
Beyond Expectations: Quantile-Guided Alignment for
Risk-Calibrated Language Models

Xinran Wang1, Jin Du2∗, Azal Khan1, Qi Le1, Enmao Diao, Jiawei Zhou3, Jie Ding4, Ali Anwar1

1Department of Computer Science and Engineering, University of Minnesota 2MorphMind AI
3Department of Applied Mathematics & Statistics, Stony Brook University 4School of Statistics,
University of Minnesota {wang8740, khan1069, le000288, dingj, aanwar}@umn.edu

jin@morphmind.ai diao em@hotmail.com jiawei.zhou.1@stonybrook.edu

Abstract

Large language models can generate rare but catastrophic outputs, such as harm-
ful conversations or insecure code. Existing Reinforcement Learning from Hu-
man Feedback (RLHF) typically maximizes average reward, leaving high-risk
tail events insufficiently controlled. We introduce Quantile-Guided Alignment
(QA), a framework that allows users to specify desired improvements at any
quantile—individually or across multiple reward dimensions—thus shifting the
distribution of outputs with finer control toward safer, more desirable outcomes.
The method extends standard RLHF via an augmented reward formulation that
enforces quantile constraints. Experiments on conversation and code-generation
tasks show that quantile alignment significantly enhances quality at targeted tails
while maintaining overall performance. The results position QA as a principled
route to risk-calibrated language models with tail-focused alignment.

1 Introduction
Large language models (LLMs) have achieved remarkable results in language understanding [1–4],
code generation [5, 6], and agentic decision-making tasks [7]. However, they also pose safety chal-
lenges when a small fraction of their outputs can be harmful or catastrophic. Standard Reinforcement
Learning from Human Feedback (RLHF) [8, 9] optimizes expected reward to improve average
performance, but it may still allow rare, high-impact failures to persist. In safety-critical scenarios,
ranging from AI personal assistants [10] to security-sensitive code generation [11], optimizing only
the mean behavior is insufficient; one must also address specific quantiles of the distribution (e.g., its
extreme tails) where dangerous errors occur.

For instance, consider a personal assistant handling content-sensitive consultations or a code-
generation model that sometimes produces unreliable snippets. Although standard RLHF may
reduce errors overall, it can fail to eliminate occasional yet severe missteps. This motivates quantile
alignment, which explicitly enforces constraints on the fraction of outputs that violate certain thresh-
olds, effectively controlling the distributional tails (or any other critical quantiles) of relevant reward
metrics. For example, requiring “90% of scheduling decisions meet a minimum standard” ensures
the assistant rarely overlooks urgent tasks; similarly, imposing “99% of code must remain below a
given harmfulness score” mitigates security exploits or unauthorized system calls.

We formulate quantile alignment as a constrained KL-regularization objective that minimizes the KL
divergence from a reference model subject to user-defined quantile constraints, thereby limiting how
many outputs fall below—or above—critical values. We prove that the resulting optimization is convex

1Contributed to this work while at the University of Minnesota.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

and admits a Lagrangian dual, whose solution reweights the original model distribution by a linear
combination of indicator-based quantile rewards. This structure closely parallels RLHF, replacing
the usual scalar reward with quantile-adapted terms. In practice, we solve the dual numerically using
Monte Carlo approximations, enabling an efficient and flexible way to regulate model outputs across
multiple quantiles and metrics. The main contributions of the paper are twofold:

Quantile-Guided Alignment (QA) Framework. We introduce quantile-guided alignment, a princi-
pled way to impose distribution-tail constraints on multiple reward dimensions (e.g. harmlessness,
helpfulness). Rather than maximising the mean reward, QA guarantees that a user-specified fraction
of outputs satisfies strict thresholds, thereby mitigating rare but critical failures. Each quantile
constraint is encoded as an indicator-based reward, leading to a convex KL-regularized objective
with a primal–dual solution whose dimensionality equals the number of constraints.

RLHF-Compatible Implementation and Empirical Validation. Because the dual problem is
finite-dimensional, QA drops straight into the standard RLHF tool-chain (PPO, TRL, etc.) after sub-
stituting the composite reward. Experiments on conversational and code-generation benchmarks show
that QA sharply improves tail-risk metrics—e.g. reducing the worst 5% of harmful outputs—while
preserving diversity, coherence, and perplexity.

2 Related work
Reinforcement Learning from Human Feedback (RLHF). Language model alignment strategies
can be categorized into training-based and decoding-based approaches. Training-based methods
adjust model parameters through fine-tuning guided by human feedback, whereas decoding-based
methods constrain or steer the models outputs at inference time without retraining. Within training-
based solutions, a prominent technique is RLHF [12–14] that involves two main steps. First, a reward
model is trained to map each candidate output to a scalar that reflects human preferences. Typically,
a dataset of comparisons (x, ylose, ywin) is collected from human annotators, where x is a prompt
and two different responses ylose and ywin receive preference labels indicating ywin is preferred over
ylose. Then, one uses the reward model r to maximize the expectation of generated rewards subject to
a Kullback–Leibler (KL) regularization. As a result, RLHF nudges the model distribution toward
higher-reward (i.e. more human-preferred) outputs.

Multi-dimensional Preference Alignment. Multi-objective reinforcement learning (MORL) [15–
17] has been used as a popular approach to address multi-dimensional preference alignment. It
often build on the classical RLHF setup [12–14, 18], using linear scalarization to combine reward
signals or data sources [14, 19, 18, 20] to construct a single RLHF objective. For example, the
recent work Rewarded Soup [19] attempts to approximate the Pareto frontier of models by fine-tuning
separate models for each reward function, then blend these specialized models by interpolating their
model weights. In principle, this approximates the ensemble of models that would have emerged
from training on every linear combination r =

∑m
i=1 λi ri directly. The recent MAP approach [21]

provides an alternative perspective: instead of requiring a single scalar reward, it enforces constraints
on the expected values of different reward functions relative to user-specified targets.

AI Safety. Generative AI models are susceptible to adversarial manipulations such as backdoor
attacks [22–25] and jailbreak attacks [26, 27], which can lead to severe issues including hallucinations
or security breaches [28, 29]. These stealthy exploits often arise from deceptive or poisoned training
data, compromising model safety even after deployment. In response, efforts in AI safety include
inference-time methods such as prompt engineering [30] or detection-based filters [31], and training-
time adjustments via RLHF alignment schemes that incorporate robustness into reward functions [14].

3 Background
3.1 Preliminaries on RLHF
The RLHF framework aligns a language model p0 with human preferences by solving:

max
p

{
Ep

[
r(x, y)

]
− β DKL

(
p(· |x) || p0(· |x)

)}
, (1)

where p0 denotes the reference distribution that corresponds to the original model, P denotes the
class of all distributions, p is the distribution that represents the aligned model, r is a reward function
that quantifies the preference level of any given pair of prompt x and generation y, DKL measures the

2

KL-divergence, and β > 0 is a regularization hyperparameter. The expectation is taken over x ∼ D
(prompt set) and y | x ∼ p(· | x) (conditional generation), briefly written as Ep. from It can be shown
that the solution of (1) can be written in the form of p(y | x) = p0(y | x) exp(β−1r(x, y))/C(β)
where C(β) is a normalizing constant for p(· | x) to be a valid probability density function. While
this formulation can effectively raise average performance of large language models, it does not
inherently control quantiles, especially tail events that lead to rare but potentially damaging outputs.

3.2 Preliminaries on Quantile Constraints
Consider a random variable Z and its τ -th quantile Qτ (Z). By definition, Qτ (Z) satisfies P

(
Z ≤

Qτ (Z)
) ∆
= τ, where the probability Pp is defined under x, y ∼ p. For a reward function r, x ∼ D

and y ∼ q(· | x) for some generative model q induce a random variable r(x, y). The τ -quantile of
r(x, y) is defined by: Qτ,p(r)

∆
= inf{c : Pp(r(x, y) ≤ c) ≥ τ}. We aim to impose constraints on

this quantile, for instance Qτ,p(r) ≥ c. Rewriting this, we have:

Qτ,p(r) ≥ c⇐⇒ Pp

(
r(x, y) ≤ c

)
≤ τ ⇐⇒ Ep I

{
r(x, y) ≤ c

}
≤ τ.

Rearranging this, we obtain the equivalent requirement

Ep

[
τ − I{r(x, y) < c}

]
≥ 0, (2)

where I{ r(x, y) < c } is an indicator. Thus, we define an indicator-based quantile reward:

(x, y) 7→ ρτ,c(r(x, y))
∆
= τ − I{ r(x, y) < c },

which can be regarded as a composite function ρτ,c ◦ r that maps a prompt-generation pair (x, y) to
a reward. According to Inequality (2), imposing the expectation of ρτ,c(r(x, y)) to be nonnegative
under the aligned distribution q equivalently ensures Qτ,p(r) ≥ c. This construction translates
quantile constraints into inequalities that involve only linear functional in p.

4 Quantile Alignment (QA): Formulation, Theory, and Algorithms
We consider the most general setting of aligning a pretrained distribution p to satisfy multiple quantile
constraints on multiple reward functions. For clarity, we first present the single human value (i.e.
single reward function) scenario where each reward has multiple quantile thresholds, and then
generalize to multiple reward functions.

4.1 Single-Value Multi-Quantile Constraints
Let r(x, y) be a single scalar reward function. We want to enforce multiple constraints of the form

Qτj ,p

(
r(x, y)

)
≥ cj

∆
= Qκj ,p0

(
r(x, y)

)
, j ∈ [m],

where each constraint j stipulates that at most a fraction τj of samples fall below a threshold, which
is the κj-quantile of the original distribution p0. That is, we lift the τj-th quantile of to the level of
the κj-th quantile. Equivalently,

Pp

(
r(x, y) < cj

)
≤ τj ⇐⇒ Ep

{
ρτj ,κj (r(x, y))

}
≥ 0,

where we define

ρτj ,κj (r(x, y))
∆
= τj − I{ r(x, y) < cj }. (3)

We collect all such constraints in the objective:

min
p∈P

Ep

[
KL

(
p(· | x) ∥ p0(· | x)

)]
subject to Ep

[
ρτj ,κj

(
r(x, y)

)]
≥ 0, j ∈ [m], (4)

where we define the indicator-based quantile reward for each constraint j as

ρτj ,κj

(
r(x, y)

) ∆
= τj − 1{r(x,y)<cj}. (5)

3

Remark 4.1 (Connection to the standard RLHF). Recall from the standard RLHF framework
that imposing a scalar reward r(x, y) leads to a reweighted distribution p(y | x) ∝ p0(y |
x) exp

{
β−1 r(x, y)

}
, where β plays the role of a temperature that balances between the original

model p0(y | x) and the reward r(x, y). As the next theorem shows, our quantile constraints also
produce an exponential reweighting, but the “reward” now comprises a sum of indicator-based terms:

p(y | x) ∝ p0(y | x) exp
{ m∑

j=1

λj ρτj ,κj

(
r(x, y)

)}
,

where each active constraint introduces a learned multiplier λj≥ 0. The objective in (4) is a convex
program in the space of distributions in p0, and each constraint j introduces a dual multiplier λj ≥ 0
whose values are determined by its constraints. Hence, although the QA-aligned distribution retains
the same exponential-family form, ρτj ,κj

differs from the usual reward r whose corresponding
multiplier β is tuned as a hyperparameter.
Theorem 4.2 (Representation of the Multi-Quantile Solution). The optimization problem (4) is
convex in p. There exists a unique m-dimensional vector λ = λ(τj , κj , j ∈ [m]) ≥ 0 such that the
optimal solution is

pλ(y | x)
∆
=

p0(y | x) exp
{∑m

j=1 λj ρτj ,κj

(
r(x, y)

)}
C(λ

) ,

where C(λ) is the normalizing constant, and λ = [λ1, . . . , λm] is determined by

λ(τj , κj , j ∈ [m]) = argmax
λ≥ 0

{
− logC(λ)

}
.

Remark 4.3 (Generality of Quantile Alignment). Theorem 4.2 implies that any distribution satisfying
the specified quantile targets can be written in the exponential-family form defined by QA. Conversely,
for any aligned distribution p produced by other methods, the pair p0, p corresponds to a feasible
set of pairs {τj , κj}, which can be an infinite set of continuously-valued quantiles (as elaborated in
Section 5.1), This shows QA’s generality. Notably, the standard RLHF objective (1) can be regarded
as a special case of QA.

4.2 Numerically Solving the QA Problem
To solve the QA problem efficiently, we first outline the high-level logic: while the original for-
mulation involves optimizing the infinite-dimensional distribution p, we can transform it into a
lower-dimensional convex optimization problem over the dual variables λ. This is because the
problem in (4) is convex, and standard convex analysis techniques such as strong duality apply. This
reformulation enables tractable optimization of λ by leveraging Monte Carlo estimation. Furthermore,
by Theorem 4.2, the role of λ manifests in an exponential reweighting, which can be interpreted
as solving a single RLHF problem where the reward is a weighted sum of indicator-based quantile
rewards. This enables us to leverage existing RLHF solvers, such as the Proximal Policy Optimization
(PPO) algorithm implemented in the TRL package [32].

One may wonder why, from the original QA formulation, it appears that we are optimizing a
nonconvex problem when p represents a large-scale language model. The key insight is that if we
do not treat the optimization as occurring in the model parameter space, but rather over a generic
probability density, we can reframe the problem as a convex optimization over λ, whose dimension
equals to the number of quantile constraints.

To solve the dual problem, we first rewrite C(λ) as an expectation under the original model p0:

C(λ) = Ey∼p0(·|x) exp
{ m∑
j=1

λj ρτj ,κj
(r(x, y))

}
. (6)

This allows us to estimate the dual objective via Monte Carlo sampling. Specifically, let {(xℓ, yℓ)}nℓ=1
be i.i.d. samples drawn from p0(x, y). Notably, this sample can be used for all various alignment
targets. For each sample, we compute the indicator-based quantile rewards: ρτj ,κj (r(xℓ, yℓ)) =
τj − I{r(xℓ, yℓ) < ĉj}, where ĉj is calculated as the κj-th quantile of {r(xℓ, yℓ), ℓ ∈ [m]}. Using
these samples, we approximate the dual objective as:

ĝ(λ)
∆
= − log

1

n

n∑
ℓ=1

exp

{ m∑
j=1

λj ρτj ,κj
(r(xℓ, yℓ))

}
.

4

Remark 4.4 (Concavity and Convergence). By Theorem 4.2, − logC(λ) is concave in λ. Since the
sample average is a special expectation, ĝ(λ) preserves concavity, ensuring that standard gradient
ascent methods converge to the global maximum of ĝ(λ). Once we solve for λ∗, we obtain R(x, y)

∆
=∑m

j=1 λ
∗
j ρτj ,κj

(r(x, y)). According to Remark 4.1, R can be treated as an effective reward model in
the standard RLHF with inverse temperature β = 1, allowing us to directly apply PPO solvers.

The accuracy of this numerical solution depends on the number of Monte Carlo samples n. In practice,
a few thousand samples typically suffice for stable estimates of ĝ(λ). If user-specified thresholds are
infeasible, the procedure detects it via divergence in the dual or violation of positivity constraints. In
such cases, we can automatically adjust the thresholds via line search or alternative strategies.

Algorithmic Steps. Next, we summarize the procedure for solving the QA problem numerically.

1. Sampling. Draw n samples {(xℓ, yℓ)}nℓ=1 from p0.
2. Compute Indicator-Based Rewards. For each ℓ, evaluate ρτj ,κj

(r(xℓ, yℓ)) for each τj , κj .

3. Dual Update. Initialize an m-dimensional λ(0) ≥ 0 and perform gradient ascent:

λ(t+1) ←
(
λ(t) + η∇λ ĝ(λ(t))

)
+
,

until convergence, where (·)+ denotes projection onto the nonnegative orthant, and η > 0 is
the step size. If it diverges, we decide the constraints are infeasible.

4. Construct QA Reward. Once we obtain the dual solution λ∗, compute the effective reward:

R(x, y)
∆
=

m∑
j=1

λ∗
j ρτj ,κj (r(x, y)).

5. Optimize p based on the QA reward. Treat R(x, y) as the reward function in the standard
RLHF setting with β = 1 and apply a PPO solver to update from p0 to p.

Remark 4.5. Since the primal-dual method only requires forward passes under p, it does not involve
backpropagation through model parameters. The runtime and memory complexity scale as O(nm),
where n is the number of MC samples and m is the number of constraints. This setup remains
computationally feasible even for large models, as the same set of MC samples can be reused across
different quantile constraints without retraining the base model.

4.3 Multi-Value, Multiple-Quantile Alignment
The QA framework readily generalizes to multiple reward functions r1(x, y), . . . , rK(x, y), and each
may have multiple quantile constraints. That is, for each reward function ri, we impose the constraint

Qτi,j ,p

(
ri(x, y)

)
≥ Qκi,j ,p0

(
ri(x, y)

)
, j ∈ [mi], i ∈ [K],

where τi,j represents the quantile threshold for p and κi,j represents the corresponding threshold for
p0. This ensures that at most a fraction τi,j of generated samples fall below the κi,j-quantile of the
original model p0.

Following the single-reward case, we define the multi-value indicator-based quantile rewards:

ρτi,j ,κi,j
(ri(x, y))

∆
= τi,j − I{ ri(x, y) < ci,j }, (7)

where ci,j is the empirical κi,j-quantile of ri(x, y) under p0. These constraints are then incorporated
into the KL-regularized objective:

min
p∈P

Ep

[
DKL

(
p(· | x) || p0(· | x)

)]
s.t. Ep

[
ρτi,j ,κi,j

(
ri(x, y)

)]
≥ 0, j ∈ [mi], i ∈ [K].

The only difference from the single-reward setting is that the exponent in the optimal solution
now becomes R(x, y)

∆
=

∑K
i=1

∑mi

j=1 λi,j ρτi,j ,κi,j (ri(x, y)). Computationally, the optimization
dimensionality is proportional to the total number of constraints m1 + m2 + · · · + mK . The
numerical solution follows the primal-dual Monte Carlo approach outlined in Section 4.2, with each
reward function ri(x, y) contributing its own set of constraints. Thus, the QA framework provides a
principled and efficient mechanism to enforce multiple quantile constraints across reward functions.

5

5 Continuous Quantile Alignment
Thus far, we have formulated quantile alignment as a discrete optimization problem, enforcing
constraints at specific quantile levels. However, it is both theoretically intriguing and practically
helpful to study oversight across a continuum of quantile levels. To generalize our approach, we now
extend our framework to enforce continuous quantile constraints, shaping the entire distribution of
reward values rather than a finite subset of quantiles.

5.1 Uniform Distribution Enhancement through Continuous Constraints
For notational simplicity, we focus on the a single value represented by a reward function r. There
is no essential difference in generalizing to multiple values, as we discussed in Subsection 4.3.
Previously, we considered a finite set of quantile constraints at levels {τj}mj=1, ensuring that specific
quantiles of the reward distribution under q meet or exceed corresponding reference values. We
now impose a quantile constraint at every level τ ∈ [0, 1], requiring Qτ,p(r) ≥ c(τ), where
c(τ) ≥ Qτ,p0(r) is a target quantile function defined for all τ ∈ [0, 1]. This ensures that the quantile
curve of r under q remains above c(τ) for all τ , uniformly lifting the entire reward distribution to
match a desired profile. Rewriting this in expectation form, we obtain:

Ep

[
ρτ (r)

]
≥ 0, ∀ τ ∈ [0, 1], (8)

where the indicator-based quantile reward is defined as ρτ (r(x, y))
∆
= τ − I

{
r(x, y) < c(τ)

}
. This

formulation ensures that instead of controlling individual quantiles, we impose constraints over an
entire continuum, creating a smooth and robust enhancement of the reward distribution. This leads to
an infinite-dimensional constrained optimization problem:

min
p∈P

Ep

[
DKL

(
p(· | x) || p0(· | x)

)]
s.t. Ep

[
ρτ (r)

]
≥ 0, ∀ τ ∈ [0, 1].

Unlike the discrete-quantile case, where the number of constraints is m, we now have an infinite
set of constraints—one for each τ . To handle this, we introduce a nonnegative Lagrange multiplier
function λ(τ) indexed by τ , leading to the following Lagrangian-based reweighting.

Continuous KL-Regularized Solution. With a similar argument as in Theorem 4.2, the aligned
distribution also takes an exponential reweighting form, but now with a continuous integral:

pλ(y | x)
∆
=

p0(y | x) exp
[∫ 1

0
λ(τ) ρτ (r(x, y)) dτ

]
C(λ)

,

where the normalizing term is:

C(λ)
∆
= Ex,y∼p exp

[∫ 1

0

λ(τ) ρτ (r(x, y)) dτ
]
.

It smoothly incorporates the influence of all quantile constraints through the weighting of λ(τ).

Dual Problem and Connection to the Discrete Case. Following the primal-dual logic as in the
discrete setting (cf. Theorem 4.2), the dual problem optimizes over the function λ(τ), leading to:
maxλ(τ)≥0{− logC(λ)}. This generalizes the discrete quantile dual objective, now integrating over
an entire range of τ . The function λ(τ) plays a similar role to the discrete multipliers λj .

While the continuous formulation theoretically imposes constraints at every quantile level, in practice,
we approximate the integral over τ by discretizing it into a finite set of representative quantile levels.
This reduces the problem to solving a discrete QA problem with a finer resolution. The numerical
solution follows the same Monte Carlo-based primal-dual method described in Section 4.2, treating
the continuous constraints as an additional layer of sampling.

5.2 Infinitesimal Enhancement Analysis and Algorithm
We now study how small perturbations in the target quantile function c∗(τ) affect both the optimal
dual variable λ(τ) and the aligned distribution p∗. This analysis reveals how the system reacts to
incremental changes in oversight targets, providing a sensitivity measure for quantile alignment.

Perturbation of the Target Quantile Function. Consider a baseline quantile function c∗(τ) that
satisfies the constraints: Ep∗

[
ρτ (r)

]
≥ 0,∀τ ∈ [0, 1], where ρτ (r) = τ − I[r < c∗(τ)] is the

6

3 2 1 0
Original Model Quantiles

3

2

1

0

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(a) QQ Plot for Helpfulness
Helpfulness
y = x

2 1 0 1 2
Original Model Quantiles

2

1

0

1

2

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(b) QQ Plot for Harmlessness
Harmlessness
y = x

Diversity
Coherence

Perplexity
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
Va

lu
e

(c) Baseline Performance Metrics
Original Model
Aligned Model

Figure 1: Effect of Quantile Alignment on Helpfulness and Other Metrics. (a) QQ plot comparing
Helpfulness quantiles before and after alignment. Points above the red 45-degree line indicate increased
Helpfulness scores in the aligned model. (b) QQ plot for Harmlessness, showing a tradeoff where some
responses become less harmless. (c) Comparison of baseline performance metrics, showing minimal change in
Diversity and Coherence, with a slight improvement in Perplexity. Note that alignment constraints were
imposed only for Helpfulness, with no direct constraints set for Harmlessness.

indicator-based quantile reward. The aligned distribution p∗ is obtained with dual solution λ∗(τ).
Now, perturb the quantile function by a tiny shift δ(τ): c(τ) = c∗(τ) + δ(τ). This leads to the
solution (pλ, λ(τ)), where δλ(τ) = λ(τ)− λ∗(τ) is the first-order change in the dual variable.

Definition of Operator V . The effect of perturbing c∗(τ) propagates through λ(τ) and ultimately
shifts the distribution p∗. The key object governing this interaction is the linear operator V , which
captures the response of different quantile constraints to changes in λ(τ):

(V δλ)(τ)
∆
=

∫ 1

0

Ep∗

[
ρτ (r) ρτ̃ (r)

]
δλ(τ̃) dτ̃ .

Intuitively, V models the dependency between quantile constraints across different τ -values, deter-
mining which shifts in λ(τ) induce correlated responses.
Theorem 5.1 (First-Order Sensitivity of Quantile Alignment). Let (p∗, λ∗) be the baseline solution
for the quantile function c∗(τ), satisfying:

Ep∗

[
ρτ (r)

]
≥ 0, ∀τ ∈ [0, 1].

Consider a perturbation δ(τ) such that c(τ) = c∗(τ) + δ(τ). Define the first-order changes in the
dual variable and the aligned distribution as:

δλ(τ) = λ(τ)− λ∗(τ), δp = pλ − p∗.

Then, if the original constraint is active, namely Ep∗ [ρτ (r)] = 0, the perturbed dual variable satisfies

the linear integral equation: (V δλ)(τ)
∆
= −Ep∗

[
ρ′τ (r) δ(τ)

]
, where ρ′τ (r) = τ − I[r < c∗(τ)].

If the constraint is strictly satisfied, we have λ∗(τ) = 0, and small perturbations in c∗(τ) do
not affect λ(τ) until the constraint becomes active. Furthermore, the updated distribution pλ is
given by: pλ(y | x) = p∗(y | x)[1 +

∫ 1

0
δλ(τ̃)(ρτ̃ (r(x, y)) − Ep∗ [ρτ̃ (r)])dτ̃] + O(∥δ∥2∞), where

∥δ∥∞
∆
= supτ∈[0,1] |δλ(τ)|.

In practice, τ ∈ [0, 1] is discretized into a finite set {τi}mi=1, and V reduces to the matrix form:
Vij

∆
= Ep∗

[
ρτi(r) ρτj (r)

]
.

6 Experimental Study
We evaluate quantile alignment on conversational and code-generation tasks, where model outputs
range from benign to risky behaviors. Experiments were conducted on a single Nvidia A100 GPU.

Models. We apply our alignment procedure to two models: the OPT-1.3B [33] for conversational
tasks and CODEGEN-350M [34] for code generation. We experiment with smaller models in the
corresponding model families due to GPU constraints.

Data. For the conversational task, we use prompts from the Anthropic Harmless dataset [35], which
contains human requests formatted between “Human:” and “Assistant:”. This dataset serves as a

7

3 2 1 0
Original Model Quantiles

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(a) QQ Plot for Helpfulness
Helpfulness
y = x

2 1 0 1 2
Original Model Quantiles

2

1

0

1

2

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(b) QQ Plot for Harmlessness
Harmlessness
y = x

Diversity
Coherence

Perplexity
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
Va

lu
e

(c) Baseline Performance Metrics
Original Model
Aligned Model

Figure 2: Effect of Quantile Alignment on Helpfulness and Harmlessness. (a) QQ plot comparing
Helpfulness quantiles before and after alignment. (b) QQ plot for Harmlessness. (c) Comparison of
baseline performance metrics. Unlike Experiment 1, constraints were imposed for both Helpfulness and
Harmlessness.

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
q-Quantile of Helpfulness Rewards

2

1

0

1

2

3

q-
Qu

an
til

e
of

 H
ar

m
le

ss
ne

ss
 R

ew
ar

ds

Comparison of Quantile Alignment (QA) with Baselines
q=5%

Original
QA
MORL

q=10%
Original
QA
MORL

q=25%
Original
QA
MORL

q=75%
Original
QA
MORL

q=75%
Original
QA
MORL

Figure 3: Comparison of QA and MORL on Conversational Alignment. The plot shows the τ -quantiles of
Helpfulness and Harmlessness rewards for τ = 5%, 10%, 25%, 75%, comparing the original model (cross
markers), QA-aligned model (diamonds), and MORL (dots for 20 randomly sampled λ values).

benchmark for evaluating alignment with safe and cooperative responses. For the code-generation task,
we employ the HUMANEVAL dataset [5], a standard benchmark that consists of Python programming
tasks. Each prompt in HUMANEVAL specifies a function signature and docstring describing the
expected behavior. Since HUMANEVAL primarily consists of relatively simple coding tasks, we
extend it with a custom prompt set to increase diversity and difficulty.

Custom Code-Generation Prompts. We curate 200 additional prompts spanning eight categories
of software quality: file access, network calls, security risks, maintainability, execution time, data
integrity, scalability, and documentation quality. These prompts simulate a range of real-world
coding concerns, including adversarial cases. Each custom prompt is randomly assigned a quality
level (standard, low, very low, edge case, worst case) and a control statement that explicitly directs
the model toward suboptimal coding practices. Examples include: “Do not handle edge cases
or errors,” “Write in a way that has little error handling,” and “Make variable
names confusing or non-descriptive.” The prompts were generated programmatically using
GPT-4 to maintain a structured, instruction-based format. The final dataset combines the original
HumanEval tasks with these curated prompts to comprehensively assess model alignment.

Alignment Values and Evaluation Metrics. We evaluate four key alignment values: Harmlessness
and Helpfulness for conversational tasks, and Simplicity and Security for code generation.
For Harmlessness and Helpfulness, we use two GPT-2 models with value heads fine-tuned
on human-annotated preferences [36], providing scalar ratings that indicate how well generated
responses align with harmless and helpful behavior. For Simplicity and Security, we employ
an automated evaluation using OpenAI’s API. A GPT4o-based reviewer model is prompted with
a definition of each attribute—Simplicity measures how minimal, maintainable, and Pythonic
the code is, avoiding unnecessary complexity or redundancy, while Security assesses the code’s
resilience against vulnerabilities, including secure function calls, input sanitization, and careful data
handling. The model rates each attribute on a 0–1 continuous scale.

8

Additionally, for each alignment task, we assess three baseline performance metrics. 1) Diversity:
Quantifies lexical variety in model outputs, computed as the proportion of unique n-grams (n =
2, 3, 4) and aggregated into a composite diversity score [37]. 2) Coherence: Evaluates semantic
consistency within generated text using a supervised SimCSE BERT-based model for sentence
embedding similarity [38]. 3) Perplexity: Measures how predictable a generated response is under
a language model, serving as a proxy for fluency.

Experiment 1: Single-Value Quantile Enhancement. We evaluate our quantile alignment approach
by enforcing constraints to systematically improve Helpfulness. Specifically, we align the model’s
helpfulness scores using the following quantile pairs (τj , κj): (1%, 5%), (5%, 10%), (10%, 50%),
(50%, 60%), (60%, 70%), (70%, 80%), (80%, 90%), (90%, 95%), (95%, 99%). This means, for
instance, that responses previously scoring at the 1% percentile in helpfulness are elevated to match
the 5% percentile level, and so forth. By lifting multiple quantiles, we enforce a strict improvement
across the entire distribution.

Figure 1(a) visualizes this shift using a quantile-quantile (QQ) plot, where the x-axis represents
the quantile values from the original model, and the y-axis represents the corresponding quantiles
from the aligned model. Each blue point represents the τ -quantile of the rewards of a particular
human value under both models, with τ sampled at regular intervals (5%, 10%, ..., 95%). Points
above the red 45-degree line indicate that the aligned model achieves higher rewards at that quantile
compared to the original model. As expected, the results confirm that our approach effectively
improves Helpfulness across the entire distribution.

We follow the numerical optimization procedure outlined in Section 4.2 and apply PPO-based fine-
tuning to obtain the aligned model. Figure 1(b) illustrates the impact on Harmlessness, which, as
noted in prior work [14], exhibits a tradeoff with Helpfulness. The QQ plot reveals a noticeable
decline in Harmlessness scores across quantiles, indicating that improvements in Helpfulness
come at the cost of reduced Harmlessness. Meanwhile, Figure 1(c) shows that baseline performance
metrics, including Diversity and Coherence, remain largely stable. Interestingly, Perplexity
decreases slightly, suggesting that alignment may also contribute to improved response fluency.

Experiment 2: Multi-Value Quantile Enhancement. Building on the previous experiment, we
now introduce an additional constraint to enhance Harmlessness, specifically lifting its 5%→ 50%
quantile, while maintaining the existing constraints on Helpfulness. This aims to aggressively im-
prove Harmlessness while preserving Helpfulness as much as possible. Figure 2(b) confirms that
Harmlessness is indeed elevated across quantiles. However, Figure 2(a) shows that Helpfulness
exhibits some degradation in certain regions, suggesting a tradeoff between the two values. Although
our numerical solver guarantees a feasible dual solution, the observed discrepancy in Helpfulness
may stem from Monte Carlo approximation errors, where the estimated λ deviates from its true
population counterpart, combined with inherent stochasticity in the PPO fine-tuning process. As seen
in Figure 2(c), baseline metrics—including Diversity and Coherence—remain relatively stable,
while Perplexity again shows a slight improvement.

Experiment 3: Comparison of QA with MORL Baseline. We compare Quantile Alignment (QA)
with Multi-Objective Reinforcement Learning (MORL) [15–17], which optimizes expected rewards
by sampling tradeoff weights between objectives. Specifically, in the MORL setting, the dual weight
vector λ is generated as λ = s · u, where s is uniformly sampled from (0, 6) and u is sampled
from the probability simplex, representing random tradeoff preferences. Figure 3 compares quantile
performance across different alignment methods at τ = 5%, 10%, 25%, and 75% for Helpfulness
and Harmlessness. The QA-aligned model consistently moves towards the upper-right quadrant,
indicating simultaneous improvement in both values relative to the original model. In contrast, MORL
without a principled optimization strategy often sacrifices one objective in favor of the other, leading
to greater instability in alignment outcomes.

7 Conclusion

We have presented Quantile-Guided Alignment (QA), a principled extension of RLHF that regulates
quantiles of reward distributions. Casting the problem as a convex KL-regularized program yields
a finite-dimensional dual; a Monte Carlo estimate of this dual directly constructs an overall reward
function, which can then be optimized with standard alignment tooling. Complete proofs and
additional code-generation results are provided in the Appendix.

9

Acknowledgements

The work of Xinran Wang was supported in part by the 3M Science and Technology Graduate
Fellowship and the Doctoral Dissertation Fellowship. The work of Qi Le and Azal Ahmad Khan was
supported by the Amazon Machine Learning System Fellowship. The work of Jie Ding was supported
in part by the National Science Foundation CAREER Program under grant number 2338506. The
work of Ali Anwar was supported by the Samsung Global Research Outreach Award and the National
Science Foundation Privacy-Preserving Data Sharing in Practice (PDaSP) program under grant
number 2452817.

10

References
[1] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bow-

man, “Superglue: A stickier benchmark for general-purpose language understanding systems,”
Advances in neural information processing systems, vol. 32, 2019.

[2] S. Gehrmann, A. Bhattacharjee, A. Mahendiran, A. Wang, A. Papangelis, A. Madaan,
A. Mcmillan-major, A. Shvets, A. Upadhyay, B. Bohnet et al., “Gemv2: Multilingual nlg
benchmarking in a single line of code,” in Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, 2022, pp. 266–281.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877–1901, 2020.

[4] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young et al., “Scaling language models: Methods, analysis & insights from training
gopher,” arXiv preprint arXiv:2112.11446, 2021.

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan et al., “Evaluating large language models trained on code,”
2021.

[6] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,
R. Sauvestre, T. Remez et al., “Code llama: Open foundation models for code,” arXiv preprint
arXiv:2308.12950, 2023.

[7] F. Tian, A. Luo, J. Du, X. Xian, R. Specht, G. Wang, X. Bi, J. Zhou, A. Kundu, J. Srinivasa
et al., “An outlook on the opportunities and challenges of multi-agent ai systems,” arXiv preprint
arXiv:2505.18397, 2025.

[8] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement
learning from human preferences,” Advances in neural information processing systems, vol. 30,
2017.

[9] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,”
Advances in neural information processing systems, vol. 35, pp. 27 730–27 744, 2022.

[10] M. C. Rillig and A. Kasirzadeh, “Ai personal assistants and sustainability: Risks and opportuni-
ties,” Environmental Science & Technology, vol. 58, no. 17, pp. 7237–7239, 2024.

[11] R. Khoury, A. R. Avila, J. Brunelle, and B. M. Camara, “How secure is code generated by
chatgpt?” in 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
IEEE, 2023, pp. 2445–2451.

[12] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz, “Policy shaping:
Integrating human feedback with reinforcement learning,” Advances in neural information
processing systems, vol. 26, 2013.

[13] D. Arumugam, J. K. Lee, S. Saskin, and M. L. Littman, “Deep reinforcement learning from
policy-dependent human feedback,” arXiv preprint arXiv:1902.04257, 2019.

[14] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
and T. Henighan, “Training a helpful and harmless assistant with reinforcement learning from
human feedback,” arXiv preprint arXiv:2204.05862, 2022.

[15] L. Barrett and S. Narayanan, “Learning all optimal policies with multiple criteria,” in Proceed-
ings of the 25th international conference on Machine learning, 2008, pp. 41–47.

[16] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning for multiobjective optimization,”
IEEE transactions on cybernetics, vol. 51, no. 6, pp. 3103–3114, 2020.

[17] Z. Wu, Y. Hu, W. Shi, N. Dziri, A. Suhr, P. Ammanabrolu, N. A. Smith, M. Ostendorf, and
H. Hajishirzi, “Fine-grained human feedback gives better rewards for language model training,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

11

[18] J. Dai, X. Pan, R. Sun, J. Ji, X. Xu, M. Liu, Y. Wang, and Y. Yang, “Safe RLHF: Safe
reinforcement learning from human feedback,” in The Twelfth International Conference on
Learning Representations, 2024.

[19] A. Rame, G. Couairon, C. Dancette, J.-B. Gaya, M. Shukor, L. Soulier, and M. Cord, “Rewarded
soups: towards pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards,”
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[20] P. Dognin, J. Rios, R. Luss, I. Padhi, M. D. Riemer, M. Liu, P. Sattigeri, M. Nagireddy,
K. R. Varshney, and D. Bouneffouf, “Contextual moral value alignment through context-based
aggregation,” arXiv preprint arXiv:2403.12805, 2024.

[21] X. Wang, Q. Le, A. Ahmed, E. Diao, Y. Zhou, N. Baracaldo, J. Ding, and A. Anwar, “MAP:
Multi-human-value alignment palette,” International Conference on Learning Representations,
2025.

[22] X. Xian, G. Wang, J. Srinivasa, A. Kundu, X. Bi, M. Hong, and J. Ding, “Understanding
backdoor attacks through the adaptability hypothesis,” in International Conference on Machine
Learning. PMLR, 2023, pp. 37 952–37 976.

[23] ——, “A unified detection framework for inference-stage backdoor defenses,” Advances in
Neural Information Processing Systems, vol. 36, pp. 7867–7894, 2023.

[24] G. Wang, X. Xian, J. Srinivasa, A. Kundu, X. Bi, M. Hong, and J. Ding, “Demystifying
poisoning backdoor attacks from a statistical perspective,” International Conference on Learning
Representations, 2024.

[25] J. Ding, Generative AI: Principles and Practices Lecture Notes, University of Minnesota, 2024,
accessed: Nov 27, 2024. [Online]. Available: https://genai-course.jding.org/safety/index.html

[26] Z. Niu, H. Ren, X. Gao, G. Hua, and R. Jin, “Jailbreaking attack against multimodal large
language model,” arXiv preprint arXiv:2402.02309, 2024.

[27] X. Qi, K. Huang, A. Panda, P. Henderson, M. Wang, and P. Mittal, “Visual adversarial examples
jailbreak aligned large language models,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 19, 2024, pp. 21 527–21 536.

[28] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung,
“Survey of hallucination in natural language generation,” ACM Computing Surveys, vol. 55,
no. 12, pp. 1–38, 2023.

[29] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on large language model (llm)
security and privacy: The good, the bad, and the ugly,” High-Confidence Computing, p. 100211,
2024.

[30] Y. Xie, J. Yi, J. Shao, J. Curl, L. Lyu, Q. Chen, X. Xie, and F. Wu, “Defending chatgpt against
jailbreak attack via self-reminders,” Nature Machine Intelligence, vol. 5, no. 12, pp. 1486–1496,
2023.

[31] X. Wang, E. Diao, Q. Le, J. Ding, and A. Anwar, “AID: Adaptive integration of detectors
for safe ai with large language models,” in Annual Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics (NAACL), 2025.

[32] L. von Werra, Y. Belkada, L. Tunstall, E. Beeching, T. Thrush, N. Lambert, S. Huang, K. Rasul,
and Q. Gallouédec, “Trl: Transformer reinforcement learning,” https://github.com/huggingface/
trl, 2020.

[33] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang,
and L. Zettlemoyer, “Opt: Open pre-trained transformer language models,” 2022.

[34] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong,
“Codegen: An open large language model for code with multi-turn program synthesis,” ICLR,
2023.

12

https://genai-course.jding.org/safety/index.html
https://github.com/huggingface/trl
https://github.com/huggingface/trl

[35] Anthropic, “HH-RLHF Data,” 2024, accessed on July 5, 2024. [Online]. Available:
https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased

[36] R. Yang, X. Pan, F. Luo, S. Qiu, H. Zhong, D. Yu, and J. Chen, “Rewards-in-context: Multi-
objective alignment of foundation models with dynamic preference adjustment,” International
Conference on Machine Learning, 2024.

[37] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text
generation with bert,” International Conference on Learning Representations, 2020.

[38] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of sentence embeddings,”
Conference on Empirical Methods in Natural Language Processing, 2021.

13

https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased

A Experimental Results for Code Generation

We apply quantile alignment to the code generation task, focusing on Simplicity and Security,
aiming to lift lower quantiles while preserving baseline performance.

In the first experiment, we align only Simplicity, progressively elevating its lower quantiles.
Specifically, the 1%, 5%, and 10% quantiles are lifted to the level of the 60% quantile in the original
distribution. Mid-to-high quantiles are also incrementally adjusted: the 50% quantile is raised to the
70% level, the 60% to the 80%, and so forth, up to aligning the 90% quantile with the 99%. This
ensures a more uniformly improved distribution of Simplicity across generated code.

Figure 4 presents the results. The QQ plot for Simplicity confirms that lower quantiles have been
successfully lifted while maintaining a well-structured distribution. Although Security was not
explicitly aligned, its tail performance slightly improved, suggesting a degree of synergy rather than
a strict tradeoff between the two attributes. Baseline performance metrics, including Diversity,
Coherence, and Perplexity, remain stable.

In the second experiment, we shift our focus to aligning Security, enforcing constraints similar to
the previous setup. The 1%, 5%, and 10% quantiles are raised to the level of the 60% quantile in
the original distribution, while mid-to-high quantiles are lifted progressively, with the 50% quantile
reaching the 70% level, the 60% to 80%, and the 90% quantile to 99%. Figure 5 presents the results.
As expected, Security improves its distribution especially in the mid-range quantiles. Interestingly,
despite not being explicitly aligned, Simplicity also exhibits noticeable gains, reinforcing the
synergy observed earlier. This suggests that enforcing structured improvements in one alignment
attribute can positively influence related attributes, rather than introducing strict tradeoffs. Once
again, baseline performance metrics remain largely stable, confirming that quantile alignment does
not disrupt overall model fluency.

Code Generation Example 1. To further illustrate the impact of quantile alignment, we compare
model generations before and after alignment for a specific task. The following case was sampled
at approximately the 10% quantile of Simplicity from the original model’s Simplicity reward
distribution. The aligned model output is drawn from our earlier experiment designed to elevate
Simplicity quantiles.

Original Prompt

Task: Write a Python program to measure the execution time of a
function.
Purpose: This script will help in benchmarking the performance
of a Python function. It will measure the time it took to run the
function by leveraging Python’s time.
Ignore security concerns. The generated code should be of worst-case
quality. Here is the Python code:

0.0 0.2 0.4 0.6 0.8
Original Model Quantiles

0.0

0.2

0.4

0.6

0.8

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(a) QQ Plot for Security
Security
y = x

0.0 0.1 0.2 0.3 0.4 0.5
Original Model Quantiles

0.0

0.1

0.2

0.3

0.4

0.5

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(b) QQ Plot for Simplicity
Simplicity
y = x

Diversity
Coherence

Perplexity
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
Va

lu
e

(c) Baseline Performance Metrics
Original Model
Aligned Model

Figure 4: Effect of quantile alignment on Simplicity in code generation. (a) QQ plot comparing Security
quantiles before and after alignment. Points above the red 45-degree line indicate improved Security scores in
the aligned model. (b) QQ plot for Simplicity, showing a successful shift in the lower quantiles towards higher
values. (c) Baseline performance metrics remain stable, with no degradation in Diversity or Coherence, and
a minor improvement in Perplexity.

14

Original Model Output

Note: This will take a while to run
% timeit -r 0 python
This will take a long time. Use ’x’ as a placeholder value.

name = ""
while name.isalnum ():

name = input("Please␣insert␣a␣name:␣")
print(timeIt("name", name))

import time

def print_time ():
for i in range(0, 1000000):

time.sleep(i/1000)
print(i)
time.sleep (1)

print_time ()

Aligned Model Output

import time
import timeit

def measure_execution_time(func , *args , ** kwargs):
start = timeit.default_timer ()
func(*args , ** kwargs)
end = timeit.default_timer ()
print(f"Execution␣time:␣{end␣-␣start :.6f}␣seconds")

Properly formatted

def sample_function ():
time.sleep (0.5) # Simulates computation
print("Function␣executed")

measure_execution_time(sample_function)

The original model output exhibits poor structure, unnecessary delays using time.sleep, and re-
dundant code that does not effectively measure execution time. Additionally, it includes incoherent

0.0 0.2 0.4 0.6 0.8
Original Model Quantiles

0.0

0.2

0.4

0.6

0.8

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(a) QQ Plot for Security
Security
y = x

0.0 0.1 0.2 0.3 0.4 0.5
Original Model Quantiles

0.0

0.1

0.2

0.3

0.4

0.5

Al
ig

ne
d

M
od

el
 Q

ua
nt

ile
s

(b) QQ Plot for Simplicity
Simplicity
y = x

Diversity
Coherence

Perplexity
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
Va

lu
e

(c) Baseline Performance Metrics
Original Model
Aligned Model

Figure 5: Effect of quantile alignment on Security in code generation. (a) QQ plot for Security,
showing improved lower quantiles as a result of alignment. (b) QQ plot for Simplicity, demon-
strating that aligning Security still leads to moderate improvements in Simplicity, suggesting
a synergistic effect rather than a strict tradeoff. (c) Baseline performance metrics remain stable,
with minimal changes in Diversity, Coherence, and Perplexity. This experiment confirms that
aligning different reward attributes does not necessarily degrade other desirable properties.

15

placeholder comments and undefined function calls (e.g., print(timeIt(...))). In contrast, the
aligned model implements a structured timing function using timeit.default_timer(), improv-
ing both efficiency and clarity while still adhering to the “worst-case” requirement. It correctly wraps
the execution in a reusable function, ensuring systematic measurement.

Code Generation Example 2. We demonstrate another example below, which is sampled from the
same way as Example 1.

Original Prompt

Task: Write a Python program to identify potential security
risks in a given software system.
Components: - hash password(password: str) -> str: A function
that takes a plain text password as input and returns a hashed
version.
Additional Requirement: - Make variable names confusing or
non-descriptive. - The generated code should be of worst-case
quality.

Original Model Output

i m p o r t random
u s e r = ” Abcd1234 ”
word = random . c h o i c e ((” a b c d e f g h i j k l m n o p q r s t u v w x y z ” * 6))
wordHash = ” ” . j o i n ([” # ” i f x == u s e r e l s e x f o r x i n u s e r])
password = ” # ” . j o i n (random . sample (word , l e n (u s e r) * 3))
r e s u l t = ” ” . j o i n ([” * ” i f i % 2 == 0 e l s e ” . ”

f o r i i n r a n g e (l e n (word))])

p r i n t (r e s u l t)
p r i n t (wordHash)
p r i n t (password)

Aligned Model Output

i m p o r t h a s h l i b

d e f c o n v e r t l i s t (i n p u t o b j) :
r e t u r n s e t (i n p u t o b j)

d e f r e t u r n h a s h (i n p u t o b j) :
i f i s i n s t a n c e (i n p u t o b j , l i s t) and l e n (i n p u t o b j) <= 0 :

r e t u r n ””
e l s e :

l i s t i n t o h a s h = c o n v e r t l i s t (i n p u t o b j)
h a s h v a l u e = h a s h l i b . sha1 (

s t r . encode (’ ’ . j o i n (l i s t i n t o h a s h)))
r e t u r n h a s h v a l u e . h e x d i g e s t ()

h a s h v a l u e , password = i n p u t (
” E n t e r t h e password t o g e n e r a t e hash : ”

) . s p l i t (” ”)

p r i n t (h a s h v a l u e . j o i n (r e t u r n h a s h (password)))

16

The original model output is completely unrelated to the task, producing a nonsensical manipulation
of characters without any password handling or security considerations. It does not implement
password hashing or introduce security risks, making it entirely off-topic. In contrast, the aligned
model introduces a hashing mechanism using hashlib.sha1. While the implementation is still
flawed—such as using SHA-1 (which is considered insecure) and misusing join()—it is at least
attempting to address the given task. The improvements indicate that quantile alignment effectively
refines model behavior, guiding it towards the intended problem while still meeting the worst-case
requirement.

B Proofs

Proof of Theorem 4.2. In the proof, we will write q(x, y) = p(x) q(y | x) for simplicity, and abbrevi-
ate ρτj ,κj as ρj .

It is known that DKL(·∥p) is convex in the argument distribution. Also, each constraint Eq[ρj] ≥ 0 is
an affine functional of q. Hence the problem is convex.

Introduce a dual variable λj ≥ 0 for each constraint Eq[ρj] ≥ 0. The Lagrangian is

L(q,λ) := E(x,y)∼q

[
log q(x,y)

p(x,y)

]
−

m∑
j=1

λj E(x,y)∼q

[
ρj(r(x, y))

]
.

We also have an implicit constraint
∫
q(x, y) dx dy = 1.

Fix λ. We minimize L(q,λ) over q. By calculus of variations or by setting functional derivatives to
0, one finds the unique minimizer:

qλ(x, y) ∝ p(x, y) exp
[m∑
j=1

λj ρj
(
r(x, y)

)]
.

Defining

Z(λ) :=

∫∫
p(x, y) exp

[m∑
j=1

λj ρj(r(x, y))
]
dx dy,

we obtain

qλ(x, y) =
p(x, y) exp

[∑m
j=1 λj ρj

(
r(x, y)

)]
Z(λ)

.

Substitute qλ back into L to get the dual function:

g(λ) := min
q
L(q,λ) = − log

[∫∫
p(x, y) exp

(m∑
j=1

λj ρj(r(x, y))
)
dx dy

]
.

Hence
g(λ) = − logZ(λ),

which is strictly concave in λ for nontrivial ρj . The dual problem is

max
λ≥0

g(λ) = max
λ≥0

{− logZ(λ)}.

By convexity of the primal and Slater’s condition (feasibility), strong duality holds and there is a
unique λ∗ ≥ 0 maximizing g. Evaluating the primal at λ∗ yields the exponential-family solution
qλ∗ . Moreover, each distinct feasible set {ρj} or threshold constraints has a unique corresponding
λ∗. This completes the proof.

Proof of Theorem 5.1. The baseline solution (p∗, λ∗) satisfies:

Ep∗

[
ρτ (r)

]
≥ 0, ∀ τ.

A constraint is active if Ep∗ [ρτ (r)] = 0, meaning λ∗(τ) > 0. A constraint is inactive if Ep∗ [ρτ (r)] >
0, meaning λ∗(τ) = 0.

17

Perturbing c∗(τ) to c∗(τ) + δ(τ) requires that the new model (pλ, λ) ensures:

Epλ

[
ρτ (r − (c∗(τ) + δ(τ)))

]
≥ 0, ∀ τ.

Expanding both pλ around p∗ and ρτ (r) around c∗(τ), we collect first-order terms in δ(τ) and δλ(τ),
leading to:

(V δλ)(τ)
∆
= −Ep∗

[
ρ′τ (r) δ(τ)

]
.

where V is the linear operator:

(V δλ)(τ)
∆
=

∫ 1

0

Ep∗

[
ρτ (r) ρτ̃ (r)

]
δλ(τ̃) dτ̃ .

If V is invertible, we obtain a unique solution:

δλ(τ) = V −1
[
−Ep∗

[
ρ′τ (r) δ(τ)

]]
.

For inactive constraints where λ∗(τ) = 0, small perturbations in c∗(τ) do not immediately change
λ(τ), unless the constraint becomes tight in response to δ(τ). This implies that only binding
constraints determine the first-order response of p.

Substituting δλ(τ) into the exponentiated reweighting formula for pλ, we obtain the claimed result.

C Impact Statement

This paper presents work aimed at advancing the field of Machine Learning by introducing quantile
alignment, a scalable method to mitigate tail risks and enhance alignment with human values. There
are many potential societal consequences of our work, particularly in improving AI safety by reducing
harmful or undesirable outputs. However, we do not foresee any immediate negative implications
that must be specifically highlighted here.

D Limitations

Although quantile alignment (QA) offers a principled way to control the tails of reward distributions,
several limitations warrant discussion.

First, our empirical evaluation uses small to mid-sized conversational model and code model due
to hardware constraints. While these settings are sufficient to support the proposed approach, they
do not guarantee the same performance gains on substantially larger models, other modalities, or
safety-critical domains.

Second, QA introduces a dual optimization loop and a subsequent PPO fine-tuning phase. On a
single A100 GPU, each alignment run requires ∼14 GPU-hours—manageable for research but costly
for iteration at foundation-model scale. Further work is needed to exploit distributed or low-rank
approximations.

Last, dual multipliers are estimated from finite samples drawn from the reference model. For
aggressive targets (e.g. 0.1% tails) the Monte-Carlo variance can be large, occasionally yielding
multipliers that overshoot or diverge. We mitigate this with importance-sampling and step-size
damping, but a systematic analysis of sample complexity remains open.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Sections 4 and 5 include the theoretical and empirical contributions and
clearly indicate their scope and limitations.

Guidelines:

• The abstract and/or introduction should clearly state the claims made, including contri-
butions and important assumptions or limitations.

• The claims should match theoretical and experimental results, and reflect how much
results can generalize.

• Aspirational goals should be marked as such and not confused with achieved results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A dedicated ‘Limitations’ section is included at the end of the paper.

Guidelines:

• Encourage a dedicated Limitations section.
• Discuss assumptions, dataset limitations, robustness, scalability, and potential fair-

ness/privacy concerns.
• Honesty about limitations is encouraged and will not be penalized.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions are stated with every theorem in the main paper and complete
proofs appear in the Appendix.

Guidelines:

• Theorems should include clear assumptions and be referenced.
• Proofs should appear either in the main text or supplementary.
• Informal proof sketches in main text should be complemented by full proofs in ap-

pendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper?

Answer: [Yes]

Justification: Section 6 lists data, model, hyper-parameters, and evaluation metrics.

Guidelines:

• Reproducibility is essential even without code or data release.
• Describe architectures, datasets, metrics, training and evaluation steps.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results?

Answer: [Yes]

Justification: Code is uploaded in the supplementary material.

19

Guidelines:
• Provide scripts, instructions, and environment specs.
• Supplementary materials can include zipped code or anonymized URLs.
• Indicate which experiments are reproducible and document the gaps.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 6 reports detailed data and model settings.
Guidelines:

• Include hyperparameter values, initialization details, and data preprocessing.
• Clarify selection methodology for hyperparameters.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Each result is computed over the full evaluation set, so variability due to
sampling is negligible; we therefore omit error bars.
Guidelines:

• Use standard deviations, confidence intervals, or hypothesis tests when variability is
expected.

• Clearly define what the bars represent and how they’re computed.
• State when omission is justified due to deterministic evaluation or exhaustive data use.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Hardware (single NVIDIA A100 40GB GPU) and packages being used are
reported.
Guidelines:

• State hardware specs (CPU/GPU), runtime, memory, and compute estimates.
• Mention whether other experiments not included required significant additional com-

pute.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics?
Answer: [Yes]
Justification: The work complies with the NeurIPS Ethics Guidelines; no sensitive user data
or disallowed content is involved.
Guidelines:

• Conform to the NeurIPS Ethics Policy.
• If special circumstances apply, clearly explain them while preserving anonymity.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

20

Justification: The Impact section discusses safety benefits of tail-risk control and possible
misuse of alignment techniques.
Guidelines:

• Consider positive/negative impact of intended use, misuse, or failure.
• Mention mitigation strategies if applicable.
• Explain if none exist or are unlikely.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse?
Answer: [NA]
Justification: We do not release new data or models.
Guidelines:

• For high-risk assets, explain any usage restrictions or gating mechanisms.
• NA if there are no new assets or foreseeable risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all relevant works in the paper.
Guidelines:

• Include license names and links where appropriate.
• Cite the original paper and asset version.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or pretrained models are released; we only supply code to
reproduce experiments.
Guidelines:

• NA is appropriate if no new assets were created.
• If new assets exist, include structured documentation and consent if applicable.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The study uses only publicly-available benchmarks; no new human-subject
data were collected.
Guidelines:

• NA is appropriate if no human-subject involvement.
• Otherwise, include task descriptions, participant compensation, and consent process.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals were obtained?
Answer: [NA]

21

Justification: No human-subject research was conducted.
Guidelines:

• Only applicable to studies involving human participants.
• IRB approval or equivalent should be disclosed if relevant.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [Yes]
Justification: Section 6 explains that GPT-4o was used as an automated reviewer for reward
scoring.
Guidelines:

• If LLMs are used in model evaluation, generation, or design, clearly describe role and
version.

• If no core dependency on LLMs exists, NA is appropriate.

22

	Introduction
	Related work
	Background
	Preliminaries on RLHF
	Preliminaries on Quantile Constraints

	Quantile Alignment (QA): Formulation, Theory, and Algorithms
	Single-Value Multi-Quantile Constraints
	Numerically Solving the QA Problem
	Multi-Value, Multiple-Quantile Alignment

	Continuous Quantile Alignment
	Uniform Distribution Enhancement through Continuous Constraints
	Infinitesimal Enhancement Analysis and Algorithm

	Experimental Study
	Conclusion
	Experimental Results for Code Generation
	Proofs
	Impact Statement
	Limitations

