · · · , vt, wj+1, · · · , wn]
205

We call this score To-Mold score as it is obtained206

by substituting spans in molds. Likewise, we also207

have a From-Mold score which is obtained by208

substituting spans in sentences for parsing with209

spans in molds.210

Sl,fm
s,t = POS-NDD(V, V ′)

V ′ = [v1, · · · , vs−1, wi, · · · , wj , vt+1, · · · , vm]
211

We finally add To-Mold and From-Mold scores212

together for whole evaluation,213

Sl
s,t = Sl,tm

s,t + Sl,fm
s,t214

which forms a dual calculating procedure as215

shown in Figure 4. We thus name our method Dual216

POS-NDD. A lower DP-NDD score S refers to less217

disturbance in substituting to and by a constituent218

with label l and will thus reflect the likelihood of219

the span to be a constituent with the same label.220

3 Constituency Tree Constructing221

In this section, we introduce two frameworks that222

we use in experiments to generate labeled con-223

stituency trees.224

3.1 Labeled Span Generating 225

Labeled Span Generating (LSG) is to directly gen- 226

erate labeled spans with DP-NDD molds and then 227

integrate spans with different labels together to con- 228

struct the full labeled tree. Our LSG algorithm is 229

much simpler than previous rules-based systems as 230

it only requires 4 steps for constituency parsing. 231

• Candidate Selection We first use simple lin- 232

guistic rules to sample some candidates for 233

a constituent label. For a span V [s : t], 234

we match the POS tags of V [s − 1], V [s], 235

V [t], V [t+ 1] to a POS list to roughly decide 236

whether the span is a plausible candidate for 237

constituent or not. For special labels, span 238

length is also taken into consideration. 239

• DP-NDD Scoring We then use our Dual POS- 240

NDD molds to score the sampled candidates 241

as previously described. There are multiple 242

molds for evaluation for some labels as differ- 243

ence exists among constituents with the same 244

label. We choose the minimal value of DP- 245

NDD scores from the molds. 246

• Conflict Removing After scoring, we remove 247

spans which conflict with previously parsed 248

span. Conflicting spans are those overlapping 249

with previous spans by (s < s′, s′ < t, t < t′) 250

or (s′ < s, s < t′, t′ < t). 251

• Filtering and Overlapping Removing Fi- 252

nally, we filter the spans by only keeping the 253

spans with DP-NDD scores under a certain 254

threshold. Then, we remove spans overlapped 255

with other spans of the same label. If (s < 256

s′, s′ < t, t < t′) or (s′ < s, s < t′, t′ < t), 257

we only keep the span with higher DP-NDD. 258

But if (s < s′, t′ < t) or (s′ < s, t < t′), we 259

add a tolerance factor to the algorithm to keep 260

both spans if the difference between the two 261

scores is lower than the tolerance. 262

We execute the 4 steps above for each label and 263

finally integrate spans parsed from each iteration 264

to construct the whole labeled constituency tree. 265

3.2 Unlabeled Tree Labeling 266

Unlabeled Tree Labeling (ULT) uses a parsing algo- 267

rithm to induct unlabeled treebanks from sentences 268

and then uses DP-NDD molds to label the spans 269

in the tree. Our UTL only annotates the edges in 270

the tree with no changes in the tree structure. For 271
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each label, we use a mold to calculate the DP-NDD272

score. The span is labeled as the label of the mold273

to minimize the DP-NDD. In practice, we maxi-274

mize the exponential of negative DP-NDD.275

ls,t = argmax
l

(e−Sl
s,t)276

We further refine the prediction by incorporating277

POS tags. We use the posterior probability col-278

lected before for approximation to induct the label279

of a span using the POS of start and end words.280

ls,t = argmax
l

(αe−Sl
s,t)

α = p(l|POS(V [s]))p(l|POS(V [t]))
281

where we add α as a modifier to incorporate282

POS-based probability into prediction.283

4 Experiment284

4.1 Data and Configuration285

We experiment with our parsing algorithm on Penn286

Treebank for Constituency Parsing. As our method287

is training-free, we only use the first 50 sentences288

in the development dataset to construct molds and289

handcraft some simple ones. We do not use the290

training dataset and test our algorithm on the test291

dataset. We use molds of a number fewer than 25.292

We apply BERT-base-cased (Devlin et al., 2019) as293

the PLM for calculating DP-NDD. We also have294

two configurations for thresholds and tolerances in295

LSG. A strict configuration will produce fewer pre-296

dicted spans and will thus result in higher labeled297

F1 scores, while a loose configuration will, on the298

opposite, result in higher unlabeled F1 scores. For299

ULT, we use DIORA+PP (Post-processing) (Droz-300

dov et al., 2019b) which is a strong baseline for301

unsupervised constituency parsing to induct the302

unlabeled treebanks. For probability approxima-303

tion in POS-based refinement for UTL, we only304

use POS tags in the development dataset. Specific305

molds, POS-based rules, thresholds, and tolerances306

can be referred to Appendix A.307

4.2 Main Result308

Our main results and the comparison with previ-309

ously reported results are shown in Table 2. We310

evaluate the models by unlabeled F1 for compar-311

ison with previous parsing methods. The perfor-312

mances of UTL and LSG are both reported to set313

baselines for those two frameworks.314

Method UF1 LF1∗

LB 13.1 -
RB 16.5 -
RL-SPINN (Choi et al., 2018) 13.2 -
ST-Gumbel - GRU (Yogatama et al., 2017) 22.8 -

PRPN (Shen et al., 2018a) 38.3 -
BERT-base (Kim et al., 2020) 42.3 -
ON-LSTM (Shen et al., 2019) 47.7 -
XLNet-base (Kim et al., 2020) 48.3 -
DIORA (Drozdov et al., 2019b) 48.9 -
Tree-T (Wang et al., 2019) 49.5 -
StrctFormer (Shen et al., 2021) 54.0 -

PRPN+PP (Drozdov et al., 2019b) 45.2 -
DIORA+PP (Drozdov et al., 2019b) 55.7 -
DIORA+PP+Aug (Sahay et al., 2021) 58.3 -
DIORA+PP+Clustering (Drozdov et al., 2019a) 59.7 50.2

Neural PCFG (Kim et al., 2019) 50.8 -
Compound PCFG (Kim et al., 2019) 55.2 -
300D SPINN (Williams et al., 2018) 59.6 -

(LSG) w/o NDD 32.5 25.7
(UTL) DIORA+PP 54.7 36.8
(UTL) DIORA+PP+POS 54.7 47.2
(LSG) Tight DP-NDD 59.3 55.4
(LSG) Loose DP-NDD 61.8 51.5

Table 2: Comparison on unlabeled and labeled F1 scores
among methods for unsupervised constituency parsing
on WSJ test dataset. PP: Post-processing heuristics.
Aug: Rule-based Augmentation. *: Multiple edges are
kept as constituents can have multiple labels.

From Table 21, our DP-NDD-based LSG algo- 315

rithm, DP-NDD with a loose configuration, outper- 316

forms all previous unsupervised methods for con- 317

stituency parsing and remarkably boosts the state- 318

of-the-art unlabeled F1 score to upper than 60.0. 319

Compared with previous state-of-the-art methods 320

consisting of complex systems like post-processing 321

with numerous linguistic rules, our algorithms are 322

much simpler and have better scalability. We at- 323

tribute this advance to the power of a pre-trained 324

language model that cast constituents with high 325

structural differences into near spaces in the latent 326

space. 327

For labeled F1 scores, our algorithms also reach 328

significant performance. DP-NDD with a tight con- 329

figuration achieves a strong performance of 54.5, 330

which is even higher than most unlabeled F1 results 331

from previous systems. Thus, we claim to have suc- 332

cessfully implemented the first unsupervised full 333

constituency parsing in recent years. Moreover, our 334

method involves a much simpler PLM, BERT, than 335

the highest baseline, xlnet, in (Kim et al., 2020), 336

but reaches a much higher performance (13.5 un- 337

labeled F1 score). Compared with the result of 338

1Codes for the unlabeled parser in (Drozdov et al., 2019a)
are not released, UTLs are implemented on a weaker baseline
(Drozdov et al., 2019b).
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Label UR LP LR LF1 Prop.

NP 66.20 68.49 64.34 66.35 42.08%
VP 38.84 53.54 36.10 43.12 19.75%
ADJP 51.20 14.97 28.89 19.72 2.02%
ADVP 79.84 47.37 70.40 56.63 2.74%
PP 63.84 66.37 51.53 58.02 12.40%

Table 3: Performance of DP-NDD-based LSG algorithm
on different labels. Unlabeled results (Unlabeled Recall)
are from loose DP-NPP, and labeled (Labeled Precision,
Labeled Recall, Labeled F1) results are from tight DP-
NPP. Prop.: Proportion of labels in test treebanks.

BERT-base in (Kim et al., 2020), the unlabeled F1339

score from DP-NDD is 19.5 higher, which shows340

the high efficiency of the DP-NDD-based method.341

Compared with UTL, LSG achieves higher F1342

scores in both unlabeled and labeled treebanks. We343

conclude from this phenomenon that using label-344

specific method (Our molds are for a certain label)345

can extract constituents better than parsing spans346

of different labels with a unified algorithm like in347

other PLM-based methods (Kim et al., 2020; Shen348

et al., 2021). For UTL, incorporating POS benefits349

labeling in this framework much as this lifts the350

unlabeled F1 score to 8.5 higher.351

We also launch an ablation study by removing352

DP-NDD scores from the LSG framework. LSG353

without DP-NDD returns all spans that satisfy the354

POS constraints. Without the guide of DP-NDD,355

the performance of the LSG algorithm drops dra-356

matically, even to half of the initial implementa-357

tion. We conclude from this phenomenon that our358

DP-NDD metric is essential for unsupervised full359

constituency parsing.360

NDD distributions caused by substitution of361

phrases are presented label-wise in Appendix B,362

which supports and explains the effectiveness of363

our NDD-based approach.364

5 Analysis and Discussion365

5.1 Label-specific Evaluation366

We analyze the ability of our LSG algorithm for367

parsing edges of different labels in this section. We368

report the unlabeled and labeled performance of369

the LSG algorithm on different labels. Precision,370

recall, and F1 score are all considered for labeled371

treebanks, and only recall is evaluated.372

As presented in Table 3, LSG performs well on373

extracting noun, adverb, and preposition phrases.374

For these phrases, LSG leads to high results in unla-375

beled recalls and labeled F1 scores. We mainly at-376

Label P R F1 P† R† F1†

NP 88.02 86.70 87.36 91.34 98.86 94.95
VP 99.17 50.70 67.10 98.52 90.26 94.21
ADJP 27.86 75.88 40.76 91.33 37.23 52.90
ADVP 63.19 55.74 59.23 93.93 85.15 89.32
PP 40.32 82.57 54.18 84.30 97.69 90.50

Table 4: Labeling performance of DP-NDD-based UTL
algorithm on unlabeled golden edges in WSJ-10 tree-
banks. †: Refined by POS.

tribute the success of LSG to the high performance 377

in discerning noun phrases, which take 42.08% 378

proportion of the constituents. LSG performs rela- 379

tively weaker for verb, and adjective phrases as pat- 380

terns of these phrases are more variable. Thereby, 381

LSG will be more likely to confuse them with other 382

phrases when trying to discern. We will elaborate 383

this point in Section 5.3. 384

In contrast, phrases with regular patterns like 385

adverb phrases and preposition phrases are more 386

likely to be discerned successfully. This phe- 387

nomenon can be attributed to the matching nature 388

of our algorithm, as The substitution will cause 389

less disturbance if another span in a similar pattern 390

substitutes a span. Take instances in Figure 1 for 391

explanation, substituting into the hole with most 392

preposition phrases will only result in subtle dis- 393

turbance, i.e., in a warm autumn day, before the 394

crashing. But verb phrases contain a variety of 395

patterns like is so smart and to enjoy their lunch. 396

Their substitution to the verb phrase jumps into the 397

hole will cause much more disturbance. Thus, the 398

selection of molds for verb phrases should be more 399

careful to cover the patterns of verb phrases. But 400

this remains another problem that these patterns 401

may be confused with other phrases like labeling 402

to enjoy their lunch to be a preposition phrase. The 403

current structure-oriented LSG algorithm may not 404

offer a proper solution to this confusion, so we plan 405

to leverage precise semantics for a try in the future. 406

5.2 Labeling Performance 407

We analyze the labeling performance of our UTL 408

algorithm in this section. To avoid parsing bias 409

caused by parser chosen for constructing unla- 410

beled constituency trees, we follow (Drozdov et al., 411

2019b), we construct a WSJ-10 dataset by sampling 412

sentences with length under 10 from train, develop- 413

ment, and test datasets. Then, constituents includ- 414

ing noun, verb, adjective, adverb, and preposition 415

phrases are filtered from these sentences. WSJ-10 416
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Figure 5: Confusion matrix in labeling WSJ-10 dataset.

contains 17935 golden constituents, and we use the417

UTL algorithm to label constituents.418

We report the experiment results of UTL in Ta-419

ble 4. UTL results in high precision and recall420

for labeling noun phrases without the refinement of421

POS information, which verifies its capacity for dis-422

cerning noun phrase patterns. The adjective phrase423

remains the most difficult constituent for parsing,424

and other phrases are of medium parsing difficulty.425

POS-based refinement works for all phrases by sig-426

nificantly improving the F1 score of noun, verb, ad-427

verb, and preposition phrases to around 90.0 while428

still leaving the adjective phrase as a hard problem429

due to the difficulty in keeping recall and precision430

score for adjective phrase balanced.431

5.3 Confusion in Constituent Discerning432

Following the discussion of labeling performance,433

we further analyze factors that affect the constituent434

discerning procedure. We depict the confusion ma-435

trix in Figure 5. When POS is not used to help to436

parse, the most confusing labels are verb and ad-437

jective phrases. But the adjective phrase becomes438

prominently confusing when POS is considered, in-439

dicating that some adjective phrases have common440

POS patterns with noun phrases.441

To go deeper into the factors behind the confu-442

sion in labeling, we construct disturbance matrices443

by sampling constituent pairs from WSJ and WSJ-444

10 datasets. We sample 2000 for each label pair and445

record the average POS-NDD caused by the substi-446

tution. The disturbance matrix is shown to be the447

direct reflection of pattern differences among con-448

stituents. Generally, self disturbance (disturbance449

between constituents of the same labels) is lower450

than mutual disturbance (disturbance between con-451

stituents of different labels). Moreover, Phrases452

with more patterns like verb phrases have a higher453

self disturbance. Referred to the confusion matrix454

without refinement, confusion appears when the455

self disturbance is not enough lower than the mu-456

Figure 6: Average semantic disturbance (POS-NDD)
caused by constituent substitution.

Figure 7: Average semantic disturbance (NDD & POS-
NDD) caused by entity substitution for named entity
extraction.

tual disturbance, i.e., VP-ADJP, VP-PP, ADVP-PP. 457

The discerning difficulty leads to the drop in recall 458

scores for verb and preposition phrases. For ad- 459

jective phrases, its precision is affected to drop as 460

some parts of noun phrases, which take a large pro- 461

portion in constituents, are mislabeled as adjective 462

phrases. 463

5.4 How about other tasks? 464

We conduct experiments on named entity recog- 465

nition (NER) to verify the generality of applying 466

NDD for capturing labeled spans. As all entities are 467

noun phrases, the capability of discerning entities 468

will verify the potential of NDD for more semanti- 469

cally precise tasks. We choose Conll-03 (Sang and 470

Meulder, 2003) as the NER dataset. Conll-03 con- 471

sists of named entities labeled in 4 types: [ORG], 472

[PER], [MISC] and [PER]. We sample 2000 pairs 473

of spans in the same way we do in 5.3. We evaluate 474

the average disturbance caused by substituting one 475

span with another using POS-NDD and the original 476

NDD. 477

Figure 7 shows the disturbance matrix for NER. 478

Compared with constituents, substitution using 479

named entity on average results in much lower 480

POS-NDD since named entities are all noun 481

phrases, as mentioned before. Generally, the self 482

disturbance is lower than mutual disturbance, mak- 483

ing it plausible to label named entities with NDD. 484

7



Compared with POS-NDD, NDD captures preciser485

semantics changes as described before. NER ex-486

periment results also support that NDD generally487

performs better in discerning named entities, which488

share structural similarity with each other, espe-489

cially for the disturbance caused by substitution to490

[LOC].491

Among labels, [PER] is the easiest for discern-492

ing as it differs the most from other labels. In493

contrast, [ORG] and [LOC] are likely to be con-494

fused with each other as they play similar roles in495

semantics. For instance, we may say a meeting496

took place in UN or a meeting took place in Paris,497

but a meeting took place in Jack is not semanti-498

cally plausible. We conclude from the disturbance499

matrix the difficulty in entity labeling should be500

ranked as [ORG]>[MISC]>[LOC]>[PER].501

6 Related Work502

6.1 Unsupervised Constituency Parsing503

Since the introduction of language models pre-504

trained on large corpus like BERT (Devlin et al.,505

2019), extracting constituents from those mod-506

els raises as a new way for unsupervised con-507

stituency parsing (Kim et al., 2020; Shen et al.,508

2021). These methods try to extract constituents509

by calculating the syntactic distance (Shen et al.,510

2018b) which is supposed to reflect the information511

association among constituents according to (Shen512

et al., 2018a; Wang et al., 2019). The extraction of513

latent trees from PLMs has been studied on a vari-514

ety of language models in (Kim et al., 2020), which515

provides rich posterior knowledge for completing516

unsupervised constituency parsing.517

Models trained on masked language models put518

forward another framework for unsupervised pars-519

ing procedures. These models, like DIORA and its520

variants (Drozdov et al., 2019b; Sahay et al., 2021),521

have been verified by experiment results to be ef-522

ficient in discerning constituents from sentences.523

Unfortunately, these models fail to label the con-524

stituents after constructing an unlabeled treebank525

from sentences. Our method differs from previous526

work by using constituency molds to match con-527

stituents and thus induct their labels. Instead of528

figuring out direct relationships among words, we529

allow neighboring words to supervise the structural530

disturbance caused by substitution. As a result,531

our method enables labeling on the constituency532

tree, which implements the full unsupervised con-533

stituency parsing.534

6.2 Neighboring Distribution Divergence 535

Neighboring distribution divergence (Peng et al., 536

2021) is initially proposed to detect semantic 537

changes caused by editions like compression (Xu 538

and Durrett, 2019) or rewriting (Liu et al., 2020). 539

Their experiments on syntactic tree pruning and 540

semantic predicate detection also show NDD to be 541

aware of syntax and semantics. NDD is verified to 542

have the capacity to detect predicates for semantic 543

role labels by deleting or substituting words, which 544

serves as our motivation to transfer this idea to un- 545

supervised constituency parsing. We follow the 546

idea in (Peng et al., 2021) and further adapt it to 547

extract and label constituents. 548

In previous years, there have been other works 549

that focus on leveraging pre-trained models to pro- 550

duce metrics reflecting syntactic or semantic infor- 551

mation. To evaluate the quality of text generation, 552

BERTScore (Zhang et al., 2020a) matches repre- 553

sentations from the pre-trained language model of 554

generated and golden sentences. Using pre-trained 555

AMR parsers, (Opitz and Frank, 2021) offers an ex- 556

plainable metric, MF-Score, for AMR-to-sentence 557

generation. MF-Score assigns scores by recon- 558

structing the AMR graphs to compare them with 559

the golden ones. Thus, it evaluates semantic simi- 560

larity better than conventional sequence matching 561

metrics like BLEU and ROUGE. Encouraged by 562

our success in applying NDD for parsing, we plan 563

to explore these pre-trained model-based automatic 564

metrics for more tasks. 565

7 Conclusion 566

In this paper, we explore an unsupervised full 567

constituency parsing procedure that includes con- 568

stituent labeling. We develop the recently proposed 569

NDD metric into POS-NDD and exploit it by using 570

the dual mold to match constituents. Based on DP- 571

NDD, we introduce two novel frameworks, labeled 572

span generation and unlabeled tree labeling, which 573

establish solid baselines for labeled constituency 574

tree construction and set the new state-of-the-art 575

for unlabeled F1 score. Further studies on con- 576

stituents with NDD disclose the pattern variety of 577

constituents with the same label and pattern similar- 578

ity among constituents with different labels. Exper- 579

iments on the NER dataset verify the generalization 580

of our method to other tasks. 581
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A Detailed Configuration776

Before we release our codes, you can re-implement777

the results in our experiments with the configura-778

tion setting in this section.779

A.1 Mold780

W i j l

Influential members of the House Ways and Means
Committee introduced legislation that would restrict
how the new savings-and-loan bailout agency can
raise capital , creating another potential obstacle to
the government ’s sale of sick thrifts .

16 20 NP†

The complex financing plan in the S&L bailout law
includes raising $ 30 billion from debt issued by the
newly created RTC .

1 4 NP

Another $ 20 billion would be raised through
Treasury bonds , which pay lower interest rates .

5 16 VP†

The bill intends to restrict the RTC to Treasury
borrowings only , unless the agency receives
specific congressional authorization .

3 19 VP

The complex financing plan in the S&L bailout
law includes raising $ 30 billion from debt
issued by the newly created RTC .

17 22 VP

But the RTC also requires “ working ” capital
to maintain the bad assets of thrifts that are sold ,
until the assets can be sold separately .

10 27 VP

“ Such agency ‘ self-help ’ borrowing is
unauthorized and expensive , far more expensive
than direct Treasury borrowing , ” said Rep. Fort-
ney Stark -LRB- D. , Calif. -RRB- , the bill ’s chief
sponsor .

9 11 ADJP†

“ Such agency ‘ self-help ’ borrowing is unautho-
rized and expensive , far more expensive than direct
Treasury borrowing , ” said Rep. Fortney Stark -
LRB- D. , Calif. -RRB- , the bill ’s chief sponsor .

13 15 ADJP

“ To maintain that dialogue is absolutely crucial . 7 8 ADJP

Many money managers and some traders had
already left their offices early Friday afternoon on a
warm autumn day – because the stock market was
so quiet .

8 8 ADVP†

This country is fairly big . 4 4 ADVP

Therefore , we can exchange in the market . 1 1 ADVP

“ To maintain that dialogue is absolutely crucial . 7 8 ADVP

Once again -LCB- the specialists -RCB-
were not able to handle the imbalances
on the floor of the New York Stock Exchange ,
” said Christopher Pedersen , senior vice president
at Twenty-First Securities Corp .

14 22 PP†

Big investment banks refused to step up to the
plate to support the beleaguered floor traders
by buying big blocks of stock , traders say .

17 22 PP

Just days after the 1987 crash , major brokerage
firms rushed out ads to calm investors .

1 6 PP

Table 5: Molds for result reproduction (from NP to PP).
†: Used for UTL

W i j l

That debt would be paid off as the assets are
sold , leaving the total spending for the bailout at
$ 50 billion , or $ 166 billion including interest over
10 years .

21 23 QP†

“ We would have to wait until we have collected
on those assets before we can move forward , ” he
said .

7 13 SBAR†

Instead , it settled on just urging the clients
who are its lifeline to keep that money in the mar-
ket .

10 13 SBAR

Influential members of the House Ways and Means
Committee introduced legislation that would restrict
how the new savings-and-loan bailout agency can
raise capital , creating another potential obstacle
to the government ’s sale of sick thrifts .

16 23 S†

Another $ 20 billion would be raised through Trea-
sury bonds , which pay lower interest rates .

12 12 WHNP†

But the RTC also requires “ working ” capital to
maintain the bad assets of thrifts that are sold , until
the assets can be sold separately .

16 17 WHNP

Prices in Brussels , where a computer breakdown
disrupted trading , also tumbled .

5 5 WHADVP†

Dresdner Bank last month said it hoped to raise
1.2 billion marks -LRB- $ 642.2 million -RRB- by
issuing four million shares at 300 marks each .

13 17 PRN†

Today ’s Fidelity ad goes a step further , encourag-
ing investors to stay in the market or even to plunge
in with Fidelity .

14 14 PRT†

Table 6: Molds for result reproduction (the rest). †:
Used for UTL

How do we choose the molds? Table 5 and 6 781

shows the molds we use for discerning constituents 782

in LSG and labeling in UTL. The molds are hand- 783

crafted or selected from the first 20 sentence (con- 784

tained such a labeled constituent) in the develop- 785

ment dataset. To guarantee the quality of molds, we 786

test them on UTL framework to label constituents 787

and selected the molds perform well on classifi- 788

cation evaluated by AUC (> 0.85). The most 789

well-performed molds are preserved for constituent 790

labeling in UTL. 791
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A.2 POS Constraint792

Label POS(V [i]) POS(V [j]) POS(V [i− 1]) POS(V [j + 1]) Max Len

NP DET PROPN
NOUN ADJ
PRON NUM
SYM

NOUN PROPN
PRON NUM
PART

ADP VERB
PUNCT SOS
SCONJ CCONJ
AUX NOUN
ADV NUM
PART DET
ADJ PROPN
PRON

PUNCT ADP
VERB AUX
CCONJ ADV
NOUN DET
PART ADJ
SCONJ PROPN
PRON NUM

-

VP VERB AUX
PART ADV

NOUN VERB
PROPN NUM
ADV ADJ

NOUN PRON
PART AUX
VERB PROPN
PUNCT ADV
DET CCONJ

PUNCT
CCONJ
PROPN AUX

-

ADJP ADJ ADV
NUM SYM

ADJ NOUN
VERB NUM
PROPN

AUX DET
VERB NOUN
PUNCT ADP
PART CCONJ

PUNCT
NOUN ADP
SCONJ CCONJ
PROPN

-

ADVP ADV ADV - - -

PP ADP NOUN PROPN
NUM

NOUN VERB
PUNCT SOS
ADJ PROPN
NUM ADV

PUNCT ADP
VERB AUX
CCONJ SCONJ

-

QP SYM ADV
NUM

NUM ADP VERB
SOS PUNCT
AUX DET

NOUN PUNCT
ADP ADJ

5

SBAR SCONJ DET
PRON ADV
PART ADP

NOUN VERB
PROPN NUM

VERB NOUN
PUNCT

PUNCT -

S PART DET
PRON VERB
PROPN

NOUN VERB
PROPN

VERB SCONJ
PUNCT NOUN
DET SOS ADP
ADV CCONJ
PRON

PUNCT -

WHNP DET PRON DET PRON PUNCT NOUN VERB AUX -

WHADVP ADV ADV PUNCT NOUN
SOS VERB
ADP AUX

DET NOUN
PRON PROPN
ADJ VERB

-

PRN PUNCT PUNCT NOUN PROPN
ADJ VERB
PUNCT ADV

PUNCT VERB
AUX SCONJ
NOUN ADP
DET CCONJ

-

PRT ADP ADP VERB DET PUNCT
ADP NOUN
ADV ADJ
PART CCONJ
NUM

1

Table 7: POS and length constraints for result repro-
duction. SOS: Start of the sentence. EOS: End of the
sentence. -: No constraint.

Table 7 shows our constraints for POS and max793

length. These constraints are inducted by statistical794

and constituency property.795

Why do we need the POS constraints? As the796

annotation of constituents are very different from797

the actual semantic roles of them, we need extra798

rules to filter some spans that satisfy the semantic799

property of constituent but are ignored by the anno-800

tation. For instance, John and Smith in John Smith801

all appear to be a noun phrase and they exactly802

can play the role as a noun phrase. However, only803

John Smith will be annotated as a noun phrase. The804

POSes are predicted by taggers and thus are not805

golden.806

How do we design the POS constraints? We807

do this in a simple way: we count the proportion808

of POS in certain positions of spans (POS(V [i]),809

POS(V [j]), POS(V [i−1]), POS(V [j+1])) and re-810

move POS of which appearance frequency is under811

a certain threshold, i.e., 1%.812

A.3 Threshold and Tolerance 813

Label Threshold (t) Tolerance (t) Threshold (l) Tolerance (l)

NP 2.0 0.15 1.4 0.10
VP 0.8 0.15 2.0 0.05

ADJP 0.2 0.04 0.6 0.10
ADVP 0.8 0.03 0.8 0.03

PP 0.2 0.10 0.4 0.12
QP 0.2 0.03 0.2 0.03

SBAR 0.2 0.01 2.2 0.10
S 0.2 0.10 2.0 0.15

WHNP 1.0 0.10 1.0 0.10
WHADVP 1.0 0.10 1.0 0.10

PRN 1.0 0.10 1.0 0.10
PRT 1.0 0.10 1.0 0.10

Table 8: Thresholds and tolerances for result reproduc-
tion. t: Tight configuration. l: Loose configuration.

How do we choose the hyperparameter setting? 814

We search the best hyperparameter on the devel- 815

opment dataset to optimize unlabeled F1 score 816

(Loose) and labeled F1 score (Tight) and then apply 817

them to the test dataset. 818
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B Distributions of NDD caused by819

Different Substitutions820
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Figure 8: Distributions of from-mold POS-NDD.
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Figure 9: Distributions of to-mold POS-NDD.
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Figure 10: Distributions of from-mold POS-ND of se-
lected molds for UTLD.
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Figure 11: Distributions of to-mold POS-NDD of se-
lected molds for UTL.
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C Analysis for Disturbance Caused by821

Substitution822

Figure 12, 13 and 14 show the three cases of dis-823

turbance on neighboring prediction distributions824

caused by substituting operations. These opera-825

tions substitute the span The cat in The cat jumps826

into the hole by The crow, My house and In Lon-827

don. We use the five candidates with the highest828

existence probability in the initial sentence to show829

the changes on each word’s prediction.830

D Parsing Cases 831

Parsing cases are enumerated in this section. 832

Will decoding algorithms like CKY improve 833

parsing performance? No, in our experiments, 834

applying CKY actually results in a drop of > 10 in 835

unlabeled F1 score. 836
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Figure 15: LSG Parsing Case (LP= 100.0, LR= 100.0,
LF1= 100.0).

He had other brushes with’s the law .
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Figure 16: LSG Parsing Case (LP= 100.0, LR= 87.5,
LF1= 93.3, other brushes with the law missed).
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Figure 17: UTL Parsing Case (LP= 85.7, LR= 100.0,
LF1= 92.3, Labeling Acc.= 100.0, The red edge refers
to the fault in unlabeled tree from DIORA+PP).

15



crawled disappeared dove peered fell

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
jumps

into through in down from

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
into

the a his its her

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
the

air room water car bed

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
hole

. ! ; ? ...

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
.

VERB PROPN ADJ NOUN AUX

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
jumps

ADP SCONJ ADV PROPN ADJ

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
into

DET X SCONJ NUM PROPN

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
the

NOUN PROPN VERB ADJ ADV

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
hole

PUNCT CCONJ PROPN ADP ADV

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
.

Figure 12: Prediction distribution disturbance (Upper: POS-NDD, Lower: NDD) (Blue: Before substitution,
Green: After substitution) caused by constituent substitution (From The crow to The cat in sentence The cat jumps
into the hole.).
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Figure 13: Prediction distribution disturbance (Upper: POS-NDD, Lower: NDD) (Blue: Before substitution,
Green: After substitution) caused by constituent substitution (From My house to The cat in sentence The cat jumps
into the hole.).
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Figure 14: Prediction distribution disturbance (Upper: POS-NDD, Lower: NDD) (Blue: Before substitution,
Green: After substitution) caused by constituent substitution (From In London to The cat in sentence The cat
jumps into the hole.).
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