
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PERFIT: PERSONALIZED FEDERATED INSTRUCTION
TUNING VIA NEURAL ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Instruction Tuning (FIT) has shown the ability to enable model instruc-
tion tuning among massive data owners without exposing privacy. However, it still
faces two key challenges, i.e., data and resource heterogeneity. Due to the vary-
ing data distribution and preferences among data owners, FIT cannot adapt to the
personalized data of individual owners. Moreover, clients with superior computa-
tional abilities have to compromise to maintain the same fine-tuning architecture
as the weaker clients. Such a constraint prevents the powerful clients from having
more trainable parameters for better fine-tuning performances. To address these
issues uniformly, we propose a novel Personalized Federated Instruction Tuning
(PerFIT) framework based on architecture search. Specifically, PerFIT allows
each client to search for a personalized architecture by expanding the trainable
parameter space of the global model, pruning them, and obtaining personalized
sparse patterns. We further propose personalized parameter-wise aggregation to
facilitate flexible aggregation among clients with diverse sparse patterns. This
procedure allows personalized instruction fine-tuning within the expanded param-
eter spaces, concurrently preserving the same number of trainable parameters as
the vanilla state, thus introducing no extra resource burden. The evaluations with
multiple LLMs on various instruction-following datasets demonstrate that our ap-
proach can achieve up to a 23% decrease in personalized perplexity compared to
the state-of-the-art FIT methods.

1 INTRODUCTION

The emergent abilities of Large Language Models (LLMs) (23) have presented the powerful capa-
bility of solving various language-related tasks, including reasoning, text generation, and question-
answering. To obtain better-aligned LLMs that can precisely follow the instructions of humans,
Instruction Tuning (IT) (26; 25) has been proposed and demonstrated essential effectiveness in en-
hancing the generalizability of the foundation LLMs to downstream tasks. Compared to the conven-
tional Fine Tuning (FT) methods, IT incorporates the vanilla text with specific instructions paired
with corresponding answers, thereby unlocking the existing abilities of LLMs.

Although IT is superior to traditional FT, the success of IT greatly relies on the variety, quality, and
quantity of the training data. In addition, the increasing concerns about data privacy (7) and the
expensive expenses of data collecting and cleaning jointly impede the obtaining of large amounts of
valuable data. Worse still, the heterogeneity of private data fails to reflect the meaningful statistical
property of the domain, resulting in the implantation of inevitable bias during IT. To overcome the
aforementioned issues, Federated Instruction Tuning (FIT) (32; 29) was proposed as the explorations
of the instruction-based optimization framework in Federated Learning (FL). The two frameworks
seamlessly integrated Parameter-Efficient Fine-Tuning (PEFT) methods (9; 14), enhancing the fea-
sibility of lightweight local fine-tuning processes. Moreover, they showed that FIT can leverage
instruction-following data with guarantees of privacy and improve the performance of LLMs.

Despite the fact the privacy-guaranteed FIT framework based on PEFT methods can alleviate data
heterogeneity and allow collaborative training, the preference for local data is not taken into consid-
eration. Existing FIT method ignores resource heterogeneity since every client has to share the same
structure of fine-tuning modules, potentially causing the waste of resources on clients with more
powerful capabilities given that more trainable parameters offer better fine-tuning performance (1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address the challenges of handling local data and resource heterogeneity (11), we propose an
adaptive personalized federated instruction tuning method to enable local clients to fully use their
data and resources. Our method is motivated by the intrinsic connection between data heterogeneity
and architecture heterogeneity, thereby authorizing each client to search for a personal IT architec-
ture. Specifically, we adopt the efficient foresight pruning method based on the Taylor expansion
of the loss to simplify the expensive Neural Architecture Search (NAS) (16) process. Benefiting
from the data-guided pruning, each client has a personal sparse structure of the IT modules that fit
the personalized local data. Furthermore, we propose a personalized aggregation mechanism that
achieves parameter-wise aggregation across clients to enhance the information interactions. Our
contributions are summarized as follows:

• We develop a novel personalized federated instruction tuning method by exploring diverse
local fine-tuning architectures based on heterogeneous local data. Our approach can simul-
taneously enable collaborative learning among clients with heterogeneous resources.

• We propose a personalized parameter-wise aggregation strategy for the fine-tuned modules
to promote information interaction across local clients with various architectures.

• We conduct comprehensive experiments on three well-known LLMs and four instruction-
following datasets in both resource heterogeneity and homogeneity scenarios, which ade-
quately show the effectiveness of our method.

2 RELATED WORK

Federated Instruction Tuning of Large Language Models. Existing LLMs have demonstrated
substantial performance in deriving task-relevant answers by simply decorating the vanilla input
with instructions. However, the fine-tuning process is still a promising option to achieve better re-
sults when confronting unexplored tasks (18). To preserve the advantages of instruction data and
fine-tuning, instruction tuning was proposed as an essential approach to optimize the performance
of LLMs. This method improves the efficacy of LLMs in handling diverse and complex tasks by
fine-tuning them with human instructions and aligning them with real-world tasks (28). Previous
work in this area focuses on two ways to generate instructions: i) prompts manually created by
humans (27) and ii) instruction-following data auto-generated by machines (25). Despite the fact
that the first method is expensive, the quality of instruction data manufactured with human effects
is elevated due to the precise human annotation. The latter utilizes a self-instruct method based on
open-sourced LLMs to auto-generate instruction data. Specifically, a powerful LLM is deployed to
generate massive task-specific instruction data, which is subsequently leveraged to boost the align-
ment ability of another trainable LLM. However, due to the high value of collecting instruction
data for various tasks, the owners of specific data are unlikely to share it with other competitors
(29). Thus, the data cross-silo scenarios still exist. In addition, the heavy burdens brought by full-
parameter fine-tuning weaken the feasibility of conducting fine-tuning on local clients. To tackle
these problems, the FIT frameworks proposed by (32; 29) provide a lightweight solution based on
the Low-Rank Adapter (LoRA) (9) to overcome the challenge brought by heterogeneous data, but
the personalization aspects of local clients including data and resource heterogeneity (e.g., number
of trainable parameters that clients can afford) are not taken into consideration. Therefore, we delve
into the LoRA-based fine-tuning method and propose a personalized FIT method to address both
challenges simultaneously.

Personalized Federated Learning. Personalized Federated Learning (PFL) focuses on training a
client-specific model to achieve better performance on each local dataset instead of a global model
to accommodate all client data uniformly. Specifically, the personalization of clients includes two
major aspects: i) data heterogeneity (17) and ii) resource heterogeneity (12). The former indicates
the differences in local data distributions and the latter shows the diversity in terms of memory con-
sumption, computation abilities, communication overhead, etc. To address the data heterogeneity
challenges, existing methods including (20) introduced regularization terms to guide the local objec-
tives. To tackle the challenge of resource heterogeneity, (19) proposed to distinguish personalized
models from a global model through a hypernetwork. (30) derives Federated Neural Network Search
(FL-NAS) to obtain personalized architectures based on data and resource heterogeneity. FedSelect
(21) iteratively grows subnetworks of local personalized with decreasing sparsity values. While the
previously mentioned methods are effective from certain viewpoints, most focus on a singular as-
pect of personalization. Worse still, none of them are tailored for PFL on LLMs. To address the two

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

personalization issues in a one-shot manner, we propose to leverage the concepts of NAS to conduct
a fine-grained LoRA architecture search based on local data, aiming to meet the resource and data
heterogeneity needs simultaneously.

3 PRELIMINARIES

Neural Architecture Search (NAS). Given a loss function ℓi and model parameters θi(A) based
on an architecture Ai, we formulate the architecture search as the following optimization problem:

argmin
Ai

ℓi(θi(Ai);Di) s.t. Ri(Ai) ≤ Bi, i = 1, 2, ..., n . (1)

Here, Ri and Bi represent the resource consumption and the budget limitation of the ith client. The
budget of the ith client can be energy consumption, computational cost, bandwidth requirement,
etc., or a combination of these. In this paper, we use the number of trainable parameters to reflect
budget constraints and utilize the NAS to explore a personal training architecture for every client
based on the local heterogeneous data Di.

Low-Rank Adapter. Given the significant constraints on computational resources and communica-
tion bandwidth for local clients, we focus on the LoRA (9) method to formulate FIT architectures.
LoRA achieves the update of fine-tuning by constraining the update of model parameters to main-
tain a low intrinsic rank. For a pre-trained LLM parameterized by θinit ∈ Rd×k, LoRA utilizes a
low-rank decomposition AB to represent the update ∆θ where A ∈ Rd×r, B ∈ Rr×k and the rank
r ≪ min(d, k). The pre-trained parameter θ remains fixed during the fine-tuning while A and B
are optimized. The update of θinit is formed as

θnewx = θinitx+∆θx = θinitx+ABx,

where θnew ∈ Rd×k denotes the new weight which is re-parameterized after completing the fine-
tuning. Note that for mainstream decoder-only LLMs, d equals k.

Personalized Federated Learning. The goal of PFL is to train a personalized model for each
client collaboratively. Considering n clients with private Non-IID dataset denoted as Dn =
{(xn,j , yn,j)}Nn

j=1, we want to solve the problem below:

argmin
∆Θ

1

n

n∑
i=1

Li(θinit,∆θi), Li(θinit,∆θi) =
1

Nn

Nn∑
j

ℓi(xn,j , yn,j ; θinit,∆θi).

θinit and ∆θi represent the frozen and trainable parameters of the ith client, respectively. ℓi is the
loss function for the ith client. Li(∆θi) denotes the average loss across the local data. ∆Θ =
{∆θi}ni=1 represents the set of trainable parameters (A and B) in LoRA-based fine-tuning.

4 METHODOLOGY

4.1 WORKFLOW OF PERFIT

Figure 1 shows the workflow of our method. It consists of the following four major steps. 1⃝Local
Architecture Search: Local clients search for their personalized sparse masks. Then, the per-
sonalized sparse masks are transmitted to the server. 2⃝Sparse Module Generation and Local
Fine-tuning: Local clients generate personalized LoRA modules and conduct local fine-tuning.
3⃝Personalized Module Aggregation: Local clients transmit the sparse fine-tuned LoRA mod-

ules to the server. The server performs parameter-wise personalized aggregation. 4⃝Personalized
Module Generation and Distribution: The server generates personalized LoRA modules and dis-
tributes them to clients to initialize a new round of local fine-tuning based on the global module and
personalized sparse masks. The backbone of the LLM is frozen during both searching and federated
training processes. 1⃝ and 2⃝ are conducted locally. 3⃝ and 4⃝ are conducted on the central server.
Algorithm 1 exhibits the process of NAS. Algorithm 2 shows the details of the overall workflow,
where the “Federated Tuning” includes 2⃝, 3⃝ and 4⃝. Algorithm 3 explains the 3⃝. Note that 1⃝
and 3⃝ are the major components and will be detailed in the next section.

4.2 IMPLEMENTATION DETAILS

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

θ 𝜽

θ 𝜽

θ 𝜽

𝑚𝑏1

𝐵𝑔
𝑡+1

𝐴𝑔
𝑡+1

𝐵1
𝑡

𝐴1
𝑡

Local Module Search

𝐵𝑔
𝑡+1

𝐴𝑔
𝑡+1

𝑚𝑏2𝐵𝑔
𝑡+1

𝐴𝑔
𝑡+1

𝑚𝑏𝑗𝐵𝑔
𝑡+1

𝐴𝑔
𝑡+1

⊙

⊙

⊙

⊙

⊙

⊙

𝐵1
𝑡+1

𝐴1
𝑡+1

𝐵2
𝑡+1

𝐴2
𝑡+1

𝐵𝑗
𝑡+1

𝐴𝑗
𝑡+1

=

=

=

Module AggregationSparse Module Generation

Module Distribution

Mask Uploading

Central Server

4

Personalized Module Generation

+ 𝑫𝒋

+ 𝑫𝟐

+ 𝑫𝟏

3
2

2

2

1

1

1

𝑩

𝑨

𝑩

𝑨

𝑩

𝑨 ⊙

⊙

𝒎𝒂𝒋

𝒎𝒃𝒋

𝑨

𝑩

⊙

⊙

𝒎𝒂𝟐

𝒎𝒃𝟐

𝑨

𝑩

⊙

⊙

𝒎𝒂𝟏

𝒎𝒃𝟏

𝑨

𝑩

𝐵𝑗
𝑡

𝐴𝑗
𝑡

𝐵2
𝑡

𝐴2
𝑡

𝑚𝑎𝑗

𝑚𝑎2

𝑚𝑎1

𝑚𝑏

Dense Modules

Sparse Masks

⊙ Dot Product

Sparse Modules

Frozen

𝐵

𝐴

𝐵

𝐴

𝑚𝑎

1 2 3 4

Figure 1: Workflow of our personalized federated instruction tuning approach.

Algorithm 1 NAS for LoRA modules

Input i) ∆θ0, LoRA; ii) Tp, # of pruning epochs; iii)
n, # of total clients; iv) s, sparsity.

1: for i = 1, . . . , n in parallel do
2: for t = 1, . . . , Tp do
3: Compute I∆θi based on Equations 2-4;
4: τ←(1− (1− s)t/Tp) percentile of I∆θi ;
5: mi as mi ←mi ⊙ (I∆θi < τ);
6: end for
7: end for
8: Return Sparse LoRA modules parameterized by

∆θi ⊙mi

Local Architecture Search through Iterative
Pruning. For the ith client, we collaboratively
search for the personalized architecture Ai that
performs the best on the local dataset Di. Fol-
lowing Equation 1, the objective is defined as

Ai = argmin
A

Li(θi(A),Di)

s.t. Ri(Ai) ≤ Bi,Ai ̸= Aj for i ̸= j,

where Li(·) =
∑n

i=1 piLi(·) and pi =
|Nn|/

∑n
i=1 |Nn| represents the ratio of the

number of local data points to the number of
overall data points. Given the budget of the
number of trainable parameters Bi, our goal is
to find the LoRA architecture Ai which can achieve the best fine-tuning performance on local data
Di. Due to the heavy burden of traditional NAS on LLMs, we perform the NAS on the LoRA module
through foresight iterative pruning. Since pruning refers to the process from dense to sparse struc-
ture, we first replace the original LoRA module A ∈ Rd×r and B ∈ Rr×d with Ade ∈ Rd×r/(1−s)

and Bde ∈ Rr/(1−s)×d, respectively. Note that s represents the sparsity and 0 < s < 1. During
pruning, we aim to remove the elements that have the least impact on the output of the model and
reduce the number of parameters from (d × r/(1 − s))X to (d × r)X by obtaining personalized
mask m for each client. To estimate the importance of every element θji in Ad and Bd by ignoring
higher order terms in Taylor expansion, we formulate the change of the loss as

I∆θj
i
=

∣∣∣∂ℓi(∆θji ;Di)

∂∆θji
∆θji

∣∣∣, (2)

where ∆θi is represented by Ai
deB

i
de. Equation 2 shows the first-order estimation. Similarly, we

can derive the parameter-wise second-order estimation as

I∆θj
i
=

∣∣∣∆θjiHjj∆θji

∣∣∣. (3)

H represents the Hessian matrix and can be approximated by the Fisher information matrix to alle-
viate the computation overhead. For more generality, we integrate Equation 2 and 3 as the mixed
metric, which is defined as follows:

I∆θj
i
=

∣∣∣∂ℓi(∆θji ;Di)

∂∆θji
∆θji −

1

2
∆θjiHjj∆θji

∣∣∣. (4)

Since Di is the fine-tuning data that has never been used for the pre-training,
the two terms in Equation 2 and 3 are not equal to zero, which shows that the proposed importance
score is an ideal measurement of the importance of the architecture of the LoRA modules. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

overall process is described in Algorithm 1. In Line 3, we obtain the importance scores I∆θi . To
avoid the potential layer collapse caused by over-confidence of one-shot pruning, we utilize an
exponential decay schedule in Line 4 to determine the threshold value τ for pruning. After that,
in Line 5, we mask the parameters whose importance scores are smaller than the threshold τ and
preserve the rest. Different from the fine-grained NAS proposed by (13) that searches the parameters
after training, we conduct the search before training to form a sparse training process.

Algorithm 2 Adaptive personalized FIT
Input: i) ∆θ0, LoRA; ii) Tp, # of local pruning epochs; iii)
Ttr , # of local fine-tuning epochs; iv) k; # of local clients in
each round; v) n, # of total local clients; vi) gs, a group of
sparsity values.
1: Local LoRA Module Search:
2: for i = 1, . . . , n in parallel do
3: Conduct Algorithm 1 based on the ith sparsity in gs.
4: end for
5: Federated Tuning:
6: for t = 1, . . . , Ttr do
7: Ck ← Randomly sample k clients from n clients;
8: Gk ← Number of elements in Ck;
9: for j = 1, . . . , Gk in parallel do

10: Conduct e epochs of local fine-tuning.
11: end for
12: Upload fine-tuned LoRA modules of clients in Ck;
13: Conduct adaptive aggregation based on Algorithm 3;
14: Dispatch personalized aggregated modules to clients

in Ck.
15: end for
16: Return Personalized LoRA modules for each client.

Symmetric Initialization. Different from
what was proposed in (9), we conduct
the pruning-oriented NAS before starting
training to avoid introducing expensive bi-
level optimization. Nevertheless, due to
the dependency of the importance mea-
surement on the gradient, we need to care-
fully initialize the LoRA adapter to pre-
vent Measurement Vanishing. Formally,
the vanishing indicates that the values of
importance scores are equal to zero, result-
ing in a diminished capability of the met-
ric. Since the first and second-order terms
rely on the gradient, we show that the van-
ishing happens without proper initializa-
tion. Based on the chain rule, the gradi-
ent of the A matrix in a LoRA module is
defined as gA = ∂ℓ

∂oB, where ∂ℓ
∂o repre-

sents the gradient concerning the output of
this layer. In vanilla LoRA configurations,
the matrix B is initialized to all-zeros to
avoid adding unexpected perturbations to
the frozen backbone model. With such configurations, the gradient gA is zero due to the state of
Bde, making the importance scores IAde

all-zeros. Consequently, the pruning process only happens
on the Ade matrix since the importance scores of B are always greater than 0. Therefore, such a
problem will undermine the effectiveness of the pruning-oriented NAS process if we keep using the
vanilla initialization. Accordingly, we follow the widely-used principle to symmetrically initialize
B with the standard Gaussian and conduct the NAS process

Ade ∼ N (0, 1/d), Bde ∼ N (0, 1/d),

where N represents the Gaussian distribution.

Personalized Aggregation. To allow joint optimizations between local sparse patterns in a federated
manner, we proposed a unified, personalized aggregation method for the LoRA modules. Formally,
we can represent the pruned LoRA modules for the ith client as

Ai
T=0 = Ai

de,T=0 ⊙mi
a, B

i
T=0 = Bi

de,T=0 ⊙mi
b (5)

where mi
a and mi

b denote the personalized mask matrices given the sparsity s. Since the prun-
ing metric defined by Taylor expansion is dependent on the data Di, the obtained mask matrices
vary across clients, i.e., mi

a ̸= mj
a and mi

b ̸= mj
b. Intuitively, two personalized masks will not

overlap if Di is strictly heterogeneous to Dj . For example, for a set of local LoRA-A modules
{A1,A2, ...,An}, we can mark each parameter Az

i,j in Az∈n with two states with respect to the
parameter Al

i,j in Al∈n: i) “exclusive”; and ii) “shared”. Note that the states of each element can be
conveniently obtained by the values of the corresponding sparse masks sent to the server from the
beginning. Therefore, we formalize the personal aggregation matrix Γz for the zth client to realize
the parameter-wise weighted aggregation. The new personalized LoRA for the zth is formed as

Az
T+1 = mz

a ⊙
∑
z∈gid

(Az
T ⊙ Γz

A), B
z
T+1 = mz

b ⊙
∑
z∈gid

(Az
T ⊙ Γz

B),

where Γz
A and Γz

B represent the coefficient for LoRA-A and LoRA-B, respectively. gid is the in-
dices that belong to the selected clients in round T . In Algorithm 3, Lines 2-3 explains the compu-
tation of the coefficient Γz

i,j for the element in position (i, j). Note that with partial participation,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3 Generate Γz for the zth client.
Input: i) Index group gid = {idx1, idx2, ..., idxp} of
the selected clients ; ii) M = {mg0id ,mg1id , ...,mg

p
id},

local masks ; iii) {Ng0id , Ng1id , ..., Ng
p
id}, # data be-

longs to selected clients. iV) i, j, index of the element
in the mask matrix; v) Index set I = {}.
Generate Γz:
1: for all mi,j ∈Mz in parallel do
2: Perform I ∪ l when ml

i,j = 1 ∀l ∈ gid;
3: Γz

i,j = Nz/
∑

k∈I N
k;

4: end for
5: Return Coefficient matrix Γz for the zth client.

Since the states of each parameter implicitly
form parameter-wise grouping, we only con-
duct the weighted aggregation within the same
group. Based on the adaptive aggregation
mechanism between sparse modules, we can
further accommodate the fine-tuning process
to resource heterogeneity scenarios. Since the
main resource bottlenecks for local clients, in-
cluding memory consumption and FLOPs, are
inherently tied to the trainable parameters, we
can adapt local module searches according to
their maximum capability. Such targeted adap-
tation ensures optimal utilization of resources
and empowers the overall performance. For-
mally, we first conduct Algorithm 1 based on a group of resource-specific sparsity levels gs =
{s1, s2, ..., sm} followed by applying Algorithm 3 to enable heterogeneous module aggregation.

Computation and Time Complexity Analysis. Similar to the work in (6) and (3), we applied 8-
bit quantization on the frozen model and gradient-checkpoint methods to relieve the GPU memory
burden when using the Adam optimizer to conduct local fine-tuning. Note that the computational
resources required by NAS are less than those for fine-tuning. This is because the computational
cost of NAS is as low as fine-tuning with the SGD optimizer, which is less complex than the Adam
optimizer. Moreover, for each client in PerFIT, the pruning is performed only once at the first round
of local training. As a result, the computational overhead of pruning in PerFIT is negligible in
practice. For each client, we maintain a bitmap data structure to represent the mapping between
client model parameters and their counterparts in the expanded space. Our aggregation operation
described in Algorithm 3 has a time complexity of O(MK). Here, M is the number of LoRA
modules, and K is the number of selected clients in each FL communication round.

4.3 CONVERGENCE ANALYSIS

We present the convergence analysis of our PerFIT method. Since our local NAS method is de-
rived from iterative pruning and forms a static sparse pattern on parameter space, we establish the
convergence property from the perspective of sparse training. We make the following assumptions.

Assumption 1. (Coordinate-wise bounded gradient discrepancy). For any ∆θ ∈ Rd×r, there
exists a constant C ≥ 0 such that

∥∥∥∇Li(∆θ)− 1
n

∑n
j=1 ∇Lj(∆θ)

∥∥∥
∞

≤ G.

Assumption 2. (Coordinate-wise bounded gradient). The local gradient of each client is bounded
by the constant B such that ∥∇∆θLi(w)∥∞ ≤ B.

Assumption 3. (Bounded variance). The gradient gi,t,τ (∆θ) := ∇ℓ(∆θ) at the τ th local step in

the tth round is unbiased such that E
[
∥gi,t,τ (∆θ)−∇Li(∆θ)∥2

]
≤ σ2,∀i, t, τ,∆θ ∈ Rd×r.

Assumption 4. (L-smoothness). The local loss function is L-smoothness such that ∥∇Li(∆θ1) −
∇Li(∆θ2)∥ ≤ L∥∆θ1 −∆θ2∥ for arbitrary ∆θ1 and ∆θ2 ∈ Ed×r.

Assumption 5. (Bounded mask discrepancy). The element-wise discrepancy measured by the
Hamming distance between any local mask (dist(mi

t,m
j
t)), between any local search mask

and the optimal local mask of it (dist(mi
t,m

i,∗)), and between any two local optimal masks
(dist(mi,∗,mj,∗)) are bounded by constants V , Z and U , respectively.

Theorem 1. (Convergence of PerFIT). Let Nls and S represent the number of local steps and
the number of participants in each round, respectively. Given the aforementioned assumptions and
static sparsity, assume that the learning rate η ≤ 1

4LNls
, the personalized fine-tuning modules ∆θi,t

have the following convergence rate:

1

Tn

T−1∑
t=0

n∑
i=1

E
[
∥∇Li (∆θi,t)∥2

]
≤ 3 (f (∆θ0)− f (∆θ∗))√

TηNlsκ
+ 3ρ+ ϵ, (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where κ = 1
2−150N3

lsη
3L3−15N2

lsη
2L2−5NlsηL, ρ = (25N3

lsη
4L3+

5N2
lsη

3L2

2)(σ2+18NlsΦ)+
4N2

lsη
2L+Nlsη
2 ZB2 + 9N2

lsη
2LΦ + Nlsη

2Lσ2

S , Φ = (dr/(1 − s) − dr)G2 + B2(V + Z), and ϵ =

3(dr/(1− s)− dr)C2 + 3drB2 + 3UB2.

Assumptions 1, 2, 3, and 4 follow the commonly used assumptions (10). Existing work (15) has
demonstrated that the Hessian of the loss for LLMs shows a small local effective rank, which indi-
cates that the curvature of the loss is constrained along a certain and small number of directions in
the parameter space. Since all local clients share the same frozen backbone model which has already
learned massive knowledge compared to downstream domain tasks, the curvature differences caused
by heterogeneous fine-tuning data are bounded. Note that the NAS metrics defined by Equation 2, 3,
and 4 are based on either gradient or Hessian. We assume that the differences in personalized LoRA
architectures are bounded as well, which motivates us to make Assumption 5. The result in Equa-
tion 6 shows that our PerFIT method exhibits the convergence rate of O(1

T). We recall convergence
analysis in (10) and display the original formulas as follows based on Assumptions 1, 2, 3, 4 and 5.

Theorem 2. (Convergence of the vanilla sparse federated learning (10)). Let Nls and S repre-
sent the number of local steps and the number of participants in each round, respectively. Given
the aforementioned assumptions and static sparsity, assume that the learning rate η ≤ 1

4LNls
, the

personalized fine-tuning modules ∆θi,t have the following convergence rate:

1

Tn

T−1∑
t=0

n∑
i=1

E
[
∥∇Li (∆θi,t)∥2

]
≤ 3 (f (∆θ0)− f (∆θ∗))√

TηNlsκ
+ 3ρ+ ϵ, (7)

where κ = 1
2−150N3

lsη
3L3−15N2

lsη
2L2−5NlsηL, ρ = (25N3

lsη
4L3+

5N2
lsη

3L2

2)(σ2+18NlsΦ)+
4N2

lsη
2L+Nlsη
2n

∑
n(dist(m

i
t,m

i,∗))B2 + 9N2
lsη

2LΦ + Nlsη
2Lσ2

S , Φt = 1
n

∑
i((dr/(1 − s) −

dr)G2+ 1
n

∑
j B

2(dist(mi
t,m

j
t)+dist(mj

t ,m
j,∗))), and ϵ = 3(dr/(1−s)−dr)G2+ 3drB2 +

3
n2

∑
i

∑
j dist(m

i,∗,mj,∗)B2.

By ignoring the 1
T and 1

T 2/3 terms and substituting the dynamic mask similarities in the original
with our static mask similarities defined by Assumption 5, we can derive the convergence rate of
our PerFIT method as O(1√

T
).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset. We conducted our experiments on four datasets: Databricks-dolly-15k (5), MedAlpaca
(8), CodeAlpaca (2), and MathInstruct (31). Databricks-dolly-15k is a general instruction-following
dataset, including creative writing, brainstorming, classification, closed QA, generation, information
extraction, open QA, and summarization. MedAlpaca, Code-Alpaca, and MathInstruct are domain-
specific instruction-following dataset. We performed two types of splitting methods to emulate the
heterogeneous data distributed to local clients. The first is the pathological non-IID setup where
each client is randomly assigned the same number of data points. For Databricks-dolly-15k, we ran-
domly assigned 2 classes among 8 total classes to each client. For other domain-specific datasets,
we randomly assigned 200 data to each client. The second non-IID setup follows the Dichilet dis-
tribution, which is parameterized by a coefficient β, denoted as Dir(β). β determines the degree of
data heterogeneity. The smaller the β is, the more heterogeneous the data distributions will be. We
set the β as 0.5 throughout the experiments. Since the Databricks-dolly-15k is the only dataset that
has labels, we only apply the Dichilet method on it.

Models and Baselines. To showcase the effectiveness of our method on various LLMs, we uti-
lized three open-source large language models: Alpaca-7B (22), Vicuna-7B-v1.5 (4) and LLaMA-
2-7B (23). The first two LLMs have been fine-tuned based on the LLaMA-1-7B (24) to enhance
their abilities to understand and respond to human inputs effectively while the LLaMA-2-7b model
has not been. We used the official tokenizers that correspond to the model weights. We devel-
oped our method based on two federated instruction tuning frameworks: Federatedgpt (32) and
OpenFedLLM(29). Note that the mentioned two methods focus on obtaining a global fine-tuned

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

model. They also show that federated instruction tuning is better than only using local data to fine-
tune. Since our method is the first solution to focus on the personalized federated instruction tuning
problem, we only compare it against the global model.

Configurations. For all experiments, we set the number of total clients as 100. The backbones of
the LLMs are frozen during pruning and local fine-tuning to save the memory cost. We add LoRA
to three attention modules for every layer, i.e., Query, Key, and Value matrices. For homogeneous
resource baselines, we set the basic rank r of LoRA as 8. The coefficient alpha remains the same
value of r for all experiments. Note that the comparisons are under the prerequisite that all methods
have the same number of trainable parameters. The sparsity levels for our method are designated
as 0.66 and 0.5, corresponding to the original ranks of 12 and 16. For heterogeneous scenarios,
we categorize the capability of clients into three levels: i) Large; ii) Medium; and iii) Small. Each
category has 1/3 of the total number of clients.

5.2 PERFORMANCE EVALUATION

Table 1: Perplexity comparison on domain-specific datasets.

Model Sparsity
Dataset

MedAlpaca CodeAlpaca MathInstruct
FIT PerFIT FIT PerFIT FIT PerFIT

Alpaca-7B 0.33 2.18 2.13(-0.05) 1.86 1.84(-0.02) 2.79 2.51(-0.28)
0.50 2.10(-0.08) 1.83(-0.03) 2.48(-0.31)

Vicuna-7B 0.33 1.92 1.93(+0.01) 1.78 1.77(-0.01) 2.40 2.27(-0.13)
0.50 1.92(-0.00) 1.76(-0.02) 2.22(-0.18)

LLaMA-2-7B 0.33 1.88 1.89(+0.01) 1.74 1.73(-0.01) 2.27 2.19(-0.08)
0.50 1.88(-0.00) 1.73(-0.01) 2.18(-0.09)

0 5 10 15 20 25 30
Number of Rounds

1.7
1.8
1.9
2.0
2.1
2.2
2.3

Pe
rp

le
xi

ty

r=8
r=12,sp=0.66
r=16,sp=0.50

(a) CodeAlpaca

0 5 10 15 20 25 30
Number of Rounds

2.2

2.4

2.6

2.8

Pe
rp

le
xi

ty

r=8
r=12,sp=0.66
r=16,sp=0.50

(b) MathInstruct

Figure 2: Perplexity for homogeneous resources.

0 10 20 30 40 50
Number of Rounds

1.7
1.8
1.9
2.0
2.1
2.2
2.3

Pe
rp

le
xi

ty

base
1-0.75-0.5

(a) CodeAlpaca

0 10 20 30 40 50
Number of Rounds

2.0

2.2

2.4

2.6

2.8

Pe
rp

le
xi

ty

base
1-0.75-0.5

(b) MathInstruct

Figure 3: Perplexity for heterogeneous resources.

Performance on Homogeneous Resources. Table 1 presents the results of the perplexity compar-
ison under homogeneous resource scenarios on domain-specific datasets. Our method achieves the
largest, and the second largest perplexity reduction on the MathInstruct and CodeAlpaca, respec-
tively. The largest perplexity reduction is 11.1%, which is obtained based on the Alpaca-7B model.
On the MedAlpaca dataset, however, we only observe nearly zero perplexity decreases. We further
present the learning curves of LLaMA-2-7B in Figure 2. We can observe that our PerFIT method
converges to the same perplexity level on the MedAlpaca dataset. On the CodeAlpaca and MathIn-
struct datasets, our method invariably exhibits fast convergences and smaller perplexity values.

Table 2: Perplexity comparison on Databricks dataset.

Dis. Model Sparsity Methodology
FIT PerFIT

Path.
Alpaca 0.33 5.15 3.93(-1.22)

0.50 4.66(-0.49)

Vicuna 0.33 4.22 4.09(-0.13)
0.50 4.09(-0.13)

Dir.
Alpaca 0.33 5.28 4.13(-1.15)

0.50 4.71(-0.57)

Vicuna 0.33 3.85 3.81(-0.04)
0.50 3.78(-0.07)

Table 2 presents the results of the perplex-
ity comparison on the Databricks-dolly-15k
dataset. The perplexity achieved by implement-
ing our method consistently outperforms the
vanilla FIT method. For the pathological none-
IID setting, PerFIT on the Alpaca model with
the original rank 12 and 16 outperforms FIT
by 23% and 9%, respectively. Under the same
non-IID setting, the perplexity results of the Vi-
cuna model with rank 12 and 16 decrease by
3%. For the Dirichlet (0.5) non-IID scenario, our method improves the Alpaca model by 21% and
10%, respectively. For the Vicuna model under the Dirichlet setting, our PerFIT method reduces the
perplexity by 1% for both rank 12 and 16 settings, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Performance with Higher Sparsity Values. To explore the performance of our method at higher
sparsity values, we extended our experiments with a rank of 24, which corresponds to a sparsity
value of 0.33, on the Databricks-dolly-15k dataset. Figure 4 shows the perplexity curves. We
consistently observe fast convergence and lower losses with all rank settings. The curve with a rank
of 12 converges to the smallest value of perplexity on two different non-IID settings. For the Vicuna
model, we find that our PerFIT method invariably enjoys a fast convergence speed at the early stage
on all rank settings. The curve with a sparsity value of 0.66 exhibits the best overall performances
considering both convergence speed and perplexity value.

0 5 10 15 20 25
Number of Rounds

4
6
8

10
12
14
16

Pe
rp

le
xi

ty

r=8
r=12,sp=0.66
r=16,sp=0.50
r=24,sp=0.33

(a) Path. Alpaca

0 5 10 15 20 25
Number of Rounds

4

6

8

10

12

Pe
rp

le
xi

ty

r=8
r=12,sp=0.66
r=16,sp=0.50
r=24,sp=0.33

(b) Dir. Alpaca

0 5 10 15 20 25
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

r=8
r=12,sp=0.66
r=16,sp=0.50
r=24,sp=0.33

(c) Path. Vicuna

0 5 10 15 20 25
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

r=8
r=12,sp=0.66
r=16,sp=0.50
r=24,sp=0.33

(d) Dir. Vicuna

Figure 4: Perplexity for homogeneous resources.

Table 3: Perplexity comparison on het-
erogeneous resources.

Dis. Model Methodology
FIT PerFIT

Path. Alpaca 4.48 3.93(-0.55)
Vicuna 3.78 3.63(-0.15)

Dir. Alpaca 4.17 4.05(-0.12)
Vicuna 3.70 3.52(-0.18)

Performance on Heterogeneous Resources. Table 3 shows
the perplexity results of heterogeneous resources on the
Databricks-dolly-15k dataset. By utilizing the proposed ar-
chitecture search and personalized aggregation methods, we
can observe that the PerFIT method facilitates local fine-tuning
within heterogeneous resource scenarios. It is worth noting
that the Vicuna still behaves better than the Alpaca model on
resource heterogeneity scenarios. Under the pathological non-
IID setting, our method shows a 12% decrease in perplexity
compared to the FIT on the Alpaca model. For the Vicuna model, we can observe a 3% reduction in
perplexity. With Dirichlet configuration, our method improves the perplexity by 2% and 4% on the
Alpaca and Vicuna models, respectively. Figure 3 and 5 display the learning curves on the domain-
specific and Databricks-dolly-15k datasets, respectively. “base” represents the results obtained with
rank 8. “1 − 0.75 − 0.5” represents the performance of our PerFIT method. We can observe that
our method significantly improves the performance of personalization on all datasets, proving that
our method can not only allow collaborative fine-tuning for resource heterogeneous clients but also
boost the overall personalization performance.

0 10 20 30 40 50
Number of Rounds

4

6

8

10

12

14

Pe
rp

le
xi

ty

base
1-0.75-0.5

(a) Path. Alpaca

0 10 20 30 40 50
Number of Rounds

4

6

8

10

12

Pe
rp

le
xi

ty

base
1-0.75-0.5

(b) Dir. Alpaca

0 10 20 30 40 50
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

base
1-0.75-0.5

(c) Path. Vicuna

0 10 20 30 40 50
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

base
1-0.75-0.5

(d) Dir. Vicuna

Figure 5: Perplexity for heterogeneous resources on Databricks-dolly-15k.

Different Numbers of Participants. To demonstrate the scalability of our method across various
numbers of participants in each round, we conducted extensive experiments by randomly selecting
5% and 20% clients in each round under the Dirichlet non-IID settings. For the Alpaca model, we
can observe that our method Similar to the results shown in Figure 4, we observe that our method im-
plemented on the Alpaca model displays more notable performance improvements. For the Vicuna
model, we find that our method converges to the same value as that of FIT but with a remarkable
increase in the speed of convergence.

Mask Similarity Analyses. Figure 7 shows the pair-wise mask similarity between the first LoRA
modules of 10 clients randomly selected. The rank is set to 16 and the sparsity is set to 0.50.
The labels of the x and y-axes represent the index of the client. The similarity is measured by
the Hamming distance. We can observe that clients with heterogeneous data own personalized

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25
Number of Rounds

6
8

10
12
14
16
18

Pe
rp

le
xi

ty

base
5

(a) 5 clients, Alpaca

0 5 10 15 20 25
Number of Rounds

6

8

10

12

Pe
rp

le
xi

ty

base
20

(b) 20 clients, Alpaca

0 5 10 15 20 25
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

base
5

(c) 5 clients, Vicuna

0 5 10 15 20 25
Number of Rounds

4

5

6

7

8

Pe
rp

le
xi

ty

base
20

(d) 20 clients, Vicuna
Figure 6: Perplexity for different # of local participants.

masks. Furthermore, the degree of any pair-wise similarity is close across clients, which supports
and reinforces our assumption of bounded mask discrepancy.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.69 0.67 0.68 0.73 0.69 0.7 0.67 0.7 0.73

0.69 1 0.68 0.66 0.67 0.73 0.73 0.72 0.73 0.75

0.67 0.68 1 0.7 0.7 0.7 0.72 0.7 0.69 0.67

0.68 0.66 0.7 1 0.72 0.72 0.7 0.67 0.71 0.69

0.73 0.67 0.7 0.72 1 0.71 0.7 0.67 0.7 0.7

0.69 0.73 0.7 0.72 0.71 1 0.73 0.75 0.74 0.73

0.7 0.73 0.72 0.7 0.7 0.73 1 0.71 0.72 0.73

0.67 0.72 0.7 0.67 0.67 0.75 0.71 1 0.72 0.72

0.7 0.73 0.69 0.71 0.7 0.74 0.72 0.72 1 0.74

0.73 0.75 0.67 0.69 0.7 0.73 0.73 0.72 0.74 1
0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a) Query LoRA A
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.73 0.72 0.69 0.76 0.71 0.77 0.73 0.74 0.76

0.73 1 0.75 0.72 0.7 0.78 0.76 0.78 0.74 0.76

0.72 0.75 1 0.75 0.72 0.75 0.75 0.75 0.75 0.75

0.69 0.72 0.75 1 0.73 0.75 0.72 0.74 0.74 0.75

0.76 0.7 0.72 0.73 1 0.72 0.73 0.73 0.74 0.74

0.71 0.78 0.75 0.75 0.72 1 0.75 0.77 0.75 0.76

0.77 0.76 0.75 0.72 0.73 0.75 1 0.76 0.75 0.78

0.73 0.78 0.75 0.74 0.73 0.77 0.76 1 0.77 0.8

0.74 0.74 0.75 0.74 0.74 0.75 0.75 0.77 1 0.78

0.76 0.76 0.75 0.75 0.74 0.76 0.78 0.8 0.78 1 0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b) Query LoRA B
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.77 0.76 0.57 0.72 0.69 0.82 0.77 0.69 0.82

0.77 1 0.79 0.58 0.7 0.73 0.81 0.81 0.7 0.83

0.76 0.79 1 0.61 0.73 0.77 0.8 0.78 0.71 0.79

0.57 0.58 0.61 1 0.67 0.7 0.54 0.61 0.66 0.59

0.72 0.7 0.73 0.67 1 0.73 0.68 0.71 0.71 0.71

0.69 0.73 0.77 0.7 0.73 1 0.7 0.74 0.73 0.73

0.82 0.81 0.8 0.54 0.68 0.7 1 0.79 0.68 0.84

0.77 0.81 0.78 0.61 0.71 0.74 0.79 1 0.72 0.82

0.69 0.7 0.71 0.66 0.71 0.73 0.68 0.72 1 0.7

0.82 0.83 0.79 0.59 0.71 0.73 0.84 0.82 0.7 1
0.6

0.7

0.8

0.9

1.0

(c) Key LoRA A
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.74 0.72 0.68 0.75 0.71 0.79 0.73 0.73 0.77

0.74 1 0.76 0.71 0.72 0.77 0.76 0.79 0.74 0.78

0.72 0.76 1 0.76 0.73 0.76 0.76 0.77 0.76 0.76

0.68 0.71 0.76 1 0.74 0.75 0.7 0.73 0.74 0.73

0.75 0.72 0.73 0.74 1 0.73 0.73 0.74 0.74 0.75

0.71 0.77 0.76 0.75 0.73 1 0.74 0.77 0.76 0.76

0.79 0.76 0.76 0.7 0.73 0.74 1 0.76 0.74 0.79

0.73 0.79 0.77 0.73 0.74 0.77 0.76 1 0.78 0.8

0.73 0.74 0.76 0.74 0.74 0.76 0.74 0.78 1 0.78

0.77 0.78 0.76 0.73 0.75 0.76 0.79 0.8 0.78 1 0.70

0.75

0.80

0.85

0.90

0.95

1.00

(d) Key LoRA B
Figure 7: Comparison of mask similarities.

0 5 10 15 20 25
Number of Rounds

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
rp

le
xi

ty

first
sec
mix

Figure 8: Comparison for pruning metrics.

Impact of Important Score Metric. To evaluate the
impact of using different metrics for computing the im-
portant scores, we further conducted experiments based
on the Vicuna model under pathological non-IID settings.
The rank is set to 16 with a sparsity of 50%. The compar-
isons are shown in Figure 8. The “first”, “second”, and
“mix” curves denote the results obtained based on Equa-
tion 2, 3, and 4, respectively. We can observe that all met-
rics exhibit extremely similar training dynamics. Since
the second-order information requires extra computation
overhead, we recommend using the first-order metric in practice.

Impact of Initialization. To evaluate the impact of different initialization schemes, we conducted
experiments using the model Alpaca-7B and the dataset Databricks-dolly-15k with the pathological
non-IID distribution. We initialized the Alpaca-7B model using either the uniform or the normal
distribution. We conducted FL based on standard FIT (with a rank of 8) and our PerFIT (with a
rank of 12), respectively. For FIT, the final perplexity of the case with uniform initialization is
0.35 smaller than that of the case with normal initialization, where the two cases have the same
convergence rates. For PerFIT, the case with uniform initialization achieves a perplexity of 2.96,
while the case with normal initialization achieves a perplexity of 3.93. We can observe that our
PerFIT method consistently outperforms the FIT method under different initialization methods. Note
that the two PerFIT cases have better convergence rates than their FIT counterparts. Therefore, our
proposed method consistently outperforms FIT under different initialization strategies.

6 CONCLUSION

While federated instruction tuning has demonstrated the ability to improve global model perfor-
mance without revealing private instruction-following data, this approach fails to address the issues
of personalized data and varying client resources. In this paper, we introduced a novel personalized
federated instruction tuning named PerFIT. By enabling local clients to search for personalized fine-
tuning architectures in an expanded LoRA space, we effectively mitigate the difficulties posed by
heterogeneous data and resource distributions We analyzed the convergence property of our method,
showing that our method tailored for LLMs exhibits a similar convergence rate to the sparse fed-
erated training method. Comprehensive experimental results on representative LLMs under two
non-IID scenarios demonstrated the effectiveness of our proposed method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less
and forgets less. In arXiv preprint arXiv:2405.09673, 2024.

[2] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. In
Code alpaca: An instruction-following llama model for code generation, 2023.

[3] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

[4] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, 2023.

[5] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi,
Patrick Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first
truly open instruction-tuned llm, 2023.

[6] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), 35:30318–30332, 2022.

[7] Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and Danqi Chen. Re-
covering private text in federated learning of language models. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS), pages 8130–8143, 2022.

[8] Tianyu Han, Lisa C Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser,
Alexander Löser, Daniel Truhn, and Keno K Bressem. Medalpaca–an open-source collection
of medical conversational ai models and training data. In arXiv preprint arXiv:2304.08247,
2023.

[9] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In Pro-
ceedings of the International Conference on Learning Representations (ICLR), 2022.

[10] Tiansheng Huang, Shiwei Liu, Li Shen, Fengxiang He, Weiwei Lin, and Dacheng Tao.
Achieving personalized federated learning with sparse local models. In arXiv preprint
arXiv:2201.11380, 2022.

[11] Fatih Ilhan, Gong Su, and Ling Liu. Scalefl: Resource-adaptive federated learning with hetero-
geneous clients. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 24532–24541, 2023.

[12] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini. A survey on
federated learning for resource-constrained iot devices. In IEEE Internet of Things Journal,
pages 1–24, 2021.

[13] Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, and Greg Ver Steeg. Neural
architecture search for parameter-efficient fine-tuning of large pre-trained language models. In
Proceedings of the Findings of the Association for Computational Linguistics (ACL), 2023.

[14] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In arXiv preprint arXiv:2104.08691, 2021.

[15] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), pages 53038–53075, 2023.

[16] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search with-
out training. In Proceedings of the International Conference on Machine Learning (ICML),
pages 7588–7598, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[17] Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen.
Local learning matters: Rethinking data heterogeneity in federated learning. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), pages 8397–8406, 2022.

[18] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction
tuning with gpt-4. In arXiv preprint arXiv:2304.03277, 2023.

[19] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning
using hypernetworks. In Proceedings of the International Conference on Machine Learning
(ICML), pages 9489–9502, 2021.

[20] Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),
pages 21394–21405, 2020.

[21] Rishub Tamirisa, Chulin Xie, Wenxuan Bao, Andy Zhou, Ron Arel, and Aviv Shamsian. Feds-
elect: Personalized federated learning with customized selection of parameters for fine-tuning.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages
23985–23994, 2024.

[22] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama
model, 2023.

[23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. In arXiv preprint arXiv:2302.13971, 2023.

[24] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. 2023.

[25] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions. In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL), 2023.

[26] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
Proceedings of the International Conference on Learning Representations (ICLR), 2022.

[27] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Gold-
stein. Hard prompts made easy: Gradient-based discrete optimization for prompt tuning
and discovery. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS), 2023.

[28] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
In arXiv preprint arXiv:2304.12244, 2023.

[29] Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang,
and Siheng Chen. Openfedllm: Training large language models on decentralized private data
via federated learning. In arXiv preprint arXiv:2402.06954, 2024.

[30] Jinliang Yuan, Mengwei Xu, Yuxin Zhao, Kaigui Bian, Gang Huang, Xuanzhe Liu, and Shang-
guang Wang. Federated neural architecture search. In arXiv preprint arXiv:2002.06352, 2020.

[31] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. MAmmoTH: Building math generalist models through hybrid instruction tuning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2024.

[32] Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin
Wang, and Yiran Chen. Towards building the federatedgpt: Federated instruction tuning.
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DATASETS DESCRIPTION

For datasets except Databricks-dolly-15k (5), we randomly sample 20K to form our fine-tuning data.
We display the format of the datasets and corresponding links here:

1. Databricks-dolly-15k (5) is a corpus of more than 15K records generated by thousands of
Databricks employees to enable large language models to exhibit the magical interactivity
of ChatGPT.

2. MedAlpaca (8) has 34K records and addresses subjects such as anatomy, physiology,
pathology, pharmacology, and more.

3. CodeAlpaca (2) has 20K records and aims to build and share an instruction-following
LLaMA model for code generation.

4. MathInstruct has more than 225K data points and is compiled from 13 math rationale
datasets.

B PROMPT TEMPLE AND DATA EXAMPLE

We follow the prompt used in Alpaca (22) and show it in Table 4. We show one example from the
MedAlpaca dataset in Table 5.

Table 4: Prompt template.

Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction: {Instruction}
Response:

Table 5: Data example.

Below is an instruction that describes a task. Write a response that appropriately completes the
request.
Instruction: What is the endocrine tumor that is identified by small nests of spindle-like chro-
maffin cells ”Zellballen” and granular cytoplasm?
Response: Pheochromocytoma is the endocrine tumor that is characterized by granular cyto-
plasm and small nests of spindle-like chromaffin cells ”Zellballen”. Pheochromocytoma is a rare
neuroendocrine tumor that arises from chromaffin cells in the adrenal medulla. These tumors pro-
duce excess amounts of catecholamines, which can lead to episodes of hypertension, headaches,
palpitations, and sweating. Histologically, pheochromocytomas are characterized by small nests
of spindle-like chromaffin cells called ”Zellballen”, which are surrounded by fibrous stroma. The
cells have granular cytoplasm and round to oval nuclei with prominent nucleoli. The diagnosis of
pheochromocytoma typically involves blood and urine tests to measure levels of catecholamines
and their metabolites, as well as imaging studies such as CT or MRI scans. Treatment may in-
volve surgery to remove the tumor, as well as medications to control blood pressure and manage
symptoms. It is important to note that the histological appearance of pheochromocytoma can vary,
and some tumors may not have the characteristic ”Zellballen” pattern. Therefore, the diagnosis of
pheochromocytoma should not be based solely on histological appearance, and clinical and bio-
chemical data should also be taken into consideration.

C HYPERPARAMETERS

All experiments were run on one NVIDIA RTX 4090 GPU. We set the rank for clients with the
smallest capability as 8. Therefore, the rank for Medium and Large is set to 12 and 16, respectively.
We set 5 for the number of local pruning epochs. In each round of local fine-tuning, we randomly
select 10% of clients. For all experiments, the local batch size is set to 64. To facilitate training with
batched data on a single GPU, we utilize the gradient accumulation with a mini-batch size of 8. The
total training rounds are 30 and 50 for homogeneous and heterogeneous scenarios, respectively. The

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

local training epoch is 1. We split 80% of local data into training and use the rest to evaluate the
performance of personalization. The average perplexity in each round is reported. Please refer to
Appendix C for details.

We followed the configuration in OpenFedLLM (29) and used the Adam optimizer with a cosine
learning rate schedule based on the index of the training round. We set the initial learning rate, and
the minimum learning rate to 5e− 5 and 1e− 6, respectively. The β1, β2 and ϵ are set to 0.9, 0.99,
and 1e− 8, respectively.

14

	Introduction
	Related Work
	Preliminaries
	Methodology
	Workflow of PerFIT
	Implementation Details
	Convergence Analysis

	Experiments
	Experimental Settings
	Performance Evaluation

	Conclusion
	Datasets Description
	Prompt Temple and Data Example
	Hyperparameters

