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Abstract

Unsupervised constituency parsing has been
explored much but is still far from being
solved as currently mainstream unsupervised
constituency parser only captures the unlabeled
structure of sentences. Properties in the substi-
tution of constituents make it possible to detect
constituents in a particular label. We propose
an unsupervised and training-free labeling pro-
cedure by leveraging a newly introduced metric,
Neighboring Distribution Divergence (NDD),
which evaluates semantic changes caused by
editions. We develop NDD into Dual POS-
NDD (DP-NDD) and build templates called
"molds" to extract labeled constituents from
sentences. We show that DP-NDD labels con-
stituents precisely and inducts more accurate
unlabeled constituency trees than all previous
unsupervised methods. Following two frame-
works for labeled constituency trees inference,
we set the new state-of-the-art for unlabeled
F1 and labeled F1. Further studies show our
approach can be scaled to other span labeling
problems, i.e., named entity recognition.

1 Introduction

Constituency parsing is a basic but crucial parsing
task in natural language processing. Constituency
parsers are required to build parsing trees for sen-
tences consisting of spans representing constituents
such as noun phrases and verb phrases. Parsed con-
stituency trees can be applied to many downstream
systems (Lee et al., 2013; Chen et al., 2015; Zhong
et al., 2020).

Since the introduction of deep learning into nat-
ural language processing, supervised neural net-
works have achieved remarkable success in con-
stituency parsing (Kitaev and Klein, 2018; Liu
et al., 2018; Nguyen et al., 2020; Zhang et al.,
2020b). Unfortunately, the need for large annotated
datasets limits the performance of supervised sys-
tems on languages of low resources. As the result,
many unsupervised systems have been proposed
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Figure 1: Examples for substitution property of con-
stituents among sentences. Neighboring Distribution
Divergence performs well on detecting plausible substi-
tutions.

[INP1] [falls | [on | [the | [ground | [.]

| The | [crow| [[vP]] [.]
[ The | [crow| [ fas | [[pP1] [.]

Figure 2: Molds constructed from examples in Figure 1.

for constituency parsing (Drozdov et al., 2019b;
Kim et al., 2020; Shen et al., 2021; Sahay et al.,
2021) by exploiting unlabeled corpus.

Current unsupervised constituency parsing sys-
tems are still far from the complete procedure,
mainly because most of these systems only in-
duct an unlabeled structure of the constituency tree.
Rare attention has been paid to label constituents
except for clustering (Drozdov et al., 2019a). Con-
stituents have fine properties which mitigate the
difficulty of unsupervised detection and labeling.
Labels of constituents are very different from labels
in other classification tasks since they represent syn-
tactic roles. For a noun phrase in a sentence, it will
be of high probability to play as a plausible noun
phrase in another sentence, as shown in Figure 1.
This phenomenon is also true for verb phrases and
preposition phrases.

Towards better unsupervised full constituency
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parsing, we leverage a recently proposed metric,
Neighboring Distribution Divergence (NDD) (Peng
et al., 2021), to automatically detect labeled con-
stituents in sentences. NDD is a Pre-trained Lan-
guage Model-based (PLM-based) (Devlin et al.,
2019) metric and is initially proposed to detect se-
mantic changes caused by editions.

In practice, we construct very few templates
called "molds" as shown in Figure 2. We judge
whether a span to be a constituent by fill it into
the phrase mask (/NP], [VP], ...) and using NDD
to detect the semantic similarity between the filled
sentence and the initial sentence. If NDD is under a
certain threshold, our method will predict the span
to be a constituent.

To further boost the efficiency and performance
of our method, we modify NDD into POS-NDD,
which only considers the likeliness of part-of-
speech (POS) sequences since the initial NDD is
too sensitive to precise semantic differences. Also,
we use a dual detecting method that evaluates both
the substitution to mold and substitution from
mold to better link constituents with the same label
together. We named our final metric Dual POS-
NDD (DP-NDD).

We experiment on Penn Treebanks to construct
labeled constituency trees and label predicted
treebanks from other unsupervised constituency
parsers. Results from our experiments verify
DP-NDD to be capable of inducting labeled con-
stituency trees and labeling unlabeled constituents.
Based on DP-NDD molds, we introduce two novel

frameworks for unsupervised constituency parsing.
Our algorithm parses by following simple rules
but results in remarkable results which outperform
all previous unsupervised parsers on the WSJ test
dataset. Our algorithms set the first strong base-
line in recent years for labeled F1 score. Our main
contributions are concluded as follows:

* We propose an unsupervised method other
than clustering for full constituency parsing,
which involves constituent labeling.

* We introduce novel frameworks for unsuper-
vised constituency parsing, which set a new
state-of-the-art for unlabeled F1 and strong
baselines for labeled F1.

¢ We introduce variants of NDD, POS-NDD,
and DP-NDD, which are less sensitive to se-
mantic differences between sentences and per-
form well for constituent detecting.

* We first model parsing in an editing form,
which is different from the conventional prac-
tice, which aids editions with parsing results.

2 Neighboring Distribution Divergence

2.1 Background

We briefly describe the NDD metric in this section
as the background for further discussion. More
details like motivation and explanation can be re-
ferred to (Peng et al., 2021).

Given a W sentence with n-word W =
[wy,wa, -+, wy], we use an edition E' to convert



W to an edited sentence W' = E(W). As we
only use substitution for unsupervised constituency
parsing, we limit E' to a substituting operation
which substitutes i-th to j-th word in W with a

span V' = [v1,v9, -+, Up].
W' = E(W)
:[w17"' y Wi—1,V1y " 5y Umy Wi41, ,’an]

Then we evaluate the semantic disturbance on
the overlapped part (w1, - -+, wij—1, w11, , W)
between the initial and edited sentences. For esti-
mation, we use a masked language model to get
the distribution of predicted words for each masked
position before and after the edition.

W * = [wi, -+ wi1, [MASK]L, wit1, -+, wnl;
R = PLM(W;"**); d; = softmax(R;) € R°

We first mask the i-th word in W and use the
PLM to predict the distribution d; on the masked
position. Here, d; is a R tensor, which refers
to the existence probability of the words in a c-
word dictionary of the PLM. We do this for the
overlapped part mentioned above, both in W and
w'.

After we get the predicted distributions for W
and W', we use KL divergence to calculate the
difference between the two distributions.

Dy (d}||d;)

Zd log

Finally, we integrate the divergence values via a
mean pooling layer.

div; =

/ d’i’Uk
NDD(W, W') = > —
KE[lyor i Tl m] L G —it+1)
According to the cases in (Peng et al., 2021),
NDD is capable of capturing precise semantics
changes. We will show in Section 2.3 how to use
modified NDD to construct molds for unsupervised

constituency parsing.

2.2 POS-NDD

NDD performs well on supervising editions, but
it might be too sensitive to some precise semantic
difference as in the explanation for Table 1 later.
To adapt NDD to constituency parsing, we modify

Sentence Sem. Str. POS-NDD NDD
The spider built its nest in the cave. - - 0.00 0.00
The spider made its nest in the cave. X X 0.69 2.67
The spider caught the pests in the cave. v X 0.81 7.45
The spider a wasted bridge in the cave. v v 6.42 18.39

Table 1: Comparison between NDD and POS-NDD for
semantic and structural change detection. The initial
sentence is "The spider built its nest in the cave." Sem.:
If there is a semantic change. Str.: If there is a structural
change.

NDD’s calculating procedure to concentrate on the
structural rather than semantic difference.

To do so, we gather the predicted words with the
same POS together by summing up their existence
probability. For implementation, we construct a
word-to-POS matrix M as shown in Figure 3. M
is a 2-dimension tensor of shape RP*¢ where p is
the number of POS classes, and c is the scale of
PLM’s dictionary. M is constructed following the
rule as follows:

Mo — 0, if 7-th word dictionary not in %-th POS class
"7 7" ) 1, if j-th word dictionary in i-th POS class

With M, we gather the existence probability of
words in the same POS class together and calculate
the KL divergence for POS-NDD. The weighted
sum in POS-NDD calculation is the same as in
NDD.

Md,
qu log( ()

The comparison between the initial NDD and
modified POS-NDD is presented in Table 1. In the
first example, we edit the sentence while keeping
both the semantics and structure unchanged—the
edition results in rather low values for both NDD
and POS-NDD. In the second example, our edition
does not convert the sentence’s structure but dif-
ferent semantics. Initial NDD is sensitive to this
change as its value raises to nearly x3. In contrast,
POS-NDD is less likely to be affected by semantics
and concentrates more on sentence structure. The
last example includes an edition that breaks the sen-
tence’s structure by substituting a verb phrase with
a probable noun phrase. As the value of POS-NDD
raises to almost x8, POS-NDD is verified to detect
this anomaly.

q = Md;, q; =

div?” = Dgr(¢)||lq:) =
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Figure 4: Dual mold for detecting constituents.

2.3 NDD-based Dual Mold

Based on POS-NDD, we build "molds" that can
discern constituents in sentences. Our mold is de-
fined as a quaternion (W4, j,1) where W is an
n-word sentence. i, j refers to the start and end
position of the span for substitution. [ refers to the
constituent’s label. Suppose we want to evaluate
the probability of a span Vs : t] (words from s-
th to ¢-th position in an m-word sentence V') to a
constituent with the label /. In that case, we will
substitute Wi : j] with V[s : t] and calculate the
POS-NDD between the sentence before and after
the substitution.

Shim — pOS-NDD(W, W)

S,

!
W' = [wla"' s Wi—1,Vsy* =" U, Wjg1, " 7wn]

We call this score To-Mold score as it is obtained
by substituting spans in molds. Likewise, we also
have a From-Mold score which is obtained by
substituting spans in sentences for parsing with
spans in molds.

SuI™ = POS-NDD(V, V")
V' = [vg, - - -

s Us—1, Wiy« + -, Wy, Vg1, 7Um]

We finally add To-Mold and From-Mold scores

together for whole evaluation,
S =8 + 551"

which forms a dual calculating procedure as
shown in Figure 4. We thus name our method Dual
POS-NDD. A lower DP-NDD score S refers to less
disturbance in substituting to and by a constituent
with label [ and will thus reflect the likelihood of
the span to be a constituent with the same label.

3 Constituency Tree Constructing

In this section, we introduce two frameworks that
we use in experiments to generate labeled con-
stituency trees.

3.1 Labeled Span Generating

Labeled Span Generating (LSG) is to directly gen-
erate labeled spans with DP-NDD molds and then
integrate spans with different labels together to con-
struct the full labeled tree. Our LSG algorithm is
much simpler than previous rules-based systems as
it only requires 4 steps for constituency parsing.

* Candidate Selection We first use simple lin-
guistic rules to sample some candidates for
a constituent label. For a span Vs : ],
we match the POS tags of V[s — 1], V]s],
V[t], V[t 4+ 1] to a POS list to roughly decide
whether the span is a plausible candidate for
constituent or not. For special labels, span
length is also taken into consideration.

* DP-NDD Scoring We then use our Dual POS-
NDD molds to score the sampled candidates
as previously described. There are multiple
molds for evaluation for some labels as differ-
ence exists among constituents with the same
label. We choose the minimal value of DP-
NDD scores from the molds.

Conflict Removing After scoring, we remove
spans which conflict with previously parsed
span. Conflicting spans are those overlapping
with previous spans by (s < ', " < t,t < t')
or (s' < s,s<t,t' <t).

Filtering and Overlapping Removing Fi-
nally, we filter the spans by only keeping the
spans with DP-NDD scores under a certain
threshold. Then, we remove spans overlapped
with other spans of the same label. If (s <
s <ttt <thor(s <s,s <t t<t),
we only keep the span with higher DP-NDD.
Butif (s < /,t' <t)or (s <s,t<t),we
add a tolerance factor to the algorithm to keep
both spans if the difference between the two
scores is lower than the tolerance.

We execute the 4 steps above for each label and
finally integrate spans parsed from each iteration
to construct the whole labeled constituency tree.

3.2 Unlabeled Tree Labeling

Unlabeled Tree Labeling (ULT) uses a parsing algo-
rithm to induct unlabeled treebanks from sentences
and then uses DP-NDD molds to label the spans
in the tree. Our UTL only annotates the edges in
the tree with no changes in the tree structure. For



each label, we use a mold to calculate the DP-NDD
score. The span is labeled as the label of the mold
to minimize the DP-NDD. In practice, we maxi-
mize the exponential of negative DP-NDD.

lst = argmax(efsiﬂt)
!

We further refine the prediction by incorporating
POS tags. We use the posterior probability col-
lected before for approximation to induct the label
of a span using the POS of start and end words.

lst = argmax(aefséﬂt)
!

a = p(I|POS(V[s]))p(I[POS(V[t]))

where we add o as a modifier to incorporate
POS-based probability into prediction.

4 Experiment

4.1 Data and Configuration

We experiment with our parsing algorithm on Penn
Treebank for Constituency Parsing. As our method
is training-free, we only use the first 50 sentences
in the development dataset to construct molds and
handcraft some simple ones. We do not use the
training dataset and test our algorithm on the test
dataset. We use molds of a number fewer than 25.
We apply BERT-base-cased (Devlin et al., 2019) as
the PLM for calculating DP-NDD. We also have
two configurations for thresholds and tolerances in
LSG. A strict configuration will produce fewer pre-
dicted spans and will thus result in higher labeled
F1 scores, while a loose configuration will, on the
opposite, result in higher unlabeled F1 scores. For
ULT, we use DIORA+PP (Post-processing) (Droz-
dov et al., 2019b) which is a strong baseline for
unsupervised constituency parsing to induct the
unlabeled treebanks. For probability approxima-
tion in POS-based refinement for UTL, we only
use POS tags in the development dataset. Specific
molds, POS-based rules, thresholds, and tolerances
can be referred to Appendix A.

4.2 Main Result

Our main results and the comparison with previ-
ously reported results are shown in Table 2. We
evaluate the models by unlabeled F1 for compar-
ison with previous parsing methods. The perfor-
mances of UTL and LSG are both reported to set
baselines for those two frameworks.

Method UF1 LF1*
LB 13.1 -
RB 16.5 -
RL-SPINN (Choi et al., 2018) 13.2 -
ST-Gumbel - GRU (Yogatama et al., 2017) 22.8 -
PRPN (Shen et al., 2018a) 383 -
BERT-base (Kim et al., 2020) 423 -
ON-LSTM (Shen et al., 2019) 47.7 -
XLNet-base (Kim et al., 2020) 48.3 -
DIORA (Drozdov et al., 2019b) 48.9 -
Tree-T (Wang et al., 2019) 49.5 -
StrctFormer (Shen et al., 2021) 54.0 -
PRPN+PP (Drozdov et al., 2019b) 45.2 -
DIORA+PP (Drozdov et al., 2019b) 55.7 -
DIORA+PP+Aug (Sahay et al., 2021) 58.3 -
DIORA+PP+Clustering (Drozdov et al., 2019a)  59.7  50.2
Neural PCFG (Kim et al., 2019) 50.8 -
Compound PCFG (Kim et al., 2019) 55.2 -
300D SPINN (Williams et al., 2018) 59.6 -
(LSG) w/o NDD 32,5 257
(UTL) DIORA+PP 547 36.8
(UTL) DIORA+PP+POS 54.7 472
(LSG) Tight DP-NDD 593 554
(LSG) Loose DP-NDD 618 515

Table 2: Comparison on unlabeled and labeled F1 scores
among methods for unsupervised constituency parsing
on WSJ test dataset. PP: Post-processing heuristics.
Aug: Rule-based Augmentation. *: Multiple edges are
kept as constituents can have multiple labels.

From Table 2!, our DP-NDD-based LSG algo-
rithm, DP-NDD with a loose configuration, outper-
forms all previous unsupervised methods for con-
stituency parsing and remarkably boosts the state-
of-the-art unlabeled F1 score to upper than 60.0.
Compared with previous state-of-the-art methods
consisting of complex systems like post-processing
with numerous linguistic rules, our algorithms are
much simpler and have better scalability. We at-
tribute this advance to the power of a pre-trained
language model that cast constituents with high
structural differences into near spaces in the latent
space.

For labeled F1 scores, our algorithms also reach
significant performance. DP-NDD with a tight con-
figuration achieves a strong performance of 54.5,
which is even higher than most unlabeled F1 results
from previous systems. Thus, we claim to have suc-
cessfully implemented the first unsupervised full
constituency parsing in recent years. Moreover, our
method involves a much simpler PLM, BERT, than
the highest baseline, xInet, in (Kim et al., 2020),
but reaches a much higher performance (13.5 un-
labeled F1 score). Compared with the result of

!Codes for the unlabeled parser in (Drozdov et al., 2019a)
are not released, UTLs are implemented on a weaker baseline
(Drozdov et al., 2019b).



Label UR LpP LR LF1 Prop.

NP 66.20 6849 6434 6635 42.08%
VP 38.84 5354 36.10 43.12 19.75%
ADJP 5120 1497 2889 19.72 2.02%
ADVP 79.84 4737 7040 56.63 2.74%
PP 63.84 66.37 51.53 58.02 12.40%

Table 3: Performance of DP-NDD-based LSG algorithm
on different labels. Unlabeled results (Unlabeled Recall)
are from loose DP-NPP, and labeled (Labeled Precision,
Labeled Recall, Labeled F1) results are from tight DP-
NPP. Prop.: Proportion of labels in test treebanks.

BERT-base in (Kim et al., 2020), the unlabeled F1
score from DP-NDD is 19.5 higher, which shows
the high efficiency of the DP-NDD-based method.

Compared with UTL, LSG achieves higher F1
scores in both unlabeled and labeled treebanks. We
conclude from this phenomenon that using label-
specific method (Our molds are for a certain label)
can extract constituents better than parsing spans
of different labels with a unified algorithm like in
other PLM-based methods (Kim et al., 2020; Shen
et al., 2021). For UTL, incorporating POS benefits
labeling in this framework much as this lifts the
unlabeled F1 score to 8.5 higher.

We also launch an ablation study by removing
DP-NDD scores from the LSG framework. LSG
without DP-NDD returns all spans that satisfy the
POS constraints. Without the guide of DP-NDD,
the performance of the LSG algorithm drops dra-
matically, even to half of the initial implementa-
tion. We conclude from this phenomenon that our
DP-NDD metric is essential for unsupervised full
constituency parsing.

NDD distributions caused by substitution of
phrases are presented label-wise in Appendix B,
which supports and explains the effectiveness of
our NDD-based approach.

S Analysis and Discussion

5.1 Label-specific Evaluation

We analyze the ability of our LSG algorithm for
parsing edges of different labels in this section. We
report the unlabeled and labeled performance of
the LSG algorithm on different labels. Precision,
recall, and F1 score are all considered for labeled
treebanks, and only recall is evaluated.

As presented in Table 3, LSG performs well on
extracting noun, adverb, and preposition phrases.
For these phrases, LSG leads to high results in unla-
beled recalls and labeled F1 scores. We mainly at-

Label P R F1 pf Rt F1f

NP 88.02 86.70 8736 9134 9886 94.95
\% 99.17 50.70 67.10 9852 9026 9421
ADJP  27.86 7588 40.76 9133 37.23 52.90
ADVP 63.19 5574 5923 9393 85.15 89.32
PP 4032 82.57 54.18 8430 97.69 90.50

Table 4: Labeling performance of DP-NDD-based UTL
algorithm on unlabeled golden edges in WSJ-10 tree-
banks. : Refined by POS.

tribute the success of LSG to the high performance
in discerning noun phrases, which take 42.08%
proportion of the constituents. LSG performs rela-
tively weaker for verb, and adjective phrases as pat-
terns of these phrases are more variable. Thereby,
LSG will be more likely to confuse them with other
phrases when trying to discern. We will elaborate
this point in Section 5.3.

In contrast, phrases with regular patterns like
adverb phrases and preposition phrases are more
likely to be discerned successfully. This phe-
nomenon can be attributed to the matching nature
of our algorithm, as The substitution will cause
less disturbance if another span in a similar pattern
substitutes a span. Take instances in Figure 1 for
explanation, substituting into the hole with most
preposition phrases will only result in subtle dis-
turbance, i.e., in a warm autumn day, before the
crashing. But verb phrases contain a variety of
patterns like is so smart and to enjoy their lunch.
Their substitution to the verb phrase jumps into the
hole will cause much more disturbance. Thus, the
selection of molds for verb phrases should be more
careful to cover the patterns of verb phrases. But
this remains another problem that these patterns
may be confused with other phrases like labeling
to enjoy their lunch to be a preposition phrase. The
current structure-oriented LSG algorithm may not
offer a proper solution to this confusion, so we plan
to leverage precise semantics for a try in the future.

5.2 Labeling Performance

We analyze the labeling performance of our UTL
algorithm in this section. To avoid parsing bias
caused by parser chosen for constructing unla-
beled constituency trees, we follow (Drozdov et al.,
2019b), we construct a WSJ-10 dataset by sampling
sentences with length under 10 from train, develop-
ment, and test datasets. Then, constituents includ-
ing noun, verb, adjective, adverb, and preposition
phrases are filtered from these sentences. WSJ-10
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contains 17935 golden constituents, and we use the
UTL algorithm to label constituents.

We report the experiment results of UTL in Ta-
ble 4. UTL results in high precision and recall
for labeling noun phrases without the refinement of
POS information, which verifies its capacity for dis-
cerning noun phrase patterns. The adjective phrase
remains the most difficult constituent for parsing,
and other phrases are of medium parsing difficulty.
POS-based refinement works for all phrases by sig-
nificantly improving the F1 score of noun, verb, ad-
verb, and preposition phrases to around 90.0 while
still leaving the adjective phrase as a hard problem
due to the difficulty in keeping recall and precision
score for adjective phrase balanced.

5.3 Confusion in Constituent Discerning

Following the discussion of labeling performance,
we further analyze factors that affect the constituent
discerning procedure. We depict the confusion ma-
trix in Figure 5. When POS is not used to help to
parse, the most confusing labels are verb and ad-
jective phrases. But the adjective phrase becomes
prominently confusing when POS is considered, in-
dicating that some adjective phrases have common
POS patterns with noun phrases.

To go deeper into the factors behind the confu-
sion in labeling, we construct disturbance matrices
by sampling constituent pairs from WSJ and WSJ-
10 datasets. We sample 2000 for each label pair and
record the average POS-NDD caused by the substi-
tution. The disturbance matrix is shown to be the
direct reflection of pattern differences among con-
stituents. Generally, self disturbance (disturbance
between constituents of the same labels) is lower
than mutual disturbance (disturbance between con-
stituents of different labels). Moreover, Phrases
with more patterns like verb phrases have a higher
self disturbance. Referred to the confusion matrix
without refinement, confusion appears when the
self disturbance is not enough lower than the mu-
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tual disturbance, i.e., VP-ADIP, VP-PP, ADVP-PP.
The discerning difficulty leads to the drop in recall
scores for verb and preposition phrases. For ad-
jective phrases, its precision is affected to drop as
some parts of noun phrases, which take a large pro-
portion in constituents, are mislabeled as adjective
phrases.

5.4 How about other tasks?

We conduct experiments on named entity recog-
nition (NER) to verify the generality of applying
NDD for capturing labeled spans. As all entities are
noun phrases, the capability of discerning entities
will verify the potential of NDD for more semanti-
cally precise tasks. We choose Conll-03 (Sang and
Meulder, 2003) as the NER dataset. Conll-03 con-
sists of named entities labeled in 4 types: [ORG],
[PER], [MISC] and [PER]. We sample 2000 pairs
of spans in the same way we do in 5.3. We evaluate
the average disturbance caused by substituting one
span with another using POS-NDD and the original
NDD.

Figure 7 shows the disturbance matrix for NER.
Compared with constituents, substitution using
named entity on average results in much lower
POS-NDD since named entities are all noun
phrases, as mentioned before. Generally, the self
disturbance is lower than mutual disturbance, mak-
ing it plausible to label named entities with NDD.



Compared with POS-NDD, NDD captures preciser
semantics changes as described before. NER ex-
periment results also support that NDD generally
performs better in discerning named entities, which
share structural similarity with each other, espe-
cially for the disturbance caused by substitution to
[LOC].

Among labels, [PER] is the easiest for discern-
ing as it differs the most from other labels. In
contrast, [ORG] and [LOC] are likely to be con-
fused with each other as they play similar roles in
semantics. For instance, we may say a meeting
took place in UN or a meeting took place in Paris,
but a meeting took place in Jack is not semanti-
cally plausible. We conclude from the disturbance
matrix the difficulty in entity labeling should be
ranked as [ORG [>[MISC]>[LOC]>[PER)].

6 Related Work

6.1 Unsupervised Constituency Parsing

Since the introduction of language models pre-
trained on large corpus like BERT (Devlin et al.,
2019), extracting constituents from those mod-
els raises as a new way for unsupervised con-
stituency parsing (Kim et al., 2020; Shen et al.,
2021). These methods try to extract constituents
by calculating the syntactic distance (Shen et al.,
2018b) which is supposed to reflect the information
association among constituents according to (Shen
et al., 2018a; Wang et al., 2019). The extraction of
latent trees from PLMs has been studied on a vari-
ety of language models in (Kim et al., 2020), which
provides rich posterior knowledge for completing
unsupervised constituency parsing.

Models trained on masked language models put
forward another framework for unsupervised pars-
ing procedures. These models, like DIORA and its
variants (Drozdov et al., 2019b; Sahay et al., 2021),
have been verified by experiment results to be ef-
ficient in discerning constituents from sentences.
Unfortunately, these models fail to label the con-
stituents after constructing an unlabeled treebank
from sentences. Our method differs from previous
work by using constituency molds to match con-
stituents and thus induct their labels. Instead of
figuring out direct relationships among words, we
allow neighboring words to supervise the structural
disturbance caused by substitution. As a result,
our method enables labeling on the constituency
tree, which implements the full unsupervised con-
stituency parsing.

6.2 Neighboring Distribution Divergence

Neighboring distribution divergence (Peng et al.,
2021) is initially proposed to detect semantic
changes caused by editions like compression (Xu
and Durrett, 2019) or rewriting (Liu et al., 2020).
Their experiments on syntactic tree pruning and
semantic predicate detection also show NDD to be
aware of syntax and semantics. NDD is verified to
have the capacity to detect predicates for semantic
role labels by deleting or substituting words, which
serves as our motivation to transfer this idea to un-
supervised constituency parsing. We follow the
idea in (Peng et al., 2021) and further adapt it to
extract and label constituents.

In previous years, there have been other works
that focus on leveraging pre-trained models to pro-
duce metrics reflecting syntactic or semantic infor-
mation. To evaluate the quality of text generation,
BERTScore (Zhang et al., 2020a) matches repre-
sentations from the pre-trained language model of
generated and golden sentences. Using pre-trained
AMR parsers, (Opitz and Frank, 2021) offers an ex-
plainable metric, MF-Score, for AMR-to-sentence
generation. MF-Score assigns scores by recon-
structing the AMR graphs to compare them with
the golden ones. Thus, it evaluates semantic simi-
larity better than conventional sequence matching
metrics like BLEU and ROUGE. Encouraged by
our success in applying NDD for parsing, we plan
to explore these pre-trained model-based automatic
metrics for more tasks.

7 Conclusion

In this paper, we explore an unsupervised full
constituency parsing procedure that includes con-
stituent labeling. We develop the recently proposed
NDD metric into POS-NDD and exploit it by using
the dual mold to match constituents. Based on DP-
NDD, we introduce two novel frameworks, labeled
span generation and unlabeled tree labeling, which
establish solid baselines for labeled constituency
tree construction and set the new state-of-the-art
for unlabeled F1 score. Further studies on con-
stituents with NDD disclose the pattern variety of
constituents with the same label and pattern similar-
ity among constituents with different labels. Exper-
iments on the NER dataset verify the generalization
of our method to other tasks.
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A Detailed Configuration

Before we release our codes, you can re-implement
the results in our experiments with the configura-
tion setting in this section.

A.1 Mold

w i l
20

Influential members of the House Ways and Means NPT
Committee introduced legislation that would restrict

how the new savings-and-loan bailout agency can

raise capital , creating another potential obstacle to

the government ’s sale of sick thrifts .

The complex financing plan in the S&L bailout law 1 4 NP
includes raising $ 30 billion from debt issued by the

newly created RTC .

Another $ 20 billion would be raised through 5 vpf

Treasury bonds , which pay lower interest rates .

The bill intends to restrict the RTC to Treasury 3
borrowings only , unless the agency receives
specific congressional authorization .

16

19 VP

The complex financing plan in the S&L bailout 22 %3
law includes raising $ 30 billion from debt

issued by the newly created RTC .

« 3

But the RTC also requires *“ working ” capital 27 VP
to maintain the bad assets of thrifts that are sold ,

until the assets can be sold separately .

“ B

Such agency self-help borrowing is 9 ADJP?
unauthorized and expensive , far more expensive
than direct Treasury borrowing , ” said Rep. Fort-
ney Stark -LRB- D. , Calif. -RRB-, the bill ’s chief

sponsor .

“ Such agency ° self-help * borrowing is unautho- ADJP
rized and expensive , far more expensive than direct
Treasury borrowing , ” said Rep. Fortney Stark -

LRB- D., Calif. -RRB-, the bill ’s chief sponsor .

=)

“ To maintain that dialogue is absolutely crucial . 7 ADJP

Many money managers and some traders had 8 8 ADVP'
already left their offices early Friday afternoon on a
warm autumn day — because the stock market was

so quiet .

This country is fairly big . 4 4 ADVP

ADVP
ADVP

Therefore , we can exchange in the market . 1 1

“To maintain that dialogue is absolutely crucial . 7 8

Once again -LCB- the specialists -RCB- 22 ppt
were not able to handle the imbalances
on the floor of the New York Stock Exchange s
" said Christopher Pedersen , senior vice president

at Twenty-First Securities Corp .

Big investment banks refused to step up to the 22 PP
plate to support the beleaguered floor traders

by buying big blocks of stock , traders say .

Just days after the 1987 crash , major brokerage 1 6 PP

firms rushed out ads to calm investors .

Table 5: Molds for result reproduction (from NP to PP).
1: Used for UTL
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w i 1

That debt would be paid off as the assets are 21 23 QPf
sold , leaving the total spending for the bailout at
$ 50 billion , or $ 166 billion including interest over

10 years .

“ We would have to wait until we have collected 7 SBAR
on those assets before we can move forward , ”” he

said .

Instead , it settled on just urging the clients SBAR
who are its lifeline to keep that money in the mar-

ket .

Influential members of the House Ways and Means 23 st
Committee introduced legislation that would restrict
how the new savings-and-loan bailout agency can
raise capital , creating another potential obstacle

to the government ’s sale of sick thrifts .

Another $ 20 billion would be raised through Trea- WHNP'

sury bonds , which pay lower interest rates .

But the RTC also requires ““ working ™ capital to WHNP
maintain the bad assets of thrifts that are sold , until

the assets can be sold separately .

Prices in Brussels , where a computer breakdown 5 5  WHADVP'

disrupted trading , also tumbled .

Dresdner Bank last month said it hoped to raise PRN'
1.2 billion marks -LRB- $ 642.2 million -RRB- by

issuing four million shares at 300 marks each .

Today ’s Fidelity ad goes a step further , encourag- PRT'
ing investors to stay in the market or even to plunge

in with Fidelity .

Table 6: Molds for result reproduction (the rest). 7:
Used for UTL

How do we choose the molds? Table 5 and 6
shows the molds we use for discerning constituents
in LSG and labeling in UTL. The molds are hand-
crafted or selected from the first 20 sentence (con-
tained such a labeled constituent) in the develop-
ment dataset. To guarantee the quality of molds, we
test them on UTL framework to label constituents
and selected the molds perform well on classifi-
cation evaluated by AUC (> 0.85). The most
well-performed molds are preserved for constituent
labeling in UTL.



A.2 POS Constraint

Label  POS(VI[i]) POS(V[5]) POS(V[i—1]) POS(V[j+1]) MaxLen
NP DET PROPN NOUNPROPN ADP VERB PUNCT ADP
NOUN ADJ PRON NUM PUNCT SOS VERB AUX
PRON NUM PART SCONJCCONJ CCONJ ADV
SYM AUX NOUN NOUN DET
ADV NUM  PART ADJ
PART DET  SCONJ PROPN
ADJ PROPN PRONNUM
PRON
VP VERB AUX NOUN VERB NOUN PRON PUNCT
PART ADV PROPN NUM PART AUX CCONIJ
ADV ADJ VERB PROPN  PROPN AUX
PUNCT ADV
DET CCONJ
ADJP ADJ ADV  ADJ] NOUN AUX DET PUNCT
NUM SYM VERB NUM VERB NOUN NOUN ADP
PROPN PUNCT ADP SCONJCCONJ
PART CCONJ PROPN
ADVP ADV ADV
PP ADP NOUN PROPN NOUN VERB PUNCT ADP
NUM PUNCT SOS VERB AUX
ADJ PROPN CCONJSCONJ
NUM ADV
QP SYM ADV NUM ADP  VERB NOUN PUNCT 5
NUM SOS PUNCT ADP ADJ
AUX DET
SBAR SCONJ DET NOUN VERB VERB NOUN PUNCT
PRON ADV  PROPN NUM PUNCT
PART ADP
S PART DET NOUN VERB VERB SCONJ PUNCT
PRON VERB PROPN PUNCT NOUN
PROPN DET SOS ADP
ADV  CCONIJ
PRON
‘WHNP DET PRON DET PRON PUNCT NOUN  VERB AUX
WHADVP  ADV ADV PUNCTNOUN DET NOUN
SOS  VERB PRON PROPN
ADP AUX ADJ VERB
PRN PUNCT PUNCT NOUN PROPN  PUNCT VERB
ADJ VERB AUX SCONJ
PUNCT ADV NOUN ADP
DET CCONJ
PRT ADP ADP VERB DET PUNCT 1
ADP  NOUN
ADV ADJ
PART CCONJ
NUM
Table 7: POS and length constraints for result repro-
duction. SOS: Start of the sentence. EOS: End of the

sentence. -: No constraint.

Table 7 shows our constraints for POS and max
length. These constraints are inducted by statistical
and constituency property.

Why do we need the POS constraints? As the
annotation of constituents are very different from
the actual semantic roles of them, we need extra
rules to filter some spans that satisfy the semantic
property of constituent but are ignored by the anno-
tation. For instance, John and Smith in John Smith
all appear to be a noun phrase and they exactly
can play the role as a noun phrase. However, only
John Smith will be annotated as a noun phrase. The
POSes are predicted by taggers and thus are not
golden.

How do we design the POS constraints? We
do this in a simple way: we count the proportion
of POS in certain positions of spans (POS(V[i]),
POS(V[j]), POS(V [i—1]), POS(V[j+1])) and re-
move POS of which appearance frequency is under
a certain threshold, i.e., 1%.
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A.3 Threshold and Tolerance

Label Threshold (t)  Tolerance (t)  Threshold (I)  Tolerance (1)
NP 2.0 0.15 1.4 0.10
VP 0.8 0.15 2.0 0.05

ADJP 0.2 0.04 0.6 0.10

ADVP 0.8 0.03 0.8 0.03
PP 0.2 0.10 0.4 0.12
QP 0.2 0.03 0.2 0.03

SBAR 0.2 0.01 22 0.10

S 0.2 0.10 2.0 0.15
WHNP 1.0 0.10 1.0 0.10
WHADVP 1.0 0.10 1.0 0.10

PRN 1.0 0.10 1.0 0.10

PRT 1.0 0.10 1.0 0.10

Table 8: Thresholds and tolerances for result reproduc-
tion. t: Tight configuration. 1: Loose configuration.

How do we choose the hyperparameter setting?
We search the best hyperparameter on the devel-
opment dataset to optimize unlabeled F1 score
(Loose) and labeled F1 score (Tight) and then apply
them to the test dataset.



B Distributions of NDD caused by
Different Substitutions
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Figure 9: Distributions of to-mold POS-NDD.

Figure 8: Distributions of from-mold POS-NDD.
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Figure 10: Distributions of from-mold POS-ND of se-  Figure 11: Distributions of to-mold POS-NDD of se-
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C Analysis for Disturbance Caused by
Substitution

Figure 12, 13 and 14 show the three cases of dis-
turbance on neighboring prediction distributions
caused by substituting operations. These opera-
tions substitute the span The cat in The cat jumps
into the hole by The crow, My house and In Lon-
don. We use the five candidates with the highest
existence probability in the initial sentence to show
the changes on each word’s prediction.

D Parsing Cases
Parsing cases are enumerated in this section.

Will decoding algorithms like CKY improve
parsing performance? No, in our experiments,
applying CKY actually results in a drop of > 10 in
unlabeled F1 score.
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Figure 15: LSG Parsing Case (LP= 100.0, LR= 100.0,
LF1=100.0).
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Figure 16: LSG Parsing Case (LP= 100.0, LR= 87.5,
LF1= 93.3, other brushes with the law missed).
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Figure 17: UTL Parsing Case (LP= 85.7, LR= 100.0,
LF1= 92.3, Labeling Acc.= 100.0, The red edge refers
to the fault in unlabeled tree from DIORA+PP).
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Figure 12: Prediction distribution disturbance (Upper: POS-NDD, Lower: NDD) (Blue: Before substitution,
Green: After substitution) caused by constituent substitution (From The crow to The cat in sentence The cat jumps

into the hole.).
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Figure 13: Prediction distribution disturbance (Upper: POS-NDD, Lower: NDD) (Blue: Before substitution,
Green: After substitution) caused by constituent substitution (From My house to The cat in sentence The cat jumps

into the hole.).
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Figure 14: Prediction distribution disturbance (Upper: POS-NDD, Lower: NDD) (Blue: Before substitution,
Green: After substitution) caused by constituent substitution (From In London to The cat in sentence The cat
Jjumps into the hole.).
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