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ABSTRACT

Federated Instruction Tuning (FIT) has shown the ability to enable model instruc-
tion tuning among massive data owners without exposing privacy. However, it still
faces two key challenges, i.e., data and resource heterogeneity. Due to the vary-
ing data distribution and preferences among data owners, FIT cannot adapt to the
personalized data of individual owners. Moreover, clients with superior computa-
tional abilities have to compromise to maintain the same fine-tuning architecture
as the weaker clients. Such a constraint prevents the powerful clients from having
more trainable parameters for better fine-tuning performances. To address these
issues uniformly, we propose a novel Personalized Federated Instruction Tuning
(PerFIT) framework based on architecture search. Specifically, PerFIT allows
each client to search for a personalized architecture by expanding the trainable
parameter space of the global model, pruning them, and obtaining personalized
sparse patterns. We further propose personalized parameter-wise aggregation to
facilitate flexible aggregation among clients with diverse sparse patterns. This
procedure allows personalized instruction fine-tuning within the expanded param-
eter spaces, concurrently preserving the same number of trainable parameters as
the vanilla state, thus introducing no extra resource burden. The evaluations with
multiple LLMs on various instruction-following datasets demonstrate that our ap-
proach can achieve up to a 23% decrease in personalized perplexity compared to
the state-of-the-art FIT methods.

1 INTRODUCTION

The emergent abilities of Large Language Models (LLMs) (23) have presented the powerful capa-
bility of solving various language-related tasks, including reasoning, text generation, and question-
answering. To obtain better-aligned LLMs that can precisely follow the instructions of humans,
Instruction Tuning (IT) (26; 25) has been proposed and demonstrated essential effectiveness in en-
hancing the generalizability of the foundation LLMs to downstream tasks. Compared to the conven-
tional Fine Tuning (FT) methods, IT incorporates the vanilla text with specific instructions paired
with corresponding answers, thereby unlocking the existing abilities of LLMs.

Although IT is superior to traditional FT, the success of IT greatly relies on the variety, quality, and
quantity of the training data. In addition, the increasing concerns about data privacy (7) and the
expensive expenses of data collecting and cleaning jointly impede the obtaining of large amounts of
valuable data. Worse still, the heterogeneity of private data fails to reflect the meaningful statistical
property of the domain, resulting in the implantation of inevitable bias during IT. To overcome the
aforementioned issues, Federated Instruction Tuning (FIT) (32; 29) was proposed as the explorations
of the instruction-based optimization framework in Federated Learning (FL). The two frameworks
seamlessly integrated Parameter-Efficient Fine-Tuning (PEFT) methods (9; 14), enhancing the fea-
sibility of lightweight local fine-tuning processes. Moreover, they showed that FIT can leverage
instruction-following data with guarantees of privacy and improve the performance of LLMs.

Despite the fact the privacy-guaranteed FIT framework based on PEFT methods can alleviate data
heterogeneity and allow collaborative training, the preference for local data is not taken into consid-
eration. Existing FIT method ignores resource heterogeneity since every client has to share the same
structure of fine-tuning modules, potentially causing the waste of resources on clients with more
powerful capabilities given that more trainable parameters offer better fine-tuning performance (1).
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To address the challenges of handling local data and resource heterogeneity (11), we propose an
adaptive personalized federated instruction tuning method to enable local clients to fully use their
data and resources. Our method is motivated by the intrinsic connection between data heterogeneity
and architecture heterogeneity, thereby authorizing each client to search for a personal IT architec-
ture. Specifically, we adopt the efficient foresight pruning method based on the Taylor expansion
of the loss to simplify the expensive Neural Architecture Search (NAS) (16) process. Benefiting
from the data-guided pruning, each client has a personal sparse structure of the IT modules that fit
the personalized local data. Furthermore, we propose a personalized aggregation mechanism that
achieves parameter-wise aggregation across clients to enhance the information interactions. Our
contributions are summarized as follows:

• We develop a novel personalized federated instruction tuning method by exploring diverse
local fine-tuning architectures based on heterogeneous local data. Our approach can simul-
taneously enable collaborative learning among clients with heterogeneous resources.

• We propose a personalized parameter-wise aggregation strategy for the fine-tuned modules
to promote information interaction across local clients with various architectures.

• We conduct comprehensive experiments on three well-known LLMs and four instruction-
following datasets in both resource heterogeneity and homogeneity scenarios, which ade-
quately show the effectiveness of our method.

2 RELATED WORK

Federated Instruction Tuning of Large Language Models. Existing LLMs have demonstrated
substantial performance in deriving task-relevant answers by simply decorating the vanilla input
with instructions. However, the fine-tuning process is still a promising option to achieve better re-
sults when confronting unexplored tasks (18). To preserve the advantages of instruction data and
fine-tuning, instruction tuning was proposed as an essential approach to optimize the performance
of LLMs. This method improves the efficacy of LLMs in handling diverse and complex tasks by
fine-tuning them with human instructions and aligning them with real-world tasks (28). Previous
work in this area focuses on two ways to generate instructions: i) prompts manually created by
humans (27) and ii) instruction-following data auto-generated by machines (25). Despite the fact
that the first method is expensive, the quality of instruction data manufactured with human effects
is elevated due to the precise human annotation. The latter utilizes a self-instruct method based on
open-sourced LLMs to auto-generate instruction data. Specifically, a powerful LLM is deployed to
generate massive task-specific instruction data, which is subsequently leveraged to boost the align-
ment ability of another trainable LLM. However, due to the high value of collecting instruction
data for various tasks, the owners of specific data are unlikely to share it with other competitors
(29). Thus, the data cross-silo scenarios still exist. In addition, the heavy burdens brought by full-
parameter fine-tuning weaken the feasibility of conducting fine-tuning on local clients. To tackle
these problems, the FIT frameworks proposed by (32; 29) provide a lightweight solution based on
the Low-Rank Adapter (LoRA) (9) to overcome the challenge brought by heterogeneous data, but
the personalization aspects of local clients including data and resource heterogeneity (e.g., number
of trainable parameters that clients can afford) are not taken into consideration. Therefore, we delve
into the LoRA-based fine-tuning method and propose a personalized FIT method to address both
challenges simultaneously.

Personalized Federated Learning. Personalized Federated Learning (PFL) focuses on training a
client-specific model to achieve better performance on each local dataset instead of a global model
to accommodate all client data uniformly. Specifically, the personalization of clients includes two
major aspects: i) data heterogeneity (17) and ii) resource heterogeneity (12). The former indicates
the differences in local data distributions and the latter shows the diversity in terms of memory con-
sumption, computation abilities, communication overhead, etc. To address the data heterogeneity
challenges, existing methods including (20) introduced regularization terms to guide the local objec-
tives. To tackle the challenge of resource heterogeneity, (19) proposed to distinguish personalized
models from a global model through a hypernetwork. (30) derives Federated Neural Network Search
(FL-NAS) to obtain personalized architectures based on data and resource heterogeneity. FedSelect
(21) iteratively grows subnetworks of local personalized with decreasing sparsity values. While the
previously mentioned methods are effective from certain viewpoints, most focus on a singular as-
pect of personalization. Worse still, none of them are tailored for PFL on LLMs. To address the two
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personalization issues in a one-shot manner, we propose to leverage the concepts of NAS to conduct
a fine-grained LoRA architecture search based on local data, aiming to meet the resource and data
heterogeneity needs simultaneously.

3 PRELIMINARIES

Neural Architecture Search (NAS). Given a loss function ℓi and model parameters θi(A) based
on an architecture Ai, we formulate the architecture search as the following optimization problem:

argmin
Ai

ℓi(θi(Ai);Di) s.t. Ri(Ai) ≤ Bi, i = 1, 2, ..., n . (1)

Here, Ri and Bi represent the resource consumption and the budget limitation of the ith client. The
budget of the ith client can be energy consumption, computational cost, bandwidth requirement,
etc., or a combination of these. In this paper, we use the number of trainable parameters to reflect
budget constraints and utilize the NAS to explore a personal training architecture for every client
based on the local heterogeneous data Di.

Low-Rank Adapter. Given the significant constraints on computational resources and communica-
tion bandwidth for local clients, we focus on the LoRA (9) method to formulate FIT architectures.
LoRA achieves the update of fine-tuning by constraining the update of model parameters to main-
tain a low intrinsic rank. For a pre-trained LLM parameterized by θinit ∈ Rd×k, LoRA utilizes a
low-rank decomposition AB to represent the update ∆θ where A ∈ Rd×r, B ∈ Rr×k and the rank
r ≪ min(d, k). The pre-trained parameter θ remains fixed during the fine-tuning while A and B
are optimized. The update of θinit is formed as

θnewx = θinitx+∆θx = θinitx+ABx,

where θnew ∈ Rd×k denotes the new weight which is re-parameterized after completing the fine-
tuning. Note that for mainstream decoder-only LLMs, d equals k.

Personalized Federated Learning. The goal of PFL is to train a personalized model for each
client collaboratively. Considering n clients with private Non-IID dataset denoted as Dn =
{(xn,j , yn,j)}Nn

j=1, we want to solve the problem below:

argmin
∆Θ

1

n

n∑
i=1

Li(θinit,∆θi), Li(θinit,∆θi) =
1

Nn

Nn∑
j

ℓi(xn,j , yn,j ; θinit,∆θi).

θinit and ∆θi represent the frozen and trainable parameters of the ith client, respectively. ℓi is the
loss function for the ith client. Li(∆θi) denotes the average loss across the local data. ∆Θ =
{∆θi}ni=1 represents the set of trainable parameters (A and B) in LoRA-based fine-tuning.

4 METHODOLOGY

4.1 WORKFLOW OF PERFIT

Figure 1 shows the workflow of our method. It consists of the following four major steps. 1⃝Local
Architecture Search: Local clients search for their personalized sparse masks. Then, the per-
sonalized sparse masks are transmitted to the server. 2⃝Sparse Module Generation and Local
Fine-tuning: Local clients generate personalized LoRA modules and conduct local fine-tuning.
3⃝Personalized Module Aggregation: Local clients transmit the sparse fine-tuned LoRA mod-

ules to the server. The server performs parameter-wise personalized aggregation. 4⃝Personalized
Module Generation and Distribution: The server generates personalized LoRA modules and dis-
tributes them to clients to initialize a new round of local fine-tuning based on the global module and
personalized sparse masks. The backbone of the LLM is frozen during both searching and federated
training processes. 1⃝ and 2⃝ are conducted locally. 3⃝ and 4⃝ are conducted on the central server.
Algorithm 1 exhibits the process of NAS. Algorithm 2 shows the details of the overall workflow,
where the “Federated Tuning” includes 2⃝, 3⃝ and 4⃝. Algorithm 3 explains the 3⃝. Note that 1⃝
and 3⃝ are the major components and will be detailed in the next section.

4.2 IMPLEMENTATION DETAILS

3
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Figure 1: Workflow of our personalized federated instruction tuning approach.

Algorithm 1 NAS for LoRA modules

Input i) ∆θ0, LoRA; ii) Tp, # of pruning epochs; iii)
n, # of total clients; iv) s, sparsity.

1: for i = 1, . . . , n in parallel do
2: for t = 1, . . . , Tp do
3: Compute I∆θi based on Equations 2-4;
4: τ←(1− (1− s)t/Tp) percentile of I∆θi ;
5: mi as mi ←mi ⊙ (I∆θi < τ);
6: end for
7: end for
8: Return Sparse LoRA modules parameterized by

∆θi ⊙mi

Local Architecture Search through Iterative
Pruning. For the ith client, we collaboratively
search for the personalized architecture Ai that
performs the best on the local dataset Di. Fol-
lowing Equation 1, the objective is defined as

Ai = argmin
A

Li(θi(A),Di)

s.t. Ri(Ai) ≤ Bi,Ai ̸= Aj for i ̸= j,

where Li(·) =
∑n

i=1 piLi(·) and pi =
|Nn|/

∑n
i=1 |Nn| represents the ratio of the

number of local data points to the number of
overall data points. Given the budget of the
number of trainable parameters Bi, our goal is
to find the LoRA architecture Ai which can achieve the best fine-tuning performance on local data
Di. Due to the heavy burden of traditional NAS on LLMs, we perform the NAS on the LoRA module
through foresight iterative pruning. Since pruning refers to the process from dense to sparse struc-
ture, we first replace the original LoRA module A ∈ Rd×r and B ∈ Rr×d with Ade ∈ Rd×r/(1−s)

and Bde ∈ Rr/(1−s)×d, respectively. Note that s represents the sparsity and 0 < s < 1. During
pruning, we aim to remove the elements that have the least impact on the output of the model and
reduce the number of parameters from (d × r/(1 − s))X to (d × r)X by obtaining personalized
mask m for each client. To estimate the importance of every element θji in Ad and Bd by ignoring
higher order terms in Taylor expansion, we formulate the change of the loss as

I∆θj
i
=

∣∣∣∂ℓi(∆θji ;Di)

∂∆θji
∆θji

∣∣∣, (2)

where ∆θi is represented by Ai
deB

i
de. Equation 2 shows the first-order estimation. Similarly, we

can derive the parameter-wise second-order estimation as

I∆θj
i
=

∣∣∣∆θjiHjj∆θji

∣∣∣. (3)

H represents the Hessian matrix and can be approximated by the Fisher information matrix to alle-
viate the computation overhead. For more generality, we integrate Equation 2 and 3 as the mixed
metric, which is defined as follows:

I∆θj
i
=

∣∣∣∂ℓi(∆θji ;Di)

∂∆θji
∆θji −

1

2
∆θjiHjj∆θji

∣∣∣. (4)

Since Di is the fine-tuning data that has never been used for the pre-training,
the two terms in Equation 2 and 3 are not equal to zero, which shows that the proposed importance
score is an ideal measurement of the importance of the architecture of the LoRA modules. The
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overall process is described in Algorithm 1. In Line 3, we obtain the importance scores I∆θi . To
avoid the potential layer collapse caused by over-confidence of one-shot pruning, we utilize an
exponential decay schedule in Line 4 to determine the threshold value τ for pruning. After that,
in Line 5, we mask the parameters whose importance scores are smaller than the threshold τ and
preserve the rest. Different from the fine-grained NAS proposed by (13) that searches the parameters
after training, we conduct the search before training to form a sparse training process.

Algorithm 2 Adaptive personalized FIT
Input: i) ∆θ0, LoRA; ii) Tp, # of local pruning epochs; iii)
Ttr , # of local fine-tuning epochs; iv) k; # of local clients in
each round; v) n, # of total local clients; vi) gs, a group of
sparsity values.
1: Local LoRA Module Search:
2: for i = 1, . . . , n in parallel do
3: Conduct Algorithm 1 based on the ith sparsity in gs.
4: end for
5: Federated Tuning:
6: for t = 1, . . . , Ttr do
7: Ck ← Randomly sample k clients from n clients;
8: Gk ← Number of elements in Ck;
9: for j = 1, . . . , Gk in parallel do

10: Conduct e epochs of local fine-tuning.
11: end for
12: Upload fine-tuned LoRA modules of clients in Ck;
13: Conduct adaptive aggregation based on Algorithm 3;
14: Dispatch personalized aggregated modules to clients

in Ck.
15: end for
16: Return Personalized LoRA modules for each client.

Symmetric Initialization. Different from
what was proposed in (9), we conduct
the pruning-oriented NAS before starting
training to avoid introducing expensive bi-
level optimization. Nevertheless, due to
the dependency of the importance mea-
surement on the gradient, we need to care-
fully initialize the LoRA adapter to pre-
vent Measurement Vanishing. Formally,
the vanishing indicates that the values of
importance scores are equal to zero, result-
ing in a diminished capability of the met-
ric. Since the first and second-order terms
rely on the gradient, we show that the van-
ishing happens without proper initializa-
tion. Based on the chain rule, the gradi-
ent of the A matrix in a LoRA module is
defined as gA = ∂ℓ

∂oB, where ∂ℓ
∂o repre-

sents the gradient concerning the output of
this layer. In vanilla LoRA configurations,
the matrix B is initialized to all-zeros to
avoid adding unexpected perturbations to
the frozen backbone model. With such configurations, the gradient gA is zero due to the state of
Bde, making the importance scores IAde

all-zeros. Consequently, the pruning process only happens
on the Ade matrix since the importance scores of B are always greater than 0. Therefore, such a
problem will undermine the effectiveness of the pruning-oriented NAS process if we keep using the
vanilla initialization. Accordingly, we follow the widely-used principle to symmetrically initialize
B with the standard Gaussian and conduct the NAS process

Ade ∼ N (0, 1/d), Bde ∼ N (0, 1/d),

where N represents the Gaussian distribution.

Personalized Aggregation. To allow joint optimizations between local sparse patterns in a federated
manner, we proposed a unified, personalized aggregation method for the LoRA modules. Formally,
we can represent the pruned LoRA modules for the ith client as

Ai
T=0 = Ai

de,T=0 ⊙mi
a, B

i
T=0 = Bi

de,T=0 ⊙mi
b (5)

where mi
a and mi

b denote the personalized mask matrices given the sparsity s. Since the prun-
ing metric defined by Taylor expansion is dependent on the data Di, the obtained mask matrices
vary across clients, i.e., mi

a ̸= mj
a and mi

b ̸= mj
b. Intuitively, two personalized masks will not

overlap if Di is strictly heterogeneous to Dj . For example, for a set of local LoRA-A modules
{A1,A2, ...,An}, we can mark each parameter Az

i,j in Az∈n with two states with respect to the
parameter Al

i,j in Al∈n: i) “exclusive”; and ii) “shared”. Note that the states of each element can be
conveniently obtained by the values of the corresponding sparse masks sent to the server from the
beginning. Therefore, we formalize the personal aggregation matrix Γz for the zth client to realize
the parameter-wise weighted aggregation. The new personalized LoRA for the zth is formed as

Az
T+1 = mz

a ⊙
∑
z∈gid

(Az
T ⊙ Γz

A), B
z
T+1 = mz

b ⊙
∑
z∈gid

(Az
T ⊙ Γz

B),

where Γz
A and Γz

B represent the coefficient for LoRA-A and LoRA-B, respectively. gid is the in-
dices that belong to the selected clients in round T . In Algorithm 3, Lines 2-3 explains the compu-
tation of the coefficient Γz

i,j for the element in position (i, j). Note that with partial participation,
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Algorithm 3 Generate Γz for the zth client.
Input: i) Index group gid = {idx1, idx2, ..., idxp} of
the selected clients ; ii) M = {mg0id ,mg1id , ...,mg

p
id},

local masks ; iii) {Ng0id , Ng1id , ..., Ng
p
id}, # data be-

longs to selected clients. iV) i, j, index of the element
in the mask matrix; v) Index set I = {}.
Generate Γz:
1: for all mi,j ∈Mz in parallel do
2: Perform I ∪ l when ml

i,j = 1 ∀l ∈ gid;
3: Γz

i,j = Nz/
∑

k∈I N
k;

4: end for
5: Return Coefficient matrix Γz for the zth client.

Since the states of each parameter implicitly
form parameter-wise grouping, we only con-
duct the weighted aggregation within the same
group. Based on the adaptive aggregation
mechanism between sparse modules, we can
further accommodate the fine-tuning process
to resource heterogeneity scenarios. Since the
main resource bottlenecks for local clients, in-
cluding memory consumption and FLOPs, are
inherently tied to the trainable parameters, we
can adapt local module searches according to
their maximum capability. Such targeted adap-
tation ensures optimal utilization of resources
and empowers the overall performance. For-
mally, we first conduct Algorithm 1 based on a group of resource-specific sparsity levels gs =
{s1, s2, ..., sm} followed by applying Algorithm 3 to enable heterogeneous module aggregation.

Computation and Time Complexity Analysis. Similar to the work in (6) and (3), we applied 8-
bit quantization on the frozen model and gradient-checkpoint methods to relieve the GPU memory
burden when using the Adam optimizer to conduct local fine-tuning. Note that the computational
resources required by NAS are less than those for fine-tuning. This is because the computational
cost of NAS is as low as fine-tuning with the SGD optimizer, which is less complex than the Adam
optimizer. Moreover, for each client in PerFIT, the pruning is performed only once at the first round
of local training. As a result, the computational overhead of pruning in PerFIT is negligible in
practice. For each client, we maintain a bitmap data structure to represent the mapping between
client model parameters and their counterparts in the expanded space. Our aggregation operation
described in Algorithm 3 has a time complexity of O(MK). Here, M is the number of LoRA
modules, and K is the number of selected clients in each FL communication round.

4.3 CONVERGENCE ANALYSIS

We present the convergence analysis of our PerFIT method. Since our local NAS method is de-
rived from iterative pruning and forms a static sparse pattern on parameter space, we establish the
convergence property from the perspective of sparse training. We make the following assumptions.

Assumption 1. (Coordinate-wise bounded gradient discrepancy). For any ∆θ ∈ Rd×r, there
exists a constant C ≥ 0 such that

∥∥∥∇Li(∆θ)− 1
n

∑n
j=1 ∇Lj(∆θ)

∥∥∥
∞

≤ G.

Assumption 2. (Coordinate-wise bounded gradient). The local gradient of each client is bounded
by the constant B such that ∥∇∆θLi(w)∥∞ ≤ B.

Assumption 3. (Bounded variance). The gradient gi,t,τ (∆θ) := ∇ℓ(∆θ) at the τ th local step in

the tth round is unbiased such that E
[
∥gi,t,τ (∆θ)−∇Li(∆θ)∥2

]
≤ σ2,∀i, t, τ,∆θ ∈ Rd×r.

Assumption 4. (L-smoothness). The local loss function is L-smoothness such that ∥∇Li(∆θ1) −
∇Li(∆θ2)∥ ≤ L∥∆θ1 −∆θ2∥ for arbitrary ∆θ1 and ∆θ2 ∈ Ed×r.

Assumption 5. (Bounded mask discrepancy). The element-wise discrepancy measured by the
Hamming distance between any local mask (dist(mi

t,m
j
t )), between any local search mask

and the optimal local mask of it (dist(mi
t,m

i,∗)), and between any two local optimal masks
(dist(mi,∗,mj,∗)) are bounded by constants V , Z and U , respectively.

Theorem 1. (Convergence of PerFIT). Let Nls and S represent the number of local steps and
the number of participants in each round, respectively. Given the aforementioned assumptions and
static sparsity, assume that the learning rate η ≤ 1

4LNls
, the personalized fine-tuning modules ∆θi,t

have the following convergence rate:

1

Tn

T−1∑
t=0

n∑
i=1

E
[
∥∇Li (∆θi,t)∥2

]
≤ 3 (f (∆θ0)− f (∆θ∗))√

TηNlsκ
+ 3ρ+ ϵ, (6)

6
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where κ = 1
2−150N3

lsη
3L3−15N2

lsη
2L2−5NlsηL, ρ = (25N3

lsη
4L3+

5N2
lsη

3L2

2 )(σ2+18NlsΦ)+
4N2

lsη
2L+Nlsη
2 ZB2 + 9N2

lsη
2LΦ + Nlsη

2Lσ2

S , Φ = (dr/(1 − s) − dr)G2 + B2(V + Z), and ϵ =

3(dr/(1− s)− dr)C2 + 3drB2 + 3UB2.

Assumptions 1, 2, 3, and 4 follow the commonly used assumptions (10). Existing work (15) has
demonstrated that the Hessian of the loss for LLMs shows a small local effective rank, which indi-
cates that the curvature of the loss is constrained along a certain and small number of directions in
the parameter space. Since all local clients share the same frozen backbone model which has already
learned massive knowledge compared to downstream domain tasks, the curvature differences caused
by heterogeneous fine-tuning data are bounded. Note that the NAS metrics defined by Equation 2, 3,
and 4 are based on either gradient or Hessian. We assume that the differences in personalized LoRA
architectures are bounded as well, which motivates us to make Assumption 5. The result in Equa-
tion 6 shows that our PerFIT method exhibits the convergence rate of O( 1

T ). We recall convergence
analysis in (10) and display the original formulas as follows based on Assumptions 1, 2, 3, 4 and 5.

Theorem 2. (Convergence of the vanilla sparse federated learning (10)). Let Nls and S repre-
sent the number of local steps and the number of participants in each round, respectively. Given
the aforementioned assumptions and static sparsity, assume that the learning rate η ≤ 1

4LNls
, the

personalized fine-tuning modules ∆θi,t have the following convergence rate:

1

Tn

T−1∑
t=0

n∑
i=1

E
[
∥∇Li (∆θi,t)∥2

]
≤ 3 (f (∆θ0)− f (∆θ∗))√

TηNlsκ
+ 3ρ+ ϵ, (7)

where κ = 1
2−150N3

lsη
3L3−15N2

lsη
2L2−5NlsηL, ρ = (25N3

lsη
4L3+

5N2
lsη

3L2

2 )(σ2+18NlsΦ)+
4N2

lsη
2L+Nlsη
2n

∑
n(dist(m

i
t,m

i,∗))B2 + 9N2
lsη

2LΦ + Nlsη
2Lσ2

S , Φt = 1
n

∑
i((dr/(1 − s) −

dr)G2+ 1
n

∑
j B

2(dist(mi
t,m

j
t )+dist(mj

t ,m
j,∗))), and ϵ = 3(dr/(1−s)−dr)G2+ 3drB2 +

3
n2

∑
i

∑
j dist(m

i,∗,mj,∗)B2.

By ignoring the 1
T and 1

T 2/3 terms and substituting the dynamic mask similarities in the original
with our static mask similarities defined by Assumption 5, we can derive the convergence rate of
our PerFIT method as O( 1√

T
).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset. We conducted our experiments on four datasets: Databricks-dolly-15k (5), MedAlpaca
(8), CodeAlpaca (2), and MathInstruct (31). Databricks-dolly-15k is a general instruction-following
dataset, including creative writing, brainstorming, classification, closed QA, generation, information
extraction, open QA, and summarization. MedAlpaca, Code-Alpaca, and MathInstruct are domain-
specific instruction-following dataset. We performed two types of splitting methods to emulate the
heterogeneous data distributed to local clients. The first is the pathological non-IID setup where
each client is randomly assigned the same number of data points. For Databricks-dolly-15k, we ran-
domly assigned 2 classes among 8 total classes to each client. For other domain-specific datasets,
we randomly assigned 200 data to each client. The second non-IID setup follows the Dichilet dis-
tribution, which is parameterized by a coefficient β, denoted as Dir(β). β determines the degree of
data heterogeneity. The smaller the β is, the more heterogeneous the data distributions will be. We
set the β as 0.5 throughout the experiments. Since the Databricks-dolly-15k is the only dataset that
has labels, we only apply the Dichilet method on it.

Models and Baselines. To showcase the effectiveness of our method on various LLMs, we uti-
lized three open-source large language models: Alpaca-7B (22), Vicuna-7B-v1.5 (4) and LLaMA-
2-7B (23). The first two LLMs have been fine-tuned based on the LLaMA-1-7B (24) to enhance
their abilities to understand and respond to human inputs effectively while the LLaMA-2-7b model
has not been. We used the official tokenizers that correspond to the model weights. We devel-
oped our method based on two federated instruction tuning frameworks: Federatedgpt (32) and
OpenFedLLM(29). Note that the mentioned two methods focus on obtaining a global fine-tuned

7
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model. They also show that federated instruction tuning is better than only using local data to fine-
tune. Since our method is the first solution to focus on the personalized federated instruction tuning
problem, we only compare it against the global model.

Configurations. For all experiments, we set the number of total clients as 100. The backbones of
the LLMs are frozen during pruning and local fine-tuning to save the memory cost. We add LoRA
to three attention modules for every layer, i.e., Query, Key, and Value matrices. For homogeneous
resource baselines, we set the basic rank r of LoRA as 8. The coefficient alpha remains the same
value of r for all experiments. Note that the comparisons are under the prerequisite that all methods
have the same number of trainable parameters. The sparsity levels for our method are designated
as 0.66 and 0.5, corresponding to the original ranks of 12 and 16. For heterogeneous scenarios,
we categorize the capability of clients into three levels: i) Large; ii) Medium; and iii) Small. Each
category has 1/3 of the total number of clients.

5.2 PERFORMANCE EVALUATION

Table 1: Perplexity comparison on domain-specific datasets.

Model Sparsity
Dataset

MedAlpaca CodeAlpaca MathInstruct
FIT PerFIT FIT PerFIT FIT PerFIT

Alpaca-7B 0.33 2.18 2.13(-0.05) 1.86 1.84(-0.02) 2.79 2.51(-0.28)
0.50 2.10(-0.08) 1.83(-0.03) 2.48(-0.31)

Vicuna-7B 0.33 1.92 1.93(+0.01) 1.78 1.77(-0.01) 2.40 2.27(-0.13)
0.50 1.92(-0.00) 1.76(-0.02) 2.22(-0.18)

LLaMA-2-7B 0.33 1.88 1.89(+0.01) 1.74 1.73(-0.01) 2.27 2.19(-0.08)
0.50 1.88(-0.00) 1.73(-0.01) 2.18(-0.09)
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Figure 2: Perplexity for homogeneous resources.
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Figure 3: Perplexity for heterogeneous resources.

Performance on Homogeneous Resources. Table 1 presents the results of the perplexity compar-
ison under homogeneous resource scenarios on domain-specific datasets. Our method achieves the
largest, and the second largest perplexity reduction on the MathInstruct and CodeAlpaca, respec-
tively. The largest perplexity reduction is 11.1%, which is obtained based on the Alpaca-7B model.
On the MedAlpaca dataset, however, we only observe nearly zero perplexity decreases. We further
present the learning curves of LLaMA-2-7B in Figure 2. We can observe that our PerFIT method
converges to the same perplexity level on the MedAlpaca dataset. On the CodeAlpaca and MathIn-
struct datasets, our method invariably exhibits fast convergences and smaller perplexity values.

Table 2: Perplexity comparison on Databricks dataset.

Dis. Model Sparsity Methodology
FIT PerFIT

Path.
Alpaca 0.33 5.15 3.93(-1.22)

0.50 4.66(-0.49)

Vicuna 0.33 4.22 4.09(-0.13)
0.50 4.09(-0.13)

Dir.
Alpaca 0.33 5.28 4.13(-1.15)

0.50 4.71(-0.57)

Vicuna 0.33 3.85 3.81(-0.04)
0.50 3.78(-0.07)

Table 2 presents the results of the perplex-
ity comparison on the Databricks-dolly-15k
dataset. The perplexity achieved by implement-
ing our method consistently outperforms the
vanilla FIT method. For the pathological none-
IID setting, PerFIT on the Alpaca model with
the original rank 12 and 16 outperforms FIT
by 23% and 9%, respectively. Under the same
non-IID setting, the perplexity results of the Vi-
cuna model with rank 12 and 16 decrease by
3%. For the Dirichlet (0.5) non-IID scenario, our method improves the Alpaca model by 21% and
10%, respectively. For the Vicuna model under the Dirichlet setting, our PerFIT method reduces the
perplexity by 1% for both rank 12 and 16 settings, respectively.
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Performance with Higher Sparsity Values. To explore the performance of our method at higher
sparsity values, we extended our experiments with a rank of 24, which corresponds to a sparsity
value of 0.33, on the Databricks-dolly-15k dataset. Figure 4 shows the perplexity curves. We
consistently observe fast convergence and lower losses with all rank settings. The curve with a rank
of 12 converges to the smallest value of perplexity on two different non-IID settings. For the Vicuna
model, we find that our PerFIT method invariably enjoys a fast convergence speed at the early stage
on all rank settings. The curve with a sparsity value of 0.66 exhibits the best overall performances
considering both convergence speed and perplexity value.
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Figure 4: Perplexity for homogeneous resources.

Table 3: Perplexity comparison on het-
erogeneous resources.

Dis. Model Methodology
FIT PerFIT

Path. Alpaca 4.48 3.93(-0.55)
Vicuna 3.78 3.63(-0.15)

Dir. Alpaca 4.17 4.05(-0.12)
Vicuna 3.70 3.52(-0.18)

Performance on Heterogeneous Resources. Table 3 shows
the perplexity results of heterogeneous resources on the
Databricks-dolly-15k dataset. By utilizing the proposed ar-
chitecture search and personalized aggregation methods, we
can observe that the PerFIT method facilitates local fine-tuning
within heterogeneous resource scenarios. It is worth noting
that the Vicuna still behaves better than the Alpaca model on
resource heterogeneity scenarios. Under the pathological non-
IID setting, our method shows a 12% decrease in perplexity
compared to the FIT on the Alpaca model. For the Vicuna model, we can observe a 3% reduction in
perplexity. With Dirichlet configuration, our method improves the perplexity by 2% and 4% on the
Alpaca and Vicuna models, respectively. Figure 3 and 5 display the learning curves on the domain-
specific and Databricks-dolly-15k datasets, respectively. “base” represents the results obtained with
rank 8. “1 − 0.75 − 0.5” represents the performance of our PerFIT method. We can observe that
our method significantly improves the performance of personalization on all datasets, proving that
our method can not only allow collaborative fine-tuning for resource heterogeneous clients but also
boost the overall personalization performance.

0 10 20 30 40 50
Number of Rounds

4

6

8

10

12

14

Pe
rp

le
xi

ty

base
1-0.75-0.5

(a) Path. Alpaca

0 10 20 30 40 50
Number of Rounds

4

6

8

10

12

Pe
rp

le
xi

ty

base
1-0.75-0.5

(b) Dir. Alpaca

0 10 20 30 40 50
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

base
1-0.75-0.5

(c) Path. Vicuna

0 10 20 30 40 50
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

base
1-0.75-0.5

(d) Dir. Vicuna

Figure 5: Perplexity for heterogeneous resources on Databricks-dolly-15k.

Different Numbers of Participants. To demonstrate the scalability of our method across various
numbers of participants in each round, we conducted extensive experiments by randomly selecting
5% and 20% clients in each round under the Dirichlet non-IID settings. For the Alpaca model, we
can observe that our method Similar to the results shown in Figure 4, we observe that our method im-
plemented on the Alpaca model displays more notable performance improvements. For the Vicuna
model, we find that our method converges to the same value as that of FIT but with a remarkable
increase in the speed of convergence.

Mask Similarity Analyses. Figure 7 shows the pair-wise mask similarity between the first LoRA
modules of 10 clients randomly selected. The rank is set to 16 and the sparsity is set to 0.50.
The labels of the x and y-axes represent the index of the client. The similarity is measured by
the Hamming distance. We can observe that clients with heterogeneous data own personalized
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Figure 6: Perplexity for different # of local participants.

masks. Furthermore, the degree of any pair-wise similarity is close across clients, which supports
and reinforces our assumption of bounded mask discrepancy.
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Figure 7: Comparison of mask similarities.

0 5 10 15 20 25
Number of Rounds

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
rp

le
xi

ty

first
sec
mix

Figure 8: Comparison for pruning metrics.

Impact of Important Score Metric. To evaluate the
impact of using different metrics for computing the im-
portant scores, we further conducted experiments based
on the Vicuna model under pathological non-IID settings.
The rank is set to 16 with a sparsity of 50%. The compar-
isons are shown in Figure 8. The “first”, “second”, and
“mix” curves denote the results obtained based on Equa-
tion 2, 3, and 4, respectively. We can observe that all met-
rics exhibit extremely similar training dynamics. Since
the second-order information requires extra computation
overhead, we recommend using the first-order metric in practice.

Impact of Initialization. To evaluate the impact of different initialization schemes, we conducted
experiments using the model Alpaca-7B and the dataset Databricks-dolly-15k with the pathological
non-IID distribution. We initialized the Alpaca-7B model using either the uniform or the normal
distribution. We conducted FL based on standard FIT (with a rank of 8) and our PerFIT (with a
rank of 12), respectively. For FIT, the final perplexity of the case with uniform initialization is
0.35 smaller than that of the case with normal initialization, where the two cases have the same
convergence rates. For PerFIT, the case with uniform initialization achieves a perplexity of 2.96,
while the case with normal initialization achieves a perplexity of 3.93. We can observe that our
PerFIT method consistently outperforms the FIT method under different initialization methods. Note
that the two PerFIT cases have better convergence rates than their FIT counterparts. Therefore, our
proposed method consistently outperforms FIT under different initialization strategies.

6 CONCLUSION

While federated instruction tuning has demonstrated the ability to improve global model perfor-
mance without revealing private instruction-following data, this approach fails to address the issues
of personalized data and varying client resources. In this paper, we introduced a novel personalized
federated instruction tuning named PerFIT. By enabling local clients to search for personalized fine-
tuning architectures in an expanded LoRA space, we effectively mitigate the difficulties posed by
heterogeneous data and resource distributions We analyzed the convergence property of our method,
showing that our method tailored for LLMs exhibits a similar convergence rate to the sparse fed-
erated training method. Comprehensive experimental results on representative LLMs under two
non-IID scenarios demonstrated the effectiveness of our proposed method.
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A DATASETS DESCRIPTION

For datasets except Databricks-dolly-15k (5), we randomly sample 20K to form our fine-tuning data.
We display the format of the datasets and corresponding links here:

1. Databricks-dolly-15k (5) is a corpus of more than 15K records generated by thousands of
Databricks employees to enable large language models to exhibit the magical interactivity
of ChatGPT.

2. MedAlpaca (8) has 34K records and addresses subjects such as anatomy, physiology,
pathology, pharmacology, and more.

3. CodeAlpaca (2) has 20K records and aims to build and share an instruction-following
LLaMA model for code generation.

4. MathInstruct has more than 225K data points and is compiled from 13 math rationale
datasets.

B PROMPT TEMPLE AND DATA EXAMPLE

We follow the prompt used in Alpaca (22) and show it in Table 4. We show one example from the
MedAlpaca dataset in Table 5.

Table 4: Prompt template.

Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction: {Instruction}
### Response:

Table 5: Data example.

Below is an instruction that describes a task. Write a response that appropriately completes the
request.
### Instruction: What is the endocrine tumor that is identified by small nests of spindle-like chro-
maffin cells ”Zellballen” and granular cytoplasm?
### Response: Pheochromocytoma is the endocrine tumor that is characterized by granular cyto-
plasm and small nests of spindle-like chromaffin cells ”Zellballen”. Pheochromocytoma is a rare
neuroendocrine tumor that arises from chromaffin cells in the adrenal medulla. These tumors pro-
duce excess amounts of catecholamines, which can lead to episodes of hypertension, headaches,
palpitations, and sweating. Histologically, pheochromocytomas are characterized by small nests
of spindle-like chromaffin cells called ”Zellballen”, which are surrounded by fibrous stroma. The
cells have granular cytoplasm and round to oval nuclei with prominent nucleoli. The diagnosis of
pheochromocytoma typically involves blood and urine tests to measure levels of catecholamines
and their metabolites, as well as imaging studies such as CT or MRI scans. Treatment may in-
volve surgery to remove the tumor, as well as medications to control blood pressure and manage
symptoms. It is important to note that the histological appearance of pheochromocytoma can vary,
and some tumors may not have the characteristic ”Zellballen” pattern. Therefore, the diagnosis of
pheochromocytoma should not be based solely on histological appearance, and clinical and bio-
chemical data should also be taken into consideration.

C HYPERPARAMETERS

All experiments were run on one NVIDIA RTX 4090 GPU. We set the rank for clients with the
smallest capability as 8. Therefore, the rank for Medium and Large is set to 12 and 16, respectively.
We set 5 for the number of local pruning epochs. In each round of local fine-tuning, we randomly
select 10% of clients. For all experiments, the local batch size is set to 64. To facilitate training with
batched data on a single GPU, we utilize the gradient accumulation with a mini-batch size of 8. The
total training rounds are 30 and 50 for homogeneous and heterogeneous scenarios, respectively. The
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local training epoch is 1. We split 80% of local data into training and use the rest to evaluate the
performance of personalization. The average perplexity in each round is reported. Please refer to
Appendix C for details.

We followed the configuration in OpenFedLLM (29) and used the Adam optimizer with a cosine
learning rate schedule based on the index of the training round. We set the initial learning rate, and
the minimum learning rate to 5e− 5 and 1e− 6, respectively. The β1, β2 and ϵ are set to 0.9, 0.99,
and 1e− 8, respectively.
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