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ABSTRACT

In this work, we instantiate a novel perturbation-based multi-class explanation
framework, LIPEx (Locally Interpretable Probabilistic Explanation). We demon-
strate that LIPEx not only locally replicates the probability distributions output
by the widely used complex classification models but also provides insight into
how every feature deemed to be important affects the prediction probability for
each of the possible classes. We achieve this by defining the explanation as a
matrix obtained via regression with respect to the Hellinger distance in the space
of probability distributions. Ablation tests on text and image data, show that
LIPEx-guided removal of important features from the data causes more change in
predictions for the underlying model than similar tests on other saliency-based or
feature importance-based XAl methods. It is also shown that compared to LIME,
LIPEx is much more data efficient in terms of the number of perturbations needed
for reliable evaluation of the explanation.

1 INTRODUCTION

Recent momentum in deep learning research has made interpreting models with complex architectures
very important. In a wide range of areas where neural nets have made a successful foray, the method
of “Explainable A.L.” (XAI) has also found an important use to help understand the functioning of
these novel predictors - like in climate science (Labe & Barnes, 2021), for solving partial differential
equation (Linial et al., 2023), in high-energy physics (Neubauer & Roy, 2022), information retrieval
(Lyu & Anand, 2023), in legal A.L. (Collenette et al., 2023), etc. Most often, it has been observed
that models with complex architectures give better accuracy compared to a simple model. So, the
core puzzle that XAl can be seen to solve is to give a highly accurate local replication of a complex
predictor’s behaviour by a simple model over humanly interpretable components of the data (Ribeiro
etal., 2016). Towards achieving this, multiple different XAI methods have been proposed in the recent
times, e.g., LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), Decision-Set (Lakkaraju
et al., 2016), Anchor (Ribeiro et al., 2018), Smooth-GRAD (Smilkov et al., 2017b), Poly-CAM
(Englebert et al., 2022), Extremal Perturbrations (Fong et al., 2019), Saliency Maps (Simonyan et al.,
2014), etc.

One major motivation for explainability is debugging a model (Casillas et al., 2003; Dapaah &
Grabowski, 2016). Towards this, an end user is interested not only in understanding the explanation
provided for the predicted class at a particular data point but also in the influence of different features
for all possible class likelihoods estimated by a classifier. The full spectrum of feature influence
on each class at a particular data point can help to understand how well the model has been trained
to discriminate a particular class from the rest. However, existing explanation frameworks do not
provide any clue on the aforementioned issue. To this end, we propose an explainability framework
that can explain a classifier’s output prediction beyond the true class.

To obtain an explanation around a data point, a local explanation algorithm like LIME (Garreau &
Luxburg, 2020) creates perturbations around it, each perturbation being represented as a Boolean
vector. LIME includes a feature selection method to decide a set of important features for each class
(like Algorithm A) among which the perturbations are considered. Then, an explanation vector for
the complex model’s prediction on the input data is obtained by solving a penalized linear regression
over these perturbations and the complex classifier’s predictions on the data corresponding to the
perturbations. We posit that it is not entirely convincing that LIME attempts to regress over bounded
labels, i.e., probabilities, using an unbounded function (i.e., a linear function) and that this would
need to be called separately for each class. Further, even if by repeated calls on each possible class
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we obtain an explanation for of the classes, there is no guarantee that by these repeated evaluations,
the importance of any particular feature would be knowable for every class.

In this work, we attempt to remedy these problems by proposing a single unified framework that
applies to both text and images, which we will show in experiments to be better than various XAl
methods for both text and images. In a C—class classification task, for any data s which is represented
as zs in some f; dimensional feature space, we shall seek explanations that map into C—class
probability space as,

R7: 5z, — Soft—Max o Wz, )

We call the W € R€*/s as the “explanation matrix” — which can be obtained by minimizing some
valid distance function (like Hellinger’s distance) between distributions obtained as above and the
probability distribution over classes that the complex model has been trained to map any input. Thus,
we instantiate this novel mechanism for XAI, namely LIPEXx.

Note how the matrix W in Equation | simultaneously gives for every feature a numerical measure
of its importance for each possible class. We posit that it is important that in any explanation, it
should be evident that most features deemed to be important for the predicted class are not so for the
other classes - an idea that was recently formalized in Gupta & Arora (2020); Gupta et al. (2022)
for the specific case of saliency maps. In our method, this property turns out to be emergent as a
consequence of the more principled definition of explanation that we start from.

Figure 1 shows an example of our matrix explanation obtained for a text document. We observe how
the explanation matrix is obtained for a specific document over a set of feature words. Note that for
the first row (the top predicted class), the top 5 feature words detected for this instance ([feel, valued,
joy, treasures, incredibly]) are distinctly different from the top features detected for the class in the
second row, the one with the second highest probability predicted by the classifier. More examples
like this can be found in Appendix D.5 and Appendix D.6 particularly focuses on examples where
the predicted class and the true class are different. It is observed that there always arises a natural
discrimination between features important for the different classes.
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Text: | have the joy of allowing kids to feel like the valued treasures that they are and to just have a blast being a kid alongside with them but can i
Jjust say its an incredibly humbling experience to have influence into a childs life and to know that what you do and say is being internalized.

Figure 1: Example of comparison of explanation matrix obtained by LIPEx and the bar chart obtained
by LIME on a text data from the Emotion dataset. For the LIPEx matrix, the class names on the
left side are arranged in descending order of the predicted class probabilities. Examples of LIPEx
explanation on image data is provided in Appendix D.3.

In the following, we summarize our contributions towards formalizing this idea of matrix-based
explanations that match the distribution over classes predicted by a complex model.

Novel Explanation Framework In Section 3, we formally state our explanation approach, which
can extract the relative importance of a set of features for every class under consideration beyond the
true class. In the following tests, we demonstrate how such a multi-class explanation framework can
be more useful for model understanding compared to existing state-of-the-art XAI methods.



Under review as a conference paper at ICLR 2024

(Test 1) Evidence of LIPEx Replicating the Complex Model’s Predicted Distribution Over
Classes In Figure 2, we calculate the Total Variation (TV) distance of the output distribution of the
obtained LIPEx explainer and the distribution output by the complex model for the same data and we
show that over hundreds of randomly chosen test instances, the distance is overwhelmingly near 0.
We show that this very necessary property holds over multiple models over text as well as images.

(Test 2) Sanity Check of LIPEx’s Sensitivity to Model Distortion In Figure 3 we distort a well-
trained complex model by adding mean zero noise to the parameters in the last layer and measure how
upon increasing the noise variance, the output probability distribution moves away in TV distance
from the original prediction. We show that when LIPEx is implemented on the distorted models, our
explainer’s predicted distribution moves away from its original value almost identically. This sanity
check is inspired by the arguments in Adebayo et al. (2018).

The above two tests give robust evidence that, indeed LIPEx is an accurate local approximator of the
complex model while being dramatically simpler than the black-box predictor. To the best of our
knowledge, such a strong model replication property is not known to be true for even the saliency
methods, which can in-principle be called on different classes separately to get the relative importance
among the different pixels for each class - albeit separately.

(Test 3) Evidence of Changes in the Complex Model’s Prediction Under LIPEx Guided Data
Distortion In Table 1 and 2, we devise an ablation study guided by the “faithfulness” criteria
as outlined in Atanasova et al. (2020). We establish that the top features detected by LIPEx are
more important for the complex model than those detected by other XAI methods. We show this
by demonstrating that when the top features are removed from the data and inference is done on
this damaged data, then the new predicted class differs more from the original prediction when the
removal is guided by what LIPEx deemed to be important than other XAI methods.

(Test 4) Evidence of LIPEx Replicating the Complex Model’s Class Prediction Under LIPEx
Guided Data Distortion In Table 3, we demonstrate that for an overwhelming majority of data,
upon removing their features deemed important by LIPEx, the new class predicted by the complex
predictor is reproduced by the LIPEx model when presented with the same distorted data.

(Test 5) Stability of LIPEx to Choosing Less and Only Near-Truth Perturbations In Figure 4,
we demonstrate experiments that the features picked out by the LIPEx matrix are largely stable when
the matrix is derived using only a few perturbation instances. We also show that this property is not
true for LIME in the models we consider. Thus LIPEx is demonstrably more data efficient.

To put the above in context we recall that estimates were given in Agarwal et al. (2021) for how
many perturbations around the true data are sufficient for LIME to produce reliable results - and
this experiment of ours can be seen to corroborate that. Also, we recall that in works like Slack
et al. (2020) it was pointed out that LIME’s reliance on perturbations far from the true data creates a
vulnerability that can be exploited to create adversarial attacks.

Note that we have restricted our attention to “intrinsic evaluations” of explanations, i.e., we only use
calls to the model as a black-box for deciding whether the explanations obtained are meaningful as
opposed to looking for external human evaluation. Both text and image data were used to evaluate our
proposed approach. For text-based experiments we used 20Newsgroup ' and Emotion > datasets. For
image—basc:ld experiments, we have used the Imagenette® dataset with segments detected by “segment
anything” *.

Among the above experiments, LIPEx was compared against a wide range of state-of-the-art explana-
tion methods for both text and image data, i.e., LIME (Ribeiro et al., 2016), Guided Backpropagation
(Springenberg et al., 2014), Vanilla Gradients (Erhan et al., 2009), Integrated Gradients (Sundararajan
et al., 2017), Deeplift (Shrikumar et al., 2016), Occlusion (Zeiler & Fergus, 2014), XRAI (Kapish-
nikov et al., 2019), GradCAM (Selvaraju et al., 2017), GuidedIG (Kapishnikov et al., 2021), BlurIG
(Xu et al., 2020) and SmoothGrad (Smilkov et al., 2017a).

"mttp://qwone.com/~jason/20Newsgroups/
https://huggingface.co/datasets/dair—ai/emotion
*https://github.com/fastai/imagenette
*nttps://segment-anything.com/


http://qwone.com/~jason/20Newsgroups/
https://huggingface.co/datasets/dair-ai/emotion
https://github.com/fastai/imagenette
https://segment-anything.com/
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Organization In Section 2 we briefly overview related works in XAl In Section 3 we give the
precise loss function formalism for obtaining our explanation matrix, and in Section 4 all the tests
will be given - comparing the relative benefits to other XAI methods. We conclude in Section 5.
Appendices contain various details such as the precise pseudocode used in Section 4 (in Appendix C),
the hyperparameter settings (in Appendix B), and further experimental data is given in Appendix D.

2 RELATED WORK

The work in Letham et al. (2015) is one of the first works that attempted to develop a classifier using
rules and Bayesian analysis. In Ribeiro et al. (2016) a first attempt was made to describe explainability
formally. The explanation can be made through an external explainer module, or a model can also
be attempted to be made inherently explainable (Chattopadhyay et al., 2023). Post-hoc explainer
strategy, as is the focus here, can be of different types, like (a) Ribeiro et al. (2016); Lundberg & Lee
(2017) estimate feature importance for predicting a particular output, (b) counterfactual explanations
(Wachter et al. (2017); Ustun et al. (2019); Rawal & Lakkaraju (2020)) determine if a feature x
was present in the input, then would the model have predicted output y, (c) contrastive approaches
(Jacovi et al., 2021) describe why an ML model has predicted a particular output instead of another,
or (d) Weinberger et al. (2023) and Crabbé & van der Schaar (2022) have recently proposed new XAI
methods tuned to the case of unsupervised learning. In this work, we specifically focus on feature
importance-based explanation techniques.

Feature Importance-based Explanations The study in Ribeiro et al. (2016) initiated the LIME
framework which we reviewed in Section 1 as our primary point of motivation. Similarly, the work
in Lundberg & Lee (2017) used a statistical sampling approach (“SHAP”) to explain a classifier
model in terms of human interpretable features. Lakkaraju et al. (2016) proposed a decision set-based
approach to train a classifier that can be interpretable and accurate simultaneously - where a set
of independent if-then rules defines a decision set. Ribeiro et al. (2018) proposed an anchor-based
approach for explanation - where anchors were defined as a set of sufficient conditions for a particular
local prediction.

Evaluation is a critical component in any explanation framework. The study in Doshi-Velez & Kim
(2017) described important characteristics for the evaluation of explanation approaches. Evaluation
criteria for explanations can broadly be categorized into two types, (a) criteria which measure how
well the explainer module is able to mimic the original classifier and (b) criteria which measure the
trustworthiness of the features provided by the explainer module, like the work in Qi et al. (2019)
demonstrated the change in the prediction probability of a classifier with the removal of top K
features predicted by a saliency map explainer.

We note that in this work our tests done in Section 4 encompass both the above kinds of criteria.

Lastly, we note that in Sokol & Flach (2020) a tree based explanation was attempted which could
directly work in the multiclass setting but to be able to compete LIME their method’s computation
cost can need to scale with the number of segments in an image. Also, in sharp contrast to our LIPEx
proposal, it does not have the critical ability to explain/reproduce the predicted distribution of the
given complex model.

3 OUR SETUP

LetC € {1,2,3,...} be the number of classes in the classification setup. Given any two probability
vectors p, q € [0, 1]C, Zle pi=1= Zle qi, we succinctly represent p, q as being members of the
simplex in C—dimensions as p, q € AC.

Classifier Setup We aim to explain a classifier which can be described as a neural network Ny,
(parameterized by weight w) composed with a layer of soft-max so that the output of the composition
is a probability distribution over the C—classes. Thus we define the composed mapping,

fw :RY > AS x o Soft—Max o Ny, (x) 2)

This composed function f, in Equation 2 commonly would have been trained via the cross-entropy
loss on a C class labeled data - and we assume only black-box access to it.
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The Feature Space for Explanations For a specific data s (e.g., a piece of text), we denote the
number of unique features (e.g., words) as |s| and assume that there is a selected ‘feature space’ with
fs features. Suppose special subsets of them, say S(s) and Sy(s) have been chosen and there is a
map, say Select which does the feature selection for each of its domain points as per say Algorithm
A.

S(s) c R, Si(s) c RY & Select : S(s) - Sf(s) 3)

The Local Explanation Matrix We explain f,’s behaviour around s by a ‘pseudo-linear model’,
gs,w which is defined as,

g.w:Ss(s) > A°, 7' Soft—Max o Wz’ 4)
with W e R€*/+ being the “explanation matrix”.

In the LIME setup (as well as in LIPEx), S(s) < {0, 1}/*l i.e. Boolean vectors are used to represent
random ways of dropping one or more of the (unique) words for text data and pixels for image data.
Hence, in such setups, the original input instance is represented as an all-ones vector, 1 € Rlsl,

We assume that there is a pre-chosen function (say 7’) that maps “perturbations” of the data contained
in the set S(s) to some d—dimensional embedding (like the BERT embeddings) which can be input
to the original prediction model (Equation 2).

T,:S8(s) > R? ©)

Note that, LIME seeks explanations using a linear function which would map the z’ (as in Equation
4) to a real number which is a priori unbounded in sharp contrast to the explainer g y defined in
Equation 4. Also note that the input dimensions d of fy and fs for g y could be very different and
dependent on s and typically, f; << d. Eg., in standard LIME 1mplementat10ns for a classifier one
often chooses fs = 6 important features of the text s.

The space of all probability distributions admits various natural metrics and Hellinger distance has
previously been used for feature selection in classification (Fu et al., 2020). Hellinger distance
between two discrete distributions p, q (on a set of C possible classes) is given as,

.00 75| £, (VP - Vao)

Apart from being an intuitive symmetric measure, squared Hellinger distance also offers other
attractive features of being sub-additive, smaller than half of the KL divergence and always being
within a quadratic factor of the Total Variation (TV) distance. (Canonne, 2020)°

Let S(s) ¢ S(s)(c {0,1}/*) be a randomly sampled set of perturbations to be used for training.
Passing it through the Select map (Equation 3) we obtain S¢(s) ¢ Sy(s)(c R/*) which are the
feature representations of the perturbations. We posit that the outputs of the Select map would
determine what the explainer g, y in Equation 4 acts on. Further noting that the output of the
embedding map T in Equation 5 determines what the true predictor fy, gets as input, we consider
the following empirical risk function corresponding to a distance function 7 in RI*,

A
3 w(ls,x)-H2(g&WoSelect(x),fWOTS(X))+5-HWH% (6)

ﬁH(gs,W73(S)) = m
s xeS(s)

where 1, the all-ones vector in Rl*|. We choose 7(1,,x) = = AT ” Hl T for all our experiments. It

is immediately interpretable that Equation 6 takes a ﬁ—weighted empirical average of the Hellinger
distance squared between the true distribution over classes predicted by the complex classifier fy
and the distribution predicted by the explainer g , while the A—term penalizes for using high weight
explainers and hence promotes simplicity of g, .

>Our experiments were tried with TV and they underperformed compared to the squared Hellinger metric.
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BERT on 20Newsgroups BERT on Emotion VGG16 on Imagenette InceptionV3 on Imagenette
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Figure 2: Histogram Statistics of TV Distance on Probability Distribution of Classes Between
Classifier and LIPEx.

Intuition for Good LIPEx Minima for Text Classifiers Being a ReLU Net For intuition, consider
explaining classification predictions by a ReL.U net on a text data s with |s| unique words. Further
suppose the classifier has been trained to accept d(> |s|) word length texts in their TF-IDF representa-
tion. Thus the Ts map (Equation 5) that lifts the perturbations of s to the input space of the complex
classifier can be imagined as a tall matrix of dimensions d x |s| whose top |s| x |s| block is a diagonal
matrix giving the TF-IDF values for the words in this text and the rest of the matrix being zeros. Also,
we note that the Select function can be imagined as a linear projection of the Boolean-represented
perturbations into the subset of important features.

Further, any ReL.U neural net is a continuous piecewise linear function Arora et al. (2018). Hence,
except at the measure zero set of non-differentiable points, the function Ny, (Equation 2) is locally a
linear function. Thus, for almost every input z € R? there exists a (possibly small) neighbourhood
of it where Ny, = Wt for some matrix W € RE*¢. It would be natural to expect that most true
texts are not at the non-differentiable points of the net’s domain and that 7T maps small perturbations
of the data into a small neighbourhood. Hence, for many perturbations x € RI*l, £, (T,(x)), as it
occurs in the loss in Equation 6, is a Soft-Max of a linear transformation (composition of the net and
the T map) of x. Recall that this is exactly the functional form of the explainer g y;, (Equation 4)
given that the Select function can be represented as a linear map! Thus, we see that there is a very
definitive motivation for this loss function to yield good locally linear explanations for ReLLU nets
classifying text.

4 RESULTS

At the very outset, we note the following salient points about our setup. Firstly, that for any data
s (say a piece of text or an image), when implementing LIPEx on it, we generate a set of 1000
perturbations of input instances. Then we chose features by taking a union set over the top-3 features
of each possible class, which was returned by the “forward feature selection” method (reproduced in
Algorithm A) called on the above perturbation data set. We recall that this feature selection algorithm
is standard in LIME implementations®. Suppose this union has f, features - then for all computations
to follow for s we always stick with these f, features for LIPEx (and also always call LIME on f;
number of features in comparison experiments). Secondly, we note that for the matrix returned by
LIPEx (i.e. W in Equation 4) we shall define its “top—k” features as the features/columns of the
matrix which give the k—highest entries by absolute value for the predicted class of that data.

Reproducing the Distribution over Classes of the Complex Classifier A key motivation for
introducing the LIPEx framework was the need for the explanation framework to produce class
distributions closely resembling those of the original classifier. Therefore, our initial emphasis is on
investigating how much in Total Variation (TV) distance, the distribution over classes predicted by the
obtained explainer is away from the one predicted for the same data by the complex model needing
explanations. In Figure 2, we show the statistics of this TV distance for expeiments on both text
(i.e. BERT on 20Newsgroups and BERT on Emotion) and image data (i.e. VGG16 and InceptionV3
on Imagenette). Figure 2 clearly shows that the distribution is highly skewed towards O over five
hundred randomly sampled data over multiple modalities and state-of-the-art models. Note that the
LIPEx loss (Equation 6) never directly optimized for the TV gap to be small and hence we posit that
this is a strong test of performance that LIPEx passes.

*https://github.com/marcotcr/lime


https://github.com/marcotcr/lime
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LIPEx Tracks Distortions of The Complex Model’s Output Distribution This sanity check
experiment is inspired by the studies in Adebayo et al. (2018). Here, we add mean-zero Gaussian
noise to the trained complex model’s last-layer weights and keep dialling up the noise variance till
the model’s accuracy is heavily damaged. At each noise level we compute the average over randomly
sampled data, of the Total Variation distance between the output distribution of the damaged model
and its original value and the same for the LIPEx’s distribution for that model at respective inputs.
We do text experiments with BERT on the Emotion dataset and image experiments with VGG16

Drop in Model Accuracy Upon Adding Noise To Last Layer Noise Induced Drift in the Output Distribution of original Model & LIPEx
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Figure 3: In the left image, we see how the model accuracy drops upon adding noise to the last
layer weights and bias, a mean 0 Gaussian noise at different variances. This demonstrates that the
maximum added noise is sufficient to distort the model highly. On right, we see how the data averaged
TV distance between the output distribution of LIPEx for the data at the original complex model and
the noise-distorted complex model tracks the same change in the complex model’s output.

on the Imagenette dataset. In Figure 3, for any specific data, LIPEx—Output is the LIPEX’s output
distribution for the original model, LIPEx(¢)-Output is the LIPEx’s output distribution for the
distorted model at noise variance . BERT-Output, BERT (¢)-Output, VGG16-Output and
VGG16(o)-Output are defined similarly.

The right column of plots in Figure 3 demonstrates that as the model distorts, LIPEx’s output moves
away from the original in a remarkably identical fashion as the distorted model’s output changes with
respect to its original value.

Importance of Top-K Features Detected by LIPEx A test of the correctness of determining
any set of features to be important by an explanation method is that upon their removal from the
original data and on presenting this modified/damaged input to the complex classification model it
should produce a new predicted class than originally. We implement this test with text data in Table 1
and with image data in Table 2. We demonstrate that when the top features detected by LIPEx are
removed from the data, the original model’s predicted class changes substantially more than when
the same is measured for many other XAl methods for the predicted class - and the amount of change
is proportional to the number of top features removed. ’

LIPEx Reproduces the Complex Model’s Class Predictions Under LIPEx Guided Data Damage
We posit that for a multi-class explainer as LIPEX, it is a very desirable sanity check that it should
reproduce the underlying model’s (new) predicted classes on the input when its top features are

"We use the code in Atanasova et al. (2020) to implement the gradient-based methods in Table 1, and the
package https://github.com/PAIR-code/saliency to implement the saliency methods in Table 2


https://github.com/PAIR-code/saliency
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Model & Dataset Top-K LIPEx LIME GuidedBack Saliency InputXGrad Deeplift Occlusion
K=1 0781 0.777 0.387 0.387 0.38 0.38 0.45
BERT K=2 0.857 0.841 0.477 0.477 0.48 0.48 0.543
20NewsGroups K=3 0.897  0.856 0.517 0.517 0.52 0.52 0.59
K=4 0909 0.881 0.517 0.517 0.523 0.523 0.627
K=5 0.908  0.912 0.553 0.553 0.57 0.57 0.653
K=1 0.657  0.653 0.597 0.597 0.6 0.6 0.65
BERT K=2 0.74 0.697 0.61 0.61 0.62 0.63 0.66
Emotion K=3 0.73 0.647 0.637 0.637 0.637 0.653 0.697
K=4 0.73 0.64 0.623 0.623 0.633 0.643 0.697
K=5 0.793 0.65 0.63 0.63 0.637 0.64 0.693

Table 1: Here, features refer to words. Upon removing top-K words detected by each of the XAl
methods and doing re-prediction, we report the fraction of data on which the predicted class changes.
We see that the words removed by LIPEx guidance more significantly impact the model’s prediction
than when guided by the other XAI methods. The complete experimental data with standard deviations
can be seen in Table 6 in the appendix.

[ Model & Dataset Top-K LIPEx LIME XRAI GradCAM GuidedIG BlurIG VanillaGrad SmoothGrad  IG |

VGGI6 K=2 0.763 0.74  0.713 0.69 0.717 0.713 0.68 0.747 0.703
Imagenetee K=3 0.82 0.78 0.77 0.763 0.75 0.787 0.753 0.817 0.747
K=4 0867 0.793 0.793 0.79 0.793 0.807 0.807 0.843 0.773

InceptionV3 K=2 0.673 0.63 0.693 0.653 0.663 0.647 0.657 0.65 0.637
Imagenette K=3 0.753  0.713 0.7 0.697 0.67 0.703 0.653 0.683 0.707
K=4 0.773  0.767 0.74 0.72 0.713 0.717 0.72 0.74 0.733

Table 2: Here, features refer to image segments which were gotten by Segment Anything. LIPEx and
LIME can be used to directly get a weight for each segment while for the saliency-based methods a
segment’s importance is determined as the sum of the weights assigned to its pixels. In the table above
we can see that the fraction of data on which label prediction changes under deletion of top features
detected by LIPEX is consistently higher than for other XAI methods. The complete experimental
data with the standard deviation can be found in the Table 7 in the appendix.

removed. In Table 3, we show with text as well as image data, that this class prediction matching
holds for the LIPEx explainer for an overwhelming majority of data.

Evidence for Data Efficiency of LIPEx as Compared to LIME Since LIPEx and LIME, both
are perturbation based methods, a natural question arises if LIPEx is more data-efficient, or in other
words can its top features detected be stable if only a few perturbations close to the true data are
allowed. In this test, we show that not only is this true, but also that (a) LIPEX’s top features can
at times even remain largely invariant to reducing the perturbations and also that (b) the difference
with respect to LIME in the list of top features detected, is maintained when the allowed set of
perturbations are increasingly constrained to be few and near the true data. Our comparison method
is specified precisely as Algorithm C in the Appendix and we sketch it here as follows.

When in the setting with unrestricted perturbations, we infer two lists of top features, one from
the row of the predicted class of the matrix (i.e. W) returned by LIPEx and another from LIME’s
weight vector for the same class — say LIPEx-List—s and LIME-List—s respectively. Next, we
parameterize the restriction on the allowed perturbations by the maximum angle § that any Boolean
vector representing the perturbation is allowed to subtend with respect to the all-ones vector that
represents the input data.

We use the default set of perturbations in a LIME implementation as a baseline ® and at different &, we
use only the d—restricted subset of the perturbations to compute (for the model predicted class) the top
features returned by the LIPEx matrix and the LIME, say d—LIPEx-List—s and )—LIME-List—s
respectively. For quantifying the dissimilarities between these lists of top features measured by the
two methods, we compute the following Jaccard indices and average the results on 100 randomly
chosen instances.

8In the LIME code, they choose perturbations of 5000 for text data and 1000 for image data.
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Model & Dataset Modality Topl Top2 Top3 Top4 Top5
BERT (20Newsgroups) Text 0.90 (£0.041)  0.85(x0.024) 0.79(+0.039) 0.71(x0.033)  0.70(x0.005)
BERT (Emotion) Text 0.89(+0.022)  0.84(+0.025) 0.84(+0.017) 0.82(+0.037) 0.74(+0.033)
VGG16(Imagenette) Image 0.80(+0.046)  0.73(x0.034) 0.73(+0.034) 0.73(x0.025) 0.70(x0.075)
InceptionV3 (Imagenette) Image 0.90(+0.051)  0.78(x0.044) 0.75(+0.015) 0.74(x0.013)  0.69(+0.035)

Table 3: In this table, for each model and data combination, we give the fraction of data (over
100 random samples) over which the new class predicted by the complex model matches the new
prediction by the LIPEx for the same model, upon removing from the data its top features as
determined by LIPEx. We can observe that post this distortion on the data, the class labels from the
complex model match those from the simple explainer for a significant majority of the instances.

0-LIME-List—s n LIME-List-s

6-LIPEx-List—s n LIPEx-List-s

Js,5 LIME = , Js,6 LIPEx =

0-LIME-List—s u LIME-List-s
0—-LIPEx-List—s n LIME-List-s
0—-LIPEx-List—-s u LIME-List-s

Js 6-LIPEx-vs—LIME =

BERT on 20NewsGroups BERT on Emotion VGG16 on Imagenette InceptionV3 on Imagenette

0—-LIPEx-List—-s u LIPEx-List—s

———

—_—
—
b

04 l
E Lo 0
Jasuwes
E Jos-rcaame | 02

0196 0393 0785 1571 (30 0393 0785 1571 o07: 0838 05482 1047 0733 0838 0542
delta (radians) delta (radians) delta (radians) delta (radians)

Figure 4: It can be observed that J, s 1,ipEx (the orange line) is very stable compared to that of LIME
despite the allowed perturbations being made constrained. The difference in LIPEx’s features w.r.t
LIME is also maintained. The number of points considered at different J is given in Table 5 in the
appendix.

From Figure 4, we can infer that at all levels of constraint on the data at least 50% of the top features
detected by our LIPEx are different from LIME. Secondly, J, s 1.1vE (averaged) rapidly falls as the
number of training data allowed near the input instance is decreased. Thus its vividly revealed that
the features detected by LIME are significantly influenced by those perturbations that are very far
from the true text.

Lastly, and most interestingly, we note that the curve for J, 5 1,1pEx (the top orange line) is very
stable to using only a few perturbations which subtend a low angle with the true text. Hence the top
features detected by our explanation matrix are not only important (as demonstrated in the previous
two experiments) — but can also be computed very data efficiently.

5 CONCLUSION

In this work, we proposed a novel explainability framework, LIPEX, that when implemented in
a classification setting, in a single training gives a weight assignment for all the possible classes
for an input with respect to a chosen set of features. Unlike other XAl methods it is designed to
locally approximate the probabilities assigned to the different classes by the complex model - and

this was shown to bear out in experiments over text and images - and it withstood ablation tests.

Our experiments, showed that the LIPEx proposal provides more trustworthy and data-efficient
explanations compared to multiple other competing methods across various data modalities.

We note that our XAl loss, Equation 6, can be naturally generalized to other probability metrics like
the KL divergence. Our studies strongly motivate novel future directions about not only exploring the
relative performances between these options but also about obtaining guarantees on the quality of the
minima of such novel loss functions.
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A  FEATURE SELECTION

Algorithm 1: Forward feature selection

Require: data X, target Y, number of features k
I: >Xe R#Perturbationsx# Unique-Words

2: >Y e R#Perturbationsx#Num—Classes

Ensure: set of indices of the selected features Sel_feats
3: Sel_feats « {}

4: fOI’ y inY do > ye R#Perturbationsxl
5: f < initialize selection model of Ridge regression
6: Current_sel_feats « {}
7: A1l feats < {1,2,..,1en(X[0])} > len(X[0]) =Number Of Unique Words in X
8: for i < 1to k do
9: best_idx <« 0
10: best_score « —x
11: for j € (A11_feats \ Sel_feats) do
12: f < ffit(X[:,Sel_featsu{j}],y)
13: > f.£fit() is used to train f, where the loss function is the linear least squares with 12-norm.
14: score « evaluate f with performance metric of R?
15: if score > best_score then
16: best_idx « j
17: best_score « score
18: end if
19: end for
20: Current_sel_feats « Current_sel_featsuU {best_idx}
21: end for
22: Sel _feats « Sel_feats uUCurrent_sel_ feats
23: end for

24: return Sel_feats

B LIPEX HYPERPARAMETER SETTINGS

Hyperparameter search was conducted over a small set of randomly selected data of each of the types
mentioned below to decide on the following choices.

Learning rate A Batch size
0.01 0.001 128

Table 4: LIPEx Hyperparameter Settings

Note that A in above refers to the regularizer in the loss in equation 6.

13



Under review as a conference paper at ICLR 2024

C

PSEUDOCODE FOR THE QUANTITATIVE COMPARISON BETWEEN LIPEX
AND LIME’S DETECTED IMPORTANT FEATURES (AS GIVEN IN SECTION 4)

Algorithm 2: LIME vs LIPEx w.r.t Angular Spread of the Perturbations About The True Data

Require: % = number of top features to be used for comparing LIME and LIPEx

Require: A set S of randomly sampled class labelled data at which the comparison is to be done
Require: f* = the trained predictor that needs explanations.

Require: §—List of all the angular deviations about the true data at which the LIPEx vs LIME

1:
2:

AN A

10:
11:

12:

13:
14:
15:
16:

17:
18:

comparison is to be done
for s € S do

Compute LIPEx-List—s = top-k features of s w.r.t its predicted class, as detected by the
LIPEx matrix using the standard set of Boolean vectors/perturbations w.r.t the all-ones represen-
tation of s.

Compute LIME-List—s = top-k features of s w.r.t its predicted class, as detected by LIME
using the standard set of Boolean vectors/perturbations w.r.t the all-ones representation of s - on
the same set of features as used in the previous step.

> Note that the above two lists of “important” features do not depend on J,
> We shall use both as reference lists for the different comparisons to follow.
> The list of features used above will be held fixed in the computations below.
for 0 € § — List do
Compute )—LIPEx-List—s = top-k features of s w.r.t its predicted class, as detected by
the LIPEx matrix using only those Boolean vectors/perturbations which are within an angle of §
w.r.t the all-ones representation of s.
Compute 6—LIME-List—s = top-k features of s w.r.t its predicted class, as detected by
LIME using only those Boolean vectors/perturbations which are within an angle of § w.r.t the
all-ones representation of s

_ | 6-LIPEx-List—s n LIME-List—s
Compute the Jaccard Index, J; 5-LIPEx-vs-LIME *= | §FTPEx TList—s LIME—Lgt—s|

Compute the Jaccard Index, J; 5 .ivE = O—LIME-List—s 0 LIMB-List—s

6—-LIME-List—s u LIME-List—s
Compute the Jaccard Index, J; s ipEx = | ripex-List=s 0 LIPFx List—s|
end for

d—LIPEx-List—s u LIPEx-List—s
end for

Plot (ﬁ Y ses Js,d—LIPEx—vs—LIME) Vs §
Plot (ﬁ Y seS Js,(s,LIME) vs §
Plot (ﬁ S ses Js,a,LIPEx) vs §

14
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D ADDITIONAL EXPERIMENTS

D.1 6 EFFECT ON JACCARD EXPERIMENT

For Text data
¢ (radians) 16 5 T 3
number of perturbation points 138 659 2383 5000
For Image data
¢ (radians) ;—g % 3’5 %
number of perturbation points 228 774 994 1000

Table 5: The effect of 4 on the number of perturbation points, result averaged on 100 input instances.

Note that when § decreases, while the amount of allowed perturbations falls, the similarity measure 7
in equation 6 increases.

D.2 ADDITIONAL DATA FOR THE DEMONSTRATION IN FIGURE |

—— TVLoss
HDLoss

Training Loss

t\n_.m............---mw\m
w

T T T
] 200 400 600 800 1000
Iteration

Figure 5: Comparison of the progress of training on the Hellinger distance based LIPEXx loss, as given
in equation 6, (its training curve being labelled as “HDLoss” above) and a natural Total Variation
distance analogue of it (its training curve labelled as “TVLoss” above), for the text data in Figure 1

D.3 LIPEX ON IMAGE

Each class/row of our explanation matrix would contain a weight corresponding to the importance
of a common set of features/super-pixels for that class. The figure below shows the part of the
matrix corresponding to the top 3 classes detected for this image i.e. “Burmese_mountain_dog",
“Entlebucher" and “Appenzeller" and the top—4 features deemed to be important for the predicted
class i.e. “Burmese_mountain_dog". Thus we see how LIPEx successfully “localized” the dog as
being determinant to the predictions rather than the cat which is also prominent in this picture.
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o1 0088

00038 0028 0.015 6.2e.05 0022

0045 0073 00022 0055 003

Appenzeller

1 19 3 B %

Figure 6: Example of (the most important part) of the matrix returned by the LIPEx method on an
image. See Figure 7 how the top 5 segments detected for the image patch together. The corresponding
LIME answer is visualized in Figure 8§ - and we can see how it prioritized image segments unrelated
to the dog.

14 1419 141923 14 19 23 31 141923 3126

Figure 7: The top 5 image segments deemed to be important by LIPEx for Inception-V3 to classify
the image in Figure 6 as a “Burmese_mountain_dog"

Bernese_mountain_dog

Figure 8: The weight vector over the features as returned by LIME
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LearningRate= 0.01 WeightDecay= 0.001

—— TVLoss
—— HDLoss

4x107!

3x107%

2x107!

Training Loss

1071 4

T T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration

Figure 9: The LIPEX result for the image data in Figure 7 corresponds to the endpoint of minimizing
the loss given in equation 6. (its training curve being labelled as “HDLoss” above). The training
curve labelled as “TVLoss” corresponds to training on an analogous loss as in equation 6 but with
the metric used in probability space being Total Variation.
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D.4 MORE DETAILS ABOUT THE ABLATION STUDIES IN SECTION 4

Method Top3 Top4 Top5
Vggl6
LIPEx 0.763(+£0.026)  0.82(+0.014)  0.867(+0.017)
LIME 0.74(+0.014) 0.78(x0) 0.793(+0.009)
XRAI 0.713(£0.025)  0.77(+0.008)  0.793(x0.026)
GradCAM 0.69(£0.016)  0.763(+0.026)  0.79(+0.043)
GuidedIG 0.717(x0.017)  0.75(x0.016)  0.793(x0.009)
BlurlG 0.713(£0.009) 0.787(+£0.017) 0.807(x0.017)
Vanilla_Grad 0.68(+0.022)  0.753(+0.005) 0.807(x0.012)
SmoothGrad 0.747(x0.019)  0.817(+0.005) 0.843(+0.005)
Integrated_Grad 0.703(+£0.021) 0.747(x0.029) 0.773(x0.017)
InceptionV3

LIPEx 0.673(£0.005)  0.753(+0.005) 0.773(x0.017)
LIME 0.63(£0.014)  0.713(£0.046) 0.767(x0.034)
XRAI 0.693(+0.017)  0.7(x0.029) 0.74(+0.062)
GradCAM 0.653(+0.005) 0.697(+0.017)  0.72(+0.036)
GuidedIG 0.663(x£0.046)  0.67(x0.051)  0.713(x0.04)
BlurlG 0.647(x0.041) 0.703(+0.034) 0.717(x0.029)
Vanilla_Grad 0.657(+0.012)  0.653(+£0.026)  0.72(+0.051)
SmoothGrad 0.65(+0.024)  0.683(+0.049)  0.74(+0.037)
Integrated_Grad 0.637(+£0.019) 0.707(£0.025)  0.733(x0.04)

Table 6: Ablation study of Vgg16 and InceptionV3, results averaged on three times run, each run
over randomly chosen 100 images from the ImageNette validation dataset. Here, features refer to
image segments (via Segment Anything) weighted by LIME/LIPEx or pixel importances determined
by saliency methods.
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Method Topl Top2 Top3 Top4 Top5
BERT on 20Newsgroups
LIPEx 0.781(+£0.047)  0.857(+0.036) 0.897(+0.016) 0.909(+0.026) 0.908(+0.032)
LIME 0.777(£0.027)  0.841(x0.031) 0.856(+0.045) 0.881(x0.011) 0.912(x+0.021)
GuidedBack 0.387(x0.049) 0.477(x0.082) 0.517(x0.074) 0.517(+0.054) 0.553(+0.042)
Saliency 0.387(+0.049) 0.477(+0.082) 0.517(x0.074) 0.517(x0.054) 0.553(+0.042)
Input_G 0.38(+0.054)  0.48(x0.079)  0.52(+0.071)  0.523(x0.05)  0.57(x0.029)
Deeplift 0.38(+0.054)  0.48(x0.079)  0.52(+0.071)  0.523(x0.05)  0.57(+0.029)
Occlusion 0.45(+0.045)  0.543(£0.066)  0.59(+0.082)  0.627(x0.065) 0.653(x0.063)
BERT on Emotion

LIPEx 0.657(+£0.021)  0.74(£0.037)  0.73(x0.028)  0.73(+0.029)  0.793(+0.024)
LIME 0.653(£0.017)  0.697(x0.041) 0.647(x0.037)  0.64(x0.045)  0.65(+0.008)
GuidedBack 0.597(+0.029)  0.61(+0.029)  0.637(x0.009) 0.623(+0.009)  0.63(+0.008)
Saliency 0.597(£0.029)  0.61(+0.029)  0.637(x0.009) 0.623(+0.009)  0.63(+0.008)
Input_G 0.6(+0.033) 0.62(x0.029)  0.637(x0.009) 0.633(x0.009) 0.637(+0.005)
Deeplift 0.6(+0.033) 0.63(x0.028)  0.653(+0.012) 0.643(+0.012)  0.64(+0.008)
Occlusion 0.65(x0.016)  0.66(+0.022)  0.697(+0.012) 0.697(x0.005) 0.693(x0.017)

Table 7: Ablation study on Text dataset by removing TopK features detected by explainable methods
and doing re-prediction, each experiment was independently repeated three times on randomly chosen
100 text instances.
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D.5 COMPARISON BETWEEN THE EXPLANATIONS FOUND BY LIPEX AND LIME

Figure 10, 11 vividly demonstrate the fine-grained explanation that is obtained by the LIPEx matrix
as opposed to the LIME’s explanation (right bar) on the same number of feature sets. The input
instances in Figure 10 and 11 are randomly chosen from the Emotion dataset. The explanatory matrix
generated by LIPEx makes it easy to see the relationship between the same feature and different

categories.
fear
2
surprise
NOT fear
"] i 1
£ joy
]
H
1]
n
o love 0
[¥]
anger
-1
sadness
-2
& > D > D>
R R Gy
® S Q

Class Names

Selected Features

Text: i feel like in the last year especially i ve gone from a girl to a woman and despite how
hesitant i have always been about getting older next year i will be twenty four i am surprised at how
pleased i am to have done so.
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Text: i feel inside this life is like a game sometimes then you came around me the walls just dissapeared nothing to
surround me keep me from my fears im unprotected see how ive opened up youve made me trust coz ive never felt like
this before im naked around you does it show.

Figure 11:
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D.6 COMPARISON BETWEEN THE EXPLANATIONS FOUND BY LIPEX AND LIME FOR TEXT
DATA WHERE PREDICTED CLASS AND THE TRUE CLASS ARE DIFFERENT

Figure 12, 13, 14, 15 demonstrate the fine-grained explanation that is obtained by the LIPEx matrix as
opposed to the LIME’s explanation on the same feature set for the predicted class - which is different
than the true class for these instances. The input instances in Figure 12, 13, 14 and 15 are chosen
from 20Newsgroups.
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