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Abstract
This study presents a benchmark of various en-
coder and decoder architectures for intent clas-
sification in dialogue systems, using the Dai-
lyDialog corpus. The role of context in clas-
sification accuracy is explored, with a partic-
ular focus on the importance of capturing dy-
namic structures of context in real-world ap-
plications. Our results demonstrate that in-
cluding context significantly improves classifi-
cation performance, and that the choice of de-
coder architecture is important both for their
architecture and the level of context they use.
We also demonstrated that analyzing accuracy
according to the context - past, none, and full
- provides valuable insights into the impact of
context on real-world applications.1

1 Introduction

The identification of the intended purpose or goal
behind a user’s input, known as intent classifi-
cation, is a crucial task in natural language pro-
cessing (NLP). This is particularly significant in
conversational interfaces such as virtual assistants
[Garcia* et al., 2019], chatbots [Colombo* et al.,
2019, Jalalzai* et al., 2020], and voice assistants
[Dinkar* et al., 2020], where correctly identify-
ing user intent can lead to more efficient interac-
tions [Colombo, 2021]. The objective is to pre-
cisely determine the intent label that best describes
a user’s statement or message during a conversa-
tion. In the context of conversational interfaces,
an utterance refers to the input provided by a user,
and dialog act is a concept that is employed to de-
scribe the purpose behind an utterance. It refers
to the predefined intent labels that are assigned to
an utterance based on its intended purpose, such
as making a request, providing information, ex-
pressing an opinion, or asking a question. There-
fore, intent classification involves recognizing the

1https://github.com/coni26/Intents classification

communicative function of an utterance [Colombo
et al., 2021a].

The primary focus of this paper is on intent clas-
sification, a crucial task in natural language pro-
cessing (NLP). While there are numerous datasets
available for intent classification [Shriberg et al.,
2004, Poria et al., 2018, Thompson et al., 1993],
our specific attention is on the DailyDialog dataset
[Li et al., 2017]. Our objective is to leverage the
unique features of DailyDialog, such as its di-
verse range of topics, dialogues, and sentiments,
to develop a robust and reliable intent classifica-
tion system that can improve the performance of
conversational interfaces. Dialy Dialog is a pub-
licly available dataset of human-human conversa-
tions in English that cover a wide range of top-
ics. Our goal is to study the role of contextual
dependencies in intent classification. We control
the amount of context captured by each model in
order to compare them. To do so, we use different
encoders and classifiers that use no context, past
context, or full dialog context.

In this study, we aim to shed light on the role of
context in intent classification.

2 Dataset & Related Work

2.1 Available Datasets

Despite the availability of numerous datasets for
intent classification, DailyDialog stands out due
to its substantial size. It comprises of more than
13,000 dialogues, with each dialogue involving
multiple exchanges between two individuals. The
dataset has been meticulously labeled with four
distinct intent labels: inform, question, directive,
and commissive. The inform label is employed
when a user provides information, while the ques-
tion label is utilized for utterances that request in-
formation. The directive label is assigned to ut-
terances that give orders or requests, and the com-



missive label is utilized for utterances that com-
mit the speaker to future actions. Furthermore,
this dataset is one of the largest, and it encom-
passes dialogues pertaining to everyday situations
and events, thereby making it highly relevant and
practical for real-world applications.

2.2 On the role of hierarchy for DA
classification

The hierarchical structure of dialogues plays a piv-
otal role in capturing the contextual dependencies
that exist between user utterances. As requests,
responses, and other forms of speech are all inter-
dependent in a dialogue, it is imperative to con-
sider the structure of the conversation when mod-
eling these dependencies. Prior research has con-
centrated on enhancing the treatment of contextual
interdependencies in both encoder and decoder
models. This has been achieved by using hierar-
chical or recurrent models that take into account
the hierarchical nature of dialogues and the se-
quential dependencies of the various components
within them. Indeed, one of the key challenges
in intent classification is to effectively capture the
full context and interdependencies present in a dia-
log. In their paper, [Chapuis et al., 2020] presented
a hierarchical encoder that they compared with
BERT on different dialogue classification tasks.
Since the encoder was already capturing the con-
text, the performance was very close for an MLP,
a CRF or a GRU as decoder. In another study,
[Colombo et al., 2020] sought to improve classi-
fication accuracy by incorporating more context
into their model using the seq2seq approach with
different attention mechanisms. This study im-
proved classification accuracy compared to previ-
ous models. Then, these articles have aroused our
interest in comparing the effectiveness of differ-
ent intent classification models with varying lev-
els of context, including no context, past context,
and full context. Thus, we hope to provide some
keys to the understanding of intent classification
models for real-world applications. While captur-
ing the full context and interdependencies of a dia-
logue is an important challenge in intent classifica-
tion, it is also important to ensure that models are
designed to capture what is realistic in real-world
applications. For instance, in the case of real-time
chatbots, only the direct past context may be rele-
vant for predicting the intent of the user’s current
message. As such, our study takes into considera-

tion the practical constraints of real-time dialogue,
exploring the effectiveness of different classifica-
tion models to identify the most accurate approach
for real-world applications.

3 Method

Formally, we have a dataset of D conversations,
D = (C1, ..., CD). Each conversation is com-
posed of a variable number of utterances, Ci =
(u1, ..., u|Ci|), which are themselves sequences of
words, ui,j = (w1, ..., w|ui,j |). In parallel, for each
conversation Ci, we have a Yi label consisting of a
sequence of labels of the same size as the conver-
sation, Yi = (y1, ..., y|Ci|). Our goal is to predict
these labels using conversation.

3.1 Encoder

To model the utterances, we used different sen-
tence transformers [Reimers and Gurevych, 2019],
where in each case a mean-pooling of the word
embeddings is performed to get the embedding of
the utterance :

• all-MiniLM-L6-v2: MiniLM [Wang et al.,
2020] (30M parameters) is a compact dis-
tilled model with RoBERTa-Large as teacher,
in its version with 6 layers. Embedding size:
384.

• all-mpnet-base-v2: MPNet [Song et al.,
2020] (110M parameters) has the same ar-
chitecture as Bert and is based on a train-
ing method combining MLM (Bert) and PLM
(XLNet). Embedding size: 768.

• gtr-t5-large: T5-Base [Raffel et al., 2019]
(220M parameters) is a text-to-text trans-
former pre-trained on Colossal Clean
Crawled Corpus. Embedding size: 768.

• all-roberta-large-v1: RoBERTa large [Liu
et al., 2019] (354M parameters). Embedding
size: 1024.

The cited models with the prefix all have been
fine-tuned on a 1B sentence pairs dataset with a
contrastive learning objective: given a sentence
from the pair, the model should predict which out
of a set of randomly sampled sentences, was actu-
ally paired with it. While gtr-t5-large has been
fine-tuned for semantic search on MS-MARCO
[Nguyen et al., 2016].



In our work, we use the encoders utterance by ut-
terance, meaning there is no context of other utter-
ances when embedding an utterance. It may not
be the most powerful method, but it allows us to
work with decoders that do not take context into
account. It is one of the keys of our work. It al-
lows us to have more knowledge of our models,
both on the baseline efficiency of decoders and the
level of context we choose for decoders. Indeed,
we can play with the context in decoders without
being biased by the encoders.

3.2 Decoder

The decoders will be separated into three cate-
gories depending on the context they take to make
their prediction.

• No context: Only the embedding of the utter-
ance will be used to make the prediction, the
decoder uses nothing of the rest of the dialog.
For this, we will use a simple MLP.

• Past context: Only information from previ-
ous utterances and the current utterance can
be used for prediction. This case is the one
that is closest to real case applications. For
this, we will use different recurrent networks
(RNN, GRU, LSTM) in their unidirectional
version.

• Full context: All information from the dialog
(both past and future) can be used for each
label prediction. Recurrent models (RNN,
GRU, LSTM) will be used in their bidirec-
tional version for this.

The best decoder architectures are determined
on the validation dataset.

3.3 Training details

We used the given train/validation/test split, with
11k/1k/1k dialogs in each dataset. We used Adam
optimizer with a learning rate of 0.001, which is
updated using a scheduler with a patience of 10
epochs and an exponential decrease with γ = 0.9.
To have batches, given that the sequences are not
all of the same lengths, we can do zero padding
with a fixed maximum size. However, we choose
to order the sequences in order to have batches of
the same length. As a result, some batches were
smaller (ie., containing fewer sequences), so we
weighted the loss accordingly.

Figure 1: Diagram of our method with a unidirectional
RNN as decoder

4 Results

The results are displayed in Table 1, with the best
encoder and the best model for each type of con-
text (details in Table 3).

Context Encoder Model Accuracy
None RoBERTa MLP 0.779
Past gtr-t5 LSTM 0.810
Full RoBERTa biLSTM 0.819

Table 1: Best accuracy achieved on each type of con-
text

At the level of encoders, we observe that all-
MiniLM-L6-v2 is below the others, it is also the
one with the least parameters and the smallest em-
bedding size. Besides, gtr-t5-large and all-roberta-
large-v1, which are the biggest encoders in terms
of number of parameters, have quite close results
which are the best in our benchmark.
As expected, performance increases exactly with
the amount of context. Even though we get good
performance with only the past context, the differ-
ence is greater when we look at no context.
Finally, we notice that LSTM is better than GRU
which is better than RNN, both in uni and bi-
directional.

With figure 2, one could argue that the best
performance comes only from the increase in the



Figure 2: Accuracy depending on the number of pa-
rameters, according to the type of context and the en-
coder

number of parameters and not from the context or
the choice of the model. We therefore built mod-
els with a constant number of parameters (about
500k) to compare their performance.

Figure 3: Accuracy depending on the decoder, for a
fixed maximum number of parameters, about 500k (de-
coder: gtr-t5-large)

We notice on figure 3, that for a fixed num-
ber of parameters (other numbers of parameters
in Appendix), we have the same hierarchy be-
tween model and context as presented before. We
also notice that LSTM layers outperform RNN and
GRU. Even in the unidirectional version, LSTM
has very close results to biRNN and even biGRU.
We can therefore conclude that performance is not
only due to the number of parameters: more effi-
cient models with more context are able to capture
more information.
Finally, to observe the relevance of past context,

we can also look at the gain in accuracy that we
have between the MLP and the recurrent models
on the first and last utterance, presented in Table
2.

Model First utterance Last utterance
MLP 0.861 0.685
RNN -0.018 +0.048
GRU -0.012 +0.058

LSTM -0.002 +0.070

Table 2: Gain in accuracy on the first and last utterance
compared to the MLP baseline, averaged over the 4 en-
coders.

The accuracy is not comparable between the
different utterance positions, because some are
simpler than others. For example, on the first ut-
terance, we never have a commissive label, so it
is obvious to have a higher accuracy. By compar-
ing the performances on the first and the last utter-
ance, we understand that the recurrent models do
not have better performances on the first utterance,
they are even a little weaker, which can be due to
the initialization of the hidden state that skew the
results of the classifier. On the other hand, on the
last utterance, we have much better performances
with the recurrent models. It follows the expected
hierarchy RNN, GRU, LSTM. Therefore, as ex-
pected, the context allows to greatly improve the
performance as the dialog goes on. It is confirmed
by the results on the last utterance.

5 Conclusion

This study aimed to evaluate the influence of con-
text in intent classification by comparing various
encoders and decoders. Our findings indicate that
context is a crucial factor that affects the accu-
racy of classification, and the selection of decoder
architecture, such as GRU, RNN, or LSTM, can
have a significant impact on performance. Addi-
tionally, we recognize the significance of captur-
ing the dynamic changes in context, such as past
vs. full, position, and other factors relevant to real-
world applications. Moving forward, we believe
that a crucial research direction would be to ad-
dress fairness [Colombo et al., 2022, Pichler et al.,
2022, Colombo et al., 2021b] in intent classifica-
tion, as biases in data and models can have signif-
icant implications in decision-making processes.
Therefore, it is crucial to consider fairness con-
cerns when developing such models.
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Appendix

A Details on the accuracy of each model
with different fixed numbers of
parameters

We present every classifier with different amounts
of parameters and compare their accuracy. We no-
tice an almost linear increase for GRU and LSTM
in uni and bidirectional versions. However, the re-
sults of the RNN are more unstable. Then, as we
develop in our article, the most important differ-
ences are between past and full context and be-
tween the models, GRU and LSTM achieving bet-
ter results.

Figure 4: Accuracy depending on the decoder, for a
fixed maximum number of parameters, about 100k (de-
coder: gtr-t5-large)

Figure 5: Accuracy depending on the decoder, for a
fixed maximum number of parameters, about 200k (de-
coder: gtr-t5-large)

Figure 6: Accuracy depending on the decoder, for a
fixed maximum number of parameters, about 300k (de-
coder: gtr-t5-large)

Figure 7: Accuracy depending on the decoder, for a
fixed maximum number of parameters, about 400k (de-
coder: gtr-t5-large)



B Details of accuracy for every model
with different encoder, classifier, and
parameters

Here are the details of our models, with every
encoder-decoder architecture. We also specify the
number of parameters, direction, and the accuracy
each model reaches. We notice that the decoder
gtr-t5-large provides the best results, with results
higher than 0.8 for every classifier, except for the
MLP.

Encoder Direction Model Accuracy Nb. parameters

MiniLM

None MLP 0.700 26k

Uni
RNN 0.755 69k
GRU 0.767 207k

LSTM 0.778 276k

Bi
RNN 0.782 718k
GRU 0.784 473k

LSTM 0.792 357k

mpnet

None MLP 0.786 50k

Uni
RNN 0.770 107k
GRU 0.787 138k

LSTM 0.798 510k

Bi
RNN 0.791 53k
GRU 0.799 704k

LSTM 0.813 6,9M

gtr-t5

None MLP 0.773 50k

Uni
RNN 0.806 507k
GRU 0.801 322k

LSTM 0.810 429k

Bi
RNN 0.813 630k
GRU 0.816 704k

LSTM 0.819 3,5M

RoBERTa

None MLP 0.779 66k

Uni
RNN 0.776 133k
GRU 0.785 399k

LSTM 0.801 612k

Bi
RNN 0.794 733k
GRU 0.805 858k

LSTM 0.819 3,9M

Table 3: Accuracy for each model and each encoder


