

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRIBE: TRI-COMPONENT INFORMATION DECOMPOSITION FOR GRAPH OUT-OF-DISTRIBUTION DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph neural networks are widely used for node classification, but they remain vulnerable to out-of-distribution (OOD) shifts in node features and graph structure. Prior work established that methods trained with standard supervised learning (SL) objectives tend to capture spurious signals from either features and/or structure, leaving the model fragile under distributional changes. To address this, we propose TRIBE, a **novel and effective Tri-Component Information Decomposition** framework that **explicitly decomposes information** into *feature-specific*, *structure-specific* and *joint* components. TRIBE aims to preserve only the label-relevant component of the joint information while filtering out spurious feature- and structure-specific information, thereby enhancing the separation between in-distribution (ID) and OOD data. Technically, we develop a novel optimisation pipeline that integrates a graph Information Bottleneck (IB) objective with carefully designed regularisations. Beyond the framework, we provide theoretical and empirical analysis showing the superiority of IB in OOD detection, with higher ID confidence and a greater entropy gap between ID and OOD data compared to the typical SL objective. Extensive experiments across seven datasets confirm the efficacy of TRIBE, achieving up to 34% improvement in FPR95 over strong baselines while maintaining competitive ID accuracy. Code will be released upon acceptance.

1 INTRODUCTION

Graph neural networks (GNNs) have become a dominant approach for node classification across real-world domains; however, they remain vulnerable to out-of-distribution (OOD) shifts in node features and/or graph structure, limiting reliable deployment in real-world applications (Li et al., 2022a; Wu et al., 2023b; Gui et al., 2022; Yang et al., 2022; Shen et al., 2024; Giuffrè & Shung, 2023). For instance, in biomedical graphs, node features like biomarkers may correlate with health outcomes in one hospital but shift in another, degrading performance despite stable patient-symptom links (**feature shift**). In e-commerce graphs, co-purchase links may change as shopping patterns evolve, even when product attributes remain stable (**structural shift**). In social networks, new communities can introduce both novel posting behaviours (features) and friendship links (structure), leading to simultaneous changes in features and structure signals (**joint shift**) (Wang et al., 2025b).

Given these challenges, OOD detection has become a key priority for identifying nodes beyond the in-distribution (ID) training data (Lang et al., 2023; Zhou et al., 2022; Bazhenov et al., 2022). Existing graph OOD detectors generally address shifts by enforcing invariant node representations via tailored objectives or augmentations, applying topology-aware metrics to capture node irregularities (Li et al., 2022b; Song & Wang, 2022; Bao et al., 2024), or using post-hoc scoring functions to separate ID from OOD nodes (Wang et al., 2021; Liu et al., 2020; Wu et al., 2023b; Hendrycks & Gimpel, 2017; Hendrycks et al., 2022; Lee et al., 2018b). Others incorporate contrastive or exposure-style objectives when auxiliary OOD data is available (Hendrycks et al., 2019; Yang et al., 2024b).

While effective, existing approaches mainly rely on a **mixed representation of a graph's features and structure**, without adequately addressing individual contributions from features \mathbf{X} or structure \mathbf{A} (Wu et al., 2023b). This mixed representation corresponds to the node embeddings $\mathbf{Z} = f(\mathbf{X}, \mathbf{A})$ learned by a GNN f via a standard supervised learning (SL) objective. As shown in Figure 1, the representation (**red dotted circle**) mixes label-irrelevant information (shaded area) with three label-

related signals: the **feature-specific signal** that depends only on \mathbf{X} , the **structure-specific signal** from \mathbf{A} , and the **joint-input signal** from the synergy of features and structure. While all three signals appear predictive in ID classification, prior work has shown that feature-only and structure-only signals often reflect spurious correlations with the label, which become problematic under distribution shifts (Chen et al., 2023; 2024; Fan et al., 2024). For instance, under data having feature shifts but ID-like structures, $(\mathbf{X}_{\text{OOD}}, \mathbf{A}_{\text{ID}})$, a model exploiting spurious structure-label correlations may confidently misclassify OOD data as ID; similarly, under structure shifts but ID-like features, $(\mathbf{X}_{\text{ID}}, \mathbf{A}_{\text{OOD}})$, reliance on feature-only correlations again leads to overconfident class prediction that fails to be detected. In contrast, the joint-input signal reveals distribution shifts more easily via mismatches between features and structure during encoding. Thus, OOD detection can fail under supervised learning when the model abuses spurious correlations from individual inputs (e.g., \mathbf{X} or \mathbf{A}) instead of using the more shift-indicative joint-input information.

To ideally handle real-world distribution shifts, **an effective graph OOD detector should prioritise the joint-input label-relevant information as the main predictive signal, while filtering out the feature- and structure-specific spurious correlations**. Figure 1 illustrates this motivation: while SL mixes feature-only, structure-only, and joint signals as well as the label-irrelevant information in the shaded area (red dotted circle), compressing the learned representation toward the triangle-like overlap (red solid triangle) to preserve only the joint-input signals can effectively identify the OOD data in graphs. To achieve this, we propose TRIBE, a Tri-Component Information Decomposition framework. Unlike prior OOD detection methods that mix the feature and structure information as a single unified signal, TRIBE guides learning toward the ideal joint-input triangular region by explicitly decomposing label information $I(\mathbf{X}, \mathbf{A}; \mathbf{Y})$ into: **feature-specific information** $I(\mathbf{X}; \mathbf{Y}|\mathbf{Z})$, **structure-specific information** $I(\mathbf{A}; \mathbf{Y}|\mathbf{Z})$, and **joint-input information** $I(\mathbf{Z}; \mathbf{Y})$. We design tailored networks and regularisations to preserve the joint-input signals while suppressing the individual-input components (indicated by the left and right arrows \rightarrow). Additionally, an information bottleneck (IB) objective is employed to filter out the label-irrelevant noise (indicated by the upward arrow \uparrow), producing a compact and shift-indicative representation. We further provide theoretical insights showing that, compared to SL, IB promotes higher ID confidence and more reliable separation between ID and OOD samples for logit-based detection. Thus, our **contributions** are threefold:

1. **Methodological:** We propose TRIBE, a novel *tri-component information decomposition* framework for graph OOD detection, that explicitly decomposes predictive information into *feature-specific*, *structure-specific*, and *joint* components, and introduces conditional-independence and pairwise mutual-information regularisations, along with an IB objective to filter out label-irrelevant and spurious correlations.
2. **Theoretical:** We prove that IB increases ID confidence and enlarges the entropy gap between ID and OOD compared to standard SL, thereby improving logit-based OOD detection.
3. **Empirical:** On seven real-world and synthetic graph datasets, TRIBE achieves up to **34% improvement in FPR95** over strong baselines while maintaining competitive ID accuracy.

2 RELATED WORK

Graph OOD detection builds on several lines of research. 1) **Scoring-based methods** rely on ID data to design OOD scores (Lee et al., 2018a; Koo et al., 2024; Ding & Shi, 2023; Ma et al., 2023; Liu

108 et al., 2023; Hendrycks & Gimpel, 2017). **2) OOD exposure approaches** incorporate auxiliary OOD
 109 data during training for improved detection (Hendrycks et al., 2019; Liu et al., 2020; Park et al., 2023;
 110 Zhu et al., 2023; Yang et al., 2024b; Bao et al., 2024). **3) IB principle** has been applied to image and
 111 graph representation learning (Wu et al., 2020; Alemi et al., 2017; Tishby et al., 2000), but its role in
 112 OOD detection has mainly been studied in Euclidean domains (Hu et al., 2024; Zhao & Cao, 2023;
 113 Li et al., 2023b; Wu & Deng, 2024). Prior work analysed “overconfidence” only under the standard
 114 supervised objective ($\max I(\mathbf{Z}; \mathbf{Y})$) (Hu et al., 2024), whereas our **theoretical contribution** (Sec. 5)
 115 shows how the full IB objective improves both ID confidence and logit-based OOD detection – a
 116 gap unaddressed in earlier studies (Hu et al., 2024; Alemi et al., 2018). **4) Graph-specific methods**
 117 include GNNSAFE/++ with propagation-based detection (Wu et al., 2023b), NODESAFE/++ with
 118 constrained energy scores (Yang et al., 2024b), DeGEM with multi-hop energy-based modelling for
 119 heterophilic graphs (Chen et al., 2025), and GOLD with pseudo-OOD embedding synthesis (Wang
 120 et al., 2025a). Due to space constraint, a detailed review is provided in Appendix G.

3 PRELIMINARY

124 **Node Classification and Graph Representation.** For node classification, a graph is typically
 125 represented as $\mathcal{G} = (\mathbf{X}, \mathbf{A})$. Here, $\mathbf{X} \in \mathbb{R}^{n \times d}$ denotes the node feature matrix, where n is the number
 126 of nodes and d is the feature dimension. The adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ captures the connections
 127 between nodes. Each node i is associated with a label $y_i \in \{1, 2, \dots, C\}$, where C represents the
 128 total number of classes. In this paper, we focus on two tasks:

129 **Task 1: In-distribution Classification.** Given test nodes from the same distribution as training
 130 ($P_{train}(\mathbf{X}, \mathbf{A}) = P_{test}(\mathbf{X}, \mathbf{A})$ and $P_{train}(\mathbf{y}|\mathbf{X}, \mathbf{A}) = P_{test}(\mathbf{y}|\mathbf{X}, \mathbf{A})$), the goal is to train an L -layer
 131 GNN to predict node labels $\mathbf{y} \in \mathbb{R}^n$ (refer to Appendix C for further details on GNN):

$$\mathbf{y} = \text{Softmax}(\text{GNN}(\mathbf{X}, \mathbf{A})).$$

134 **Task 2: Out-of-distribution Detection.** Here, the objective is to identify test nodes from a dif-
 135 ferent distribution ($P_{train}(\mathbf{X}, \mathbf{A}) \neq P_{test}(\mathbf{X}, \mathbf{A})$ or $P_{train}(\mathbf{y}|\mathbf{X}, \mathbf{A}) \neq P_{test}(\mathbf{y}|\mathbf{X}, \mathbf{A})$). This is
 136 formulated by an OOD detector F with scoring function S and threshold τ :

$$F(\mathbf{x}, \mathbf{A}; \text{GNN}) = \begin{cases} \text{OOD}, & S(\mathbf{x}, \mathbf{A}; \text{GNN}) \geq \tau, \\ \text{ID}, & S(\mathbf{x}, \mathbf{A}; \text{GNN}) < \tau. \end{cases} \quad (1)$$

140 Extended definitions for structure, feature, joint, and label shifts are in Appendix H (Gui et al., 2022).

141 **Energy-Based OOD Detection.** The energy score was proposed as an effective scoring function for
 142 distinguishing OOD from ID samples (Liu et al., 2020). For a node i , the energy score is:

$$S(\mathbf{x}_i, \mathbf{A}; \text{GNN}) = e_i = -\log \sum_{c=0}^{C-1} \exp(\ell_{i,c}), \quad (2)$$

146 where $e_i \in \mathbb{R}$ indicates the energy score, $\ell_i \in \mathbb{R}^C$ are the logits from $\text{GNN}(\mathbf{X}, \mathbf{A})$. GNNSAFE (Wu
 147 et al., 2023b) adapts this to graphs via energy propagation:

$$\mathbf{e}^{(k)} = \alpha \mathbf{e}^{(k-1)} + (1 - \alpha) \mathbf{D}^{-1} \mathbf{A} \mathbf{e}^{(k-1)}, \quad (3)$$

149 where α controls propagation and \mathbf{D} is the degree matrix. For OOD exposure, (Liu et al., 2020)
 150 further introduces energy regularisation to separate ID and OOD scores with thresholds t_{ID} and t_{OOD} :

$$\max \mathcal{L}_{\text{EReg}}, \text{ where } \mathcal{L}_{\text{EReg}} = \mathbb{E}_{i \sim P_{ID}} [\max(0, t_{ID} - e_i)]^2 + \mathbb{E}_{j \sim P_{OOD}} [\max(0, e_j - t_{OOD})]^2. \quad (4)$$

4 METHOD

154 **Motivation.** Graph data is inherently multi-modal with node features \mathbf{X} and graph structure \mathbf{A} .
 155 A key challenge, however, is that the typical SL objective does not distinguish whether predictive
 156 signals arise jointly from (\mathbf{X}, \mathbf{A}) or from individual inputs. As illustrated in Figure 1, this mixture
 157 of information (dotted circle) means standard SL-trained models may rely on spurious correlations
 158 from an individual input, which can be predictive under ID but mislead detection under shifts (Li
 159 et al., 2023a). Thus, our aim is to learn the desired label-relevant joint signal while filtering out the
 160 label-irrelevant and spurious feature-/structure-only cues, as in Figure 1’s solid triangle region.

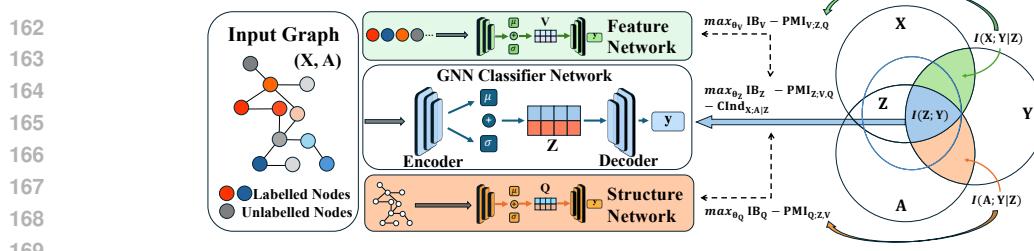


Figure 2: Framework of TRIBE: an information decomposition approach that preserves joint label-relevant information in \mathbf{Z} while suppressing spurious feature-only (\mathbf{V}) and structure-only (\mathbf{Q}) signals.

In light of this, we propose TRIBE, a novel graph-tailored tri-component decomposition that separates label-relevant information into joint, feature-specific, and structure-specific components (Figure 2). The central idea is that the joint-input representation \mathbf{Z} should capture the stable interactions between \mathbf{X} and \mathbf{A} , while auxiliary networks isolate feature-only \mathbf{V} and structure-only \mathbf{Q} signals. Training is guided by novel regularisers and an IB objective to disentangle the three components and suppress irrelevant signals, ensuring \mathbf{Z} remains focused on the desired label-relevant joint information. In the following sections, we present our **novel tri-component information decomposition paradigm** (Section 4.1) and propose the TRIBE framework (Section 4.2).

4.1 INFORMATION BASED DECOMPOSITION PARADIGM

To begin, we formalise the relationship between inputs, encoded representation, and labels as follows.

Proposition 4.1. (Information-Preserving Representation Property)

Given a representation \mathbf{Z} encoded from inputs (\mathbf{X}, \mathbf{A}) by a network f parametrised by θ , and is maximised for predicting label \mathbf{Y} , we have $I(\mathbf{Z}; \mathbf{Y}|\mathbf{X}, \mathbf{A}) = 0$ and $I(\mathbf{X}, \mathbf{A}; \mathbf{Y}) = I(\mathbf{X}, \mathbf{A}, \mathbf{Z}; \mathbf{Y})$.

Here, $I(\mathbf{X}, \mathbf{A}; \mathbf{Y})$ represents the maximum information that we have about the prediction of \mathbf{Y} given inputs (\mathbf{X}, \mathbf{A}) . Proposition 4.1 thus states that \mathbf{Z} cannot contain more information about \mathbf{Y} than is already present in (\mathbf{X}, \mathbf{A}) . The proof is provided in Appendix B.1. This leads to the decomposition:

$$I(\mathbf{X}, \mathbf{A}; \mathbf{Y}) = I(\mathbf{X}, \mathbf{A}, \mathbf{Z}; \mathbf{Y}) = I(\mathbf{Z}; \mathbf{Y}) + \underbrace{I(\mathbf{X}, \mathbf{A}; \mathbf{Y}|\mathbf{Z})}_{\text{residual}}, \quad (5)$$

where the last term represents residual label information not captured by \mathbf{Z} . To isolate input-specific signals, this residual in Eq. 5 can be further decomposed into features and structure contributions:

$$I(\mathbf{X}, \mathbf{A}; \mathbf{Y}) = I(\mathbf{Z}; \mathbf{Y}) + \underbrace{I(\mathbf{X}; \mathbf{Y}|\mathbf{Z})}_{\text{residual}} + I(\mathbf{A}; \mathbf{Y}|\mathbf{Z}, \mathbf{X}). \quad (6)$$

To effectively decouple \mathbf{X} and \mathbf{A} , we enforce a conditional independence constraint $\mathbf{A} \perp\!\!\!\perp \mathbf{X} | \mathbf{Z}$, which is not a restrictive dataset assumption but a modelling objective. More discussions can be found in the framework realisation in Sec 4.2 below. This constraint guides \mathbf{Z} to retain all label-relevant joint information while reducing residual dependence between \mathbf{X} and \mathbf{A} :

$$p(\mathbf{X}, \mathbf{A}|\mathbf{Z}) = p(\mathbf{X}|\mathbf{Z})p(\mathbf{A}|\mathbf{Z}). \quad (7)$$

Thus, following Eq. 6, the mutual information between (\mathbf{X}, \mathbf{A}) and \mathbf{Y} is:

$$I(\mathbf{X}, \mathbf{A}; \mathbf{Y}) = \underbrace{I(\mathbf{Z}; \mathbf{Y})}_{\text{joint}} + \underbrace{I(\mathbf{X}; \mathbf{Y}|\mathbf{Z})}_{\text{feature}} + \underbrace{I(\mathbf{A}; \mathbf{Y}|\mathbf{Z})}_{\text{structural}}. \quad (8)$$

This illustrates our tri-component information decomposition paradigm in Figure 1. By separating label information into **feature**, **structure**, and **joint** components, we obtain a compact, robust joint representation \mathbf{Z} for predicting \mathbf{Y} , free of spurious correlations from individual inputs.

4.2 TRIBE FRAMEWORK

The decomposition described in Eq. 8 motivates the design of TRIBE for OOD detection. Rather than relying on a single representation, we explicitly introduce three respective modules to realise the decomposition, as shown in Figure 2: (1) The **joint** encoder $\mathbf{Z} = f(\mathbf{X}, \mathbf{A})$ serves as **the primary encoder network for both classification and OOD detection**, capturing joint-input label-relevant

information between \mathbf{X} , \mathbf{A} and \mathbf{Y} . By focusing on the joint-input correlations, the model becomes more sensitive to shifts, making OOD cases (e.g., $(\mathbf{X}_{\text{OOD}}, \mathbf{A}_{\text{ID}})$) more distinguishable from ID. (2) The **feature-specific** network $\mathbf{V} = g_{\mathbf{X}}(\mathbf{X})$ is used to isolate residual information that remains specific to \mathbf{X} , and (3) the **structure-specific** network $\mathbf{Q} = g_{\mathbf{A}}(\mathbf{A})$ isolates residual information specific to \mathbf{A} . These **two auxiliary networks mitigate the spurious individual-input correlations for predicting the label within the input graph data** that drives detection-errors, enabling more effective detection of **structural- and/or feature-driven shifts**. Given the three networks, the information-based decomposition paradigm in Eq. 8 can be realised as:

$$I(\mathbf{X}, \mathbf{A}; \mathbf{Y}) = I(\mathbf{Z}; \mathbf{Y}) + I(\mathbf{V}; \mathbf{Y}) + I(\mathbf{Q}; \mathbf{Y}). \quad (9)$$

With this construction, \mathbf{Z} carries the joint signal that is beneficial for classification and OOD detection, while \mathbf{V} and \mathbf{Q} act as auxiliary pathways encoding the feature- and structure-specific components, which may contain spurious correlations for making predictions. This design ensures that ID-OOD separation through \mathbf{Z} is more effective under shifts.

Principled Regularisers. To ensure a meaningful decomposition that separates the joint-input label-relevant information \mathbf{Z} from spurious correlations between individual inputs and the label, captured respectively by the feature- (\mathbf{V}) and structure-specific (\mathbf{Q}) representations, TRIBE introduces two principled regularisers. These consist of a **conditional independence** constraint (Eq. 7) and a **pairwise mutual information minimisation** constraint, which together ensure the theoretical decomposition in Eq. 8 under the three-networks formulation in Eq. 9.

1) Conditional independence regulariser. Its role is to encourage \mathbf{Z} to capture the meaningful interactions between \mathbf{X} and \mathbf{A} , so that the remaining dependence between feature and structure information is treated as spurious. This realises the independence constraint in Eq. 7, and the regularisation is defined as:

$$\min \mathcal{L}_{\text{CI}_{\mathbf{X}, \mathbf{A}, \mathbf{Z}}}, \text{ where } \mathcal{L}_{\text{CI}_{\mathbf{X}, \mathbf{A}, \mathbf{Z}}} = I(\mathbf{A}; \mathbf{X} | \mathbf{Z}). \quad (10)$$

Note that this is not a dataset assumption that features and structure are independent. Rather, it is an optimisation regulariser that acts as an inductive bias: **once \mathbf{Z} has captured the relevant joint-input signal (key for detecting distribution shifts), the residual information between \mathbf{X} and \mathbf{A} should become independent** (i.e., $I(\mathbf{X}; \mathbf{A} | \mathbf{Z}) \rightarrow 0$). In practice, this conditional independence corresponds to approximating $p(\mathbf{X}, \mathbf{A} | \mathbf{Z}) \approx p(\mathbf{X} | \mathbf{Z})p(\mathbf{A} | \mathbf{Z})$. This design reflects realistic OOD situations: for example in social graphs, connectivity patterns may evolve when user attributes such as demographics remain stable; for financial fraud detection graphs, transaction features (e.g., transaction amount) may change while the underlying network structure is preserved. Thus, once the joint label-relevant semantics are captured, separating the remaining spurious feature- and structure-only information becomes crucial, as they can mislead OOD detection.

2) Pairwise mutual information minimisation. Intuitively, since the three networks in Eq. 9 are designed to capture different input information, we need to prevent them from redundantly encoding the same or overlapping information. Thus, we penalise pairwise overlaps among the three learned representations by minimising their mutual information:

$$\min \mathcal{L}_{\text{PMI}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}}, \text{ where } \mathcal{L}_{\text{PMI}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}} = \alpha_1 I(\mathbf{Z}; \mathbf{V}) + \alpha_2 I(\mathbf{Z}; \mathbf{Q}) + \alpha_3 I(\mathbf{V}; \mathbf{Q}), \quad (11)$$

where $\alpha_1, \alpha_2, \alpha_3$ are scalar weights. Minimising this loss keeps \mathbf{Z} focused on the desired joint signal, while \mathbf{V} and \mathbf{Q} remain disentangled and feature-/structure-specific respectively.

Final Objective. To unify the encoding objective with the proposed regularisation, the training is formulated in an information-bottleneck (IB) style. Each of the joint, feature-specific, and structure-specific encoders is optimised such that **(i) predictive information for the labels is retained**, and **(ii) label-irrelevant noise that obscures the ID-OOD boundary is suppressed** (details on IB are in Appendix D). This aligns with our decomposition (Eq. 8, Eq. 9): \mathbf{Z} captures the joint-input label-relevant information, while \mathbf{V} and \mathbf{Q} represent the remaining feature- and structure-specific components. By reducing spurious individual-input correlations, the IB objective strengthens OOD detection over standard SL objective, with theoretical analysis detailed in Section 5, Proposition 5.3.

$$\begin{aligned} \text{IB}_{\mathbf{Z}} &= \max I(\mathbf{Z}; \mathbf{Y}) - \beta_{\mathbf{Z}} I(\mathbf{X}, \mathbf{A}; \mathbf{Z}) \\ \text{IB}_{\mathbf{V}} &= \max I(\mathbf{V}; \mathbf{Y}) - \beta_{\mathbf{V}} I(\mathbf{X}; \mathbf{V}), \quad \text{IB}_{\mathbf{Q}} = \max I(\mathbf{Q}; \mathbf{Y}) - \beta_{\mathbf{Q}} I(\mathbf{A}; \mathbf{Q}) \\ \max \mathcal{L}_{\text{IB}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}}, \text{ where } \mathcal{L}_{\text{IB}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}} &= \text{IB}_{\mathbf{Z}} + \text{IB}_{\mathbf{V}} + \text{IB}_{\mathbf{Q}}, \end{aligned} \quad (12)$$

270 The final TRIBE objective combines these terms with the regularisers to realise our information
 271 decomposition objective in Eq. 9:
 272

$$273 \max_{\theta_Z, \theta_V, \theta_Q} \mathcal{L}_{\text{TRIBE}_{Z,V,Q}} = \max_{\theta_Z, \theta_V, \theta_Q} \mathcal{L}_{\text{IB}_{Z,V,Q}} - \lambda_{\text{CInd}} \mathcal{L}_{\text{CInd}_{X,A,Z}} - \mathcal{L}_{\text{PMI}_{Z,V,Q}}, \quad (13)$$

276 where λ_{CInd} is a loss coefficient and the scale weight for \mathcal{L}_{PMI} is handled by α in Eq. 11. This
 277 formulation ensures Z provides a stable classification and OOD detection backbone, while V and Q
 278 capture component-specific signals that guide disentanglement. By design, ID node classification and
 279 OOD detection depend on Z , while V and Q are only used to regularise training.

280 4.3 IMPLEMENTATION AND INFERENCE

281 We note that **direct computation of mutual information in our final objective**
 282 (**Eq. 13**) is intractable, so we follow standard practice and adopt variational approximations. We use VIB (Alemi et al.,
 283 2017) to estimate the IB terms, and use reconstruction loss and CLUB (Cheng
 284 et al., 2020) loss to estimate conditional-independence and PMI regularisers, respectively. Due to the page limit, and **to emphasise our primary contribution**, the detailed
 285 discussion on obtaining the **tractable objective** is instead provided in Appendix E, a **neural network parameterisation** of
 286 TRIBE is given in Appendix F, and **Algorithm 1** illustrates the optimisation process with detailed description provided in
 287 Appendix E. Without loss of generality, in the following sections, we refer to the
 288 mutual information and TRIBE objective as their tractable variational forms (i.e.,
 289 \mathcal{L}_{VIB} , $\mathcal{L}_{\text{VCInd}}$, $\mathcal{L}_{\text{VPMI}}$). **At inference time**, only the GNN classifier for Z will be used
 290 for OOD detection with the energy score in Eq. 3 derived from prediction logits (**Algorithm 2**).
 291

307 5 THEORETICAL INSIGHTS ON 308 IB FOR GRAPH OOD DETECTION

310 While the previous section introduced decomposition as the main methodological contribution, we
 311 now show why IB is better suited than standard SL as the optimisation backbone. Unlike SL (i.e.,
 312 $\max I(Z; Y)$), which rewards any predictive correlation, IB retains only information truly supporting
 313 the label. We show that this yields **two key benefits**: (i) sharper ID prediction confidence and (ii) a
 314 larger entropy gap between ID and OOD data, which **directly improves logit-based OOD detection**.

315 Lemma 5.1. (Target-Irrelevant Information and ID Prediction Confidence)

316 *Minimising the conditional mutual information $I(X, A; Z | Y)$ reduces the conditional entropy
 317 $H(Z | Y)$, leading to a more concentrated posterior distribution $P(Y | Z)$.*

318 Lemma 5.1 shows that when the representation Z discards target-irrelevant information, the uncertainty of Z conditioned on Y decreases. In other words, the representation becomes more predictable
 319 given the label, which sharpens the posterior distribution $P(Y | Z)$. Intuitively, as $H(Z | Y)$ approaches zero, the peaks in the posterior become sharper, meaning the model assigns higher maximum
 320 probability to the correct class. This provides the first link between minimising irrelevant information
 321 and achieving higher confidence on ID predictions. A full proof is provided in Appendix B.2.

324

Theorem 5.2. (ID Confidence Improvement for IB over SL)325 Let $\mathbf{Z} = f(\mathbf{X}, \mathbf{A})$ be an encoded representation of (\mathbf{X}, \mathbf{A}) . With information bottleneck:

326

327
$$\max I(\mathbf{Z}; \mathbf{Y}) - \beta I(\mathbf{X}, \mathbf{A}; \mathbf{Z}),$$

328

329 where $\beta \in (0, 1)$, the model achieves higher prediction confidence on in-distribution data compared
330 to standard supervised learning ($\beta = 0$), provided $I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y})$ is minimised.

331

332 Theorem 5.2 builds directly on Lemma 5.1. By rewriting the IB objective, we obtain:

333

334
$$\max(1 - \beta)I(\mathbf{Z}; \mathbf{Y}) - \beta I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}). \quad (14)$$

335

336 Theorem 5.2 therefore guarantees that models trained with IB achieve higher prediction confidence
337 on ID data than standard SL (e.g., $\beta = 0$). The proof is provided in Appendix B.3.

338

Proposition 5.3. (IB Objective Increases Entropy Separation between ID and OOD)339 Let \mathbf{Z}^* be the representation obtained from an optimal network trained with ID data via the IB
340 objective (Eq. 36). Then:

341

342

1. $I(\mathbf{X}_{id}, \mathbf{A}_{id}; \mathbf{Z}_{id}^* | \mathbf{Y}) \rightarrow 0,$
2. $I(\mathcal{G}_{OOD}; \mathbf{Z}_{ood}^* | \mathbf{Y}) \geq I(\mathbf{X}_{id}, \mathbf{A}_{id}; \mathbf{Z}_{id}^* | \mathbf{Y}).$

343

344 This induces entropy separation:

345

346
$$H(\mathbf{Y} | \mathbf{Z}_{id}^*) \ll H(\mathbf{Y} | \mathbf{Z}_{ood}^*),$$

347

348 enabling improved OOD detection via logit-based scores.

349

350 **Proposition 5.3 formalises how the advantages of IB for ID confidence translate into OOD**
351 **detection benefits.** The proof is provided in Appendix B.4. For ID data, point (1) follows from
352 Theorem 5.2: the conditional mutual information vanishes, which yields low entropy predictions and
353 sharp confidence. For OOD data, point (2) shows that the information compressed into \mathbf{Z} inevitably
354 contains more irrelevant content, resulting in higher conditional entropy and lower confidence. The
355 contrast between these two cases induces a larger entropy gap between ID and OOD data under IB
356 training than under SL training. This entropy separation directly improves logit-based OOD scores
357 such as energy, making IB-trained models naturally better suited for OOD detection. Empirical
358 evaluations in Section 6 validate this theoretical analysis for OOD detection.

359

360

6 EXPERIMENTS

361

362 **Datasets.** Following Wu et al. (2023b); Yang et al. (2024b), we evaluate on seven benchmarks. Six
363 are single-graph datasets: Cora, Citeseer, Pubmed, Amazon-Photo, Coauthor-CS, and
364 ogbn-Arxiv, where OOD nodes are generated via structure manipulation, feature interpolation,
365 label exclusion, or temporal splits. We also use the multi-graph TwitchGamers-Explicit,
366 where OOD is defined as graphs from different regions. Dataset splits are in Appendix K.

367

368 **Baselines.** To fairly evaluate our information decomposition and IB approach, we select SOTA
369 baselines trained with standard SL: General OOD methods: MSP (Hendrycks & Gimpel, 2017),
370 ODIN (Liang et al., 2018), Mahalanobis (Lee et al., 2018b), Energy (Liu et al., 2020). Graph-specific
371 methods: GKDE (Zhao et al., 2020), GPN (Stadler et al., 2021), GNNSAFE (Wu et al., 2023b),
372 NODESAFE (Yang et al., 2024b). OOD exposure methods: OE (Hendrycks et al., 2019), Energy
373 FT (Liu et al., 2020), GNNSAFE++ (Wu et al., 2023b), NODESAFE++ (Yang et al., 2024b).

374

375 **Metrics.** Following Wu et al. (2023b), OOD detection is measured by AUROC (\uparrow), AUPR (\uparrow), and
376 FPR95 (\downarrow). ID classification accuracy (ID ACC) (\uparrow) is also reported. See Appendix I for details.

377

378 **Implementation.** All methods use a two-layer GCN backbone (hidden size 64). The feature and
379 structure networks are implemented as an MLP and a GCN, respectively, with the same architecture.
380 For the structure network, node features are fixed to 1, while the feature network uses only raw node
381 attributes. Additional setups, hyperparameters, and sensitivity analyses are provided in Appendix J.

382

383

6.1 OVERALL PERFORMANCE

384

385 **As a non-OOD exposed method, TRIBE markedly outperforms SOTA non-OOD exposure**
386 **baselines.** Evident in Table 1, TRIBE significantly enhances OOD detection performance across
387 all datasets (blue highlights). On synthetic datasets such as Citeseer and Pubmed, TRIBE

378 Table 1: Model performance in Non-OOD exposure. Following [Wu et al. \(2023b\)](#); [Yang et al. \(2024b\)](#),
 379 the results are **averaged on multiple OOD test sets with different difficulty level**, therefore with a
 380 relatively high variance \pm across subsets. Individual subset results with a much lower variance are in
 381 Appendix L. The best and runner-up results are highlighted by **best** and **runner-up**, respectively.

	Metrics	MSP	ODIN	Maha	Energy	GKDE	GPN	GNNSAFE	NODESAFE	TRIBE
Cora	AUROC (\uparrow)	82.55	49.87	54.74	83.09	69.54	84.56	91.20 ± 3.09	93.35 \pm 2.41	95.58 \pm 2.12
	AUPR (\uparrow)	65.82	26.08	34.43	66.21	46.09	68.02	82.92 ± 4.96	84.64 \pm 6.40	89.34 \pm 5.32
	FPR95 (\downarrow)	62.39	100.00	96.30	65.21	80.51	58.30	50.53 ± 22.04	29.23 \pm 12.06	20.09 \pm 10.72
	ID ACC (\uparrow)	79.91	79.61	79.57	80.34	79.86	81.65	81.56 ± 7.01	82.66 ± 6.61	82.56 ± 6.99
Citeseer	AUROC (\uparrow)	77.69	50.14	49.55	78.26	72.95	78.22	84.89 ± 5.47	87.80 \pm 2.74	92.27 \pm 1.53
	AUPR (\uparrow)	51.43	21.38	29.29	51.22	47.67	52.22	64.86 ± 3.39	72.35 \pm 6.41	76.57 \pm 10.34
	FPR95 (\downarrow)	69.42	100	95.06	65.34	71.85	67.09	60.85 ± 18.06	53.38 \pm 17.47	30.79 \pm 7.64
	ID ACC (\uparrow)	73.72	73.75	62.17	73.43	72.69	72.77	76.06 ± 12.05	73.12 ± 14.15	75.66 ± 11.19
Pubmed	AUROC (\uparrow)	78.80	49.72	62.20	79.25	78.14	78.76	93.82 \pm 1.93	91.08 ± 2.95	97.35 \pm 0.13
	AUPR (\uparrow)	28.37	4.83	11.74	28.21	24.65	28.65	69.94 \pm 6.32	68.56 ± 1.06	80.73 \pm 1.37
	FPR95 (\downarrow)	76.73	100	91.26	70.69	75.04	71.06	37.71 \pm 14.28	50.17 ± 0.89	12.75 \pm 0.31
	ID ACC (\uparrow)	75.05	75.30	71.15	75.55	74.65	75.15	76.78 ± 0.31	77.32 ± 0.02	76.17 ± 0.33
Amazon	AUROC (\uparrow)	96.52	80.12	73.81	96.73	66.98	92.60	97.99 \pm 0.93	97.84 ± 1.11	98.16 \pm 1.14
	AUPR (\uparrow)	95.01	77.18	72.35	95.16	71.18	90.50	98.16 \pm 1.56	97.77 ± 2.11	98.08 \pm 1.99
	FPR95 (\downarrow)	13.83	85.22	83.44	13.15	98.47	32.64	3.24 \pm 5.24	3.69 ± 6.14	2.81 \pm 4.61
	ID ACC (\uparrow)	93.83	93.88	93.80	93.85	87.71	89.54	93.79 ± 1.99	92.70 ± 2.16	93.90 ± 1.88
Coauthor	AUROC (\uparrow)	95.74	51.71	82.02	96.64	69.24	69.89	98.98 ± 1.41	99.02 \pm 1.45	99.27 \pm 1.17
	AUPR (\uparrow)	96.43	56.37	87.05	97.09	80.17	72.77	99.55 ± 0.44	99.57 \pm 0.47	99.70 \pm 0.40
	FPR95 (\downarrow)	21.37	99.97	48.09	15.49	97.04	69.60	4.29 \pm 6.87	4.33 ± 7.04	3.31 \pm 5.45
	ID ACC (\uparrow)	93.37	93.29	93.29	93.57	87.74	89.39	93.65 ± 1.50	93.21 ± 1.86	93.48 ± 1.74
Twitch	AUROC (\uparrow)	33.59	58.16	55.68	51.24	46.48	51.73	66.33 ± 15.32	66.48 \pm 15.44	89.72 \pm 5.42
	AUPR (\uparrow)	49.14	72.12	66.42	60.81	62.11	66.36	72.59 ± 13.44	72.71 \pm 13.43	91.92 \pm 3.85
	FPR95 (\downarrow)	97.45	93.96	90.13	91.61	95.62	95.51	81.18 ± 19.87	80.62 \pm 20.03	46.60 \pm 26.47
	ID ACC (\uparrow)	68.72	70.79	70.51	70.40	67.44	68.09	70.75 ± 0.30	70.75 ± 0.33	68.63 ± 1.41
Arxiv	AUROC (\uparrow)	63.91	55.07	56.92	64.20	58.32	OOM	70.58 ± 6.41	71.36 \pm 6.35	72.72 \pm 6.48
	AUPR (\uparrow)	75.85	68.85	69.63	75.78	72.62	OOM	79.99 ± 12.80	80.67 \pm 12.37	81.62 \pm 11.86
	FPR95 (\downarrow)	90.59	100.0	94.24	90.80	93.84	OOM	87.90 ± 2.57	86.45 \pm 2.97	83.65 \pm 4.14
	ID ACC (\uparrow)	53.78	51.39	51.59	53.36	50.76	OOM	53.21 ± 0.25	53.10 ± 0.21	52.44 ± 0.24

402 reduces FPR95 by an average of 24%. While datasets like Amazon and Coauthor exhibit strong
 403 performance with existing SOTA baselines, driven by high classification accuracy, which yield more
 404 discriminative energy scores for OOD detection - TRIBE further improves detection performance. This
 405 shows the efficacy of our dedicated information learning and IB over the standard SL in GNNSAFE.
 406 For real-world datasets, TRIBE delivers remarkable improvements, increasing the AUROC score by
 407 over 23% and reducing the FPR95 by 34% on the Twitch dataset. On the more challenging Arxiv
 408 dataset, where performance is constrained by limited classification accuracy, TRIBE still outperforms
 409 baseline methods. This highlights TRIBE’s superiority in OOD detection while maintaining strong
 410 ID classification accuracy. Extended results are in Appendix L. Moreover, TRIBE achieves **similar**
 411 **efficiency in inference speed and memory usage** as SOTA methods with discussions in Appendix M.
 412

6.2 IB vs. SL in OOD DETECTION

413 **The empirical results strongly validate IB’s**
 414 **superiority over SL for OOD detection.** Table 2 compares SL-based and IB-based classi-
 415 fiers, with energy as the OOD score. Even in
 416 its simplest form, IB-based models consistently
 417 outperform their SL counterparts ($SL < IB$),
 418 highlighting IB’s fundamental advantages for
 419 OOD detection. When enhanced with effective
 420 energy propagation techniques (E. Prop.), the
 421 performance gap widens further, with IB mod-
 422 els showing significantly greater improvements.
 423

6.3 EXTENDED OOD EXPOSURE STUDY

424 **TRIBE, when equipped with OOD exposure regularisation via Eq. 4, achieves superior or com-**
 425 **petitive performance against SOTA baselines.** Shown in Table 3, TRIBE outperforms GNNSAFE++
 426 and NODESAFE++ across multiple datasets, as highlighted in bold. For example, on Cora,
 427 TRIBE achieves an AUROC of 95.76 (vs. 93.13 & 91.32) and significantly reduces the FPR95
 428 from 42.48 down to 19.34. On larger Pubmed, TRIBE improves AUROC to 98.26 (vs. 93.77 &

429 Table 2: **Detection comparison between IB vs.**
 430 **SL.** E. Prop. denotes using energy propagation.

	Metrics	w/o E. Prop.	w/ E. Prop.
		SL	IB
Cora	AUROC (\uparrow)	83.09	86.90
	AUPR (\uparrow)	66.21	69.89
	FPR95 (\downarrow)	65.21	46.26
Pubmed	AUROC (\uparrow)	79.25	87.04
	AUPR (\uparrow)	29.21	45.87
	FPR95 (\downarrow)	70.69	52.73
Twitch	AUROC (\uparrow)	51.24	70.59
	AUPR (\uparrow)	60.81	73.26
	FPR95 (\downarrow)	91.61	82.46

432 Table 4: Comparison of TRIBE with advanced graph OOD detection. “+TRIBE” denotes incorporating
 433 our TRIBE objective into the compared methods.

Model	Cora – Label				Pubmed – S				Pubmed – F				Amazon – F				Citeseer – S			
	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc
GNNSAFE	93.19	82.99	29.55	89.66	92.45	65.47	47.81	77.00	95.18	74.41	27.62	76.57	98.46	98.90	0.44	92.65	79.87	61.44	74.45	65.20
TRIBE	93.70	84.03	28.84	90.61	97.25	79.76	12.97	75.93	97.44	81.70	12.53	76.40	98.65	99.04	0.30	92.70	91.89	80.11	38.41	70.03
DeGEM	92.24	78.80	31.34	91.77	95.37	51.55	20.07	73.10	99.63	93.40	1.70	79.00	97.34	96.70	3.16	91.65	94.93	84.63	17.49	70.90
+ TRIBE	95.85	89.24	20.59	92.41	97.20	55.60	8.44	78.40	99.67	91.73	0.59	78.70	97.71	96.49	1.84	92.32	96.92	85.63	7.24	69.70
GOLD	95.36	85.33	21.20	89.56	88.01	97.84	11.57	75.30	87.28	98.49	6.98	73.20	99.52	99.63	0.24	92.48	78.09	82.12	65.98	69.10
+ TRIBE	94.85	83.96	18.86	89.56	91.13	98.72	5.52	74.60	93.15	99.00	3.80	74.70	99.61	99.70	0.10	91.98	78.61	82.90	44.97	68.70

432 59.14) and decreases FPR95 to 8.84 (vs. 39.58 & 24.87). On more challenging real-world OOD
 433 datasets, TRIBE remains competitive on the *Twitch* and *Arxiv* datasets. This highlights TRIBE’s
 434 adaptability to incorporate OOD exposure strategies, enabling it to achieve superior performance.

435 6.4 EXTENDED COMPARISONS 436 WITH ADVANCED GRAPH OOD DETECTORS

437 To further demonstrate the effectiveness of
 438 TRIBE and the role of the IB objective, we
 439 compare against two advanced graph OOD
 440 detection baselines, DeGEM (Chen et al., 2025)
 441 and GOLD (Wang et al., 2025a), on Cora and
 442 Pubmed under structure shift, feature shift, and
 443 label shift settings in Table 4. All results were
 444 reproduced to the best of our ability; deviations
 445 from the original reports may arise from differ-
 446 ences in data splits, random seeds, or unavail-
 447 able hyperparameters. Both baselines exhibit
 448 strong performance across several settings, re-
 449 flecting the strength of their respective designs.
 450 To enable a fairer comparison with our IB-driven
 451 analysis, we additionally evaluate “+TRIBE”
 452 variants of GOLD and DeGEM by incorporating
 453 our TRIBE objective during training. As shown
 454 in the table, these TRIBE-augmented versions often improve over their base models in AUROC,
 455 AUPR, or FPR95, supporting our theoretical finding that IB increases ID-OOD separation. Across all
 456 datasets and shift types, TRIBE consistently matches or surpasses the competitive methods, highlight-
 457 ing the benefit of explicitly decomposing joint, feature-specific, and structure-specific information for
 458 stable graph OOD detection.

459 6.5 ABLATION STUDY

460 We conduct an ablation study on the IB back-
 461 bone, a conditional independence constraint,
 462 and the full TRIBE framework, which includes
 463 a pairwise mutual information minimisation
 464 loss to reduce spurious correlations. Compared
 465 to GNNSAFE (standard supervised learning,
 466 $\max I(\mathbf{Z}; \mathbf{Y})$), the IB backbone lowers FPR95
 467 by 20% on average, showing the value of com-
 468 pressing irrelevant features. The independence
 469 constraint further improves performance, reducing FPR95 by 17% on the diverse *Twitch* dataset,
 470 by better modeling joint inputs. With all components, TRIBE achieves the best performing results,
 471 learning robust representations for both ID classifica-
 472 tion and OOD detection. Though gains over the
 473 IB backbone are modest, the added constraints im-
 474 prove stability, supporting our claim that the IB
 475 objective is better suited for OOD detection. Detailed results are provided in Appendix L.

476 6.6 VISUALISATIONS

477 **Energy Gap.** To further validate the effectiveness of our information-decomposed framework and
 478 highlight the advantage of IB over the conventional SL baseline for OOD detection, we visualise

432 Table 3: Comparisons of OOD exposure with **best**
 433 and runner-up highlighted. GS++ and NS++ are
 434 short for GNNSAFE++ and NODESAFE++.

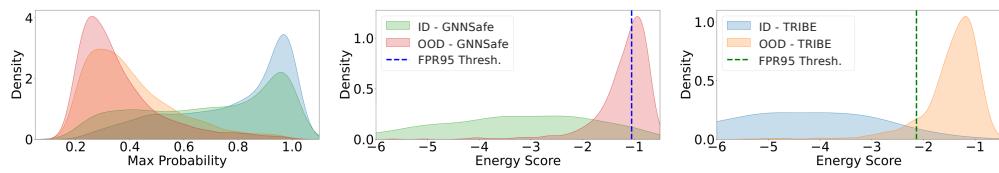
	Metrics	OOD Exposure				TRIBE w/ OE
		OE	Energy FT	GS++	NS++	
Cora	AUROC (↑)	79.76	85.13	93.13	91.32	95.76
	AUPR (↑)	64.93	67.89	85.28	82.74	89.68
	FPR95 (↓)	75.22	51.03	37.28	42.48	19.34
	ID ACC (↑)	77.69	80.44	82.16	74.94	82.20
Citeseer	AUROC (↑)	63.75	79.81	85.69	84.29	92.16
	AUPR (↑)	47.20	52.79	65.89	64.86	75.90
	FPR95 (↓)	74.15	57.37	54.76	56.12	29.22
	ID ACC (↑)	62.24	72.66	72.74	68.60	75.81
Pubmed	AUROC (↑)	78.38	76.25	93.77	95.14	98.26
	AUPR (↑)	27.67	27.61	74.06	72.20	85.36
	FPR95 (↓)	79.05	91.02	39.58	24.87	8.84
	ID ACC (↑)	73.00	75.80	77.88	74.17	76.67
Twitch	AUROC (↑)	55.72	84.50	95.76	76.79	91.52
	AUPR (↑)	70.18	88.04	97.45	83.97	93.59
	FPR95 (↓)	95.07	61.29	29.81	34.46	33.19
	ID ACC (↑)	70.73	70.52	70.36	70.07	68.74
Arxiv	AUROC (↑)	69.80	71.56	73.98	74.50	74.89
	AUPR (↑)	80.15	80.47	82.50	81.55	83.25
	FPR95 (↓)	85.16	80.59	79.99	77.53	77.37
	ID ACC (↑)	52.39	53.26	53.28	51.32	52.41

432 Table 5: Ablation study.

	Metrics	Datasets				
		Cora	Citeseer	Pubmed	Twitch	Arxiv
GNNSAFE (\mathcal{L}_{sup})	AUROC (↑)	91.20	84.89	93.82	66.33	70.58
	AUPR (↑)	82.92	64.86	69.94	72.59	79.99
	FPR95 (↓)	50.53	60.85	37.71	81.18	87.90
	ID ACC (↑)	81.56	76.06	76.78	70.75	53.21
\mathcal{L}_{VIB}	AUROC (↑)	95.18	91.50	96.58	73.50	72.15
	AUPR (↑)	88.49	75.22	77.34	76.67	81.13
	FPR95 (↓)	22.20	37.42	16.85	67.26	84.93
	ID ACC (↑)	82.15	75.39	74.95	70.36	52.46
$\mathcal{L}_{\text{sup}} \& \mathcal{L}_{\text{CML}}$	AUROC (↑)	95.23	91.99	96.94	87.61	72.68
	AUPR (↑)	88.65	76.01	78.77	90.61	81.57
	FPR95 (↓)	21.56	32.57	14.37	49.91	83.86
	ID ACC (↑)	82.12	75.24	75.18	70.33	52.43
TRIBE	AUROC (↑)	95.58	92.27	97.35	89.72	72.72
	AUPR (↑)	89.34	76.57	80.73	91.92	81.62
	FPR95 (↓)	20.09	30.79	12.75	46.60	83.65
	ID ACC (↑)	82.56	75.66	76.17	68.63	52.44

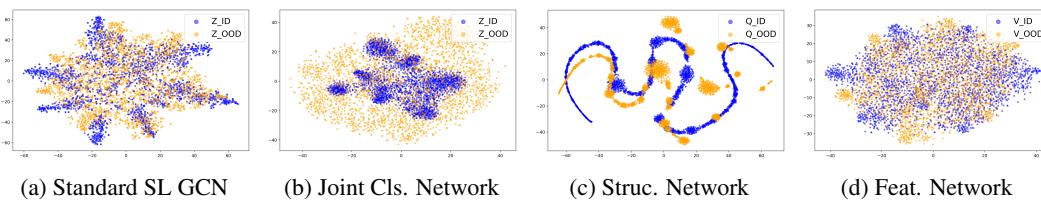
486 the **prediction confidence and energy distributions** of TRIBE and GNNSAFE in Figure 3. The
 487 first subplot supports the theoretical insight that the IB objective enhances ID prediction confidence.
 488 Specifically, the **blue distribution** of TRIBE is skewed toward higher confidence values compared to
 489 the **green distribution** of GNNSAFE. Additionally, the third subplot shows that **TRIBE achieves a**
 490 **greater separation between ID and OOD energy scores than GNNSAFE**, as seen in the second
 491 subplot. This increased energy margin highlights TRIBE’s effectiveness in distinguishing ID from
 492 OOD data. Furthermore, the dashed lines denote the FPR95 threshold, where TRIBE reduces the
 493 overlap between ID and OOD energy scores to the left of the threshold, reflecting the effect of
 494 increased ID prediction confidence on OOD scores. These findings validate TRIBE’s improved OOD
 495 detection ability while preserving high ID accuracy.

496 Connecting this visualisation to our theory, recall from Proposition 5.3 that the IB objective increases
 497 ID prediction confidence and enlarges the **entropy gap** between ID and OOD compared to standard
 498 supervised learning. This analysis is stated in terms of the predictive distribution $p_\theta(\mathbf{y} | \mathbf{z}) =$
 499 $\text{Softmax}(\ell)$ and its entropy $H(\mathbf{Y} | \mathbf{Z})$, where ℓ are the nodes logits. The energy score we use for
 500 OOD detection, $S(\mathbf{x}, \mathbf{A}; \text{GNN}) = \mathbf{e} = -\log \sum_c \exp(\ell_c)$ (Eq. 2), is computed from the same logits
 501 and depends on the same log-partition term that appears in the predictive entropy. Consequently, the
 502 IB-induced change in logit geometry that sharpens ID posteriors (higher confidence, lower entropy)
 503 and makes OOD posteriors more diffuse (higher entropy) naturally manifests as **lower energies for**
 504 **ID nodes and higher energies for OOD nodes**, as demonstrated in Figure 3.



505
 506 Figure 3: Comparison of (1) **Prediction Confidence** and **Energy Score distribution** of (2)
 507 **GNNSAFE** and (3) **TRIBE** on **Cora-Feature**. The dashed line is the FPR95 threshold.
 508
 509

510
 511 **Representation Distribution.** With the tri-component information decomposition framework,
 512 **TRIBE learns more shift-indicative representations through its optimised joint-input network**.
 513 In Figure 4, we compare ID and OOD representation distributions from (1) a standard **SL-trained**
 514 **GCN** and from the (2) **joint**, (3) **structure**, and (4) **feature** networks of TRIBE. Notably, the joint
 515 network achieves clearer ID-OOD separation than the baseline GCN. On the structure-shifted dataset
 516 (**Cora-S**), the feature network shows minimal separation (as expected), while the structure network
 517 captures a distinct, separable topology pattern.



520
 521 Figure 4: Distribution visualisation comparing ID vs. OOD representations between a standard **SL**
 522 **trained GCN** and **TRIBE’s different networks** on **Cora-Structure** with structural shift.
 523
 524

530 7 CONCLUSION

531 We propose TRIBE, a tri-component information decomposition framework designed to effectively
 532 detect OOD instances of graph-structured data. By decomposing information into structural, feature,
 533 and joint components with an IB objective, TRIBE effectively retains shift-indicative joint-input label-
 534 specific information while mitigating label-irrelevant and spurious correlations within individual input
 535 components. Additionally, we provide theoretical insights into the advantages of the IB principle over
 536 the standard supervised learning objective for in-distribution classification and detection, particularly
 537 emphasising its ability to enhance prediction confidence and its implications for improving OOD
 538 detection. Extensive experiments validate the efficacy of TRIBE, which outperforms SOTA SL-based
 539 OOD detection methods, including both non-OOD-exposed and OOD-exposed approaches.

540 8 IMPACT AND ETHICS STATEMENT
541542 We hope our work inspires future research on node-level graph OOD detection in real-world settings.
543 As a foundational study on OOD detection for graph-structured data, we do not identify any direct
544 negative societal impacts. Our research relies on publicly available datasets, algorithms, and models,
545 all of which are properly acknowledged and pose no risks requiring safeguards. While potential
546 societal implications may exist, none warrant specific emphasis in this study.547 **LLM Usage.** LLMs contributed only to polishing the writing.
548549 9 REPRODUCIBILITY STATEMENT
550551 To support reproducible research, we summarise our efforts as below:
552553 1. **Baselines & Datasets.** We follow the baseline from (Wu et al., 2023b) and utilise publicly
554 available datasets. The details are described in Section 6 and Appendix K.
555 2. **Model training.** Detailed implementation setting is provided in Section 6 and Appendix J.
556 3. **Evaluation Metrics.** We discuss the evaluation metrics used in Section 6 and Appendix I.
557 4. **Methodology.** Our TRIBE framework is fully documented in Section 4, with implementation
558 notes provided in Section 4.3. To support implementation and reproducibility we provide a
559 detailed discussion on obtaining the **tractable objective** in Appendix E, a **neural network**
560 **parameterisation** of TRIBE is given in Appendix F. In addition, we provide a detailed
561 pseudo code of the optimisation process in Algorithm 1 and the inference process in
562 Algorithm 2. We provide theoretical analysis and corresponding proofs in Section 5 and
563 Appendix B.
564565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio,
597 Ioannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-of-
598 distribution generalization. In *NeurIPS*, 2021.

599 Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
600 bottleneck. In *ICLR*, 2017.

601 Alexander A. Alemi, Ian Fischer, and Joshua V. Dillon. Uncertainty in the variational information
602 bottleneck. *CoRR*, 2018.

603 Weizhi An, Wenliang Zhong, Feng Jiang, Hehuan Ma, and Junzhou Huang. Causal subgraphs and
604 information bottlenecks: Redefining OOD robustness in graph neural networks. In *ECCV*, 2024.

605 Tianyi Bao, Qitian Wu, Zetian Jiang, Yiting Chen, Jiawei Sun, and Junchi Yan. Graph out-of-
606 distribution detection goes neighborhood shaping. In *ICML*, 2024.

607 Gleb Bazhenov, Sergei Ivanov, Maxim Panov, Alexey Zaytsev, and Evgeny Burnaev. Towards OOD
608 detection in graph classification from uncertainty estimation perspective. *CoRR*, 2022.

609 Julian Bitterwolf, Alexander Meinke, and Matthias Hein. Certifiably adversarially robust detection of
610 out-of-distribution data. In *NeurIPS*, 2020.

611 Yanan Cao, Fengzhao Shi, Qing Yu, Xixun Lin, Chuan Zhou, Lixin Zou, Peng Zhang, Zhao Li, and
612 Dawei Yin. IBPL: information bottleneck-based prompt learning for graph out-of-distribution
613 detection. *Neural Networks*, 2025.

614 Guoxin Chen, Yongqing Wang, Fangda Guo, Qinglang Guo, Jiangli Shao, Huawei Shen, and Xueqi
615 Cheng. Causality and independence enhancement for biased node classification. In *CIKM*, 2023.

616 Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. ATOM: robustifying out-of-
617 distribution detection using outlier mining. In *ECML PKDD*, 2021.

618 Yuhan Chen, Yihong Luo, Yifan Song, Pengwen Dai, Jing Tang, and Xiaochun Cao. Decoupled
619 graph energy-based model for node out-of-distribution detection on heterophilic graphs. *ICLR*,
620 2025.

621 Zhengyu Chen, Teng Xiao, Kun Kuang, Zheqi Lv, Min Zhang, Jinluan Yang, Chengqiang Lu,
622 Hongxia Yang, and Fei Wu. Learning to reweight for generalizable graph neural network. In *AAAI*,
623 2024.

624 Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. CLUB: A
625 contrastive log-ratio upper bound of mutual information. In *ICML*, 2020.

626 Sung-Ik Choi and Sae-Young Chung. Novelty detection via blurring. In *ICLR*, 2020.

627 Enyan Dai, Limeng Cui, Zhengyang Wang, Xianfeng Tang, Yinghan Wang, Monica Xiao Cheng,
628 Bing Yin, and Suhang Wang. A unified framework of graph information bottleneck for robustness
629 and membership privacy. In *KDD*, 2023.

630 Zhihao Ding and Jieming Shi. SGOOD: substructure-enhanced graph-level out-of-distribution
631 detection. *CoRR*, 2023.

632 Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
633 shaping for out-of-distribution detection. In *ICLR*, 2023.

634 Xin Dong, Junfeng Guo, Ang Li, Wei-Te Ting, Cong Liu, and H. T. Kung. Neural mean discrepancy
635 for efficient out-of-distribution detection. In *CVPR*, 2022.

636 Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. VOS: learning what you don't know by virtual
637 outlier synthesis. In *ICLR*, 2022.

638 Xuefeng Du, Yiyou Sun, Jerry Zhu, and Yixuan Li. Dream the impossible: Outlier imagination with
639 diffusion models. In *NeurIPS*, 2023.

648 Xuefeng Du, Zhen Fang, Ilias Diakonikolas, and Yixuan Li. How does unlabeled data provably help
 649 out-of-distribution detection? In *ICLR*, 2024.

650

651 Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks
 652 on out-of-distribution graphs. *TPAMI*, 2024.

653

654 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
 655 representations via multi-view information bottleneck. In *ICLR*, 2020.

656

657 C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
 658 system. In *ACM Digital Libraries*, 1998.

659

660 Mauro Giuffrè and Dennis L. Shung. Harnessing the power of synthetic data in healthcare: innovation,
 661 application, and privacy. *npj Digit. Medicine*, 6, 2023.

662

663 Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. GOOD: A graph out-of-distribution benchmark.
 664 In *NeurIPS*, 2022.

665

666 Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, and Junping Du. A data-centric framework
 667 to endow graph neural networks with out-of-distribution detection ability. In *KDD*, 2023.

668

669 Xiaoxue Han, Huzefa Rangwala, and Yue Ning. Decaf: A causal decoupling framework for OOD
 670 generalization on node classification. *CoRR*, 2024.

671

672 Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield high-
 673 confidence predictions far away from the training data and how to mitigate the problem. In *CVPR*,
 674 2019.

675

676 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 677 examples in neural networks. In *ICLR*, 2017.

678

679 Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. Deep anomaly detection with outlier
 680 exposure. In *ICLR*, 2019.

681

682 Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza Mosta-
 683 jabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
 684 In *ICML*, 2022.

685

686 Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized ODIN: detecting out-of-
 687 distribution image without learning from out-of-distribution data. In *CVPR*, 2020.

688

689 Jingjing Hu, Wenrui Liu, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. An information
 690 theoretical view for out-of-distribution detection. In *ECCV*, 2024.

691

692 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 693 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In *NeurIPS*,
 694 2020.

695

696 Kenji Kawaguchi, Zhun Deng, Xu Ji, and Jiaoyang Huang. How does information bottleneck help
 697 deep learning? In *ICML*, 2023.

698

699 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

700

701 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 702 In *ICLR*, 2017.

703

704 Jiin Koo, Sungjoon Choi, and Sangheum Hwang. Generalized outlier exposure: Towards a trustworthy
 705 out-of-distribution detector without sacrificing accuracy. *Neurocomputing*, 577:127371, 2024.

706

707 Hao Lang, Yinhe Zheng, Yixuan Li, Jian Sun, Fei Huang, and Yongbin Li. A survey on out-of-
 708 distribution detection in NLP. *CoRR*, 2023.

709

710 Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for
 711 detecting out-of-distribution samples. In *ICLR*, 2018a.

702 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 703 out-of-distribution samples and adversarial attacks. In *NeurIPS*, 2018b.

704

705 Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs:
 706 A survey. *CoRR*, 2022a.

707

708 Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. OOD-GNN: out-of-distribution generalized
 709 graph neural network. *IEEE Trans. Knowl. Data Eng.*, 35(7):7328–7340, 2023a.

710

711 Hongru Li, Wentao Yu, Hengtao He, Jiawei Shao, Shenghui Song, Jun Zhang, and Khaled B. Letaief.
 712 Task-oriented communication with out-of-distribution detection: An information bottleneck frame-
 713 work. In *GLOBECOM*, pp. 3136–3141, 2023b.

714

715 Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for debiased
 716 learning and out-of-distribution detection on graphs. In *NeurIPS*, 2022b.

717

718 Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
 719 detection in neural networks. In *ICLR*, 2018.

720

721 Ziqian Lin, Sreya Dutta Roy, and Yixuan Li. MOOD: multi-level out-of-distribution detection. In
 722 *CVPR*, 2021.

723

724 Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-distribution
 725 detection. In *NeurIPS*, 2020.

726

727 Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. GOOD-D: on unsupervised graph out-of-
 728 distribution detection. In *WSDM*, 2023.

729

730 Longfei Ma, Yiyou Sun, Kaize Ding, and Fei Wu. Score propagation as a catalyst for graph
 731 out-of-distribution detection: A theoretical and empirical study. In *ICLR*, 2023.

732

733 Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
 734 recommendations on styles and substitutes. In *SIGIR*, 2015.

735

736 Sangha Park, Jisoo Mok, Dahuin Jung, Saehyung Lee, and Sungroh Yoon. On the powerfulness of
 737 textual outlier exposure for visual ood detection. In *NeurIPS*, 2023.

738

739 Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating proximity preserving
 740 and structural role-based node embeddings. *CoRR*, 2021.

741

742 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
 743 Collective classification in network data. *AI Mag.*, 29(3):93–106, 2008.

744

745 Xu Shen, Yili Wang, Kaixiong Zhou, Shirui Pan, and Xin Wang. Optimizing OOD detection in
 746 molecular graphs: A novel approach with diffusion models. In *KDD*, 2024.

747

748 Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul Hsu, and Kuansan
 749 Wang. An overview of microsoft academic service (MAS) and applications. In *WWW*, 2015.

750

751 Samarth Sinha, Homanga Bharadhwaj, Anirudh Goyal, Hugo Larochelle, Animesh Garg, and Florian
 752 Shkurti. DIBS: diversity inducing information bottleneck in model ensembles. In *AAAI*, 2021.

753

754 Yu Song and Donglin Wang. Learning on graphs with out-of-distribution nodes. In *KDD*, 2022.

755

756 Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and Stephan Günnemann.
 757 Graph posterior network: Bayesian predictive uncertainty for node classification. In *NeurIPS*,
 758 2021.

759

760 Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and Philip S. Yu. Graph
 761 structure learning with variational information bottleneck. In *AAAI*, 2022.

762

763 Yiyou Sun and Yixuan Li. DICE: leveraging sparsification for out-of-distribution detection. In *ECCV*,
 764 2022.

756 Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
 757 In *NeurIPS*, 2021.

758

759 Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information bottleneck method.
 760 *CoRR*, 2000.

761

762 Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and Theodore L.
 763 Willke. Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In
 764 *ECCV*, 2018.

765

766 Danny Wang, Ruihong Qiu, Guangdong Bai, and Zi Huang. GOLD: graph out-of-distribution
 767 detection via implicit adversarial latent generation. *ICLR*, 2025a.

768

769 Danny Wang, Ruihong Qiu, Guangdong Bai, and Zi Huang. Text meets topology: Rethinking
 770 out-of-distribution detection in text-rich networks. *EMNLP*, 2025b.

771

772 Haoran Wang, Weitang Liu, Alex Bocchieri, and Yixuan Li. Can multi-label classification networks
 773 know what they don't know? In *NeurIPS*, 2021.

774

775 Senzhang Wang, Jun Yin, Chaozhuo Li, Xing Xie, and Jianxin Wang. V-infor: A robust graph neural
 776 networks explainer for structurally corrupted graphs. In *NeurIPS*, 2023.

777

778 Yiqi Wang, Jiaxin Zhang, Nianhao Xie, Yu Shi, Siwei Wang, Xinwang Liu, En Zhu, and Yusong
 779 Tan. Towards the effect of large language models on out-of-distribution challenge in text-attributed
 780 graphs, 2024. URL <https://openreview.net/forum?id=FGIBKp0j8m>.

781

782 Aming Wu and Cheng Deng. TIB: detecting unknown objects via two-stream information bottleneck.
 783 *TPAMI*, 46(1):611–625, 2024.

784

785 Aming Wu, Da Chen, and Cheng Deng. Deep feature deblurring diffusion for detecting out-of-
 786 distribution objects. In *ICCV*, 2023a.

787

788 Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection
 789 for graph neural networks. In *ICLR*, 2023b.

790

791 Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. In *NeurIPS*, 2020.

792

793 Haoyan Xu, Zhengtao Yao, Ziyi Wang, Zhan Cheng, Xiyang Hu, Mengyuan Li, and Yue Zhao. Graph
 794 synthetic out-of-distribution exposure with large language models. *CoRR*, 2025a.

795

796 Haoyan Xu, Zhengtao Yao, Xuzhi Zhang, Ziyi Wang, Langzhou He, Yushun Dong, Philip S. Yu,
 797 Mengyuan Li, and Yue Zhao. Glip-ood: Zero-shot graph ood detection with foundation model.
 798 *CoRR*, 2025b.

799

800 Ling Yang, Jiayi Zheng, Heyuan Wang, Zhongyi Liu, Zhilin Huang, Shenda Hong, Wentao Zhang,
 801 and Bin Cui. Individual and structural graph information bottlenecks for out-of-distribution
 802 generalization. *TKDE*, 36(2):682–693, 2024a.

803

804 Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure
 805 invariance for out-of-distribution molecular representations. In *NeurIPS*, 2022.

806

807 Shenzhi Yang, Bin Liang, An Liu, Lin Gui, Xingkai Yao, and Xiaofang Zhang. Bounded and uniform
 808 energy-based out-of-distribution detection for graphs. In *ICML*, 2024b.

809

Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. Uncertainty aware semi-supervised learning on
 810 graph data. In *NeurIPS*, 2020.

811

Zhilin Zhao and Longbing Cao. Dual representation learning for out-of-distribution detection. In
 812 *TMLR*, volume 2023, 2023.

813

Haotian Zheng, Qizhou Wang, Zhen Fang, Xiaobo Xia, Feng Liu, Tongliang Liu, and Bo Han.
 814 Out-of-distribution detection learning with unreliable out-of-distribution sources. In *NeurIPS*,
 815 2023.

810 Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. OOD link prediction generalization capabilities of
 811 message-passing gnns in larger test graphs. In *NeurIPS*, 2022.

812
 813 Jianing Zhu, Yu Geng, Jiangchao Yao, Tongliang Liu, Gang Niu, Masashi Sugiyama, and Bo Han.
 814 Diversified outlier exposure for out-of-distribution detection via informative extrapolation. In
 815 *NeurIPS*, 2023.

816
 817 **APPENDIX**
 818

819 **A POTENTIAL LIMITATIONS**
 820

821 In Section 4.1, we illustrate that TRIBE employs two additional networks on top of the GNN classifier
 822 to effectively capture structural and feature information: a GNN for modelling structural relationships
 823 and an MLP for processing feature-based information. This multi-network architecture inevitably
 824 incurs additional computational and memory overhead during training. However, during inference, our
 825 model achieves comparable inference speeds while delivering significant performance improvements
 826 across all evaluated datasets. We argue that the increased training cost is a justifiable trade-off given
 827 the substantial gains in detection performance. The detailed computational cost is discussed in
 828 Appendix M. Described in Appendix J, a constant α and β values were applied uniformly in the
 829 current experiments, future work will explore fine-grained control of individual terms. Furthermore,
 830 currently implementation only considers a simple structure representation learning strategy (i.e.,
 831 using a constant feature vector), we will investigate the use of more advanced position encoding
 832 and structure representation learning techniques in future work. This may include methods like
 833 spectral embeddings via Laplacian eigenmaps, random walk-based encodings, and learnable position
 834 encodings etc. Since our TRIBE focuses on exploring the advantages of IB over standard supervised
 835 learning, we have left the comparison and integration with more advanced graph OOD detection
 836 methods and novel training frameworks like DeGEM and GOLD as future work (Chen et al., 2025;
 837 Wang et al., 2025a). Moreover, our proposed method and theoretical analysis are currently focused
 838 on node-level classification and we do not study the anomaly detection task. However, we believe the
 839 framework can be extended to graph-level OOD detection. Potential directions include applying the
 840 IB principle to the representation of entire graphs or learning compact and informative subgraphs, as
 841 explored in prior works (Dai et al., 2023; Sun et al., 2022). We also aim to investigate the impact of
 842 this framework in the context of heterophilic graphs. These extensions present promising avenues for
 843 future research.

844 **B PROOF OF TECHNICAL INSIGHTS**
 845

846 **B.1 PROOF OF PROPOSITION 4.1**
 847

848 *Proof.* Notice that given a sample $(\mathbf{x}_i, \mathbf{a}_i, \mathbf{y}_i) \in \mathbf{X}, \mathbf{A}, \mathbf{Y}$, the associated distribution \mathbf{z} is obtained by
 849 $f_\theta(\mathbf{z} | \mathbf{x}_i, \mathbf{a}_i, \mathbf{y}_i; \theta)$, where f_θ is neural network parametrised by θ . Using the empirical
 850 data distribution, we can approximate the joint distribution $P(\mathbf{x}, \mathbf{a}, \mathbf{y}, \mathbf{z}; \theta)$ as:

$$851 \quad P(\mathbf{x}, \mathbf{a}, \mathbf{y}, \mathbf{z}; \theta) = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) \delta_{\mathbf{y}_i}(\mathbf{y}) f_\theta(\mathbf{z}, \mathbf{x}_i, \mathbf{a}_i),$$

852 where $\delta(\cdot)$ is the Dirac delta function.
 853

854 Furthermore, we can also derive the marginal distributions as:
 855

$$856 \quad P(\mathbf{x}, \mathbf{a}, \mathbf{z}; \theta) = \int P(\mathbf{x}, \mathbf{a}, \mathbf{y}, \mathbf{z}; \theta) d\mathbf{y} = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) f_\theta(\mathbf{z}, \mathbf{x}_i, \mathbf{a}_i)$$

$$857 \quad P(\mathbf{x}, \mathbf{a}, \mathbf{y}; \theta) = \int P(\mathbf{x}, \mathbf{a}, \mathbf{y}, \mathbf{z}; \theta) d\mathbf{z} = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) \delta_{\mathbf{y}_i}(\mathbf{y})$$

$$858 \quad P(\mathbf{x}, \mathbf{a}; \theta) = \int \int P(\mathbf{x}, \mathbf{a}, \mathbf{y}, \mathbf{z}; \theta) d\mathbf{y} d\mathbf{z} = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a})$$

864 The conditional mutual information $I(\mathbf{z}; \mathbf{y}|\mathbf{x}, \mathbf{a})$ is expressed as:
 865

$$866 I(\mathbf{z}; \mathbf{y}|\mathbf{x}, \mathbf{a}) = \int \int \int \int P(\mathbf{x}, \mathbf{a}, \mathbf{y}, \mathbf{z}; \theta) \log \left(\frac{P(\mathbf{x}, \mathbf{a}; \theta)P(\mathbf{x}, \mathbf{a}, \mathbf{y}, \mathbf{z}; \theta)}{P(\mathbf{x}, \mathbf{a}, \mathbf{y}; \theta)P(\mathbf{x}, \mathbf{a}, \mathbf{z}; \theta)} \right) d\mathbf{x} d\mathbf{a} d\mathbf{y} d\mathbf{z}.$$

868 Substituting the empirical distributions we have:
 869

$$870 = \frac{1}{N} \int \int \int \int \left(\sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) \delta_{\mathbf{y}_i}(\mathbf{y}) f_{\theta}(\mathbf{z}, \mathbf{x}_i, \mathbf{a}_i) \right) \times \\ 871 \log \left(\frac{\left(\sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) \right) \left(\sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) \delta_{\mathbf{y}_i}(\mathbf{y}) f_{\theta}(\mathbf{z}, \mathbf{x}_i, \mathbf{a}_i) \right)}{\left(\sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) \delta_{\mathbf{y}_i}(\mathbf{y}) \right) \left(\sum_{i=1}^N \delta_{\mathbf{x}_i}(\mathbf{x}) \delta_{\mathbf{a}_i}(\mathbf{a}) f_{\theta}(\mathbf{z}, \mathbf{x}_i, \mathbf{a}_i) \right)} \right) d\mathbf{x} d\mathbf{a} d\mathbf{y} d\mathbf{z}.$$

876 Simplify using the sifting property of Dirac delta functions, the logarithm term becomes:
 877

$$878 \log \left(\frac{f_{\theta}(\mathbf{z}, \mathbf{x}_i, \mathbf{a}_i)}{f_{\theta}(\mathbf{z}, \mathbf{x}_i, \mathbf{a}_i)} \right) = \log(1) = 0.$$

880 Thus, we have $I(\mathbf{z}; \mathbf{y}|\mathbf{x}, \mathbf{a}) = 0$, regardless of the parameters θ . This indicates that the information of
 881 \mathbf{Z} is contained by the information of (\mathbf{X}, \mathbf{A}) . This result holds because \mathbf{Z} is obtained from (\mathbf{X}, \mathbf{A}) ,
 882 and \mathbf{Z} does not provide any additional information about \mathbf{Y} beyond (\mathbf{X}, \mathbf{A}) . \square
 883

884 B.2 PROOF OF LEMMA 5.1

886 *Proof.* Consider a deterministic encoder with encoded representation $\mathbf{Z} = f(\mathbf{X}, \mathbf{A})$, the conditional
 887 mutual information $I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y})$ can be expanded as:

$$888 I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}) = H(\mathbf{X}, \mathbf{A} | \mathbf{Y}) + H(\mathbf{Z} | \mathbf{Y}) - H(\mathbf{X}, \mathbf{A}, \mathbf{Z} | \mathbf{Y}) \\ 889 = H(\mathbf{X}, \mathbf{A} | \mathbf{Y}) + H(\mathbf{Z} | \mathbf{Y}) - (H(\mathbf{X}, \mathbf{A} | \mathbf{Y}) + H(\mathbf{Z} | \mathbf{X}, \mathbf{A}, \mathbf{Y})) \quad (15) \\ 890 = H(\mathbf{Z} | \mathbf{Y}) - H(\mathbf{Z} | \mathbf{X}, \mathbf{A}, \mathbf{Y}).$$

893 Since \mathbf{Z} is a determined by \mathbf{X} and \mathbf{A} , the second term vanishes:

$$894 H(\mathbf{Z} | \mathbf{X}, \mathbf{A}, \mathbf{Y}) = 0 \Rightarrow I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}) = H(\mathbf{Z} | \mathbf{Y}). \quad (16)$$

896 Thus, minimising $I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y})$ is equivalent to minimising $H(\mathbf{Z} | \mathbf{Y})$.

897 Notably, reducing $H(\mathbf{Z} | \mathbf{Y})$ implies the conditional distribution $P(\mathbf{Z} | \mathbf{Y})$ becomes more concentrated
 898 (i.e., \mathbf{Z} is more predictable given \mathbf{Y} (reduced uncertainty)). Applying Bayes' theorem, we
 899 have:

$$900 P(\mathbf{Y} | \mathbf{Z}) = \frac{P(\mathbf{Z} | \mathbf{Y})P(\mathbf{Y})}{P(\mathbf{Z})}. \quad (17)$$

902 Here, a more concentrated $P(\mathbf{Z} | \mathbf{Y})$ would amplify the likelihood term $P(\mathbf{Z} | \mathbf{Y})$ relative to the
 903 marginal $P(\mathbf{Z}) = \mathbb{E}_{\mathbf{Y}'}[P(\mathbf{Z} | \mathbf{Y}')]$. As a result, it produces sharper peaks in $P(\mathbf{Y} | \mathbf{Z})$, increasing
 904 the maximum probability $\max_{\mathbf{y}} P(\mathbf{Y} = \mathbf{y} | \mathbf{Z})$ and thus the prediction confidence of ID data, where:
 905

$$906 H(\mathbf{Y} | \mathbf{Z}) = -\mathbb{E}_{\mathbf{Z}} \left[\sum_y P(y | \mathbf{Z}) \log P(y | \mathbf{Z}) \right] \rightarrow 0. \quad (18)$$

909 \square

910 B.3 PROOF OF THEOREM 5.2

912 *Proof.* To begin, using the chain rule of mutual information, we can decompose the second mutual
 913 information term in the IB objective as:

$$915 I(\mathbf{X}, \mathbf{A}; \mathbf{Z}) = I(\mathbf{Z}; \mathbf{Y}) + I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}). \quad (19)$$

916 Substituting into the IB objective yields:

$$917 \max(1 - \beta)I(\mathbf{Z}; \mathbf{Y}) - \beta I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}). \quad (20)$$

918 Notably, when $\beta = 0$, the objective reduces to the standard supervised learning goal of maximising
 919 $I(\mathbf{Z}; \mathbf{Y})$. However, this indicates that the superfluous information $I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y})$ is preserved,
 920 meaning the encoded representation \mathbf{Z} may contain information from \mathbf{X} and \mathbf{A} that is irrelevant to
 921 the label \mathbf{Y} . This can negatively impact predictive performance, as \mathbf{Z} is not optimised to focus solely
 922 on label-relevant information.

923 In contrast, for $\beta \in (0, 1)$, the IB objective simultaneously increases predictive information $I(\mathbf{Z}; \mathbf{Y})$
 924 and reduces superfluous information by minimising $I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y})$. This ensures \mathbf{Z} can capture use-
 925 ful information about \mathbf{Y} , while compressing out input information irrelevant to \mathbf{Y} . From Lemma 5.1,
 926 minimising $I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y})$ reduces $H(\mathbf{Z} | \mathbf{Y})$. This reduction forces \mathbf{Z} to discard information in \mathbf{X}
 927 that is irrelevant to \mathbf{Y} , leading to a sharper conditional distribution $P(\mathbf{Y} | \mathbf{Z})$. Thus, when $P(\mathbf{Y} | \mathbf{Z})$
 928 becomes sharper, $\max_y P(\mathbf{Y} = y)$ increases, as the probability mass is concentrated on the most
 929 likely value of \mathbf{Y} . Consequently, the conditional entropy decreases:

$$H(\mathbf{Y} | \mathbf{Z}) = -\mathbb{E}_{\mathbf{Z}}[\max_y P(\mathbf{Y} = y | \mathbf{Z})] + \text{cross-entropy terms}, \quad (21)$$

930 thereby increasing prediction confidence. In other words, the model becomes more certain about its
 931 predictions, as \mathbf{Z} is optimised to focus on the most relevant information for predicting \mathbf{Y} .
 932

933 Additionally, an optimal trade-off occurs when β balances information compression-to-prediction.
 934 Let $\Delta_Z = \text{Var}(I(\mathbf{Z}; \mathbf{Y}))$ and $\Delta_{Z|Y} = \text{Var}(I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}))$ represent parameter sensitivity. The
 935 critical ratio:

$$\beta < \frac{\Delta_Z}{\Delta_Z + \Delta_{Z|Y}} \quad (22)$$

936 ensures sufficient weight on predictive information $I(\mathbf{Z}; \mathbf{Y})$. Under this condition, IB produces
 937 representations \mathbf{Z} with minimised superfluous information and maximised prediction confidence than
 938 standard supervised learning. \square

939 **Derivation of $I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}) = I(\mathbf{X}; \mathbf{Z} | \mathbf{Y}) + I(\mathbf{A}; \mathbf{Z} | \mathbf{Y}, \mathbf{X})$.** The decomposition follows from
 940 the chain rule of mutual information:

$$\begin{aligned} I(\mathbf{X}, \mathbf{A}; \mathbf{Z} | \mathbf{Y}) &= I(\mathbf{X}; \mathbf{Z} | \mathbf{Y}) + I(\mathbf{A}; \mathbf{Z} | \mathbf{Y}, \mathbf{X}) \\ &= H(\mathbf{Z} | \mathbf{Y}) - H(\mathbf{Z} | \mathbf{Y}, \mathbf{X}) \\ &\quad + H(\mathbf{Z} | \mathbf{Y}, \mathbf{X}) - H(\mathbf{Z} | \mathbf{Y}, \mathbf{X}, \mathbf{A}) \\ &= H(\mathbf{Z} | \mathbf{Y}) - H(\mathbf{Z} | \mathbf{Y}, \mathbf{X}, \mathbf{A}). \end{aligned} \quad (23)$$

941 For deterministic encoders where $\mathbf{Z} = f(\mathbf{X}, \mathbf{A})$, we have $H(\mathbf{Z} | \mathbf{X}, \mathbf{A}, \mathbf{Y}) = 0$, by Eq. 16, we
 942 complete the derivation.

943 B.4 PROOF OF PROPOSITION 5.3

944 *Proof.* Given an optimised network f^* trained with ID data $(\mathbf{X}_{\text{id}}, \mathbf{A}_{\text{id}})$ via the IB objective. Let
 945 $\mathbf{Z}^* = f^*(\mathbf{X}, \mathbf{A})$ be the encoded representation obtained from the network. We can derive the
 946 following:

947 **Part 1: ID Data Compression** From the derivation in Eq. 23, given ID inputs $(\mathbf{X}_{\text{id}}, \mathbf{A}_{\text{id}})$ and optimal
 948 encoded ID representation \mathbf{Z}_{id}^* , the second term in the IB objective in Eq. 36 can be expressed as:

$$I(\mathbf{X}_{\text{id}}, \mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}) \quad (24)$$

949 Following directly from Lemma 5.1 and Theorem 5.2, this is equivalent to minimising $H(\mathbf{Z}_{\text{id}}^* | \mathbf{Y})$,
 950 making $P(\mathbf{Y} | \mathbf{Z}_{\text{id}}^*)$ sharply concentrated. Thus:

$$H(\mathbf{Y} | \mathbf{Z}_{\text{id}}^*) = -\mathbb{E}_{\mathbf{Z}_{\text{id}}^*} \left[\sum_y P(y | \mathbf{Z}_{\text{id}}^*) \log P(y | \mathbf{Z}_{\text{id}}^*) \right] \rightarrow 0. \quad (25)$$

951 **Part 2: OOD Data Separation** To investigate the effect on OOD data, without loss of generality, we
 952 consider the feature shift defined in Section H, where $P_{\text{id}}(\mathbf{X}) \neq P_{\text{ood}}(\mathbf{X})$, $P_{\text{id}}(\mathbf{X} | \mathbf{A}) \neq P_{\text{ood}}(\mathbf{X} | \mathbf{A})$,
 953 $P_{\text{id}}(\mathbf{Y} | \mathbf{X}) \neq P_{\text{ood}}(\mathbf{Y} | \mathbf{X})$, and $P_{\text{id}}(\mathbf{Y} | \mathbf{A}, \mathbf{X}) \neq P_{\text{ood}}(\mathbf{Y} | \mathbf{A}, \mathbf{X})$. Such that we have OOD features

972 \mathbf{X}_{ood} with ID structure \mathbf{A}_{id} (i.e., $\mathcal{G}_{\text{feat shift}} = (\mathbf{X}_{\text{ood}}, \mathbf{A}_{\text{id}})$). Let $\mathbf{Z}_{\text{ood}}^* = f^*(\mathbf{X}_{\text{ood}}, \mathbf{A}_{\text{id}})$ denote the
 973 representation encoded from the ID trained model for the given OOD data.
 974

975 From the derivation in Eq. 23, we have:

$$976 \quad I(\mathbf{X}_{\text{id}}, \mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}) = I(\mathbf{X}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}) + I(\mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}, \mathbf{X}_{\text{id}}). \quad (26)$$

$$978 \quad I(\mathbf{X}_{\text{ood}}, \mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}) = I(\mathbf{X}_{\text{ood}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}) + I(\mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}, \mathbf{X}_{\text{ood}}). \quad (27)$$

980 Suppose for contradiction that:

$$981 \quad I(\mathbf{X}_{\text{ood}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}) < I(\mathbf{X}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}). \quad (28)$$

983 This would imply:

$$985 \quad I(\mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}, \mathbf{X}_{\text{ood}}) \approx I(\mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}, \mathbf{X}_{\text{id}}), \quad (29)$$

$$986 \quad \Rightarrow I(\mathbf{X}_{\text{ood}}, \mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}) \leq I(\mathbf{X}_{\text{id}}, \mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}). \quad (30)$$

988 However, this contradicts the IB optimality condition since the encoder \mathbf{Z}^* was never trained to
 989 compress \mathbf{X}_{ood} . Thus, we must have:

$$991 \quad I(\mathbf{X}_{\text{ood}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}) \geq I(\mathbf{X}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}). \quad (31)$$

993 Similarly, since \mathbf{A}_{id} is fixed but \mathbf{X}_{ood} is novel:

$$994 \quad I(\mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}, \mathbf{X}_{\text{ood}}) \geq I(\mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}, \mathbf{X}_{\text{id}}). \quad (32)$$

996 Therefore:

$$998 \quad I(\mathbf{X}_{\text{ood}}, \mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{ood}}^* | \mathbf{Y}) \geq I(\mathbf{X}_{\text{id}}, \mathbf{A}_{\text{id}}; \mathbf{Z}_{\text{id}}^* | \mathbf{Y}). \quad (33)$$

999 From Lemma 5.1, higher conditional mutual information implies higher $H(\mathbf{Z}_{\text{ood}}^* | \mathbf{Y})$. By Bayes'
 1000 theorem:

$$1002 \quad P(\mathbf{Y} | \mathbf{Z}_{\text{ood}}^*) = \frac{P(\mathbf{Z}_{\text{ood}}^* | \mathbf{Y})P(\mathbf{Y})}{P(\mathbf{Z}_{\text{ood}}^*)}. \quad (34)$$

1004 The diffuse $P(\mathbf{Z}_{\text{ood}}^* | \mathbf{Y})$ makes $P(\mathbf{Y} | \mathbf{Z}_{\text{ood}}^*)$ approximately uniform, yielding:

$$1006 \quad H(\mathbf{Y} | \mathbf{Z}_{\text{ood}}^*) \approx \log C \gg H(\mathbf{Y} | \mathbf{Z}_{\text{id}}^*), \quad (35)$$

1008 where C is the number of classes. This entropy gap enables improved OOD detection through
 1009 logit-based scoring methods (i.e., energy score (Liu et al., 2020), MaxLogit (Hendrycks et al.,
 1010 2022)). \square

1012 C GRAPH NEURAL NETWORK

1014 Graph Neural Networks (GNNs) are inherently well-suited for capturing intricate dependencies
 1015 between nodes in a graph. Their effectiveness largely stems from the message-passing mechanism,
 1016 which progressively aggregates information from neighbouring nodes, allowing the model to learn
 1017 both local and global structural and feature patterns. Let $\mathbf{z}_i^{(l)}$ represent the learned embedding of
 1018 node i at layer l . A standard Graph Convolutional Network (GCN) updates node representations
 1019 iteratively using the propagation rule:

$$1020 \quad \mathbf{Z}^{(l)} = \sigma \left(\mathbf{D}^{-1/2} \tilde{\mathbf{A}} \mathbf{D}^{-1/2} \mathbf{Z}^{(l-1)} \mathbf{W}^{(l)} \right),$$

1022 where $\mathbf{Z}^{(l-1)} = [\mathbf{z}_i^{(l-1)}]$, and the initial node features are given by $\mathbf{H}^{(0)} = \mathbf{X}$. Here, $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ is
 1023 the adjacency matrix with self-loops, \mathbf{I} denotes the identity matrix, \mathbf{D} is the diagonal degree matrix
 1024 of $\tilde{\mathbf{A}}$, σ is a nonlinear activation function (e.g., ReLU), and $\mathbf{W}^{(l)}$ represents the trainable weight
 1025 matrix for layer l (Kipf & Welling, 2017).

1026 **D INFORMATION BOTTLENECK PRINCIPLE**
1027

1028 The information bottleneck (IB) principle aims to learn a compressed representation \mathbf{Z} with the
1029 maximum relevant information about the label \mathbf{Y} (i.e., $I(\mathbf{Z}; \mathbf{Y})$) while minimising the label-irrelevant
1030 information (i.e., $I(\mathbf{X}; \mathbf{Z})$), as constrained by the Markov chain $\mathbf{Y} \rightarrow \mathbf{X} \rightarrow \mathbf{Z}$ (Tishby et al., 2000;
1031 Alemi et al., 2017). For graph data, \mathbf{Z} is a function of both node features \mathbf{X} and graph structure \mathbf{A}
1032 (i.e., $\mathbf{Z} = \text{GNN}(\mathbf{X}, \mathbf{A})$). The IB objective can be defined as:

$$1033 \max_{\mathbf{Z}} I(\mathbf{Z}; \mathbf{Y}) - \beta I(\mathbf{X}, \mathbf{A}; \mathbf{Z}), \quad (36)$$

$$1034$$

1035 where β is a Lagrange multiplier controlling the trade-off between compression and prediction.
1036 This enables the compression of the joint input information to representation \mathbf{Z} via $I(\mathbf{X}, \mathbf{A}; \mathbf{Z})$ and
1037 optimise its classification ability via $I(\mathbf{Z}; \mathbf{Y})$ (Wu et al., 2020; Sun et al., 2022).

1039 **E TRACTABLE OPTIMISATION OF TRIBE**
1040

1041 To optimise the intractable TRIBE objective in Eq. 13, we approximate the IB terms via variational
1042 lower bounds (Alemi et al., 2017) and enforce the conditional independence and pairwise mutual
1043 information minimisation using reconstruction loss and contrastive loss (Cheng et al., 2020), respec-
1044 tively. **Variational Approximation of \mathcal{L}_{IB} :** Beginning with the first term in objective Eq. 13, without
1045 loss of generality, we provide a variational approximation bound for $\text{IB}_{\mathbf{Z}} = I(\mathbf{Z}; \mathbf{Y}) - \beta_{\mathbf{Z}} I(\mathbf{X}, \mathbf{A}; \mathbf{Z})$,
1046 and the tractable bounds for $\text{IB}_{\mathbf{V}}$ and $\text{IB}_{\mathbf{Q}}$ can be derived accordingly. Let $q(\mathbf{Y}|\mathbf{Z})$ and $r(\mathbf{Z})$ denote
1047 variational approximations to the true conditional distribution $p_{\mathbf{Z}}(\mathbf{Y}|\mathbf{Z})$, and marginal distribution
1048 $p(\mathbf{Z})$, respectively. Consider a parametric Gaussian distribution as prior $p(\mathbf{Z}|\mathbf{X}, \mathbf{A})$, we have:

$$1049 \quad p(\mathbf{Z}|\mathbf{X}, \mathbf{A}) = \mathcal{N}(\mathbf{Z}; \mu(f(\mathbf{X}, \mathbf{A})), \Sigma(f(\mathbf{X}, \mathbf{A}))),$$

$$1050$$

1051 where f is modelled as a GNN network that encodes the input (\mathbf{X}, \mathbf{A}) , followed by linear
1052 layers to obtain the mean and variance representations respectively. Subsequently, we apply
1053 the reparameterisation trick as $\mathbf{Z} = f(\mathbf{X}, \mathbf{A}, \epsilon)$, which ensures it is a deterministic function
1054 of \mathbf{X}, \mathbf{A} and the Gaussian random variable $\epsilon \sim p(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{1})$. Thus, given training data
1055 $\mathbf{X}_{\text{tr}} = (\mathbf{x}_1, \dots, \mathbf{x}_N), \mathbf{Y}_{\text{tr}} = (y_1, \dots, y_N)$ with adjacency matrix \mathbf{A}_{tr} , using the empirical data
1056 distribution, we can obtain a tractable variational lower bound for $\text{IB}_{\mathbf{Z}}$:

$$1057 \quad \text{VIB}_{\mathbf{Z}} = \frac{1}{N} \sum_{n=1}^N [\mathbb{E}_{\epsilon \sim p(\epsilon)} [\log q(y_n | f(\mathbf{x}_n, \mathbf{A}, \epsilon))] - \beta \text{KL}(p(\mathbf{Z}|\mathbf{x}_n, \mathbf{A}) || r(\mathbf{Z}))] \leq \text{IB}_{\mathbf{Z}}, \quad (37)$$

$$1058$$

$$1059$$

$$1060$$

1061 where $r(\mathbf{Z}) = \mathcal{N}(\mathbf{Z}; \mathbf{0}, \mathbf{1})$ is fixed to the standard normal. The first term in Eq. 37 represents the
1062 log-likelihood of the output \mathbf{Y} given the representation \mathbf{Z} , which can be calculated using the cross
1063 entropy loss to encourage \mathbf{Z} to be predictive of \mathbf{Y} . The second term is the Kullback-Leibler (KL)
1064 divergence between the conditional distribution $p(\mathbf{Z} | \mathbf{X}, \mathbf{A})$ and the variational prior $r(\mathbf{Z})$, which
1065 reduces the irrelevant information compressed from the joint input (\mathbf{X}, \mathbf{A}) into the representation \mathbf{Z} .
1066 Following a similar approach, we can derive the lower bound for $\text{IB}_{\mathbf{V}}$ and $\text{IB}_{\mathbf{Q}}$, and thus obtain the
1067 tractable variational lower bound $\mathcal{L}_{\text{VIB}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}}$ for the first term in Eq. 13 as:

$$1068 \quad \max \mathcal{L}_{\text{IB}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}} \geq \mathcal{L}_{\text{VIB}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}} = \text{VIB}_{\mathbf{Z}} + \text{VIB}_{\mathbf{V}} + \text{VIB}_{\mathbf{Q}}. \quad (38)$$

$$1069$$

1070 **Conditional Independence of $\mathcal{L}_{\text{CInd}}$:** To make $\mathcal{L}_{\text{CInd}} = I(\mathbf{A}; \mathbf{X}|\mathbf{Z})$ tractable, we can use a variational
1071 approximation $q(\mathbf{X}|\mathbf{Z})$ to estimate the true distribution $p(\mathbf{X}|\mathbf{Z})$ and derive a variational upper bound
1072 via:

$$1073 \quad \min \mathcal{L}_{\text{VCInd}_{\mathbf{X}, \mathbf{A}, \mathbf{Z}}} = \mathbb{E}_{p(\mathbf{x}, \mathbf{A}, \mathbf{z})} [\underbrace{\log p(\mathbf{x}|\mathbf{A}, \mathbf{z})}_{(1)} - \underbrace{\log q(\mathbf{x}|\mathbf{z})}_{(2)}] \geq \mathcal{L}_{\text{CInd}_{\mathbf{X}, \mathbf{A}, \mathbf{Z}}}. \quad (39)$$

$$1074$$

1075 Minimising this objective encourages \mathbf{Z} to encode all the information of \mathbf{X} that is relevant to \mathbf{A} (via
1076 (1)) and reducing the information of \mathbf{X} that is independent of \mathbf{A} (via (2)). This ensures \mathbf{X} and \mathbf{A} is
1077 conditionally independent given \mathbf{Z} .

1078 **Pairwise Mutual Information Minimisation via Contrastive Learning \mathcal{L}_{PMI} :** Similar to the
1079 variational bound for the IB terms, without loss of generality, we provide an upper bound for $I(\mathbf{Z}; \mathbf{V})$,

1080 and the bounds for $I(\mathbf{Z}; \mathbf{Q})$ and $I(\mathbf{V}; \mathbf{Q})$ can be derived accordingly. Notably, since the conditional
 1081 distribution $p(\mathbf{Z}|\mathbf{V})$ is unknown, utilising the variational contrastive log-ratio upper bound of mutual
 1082 information (CLUB) (Cheng et al., 2020) with samples $(\mathbf{z}_n, \mathbf{v}_n)$, we can derive a tractable upper
 1083 bound for $I(\mathbf{Z}; \mathbf{V})$:

$$1084 \quad I_{\text{VCLUB}_{\mathbf{Z}, \mathbf{V}}} = \frac{1}{N} \sum_{n=1}^N [\log q(\mathbf{z}_n | \mathbf{v}_n) - \frac{1}{N} \sum_{m=1}^N \log q(\mathbf{z}_m | \mathbf{v}_n)] \geq I(\mathbf{Z}; \mathbf{V}), \quad (40)$$

1088 for $q(\mathbf{Z}|\mathbf{V})$ is a variational distribution to approximate $p(\mathbf{Z}|\mathbf{V})$. The first term evaluates how well the
 1089 variational approximation predicts the “positive” pairs $(\mathbf{z}_n, \mathbf{v}_n)$, capturing the dependence between
 1090 \mathbf{Z} and \mathbf{V} . The second term penalises this by evaluating the model on “negative” pairs $(\mathbf{z}_m, \mathbf{v}_n)$,
 1091 approximating the behaviour when \mathbf{Z} and \mathbf{V} are independent, thereby providing an effective upper
 1092 bound for $I(\mathbf{Z}; \mathbf{V})$. Similarly, we can derive the upper bounds for $I(\mathbf{Z}; \mathbf{Q})$ and $I(\mathbf{V}; \mathbf{Q})$, and obtain
 1093 the final tractable objective $\mathcal{L}_{\text{VPMI}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}}$ as:

$$1094 \quad \min \mathcal{L}_{\text{VPMI}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}} = \alpha_1 I_{\text{VCLUB}_{\mathbf{Z}, \mathbf{V}}} + \alpha_2 I_{\text{VCLUB}_{\mathbf{Z}, \mathbf{Q}}} + \alpha_3 I_{\text{VCLUB}_{\mathbf{V}, \mathbf{Q}}} \geq \mathcal{L}_{\text{PMI}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}}. \quad (41)$$

1095 Hence, minimising this loss will ensure the pairwise MI independence between \mathbf{Z} , \mathbf{V} , and \mathbf{Q} . **Final**
 1096 **tractable TRIBE objective:** Combining Eq. 38, 39, 41, the overall tractable objective for TRIBE is
 1097 given by:

$$1099 \quad \max_{\theta_{\mathbf{Z}}, \theta_{\mathbf{V}}, \theta_{\mathbf{Q}}} \mathcal{L}_{\text{VIB}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}} - \lambda_{\text{CInd}} \mathcal{L}_{\text{VCIInd}_{\mathbf{X}, \mathbf{A}, \mathbf{Z}}} - \mathcal{L}_{\text{VPMI}_{\mathbf{Z}, \mathbf{V}, \mathbf{Q}}}. \quad (42)$$

1101 While the objective in Eq. 42 combines all losses into one expression, we optimise the networks
 1102 individually using their respective losses.

1103 The optimisation process for TRIBE is outlined in Algorithm 1 in the main text. In **Step 1**, the
 1104 individual networks are updated to capture sufficient yet minimal joint-input, structure-only, and
 1105 feature-only information for predicting the label \mathbf{Y} . **Step 2** enforces mutual conditional independence
 1106 between $\mathbf{X}|\mathbf{Z}$ and \mathbf{A} specifically for the GNN classifier. Finally, **Step 3** minimises pairwise mutual
 1107 information, updating each network only with the loss relevant to its representation. This structured
 1108 approach ensures efficient and targeted optimisation for TRIBE.

1109

1110 F NEURAL NETWORK PARAMETERISATION OF TRIBE

1111 To optimise the intractable TRIBE objective in Eq. 42, we parameterise the variational approximations
 1112 using GNNs and MLPs: **Main Encoder Networks**. Our framework uses three primary networks to
 1113 encode the representations \mathbf{Z} , \mathbf{V} and \mathbf{Q} and for prediction (i.e., joint-input classifier, feature network,
 1114 structure network) with parameters $\theta_{\mathbf{Z}}$, $\theta_{\mathbf{V}}$, and $\theta_{\mathbf{Q}}$ respectively:

$$1116 \quad \text{Joint-input Network: } \text{GNN}_{\text{CLS}}(\mathbf{X}, \mathbf{A}) \leftarrow \mathbf{Z} \quad (43)$$

$$1117 \quad \text{Feature Network: } \text{MLP}_{\text{feat}}(\mathbf{X}) \leftarrow \mathbf{V} \quad (44)$$

$$1118 \quad \text{Structure Network: } \text{GNN}_{\text{struct}}(\mathbf{I}, \mathbf{A}) \leftarrow \mathbf{Q}, \quad (45)$$

1120 where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the node feature matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the adjacency matrix, $\mathbf{I} \in \mathbb{R}^{n \times n}$ is the
 1121 identity matrix (used as placeholder features), and $\mathbf{Z}, \mathbf{V}, \mathbf{Q}$ are the latent representations. To capture
 1122 structural information, we leverage a GNN model that inherently provides robust structure encoding.
 1123 Meanwhile, for the feature network - comprising solely feature embeddings - a lightweight MLP is
 1124 more appropriate.

1125 Each network contains the following elements respectively: **Variational Implementation**. Following
 1126 common variational approximations (Alemi et al., 2017), we model the conditional distributions of
 1127 our latent representations using Gaussian distributions parameterised by the respective encoders. We
 1128 use a GNN/MLP encoder to extract representations \mathbf{h} from the given inputs, and use linear MLP
 1129 layers to encode the latent variables μ and σ , this produces Gaussian distributions over the latent
 1130 space:

$$1131 \quad \mu_Z = \text{MLP}_{\mu_Z}(\mathbf{h}_Z), \quad \sigma_Z = \text{MLP}_{\sigma_Z}(\mathbf{h}_Z), \quad \mathbf{h}_Z = \text{GNN}_{\text{enc}}(\mathbf{X}, \mathbf{A}) \quad (46)$$

$$1132 \quad \mu_V = \text{MLP}_{\mu_V}(\mathbf{h}_V), \quad \sigma_V = \text{MLP}_{\sigma_V}(\mathbf{h}_V), \quad \mathbf{h}_V = \text{MLP}_{\text{enc}}(\mathbf{X}) \quad (47)$$

$$1133 \quad \mu_Q = \text{MLP}_{\mu_Q}(\mathbf{h}_Q), \quad \sigma_Q = \text{MLP}_{\sigma_Q}(\mathbf{h}_Q), \quad \mathbf{h}_Q = \text{GNN}_{\text{enc}}(\mathbf{I}, \mathbf{A}). \quad (48)$$

1134 Using these, we can sample the latent variables using the reparameterisation trick:
 1135

$$\mathbf{Z} = \boldsymbol{\mu}_Z + \boldsymbol{\sigma}_Z \odot \boldsymbol{\epsilon}_Z, \quad \boldsymbol{\epsilon}_Z \sim \mathcal{N}(0, \mathbf{I}) \quad (49)$$

$$\mathbf{V} = \boldsymbol{\mu}_V + \boldsymbol{\sigma}_V \odot \boldsymbol{\epsilon}_V, \quad \boldsymbol{\epsilon}_V \sim \mathcal{N}(0, \mathbf{I}) \quad (50)$$

$$\mathbf{Q} = \boldsymbol{\mu}_Q + \boldsymbol{\sigma}_Q \odot \boldsymbol{\epsilon}_Q, \quad \boldsymbol{\epsilon}_Q \sim \mathcal{N}(0, \mathbf{I}) \quad (51)$$

1139 This enable us to obtain the representations \mathbf{Z} , \mathbf{V} and \mathbf{Q} for optimisation.
 1140

1141 **Auxiliary Layers.** For predictions and calculation of the reconstruction loss, IB minimisation, and
 1142 pairwise MI minimisation, we use the following auxiliary layers in the respective networks:
 1143

$$\text{Prediction Layers: } \text{GNN}_{\text{pred-Z}}(\mathbf{Z}, \mathbf{A}) \rightarrow \hat{\mathbf{Y}}_Z \quad (52)$$

$$\text{MLP}_{\text{pred-V}}(\mathbf{V}) \rightarrow \hat{\mathbf{Y}}_V \quad (53)$$

$$\text{GNN}_{\text{pred-Q}}(\mathbf{Q}, \mathbf{A}) \rightarrow \hat{\mathbf{Y}}_Q \quad (54)$$

$$\text{Reconstruction Layer: } \text{MLP}_{\text{recon}}(\mathbf{Z}) \rightarrow \hat{\mathbf{X}} \quad (55)$$

1150 F.1 OBJECTIVE COMPONENTS IN TERMS OF NETWORKS

1151 **1) Information Bottleneck Terms.** For each representation \mathbf{Z} , \mathbf{V} , and \mathbf{Q} , we calculate the VIB loss
 1152 Eq. 37. For example, for the joint representation \mathbf{Z} :

$$\begin{aligned} \text{VIB}_Z &= \underbrace{\mathbb{E}_{\epsilon_Z} [\log \text{MLP}_{\text{pred-Z}}(\mathbf{Z} = \boldsymbol{\mu}_Z + \boldsymbol{\sigma}_Z \odot \boldsymbol{\epsilon}_Z)(\mathbf{Y})]}_{\text{CE}(\mathbf{Z}, \mathbf{Y})} \\ &\quad - \underbrace{\beta_Z \sum_i (1 + \log((\boldsymbol{\sigma}_{Z,i})^2) - (\boldsymbol{\mu}_{Z,i})^2 - (\boldsymbol{\sigma}_{Z,i})^2)}_{\text{KL divergence term (analytical form)}} \end{aligned} \quad (56)$$

1161 **2) Conditional Independence Term.** For the conditional independence loss Eq. 39, we use the
 1162 reconstruction network:
 1163

$$\mathcal{L}_{\text{ClInd}} = \underbrace{\mathbb{E}_{\epsilon_Z} [-\|\mathbf{X} - \text{MLP}_{\text{recon}}(\mathbf{Z} = \boldsymbol{\mu}_Z + \boldsymbol{\sigma}_Z \odot \boldsymbol{\epsilon}_Z)\|_2^2]}_{\text{Reconstruction loss (encourages Z to encode X information)}} \quad (57)$$

1167 **3) Pairwise Mutual Information Terms.** Following CLUB (Cheng et al., 2020), we estimate the
 1168 pairwise mutual information terms using contrastive learning Eq. 41. For each pair of representations
 1169 (i.e., \mathbf{Z} , \mathbf{V}), we compute:
 1170

$$\text{CLUB}(\mathbf{Z}, \mathbf{V}) = \frac{1}{N} \sum_{i=1}^N \log \frac{s(\mathbf{Z}_i, \mathbf{V}_i)}{\frac{1}{N} \sum_{j=1}^N s(\mathbf{Z}_i, \mathbf{V}_j)} \quad (58)$$

1173 (59)

1174 where s is a similarity function (e.g., dot product) between representations, N is the number of
 1175 samples.
 1176

1177 **Implementation Notes** In practice, we optimise this objective by:
 1178

- Forward pass through all encoders to get $\boldsymbol{\mu}_Z, \boldsymbol{\sigma}_Z, \boldsymbol{\mu}_V, \boldsymbol{\sigma}_V, \boldsymbol{\mu}_Q, \boldsymbol{\sigma}_Q$.
- Sample \mathbf{Z} , \mathbf{V} , \mathbf{Q} using the reparameterisation trick.
- Compute all components of the loss using these samples.
- Backpropagate through the networks to update parameters according to Algorithm 1.

1184 G EXTENDED RELATED WORK

1185 Out-of-distribution detection is a critical task in machine learning, extensively studied across various
 1186 domains. A significant body of work focuses on methods that rely solely on ID data, employing
 1187

1188 techniques such as softmax scores (Hendrycks & Gimpel, 2017; Liang et al., 2018), energy-based
 1189 scoring (Liu et al., 2020; Wang et al., 2021; Yang et al., 2024b), and activation pruning (Djuricic
 1190 et al., 2023; Sun & Li, 2022; Sun et al., 2021). Other strategies enhance model confidence (Hsu
 1191 et al., 2020; Hein et al., 2019; Vyas et al., 2018), improve feature learning (Lin et al., 2021; Dong
 1192 et al., 2022), or incorporate adversarial approaches (Bitterwolf et al., 2020; Chen et al., 2021; Choi
 1193 & Chung, 2020). Beyond ID-based methods, OOD exposure leverages auxiliary OOD data during
 1194 training to improve detection performance (Hendrycks et al., 2019; Liu et al., 2020; Park et al., 2023;
 1195 Zhu et al., 2023; Zheng et al., 2023; Du et al., 2024; Wu et al., 2023b). Meanwhile, an emerging
 1196 direction involves generating synthetic OOD data. GAN-based methods, such as ConfOOD (Lee
 1197 et al., 2018a), train confidence classifiers alongside OOD data generation, while VOS (Du et al.,
 1198 2022) synthesises outliers from low-probability Gaussian regions. More recently, diffusion models
 1199 have been widely adopted, as seen in DFDD (Wu et al., 2023a) and Dream-OOD (Du et al., 2023).
 1200

1201 G.1 GRAPH OOD DETECTION

1202 Recent advancements in OOD detection have expanded to graph-structured data, addressing both
 1203 node-level and graph-level detection tasks. For node-level OOD detection, several innovative methods
 1204 have been developed to improve detection accuracy and robustness. GNNSafe introduces an energy
 1205 propagation schema that considers the inter-dependence of node instances, providing a more nuanced
 1206 approach to identifying OOD nodes (Wu et al., 2023b). Building on this, NODESafe incorporates
 1207 additional regularization terms to reduce and bound extreme energy scores, ensuring more stable
 1208 and reliable detection (Yang et al., 2024b). Meanwhile, TopoOOD explores topological shifts in
 1209 graph data and proposes a node-wise Dirichlet Energy metric to measure neighbourhood turbulence,
 1210 which serves as a confidence score for OOD detection (Bao et al., 2024). Other approaches, such as
 1211 GKDE, employ a multi-source uncertainty framework to estimate node-level Dirichlet distributions,
 1212 which aids in identifying OOD instances (Zhao et al., 2020). Similarly, GPN leverages Bayesian
 1213 posterior and density estimation to quantify uncertainty at the node level, further enhancing detec-
 1214 tion capabilities (Stadler et al., 2021). Moreover, DeGEM presents a novel energy-based model
 1215 training framework involving a multi-hop graph encoder and energy head, targeting the detection
 1216 on heterophilic graphs (Chen et al., 2025). Additionally, GOLD presents a data-synthesis-based
 1217 framework that generates pseudo-OOD embeddings without relying on pre-trained generative models
 1218 or auxiliary OOD datasets. At its core is an alternating optimisation framework, which effectively
 1219 balances ID representation learning with divergence-enhanced pseudo-OOD generation (Wang et al.,
 1220 2025a). More recently, some works explores OOD detection on text-attributed graph using Large
 1221 Language Models for zero-shot detection or generating auxiliary pseudo-OOD samples Xu et al.
 1222 (2025b;a); Wang et al. (2024).

1223 At the graph level, OOD detection methods have focused on modelling distribution shifts, adopting
 1224 data-centric perspectives, and utilising unsupervised learning techniques. GraphDE models distri-
 1225 bution shifts through a graph generative process, deriving a posterior distribution to detect OOD
 1226 graphs (Li et al., 2022b). In contrast, AAGOD takes a data-centric approach by learning structural
 1227 patterns in graph data through a learnable amplifier matrix, improving detection performance (Guo
 1228 et al., 2023). Another notable method, GOOD-D, applies unsupervised contrastive learning to en-
 1229 hance graph-level OOD detection without relying on labelled OOD data (Liu et al., 2023). These
 1230 methods highlight the growing emphasis on leveraging graph structure and distributional properties
 to improve OOD detection.

1231 G.2 INFORMATION BOTTLENECK

1232 The IB principle has been widely applied across various domains to enhance learned representa-
 1233 tions (Wu et al., 2020; Alemi et al., 2017; Tishby et al., 2000; Ahuja et al., 2021; Kawaguchi et al.,
 1234 2023; Wang et al., 2023; Federici et al., 2020; Dai et al., 2023; Sun et al., 2022). Its objective is to
 1235 learn a compressed representation that maximally retains label-relevant information while minimising
 1236 label-irrelevant information from inputs (Tishby et al., 2000; Alemi et al., 2017). This concept has
 1237 also been extended to graph-structured data, enabling robust representation learning from both node
 1238 features and graph structure (Wu et al., 2020; Sun et al., 2022).

1239 Notably, IB’s potential for OOD detection has primarily been explored in Euclidean settings (Hu
 1240 et al., 2024; Zhao & Cao, 2023; Li et al., 2023b; Sinha et al., 2021; Wu & Deng, 2024). For instance,

1242 DRL introduces a dual representation learning framework that learns both a target-discriminative
 1243 representation and an additional distribution-discriminative representation \mathbf{C} , capturing all information
 1244 relevant to the target \mathbf{Y} (Zhao & Cao, 2023). Meanwhile, Hu et al. (2024) examines information
 1245 from the perspective of classification-relevant and classification-irrelevant detection, providing a
 1246 theoretical analysis of the overconfidence of OOD samples in models trained on ID data using super-
 1247 supervised learning. Alemi et al. (2018) empirically validates IB’s effectiveness for OOD detection. In
 1248 contrast to these studies, our work offers theoretical insights into the advantages of IB over standard
 1249 supervised learning, particularly in improving prediction confidence. For graph-structured data,
 1250 IS-GIB introduces I-GIB to mitigate irrelevant information by minimising the mutual information
 1251 between the input graph and its embeddings. S-GIB was further leveraged to utilise structural rela-
 1252 tionships to discard irrelevant information, establishing an effective invariant learning framework for
 1253 OOD generalisation (Yang et al., 2024a). Additionally, CSIB generates and refines causal subgraphs
 1254 based on invariant causal prediction and the graph information bottleneck principle, preserving
 1255 essential features while filtering out spurious correlations, thereby improving graph-based OOD
 1256 generalisation (An et al., 2024). Moreover, IBPL introduces a graph-level OOD detection method that
 1257 effectively tackles the issue of overlapping features between ID and OOD graphs, aiming to enhance
 1258 detection performance. IBPL proposes a novel graph prompt that jointly optimises node features and
 1259 graph structure, enabling the generation of more discriminative ID features. By leveraging the IB
 1260 principle, IBPL maximises the MI between category labels and the prompt graph while minimising
 1261 the MI between perturbed graphs and the prompt graph. This dual optimisation process allows
 1262 for the extraction of robust ID features while significantly reducing the influence of overlapping
 1263 features (Cao et al., 2025). Unlike these approaches, our work is driven by theoretical insights into IB
 1264 and mutual decomposition, demonstrating their benefits for OOD detection. We validate our findings
 1265 through extensive experiments, highlighting and validating the effectiveness of IB for graph OOD
 1266 detection.

H DEFINING OOD SHIFTS

1267 Typically, considering a message passing neural network (i.e., GNN) model, it is trained using ID
 1268 data (i.e., $\mathbf{X}_{ID}^{tr}, \mathbf{A}_{ID}^{tr}$), and the test data consists of a combination of ID and OOD instances (i.e.,
 1269 $(\mathbf{X}_{ID}^{te}, \mathbf{A}_{ID}^{te}), (\mathbf{X}_{OOD}^{te}, \mathbf{A}_{OOD}^{te})$). The primary objective is to identify and detect the OOD samples from
 1270 the ID instances while maintaining high ID classification performance.

1271 Generally, we categorise OOD shifts into the following: $P_{train}(\mathbf{X}, \mathbf{A}) \neq P_{test}(\mathbf{X}, \mathbf{A})$ and the
 1272 conditional distribution $P_{train}(\mathbf{Y}|\mathbf{X}, \mathbf{A}) \neq P_{test}(\mathbf{Y}|\mathbf{X}, \mathbf{A})$. To detect OOD data, the task is to
 1273 formulate an OOD scoring function F , usually built upon the output from the classifier GNN,
 1274 such that it outputs $F(\mathbf{X}, \mathbf{A}; \text{GNN}) = 0$ for data from in-distribution and $F(\mathbf{X}, \mathbf{A}; \text{GNN}) = 1$
 1275 for data from out-of-distribution. This definition, however, lacks the detail of the particular
 1276 shift occurring alone on the feature \mathbf{X} or among the structure \mathbf{A} . Thus, to understand when
 1277 OOD detection is possible for such an ID-trained model, we adopt the following definitions
 1278 and explore the impact of each of the distribution shifts (Han et al., 2024). **Feature Shift**
 1279 (\mathbf{X}): A feature shift occurs when the distribution of \mathbf{X} and its relationship with \mathbf{A} change be-
 1280 tween training and testing. Specifically, $P_{train}(\mathbf{X}) \neq P_{test}(\mathbf{X})$ and $P_{train}(\mathbf{X}|\mathbf{A}) \neq P_{test}(\mathbf{X}|\mathbf{A})$ or
 1281 $P_{train}(\mathbf{A}|\mathbf{X}) \neq P_{test}(\mathbf{A}|\mathbf{X})$. Additionally, the conditional distribution of \mathbf{Y} given \mathbf{X} changes, such
 1282 that $P_{train}(\mathbf{Y}|\mathbf{X}) \neq P_{test}(\mathbf{Y}|\mathbf{X})$. Consequently, the joint conditional distribution of \mathbf{Y} given both
 1283 \mathbf{X} and \mathbf{A} also shifts: $P_{train}(\mathbf{Y}|\mathbf{A}, \mathbf{X}) \neq P_{test}(\mathbf{Y}|\mathbf{A}, \mathbf{X})$. However, the conditional distribution of \mathbf{Y}
 1284 given \mathbf{A} alone remains unchanged: $P_{train}(\mathbf{Y}|\mathbf{A}) = P_{test}(\mathbf{Y}|\mathbf{A})$. **Structural Shift** (\mathbf{A}): A structural
 1285 shift occurs when the distribution of \mathbf{A} and dependencies with \mathbf{X} shifts (i.e., $P_{train}(\mathbf{A}) \neq P_{test}(\mathbf{A})$
 1286 and $P_{train}(\mathbf{X}|\mathbf{A}) \neq P_{test}(\mathbf{X}|\mathbf{A})$ or $P_{train}(\mathbf{A}|\mathbf{X}) \neq P_{test}(\mathbf{A}|\mathbf{X})$). Additionally, the conditional dis-
 1287 tribution of \mathbf{Y} given \mathbf{A} changes, such that $P_{train}(\mathbf{Y}|\mathbf{A}) \neq P_{test}(\mathbf{Y}|\mathbf{A})$. Consequently, the joint
 1288 conditional distribution of \mathbf{Y} given both \mathbf{X} and \mathbf{A} also shifts: $P_{train}(\mathbf{Y}|\mathbf{A}, \mathbf{X}) \neq P_{test}(\mathbf{Y}|\mathbf{A}, \mathbf{X})$.
 1289 However, the conditional distribution of \mathbf{Y} given \mathbf{X} remains invariant: $P_{train}(\mathbf{Y}|\mathbf{X}) = P_{test}(\mathbf{Y}|\mathbf{X})$.
 1290 **Joint Shift** (\mathbf{X}, \mathbf{A}): More realistically, distributional shifts typically occur jointly on \mathbf{X}, \mathbf{A} , thus,
 1291 we consider a joint distribution shift on both the feature and structure (i.e., $P_{train}(\mathbf{A}) \neq P_{test}(\mathbf{A})$,
 1292 $P_{train}(\mathbf{X}) \neq P_{test}(\mathbf{X})$, and $P_{train}(\mathbf{X}|\mathbf{A}) \neq P_{test}(\mathbf{X}|\mathbf{A})$ or $P_{train}(\mathbf{A}|\mathbf{X}) \neq P_{test}(\mathbf{A}|\mathbf{X})$). The joint condi-
 1293 tional distribution of \mathbf{Y} given both \mathbf{X} and \mathbf{A} also shifts: $P_{train}(\mathbf{Y}|\mathbf{A}, \mathbf{X}) \neq P_{test}(\mathbf{Y}|\mathbf{A}, \mathbf{X})$. **Semantic**
 1294 **Shift** (\mathbf{Y}): Consider \mathcal{Y}_{train} and \mathcal{Y}_{test} as the label space of the train and test data respectively. OOD
 1295 data with semantic shift is defined to consist of unknown labels \mathbf{Y} that do not belong to any of the
 1296 classes seen in the ID label space \mathcal{Y}_{train} , i.e., $\mathcal{Y}_{train} \subset \mathcal{Y}_{test}$ or $\mathcal{Y}_{train} \cap \mathcal{Y}_{test} = \emptyset$.

1296 I EVALUATION METRICS

1298 To evaluate the performance of OOD detection, we followed common practices (Wu et al., 2023b;
 1299 Liu et al., 2020; 2023; Yang et al., 2024b) and utilised three key metrics:

1300

- 1301 1. Area Under the Receiver Operating Characteristic curve (AUROC),
- 1302 2. Area Under the Precision-Recall curve (AUPR),
- 1303 3. False positive rate at 95% true positive rate (FPR95).

1304 These metrics are independent of the threshold, avoiding the need to select τ . AUROC captures the
 1305 balance between the true positive rate (TPR) and false positive rate (FPR) across varying thresholds,
 1306 offering an overall assessment of the model’s ability to differentiate between ID and OOD samples.
 1307 However, when OOD instances are rare in highly imbalanced datasets, AUROC can yield overly
 1308 optimistic results. In contrast, AUPR accounts for both precision and recall, making it more suited
 1309 for such imbalanced scenarios. Meanwhile, FPR95 emphasises performance under high-sensitivity
 1310 conditions by measuring the rate at which ID samples are misclassified as OOD when the true positive
 1311 rate is fixed at 95%. This metric highlights improvements in detection performance under stricter
 1312 criteria, where a lower FPR95 indicates a more significant gain in the model’s ability to differentiate
 1313 between ID and OOD instances.

1316 J IMPLEMENTATION DETAILS

1317 We follow (Wu et al., 2023b; Yang et al., 2024b) and use the publicly available benchmark datasets.
 1318 The datasets were downloaded via Pytorch Geometric 2.0.3 and OGB 1.3.3 under the MIT license.
 1319 Experiments were conducted using Python 3.9.19 and PyTorch 2.3.1 with Cuda 12.2 on a single
 1320 NVIDIA RTX A6000 GPU with 48GB of memory. We follow (Wu et al., 2023b; Yang et al.,
 1321 2024b) for the selection of baselines. We conducted experiments across three seeds for GNNSafe
 1322 and NODESAFE. Result inconsistencies with original reported statistics may stem from software
 1323 environment, dataset differences, and unavailable hyperparameters. We reproduced results to the
 1324 best of our ability, while results for other baselines were sourced from (Wu et al., 2023b; Yang
 1325 et al., 2024b). The trade-off parameters β for the individual IB losses are searched through the
 1326 range $\beta \in \{0.0001, 0.001, 0.01, 0.1, 1\}$, with a default value of $\beta = 0.001$. A constant $\alpha_i \in$
 1327 $\{0.0001, 0.001, 0.01, 0.1, 1\}$ is applied uniformly to all three mutual information terms in Eq. 11.
 1328 The loss coefficient λ_{CInd} for $\mathcal{L}_{\text{VCInd}}$ was tuned based on the dataset with values taking ranges of
 1329 $\lambda_{\text{CInd}} \in \{0.0001, \dots, 1\}$. Following (Wu et al., 2023b), the number of energy propagation iterations
 1330 k is set to 2, with the controlling parameter α fixed at 0.5, the OOD-exposure loss coefficient λ_{OE}
 1331 for $\mathcal{L}_{\text{EReg}}$ is set to 1. For OOD exposure experiments, we tuned the margins t_{ID} and t_{OOD} from the
 1332 proposed ranges by (Wu et al., 2023b; Yang et al., 2024b), if not available, we tune with values
 1333 from the range of $\{-9, \dots, 0\}$ for $t_{\text{ID}} < t_{\text{OOD}}$ for different datasets. The Adam optimiser is used for
 1334 training (Kingma & Ba, 2015). For simplicity, constant β and α values were applied uniformly: α to
 1335 all mutual information terms in PMI loss, and β to IB terms for the GNN classifier, structure, and
 1336 feature networks. Results show performance is sensitive to these weights. A suitable β is crucial
 1337 for balancing representation robustness with prediction ability, while an appropriate α encourages a
 1338 compact joint representation, mitigating spurious impacts from structure and features. Tables 6, 7,
 1339 and 8 presents the hyperparameter sensitivity analysis.

1340 Table 6: Hyperparameter analysis for λ_{CInd} . Bold highlights the optimal parameter.

λ_{CInd}	Cora - S				Citeseer - F			
	AUROC	AUPR	FPR	ID Acc	AUROC	AUPR	FPR	ID Acc
0	94.79 ± 0.22	88.41 ± 0.49	26.22 ± 2.55	78.73	93.25 ± 0.87	82.94 ± 2.15	26.96 ± 4.64	67.83
0.0001	95.01 ± 0.24	88.93 ± 0.51	24.84 ± 0.70	78.90	93.96 ± 0.73	84.67 ± 2.35	23.13 ± 3.55	68.40
0.001	94.97 ± 0.19	88.89 ± 0.44	25.55 ± 1.86	78.80	93.81 ± 0.81	84.51 ± 2.42	24.58 ± 3.31	68.37
0.01	94.93 ± 0.32	88.80 ± 0.69	25.39 ± 0.70	78.90	93.79 ± 0.83	84.53 ± 2.44	24.75 ± 4.58	68.33
0.1	94.92 ± 0.26	88.77 ± 0.60	25.65 ± 1.80	78.90	93.74 ± 0.78	84.25 ± 2.67	24.99 ± 4.20	68.37
1	95.15 ± 0.37	89.33 ± 0.57	23.31 ± 1.04	78.97	93.90 ± 0.75	84.62 ± 2.32	24.05 ± 3.94	68.30

1350 Table 7: Hyperparameter analysis for α – weight coefficients applied uniformly to all mutual
 1351 information terms in PMI. Bold highlights the optimal parameter.

α	Cora - F				PubMed - S			
	AUROC	AUPR	FPR	ID Acc	AUROC	AUPR	FPR	ID Acc
0	97.72 \pm 0.10	94.26 \pm 0.52	9.40 \pm 1.06	77.47	96.45 \pm 0.64	76.46 \pm 2.31	15.66 \pm 4.88	74.77
0.0001	97.68 \pm 0.13	89.16 \pm 9.49	8.80 \pm 0.79	77.77	96.55 \pm 0.80	77.26 \pm 2.72	16.21 \pm 5.18	74.47
0.001	97.66 \pm 0.10	94.51 \pm 0.40	8.63 \pm 0.94	78.00	96.54 \pm 0.80	77.21 \pm 2.71	16.15 \pm 4.98	74.47
0.01	97.88 \pm 0.24	94.67 \pm 0.56	8.13 \pm 1.32	78.10	97.25 \pm 0.58	79.76 \pm 2.17	12.97 \pm 3.87	75.93
0.1	78.49 \pm 7.47	70.99 \pm 8.49	91.89 \pm 6.77	76.30	88.13 \pm 6.57	66.19 \pm 11.57	69.39 \pm 30.40	75.70
1	47.82 \pm 4.92	29.19 \pm 3.29	97.89 \pm 1.31	24.37	37.96 \pm 49.44	31.37 \pm 49.70	78.33 \pm 33.53	40.77

1359 Table 8: Hyperparameter analysis for β – prediction-to-compression trade-off weight applied uni-
 1360 formly to the IB terms for the GNN classifier, structure, and feature networks. Bold highlights the
 1361 optimal parameter.

β	Amazon - L				Twitch			
	AUROC	AUPR	FPR	ID Acc	AUROC	AUPR	FPR	ID Acc
0	96.92 \pm 0.33	96.38 \pm 0.70	9.29 \pm 1.15	96.10	66.33 \pm 15.32	72.59 \pm 13.44	81.18 \pm 19.87	70.75
0.0001	96.85 \pm 0.13	95.82 \pm 0.11	8.94 \pm 1.45	95.89	89.72 \pm 5.42	91.92 \pm 3.85	46.60 \pm 26.47	68.63
0.001	96.83 \pm 0.39	95.78 \pm 0.42	8.36 \pm 3.83	96.04	89.39 \pm 5.57	91.58 \pm 3.82	47.75 \pm 27.79	68.63
0.01	96.86 \pm 0.35	95.79 \pm 0.39	8.13 \pm 3.55	96.07	89.04 \pm 6.61	91.61 \pm 4.75	48.89 \pm 33.03	68.61
0.1	96.87 \pm 0.31	95.80 \pm 0.38	8.39 \pm 3.17	94.87	82.14 \pm 13.18	85.87 \pm 9.48	51.07 \pm 33.40	67.52
1	93.40 \pm 1.77	90.85 \pm 1.20	34.01 \pm 30.72	82.32	57.70 \pm 24.03	68.52 \pm 14.31	68.30 \pm 25.88	59.31

K DATASET DETAILS

1372 Following the protocol outlined in (Wu et al., 2023b), we use publicly available graph benchmark
 1373 datasets, sourced from the PyTorch Geometric (PyG) and the Open Graph Benchmark (OGB)¹
 1374 package² (Sen et al., 2008). We adhere to the provided splits and dataset generation process described
 1375 in Wu et al. (2023b). **Cora** This dataset represents a citation network where nodes correspond to
 1376 academic papers, and edges denote citation relationships (Sen et al., 2008). Each paper is classified
 1377 into one of seven categories. **Cora** lacks explicit domain-based partitions for OOD evaluation, thus,
 1378 we follow (Wu et al., 2023b) and generate OOD data synthetically as described in Section 6 (i.e.,
 1379 Structure shift, Feature shift, and label-leave-out).

Table 9: Cora dataset statistics

	Structure (ID)	Structure (OOD)	Feature (ID)	Feature (OOD)	Label (ID)	Label (OOD)
Nodes	2708	2708	2708	2708	904	986
Edges	10556	6696	10556	10556	10556	10556
Feature Dim	1433	1433	1433	1433	1433	1433
Classes	7	7	7	7	3	3

1388 **Citeseer** This dataset is another citation network (Giles et al., 1998; Sen et al., 2008), where nodes
 1389 represent scientific papers classified into one of six classes, and edges denote citation relationships. It
 1390 contains slightly more papers with fewer edges than **Cora**, however, the feature dimension is larger.
 1391 We follow **Cora** and generate three OOD data synthetically as described in Section 6 .

Table 10: Citeseer dataset statistics

	Structure (ID)	Structure (OOD)	Feature (ID)	Feature (OOD)	Label (ID)	Label (OOD)
Nodes	3327	3327	3327	3327	1104	1522
Edges	9104	5932	9104	9104	9104	9104
Feature Dim	3703	3703	3703	3703	3703	3703
Classes	6	6	6	6	2	3

1399 **Pubmed** This dataset is a biomedical paper citation network (Sen et al., 2008), with each paper
 1400 classified into one of three classes. The nodes represent academic papers, while edges are citation
 1401

¹<https://github.com/snap-stanford/ogb?tab=readme-ov-file>

²<https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html>

relationships, we follow (Yang et al., 2024b) and generate OOD data synthetically as described in Section 6. Due to the Pubmed dataset having only three classes, the NODESAFE approach designates two classes as OOD labels (i.e., OOD training and OOD testing), leaving just one class in the training set. This setup may pose challenges, as training with only one class can lead to significant imbalance and limitations in model evaluation. As a result, we exclude the label shift scenario for Pubmed from our analysis.

Table 11: Pubmed dataset statistics

	Structure (ID)	Structure (OOD)	Feature (ID)	Feature (OOD)
Nodes	19717	19717	19717	19717
Edges	88648	74188	88648	88648
Feature Dim	500	500	500	500
Classes	3	3	3	3

Amazon-Photo This dataset models an item co-purchasing network, where nodes represent products, and edges indicate frequently co-purchased items (McAuley et al., 2015). Node features capture product descriptions, and labels correspond to product categories. Similar to Cora, we generate OOD data synthetically. **Coauthor-CS** This dataset represents a collaboration network, where

Table 12: Amazon-Photo dataset statistics

	Structure (ID)	Structure (OOD)	Feature (ID)	Feature (OOD)	Label (ID)	Label (OOD)
Nodes	7650	7650	7650	7650	3095	3673
Edges	238162	149168	238162	238162	238162	238162
Feature Dim	745	745	745	745	745	745
Classes	8	8	8	8	3	4

nodes correspond to authors, and edges indicate co-authorships in computer science research (Sinha et al., 2015). The task involves classifying authors into their respective fields based on publication keywords. OOD graphs are generated following the synthetic protocol used for other datasets.

Table 13: Coauthor-CS dataset statistics

	Structure (ID)	Structure (OOD)	Feature (ID)	Feature (OOD)	Label (ID)	Label (OOD)
Nodes	18333	18333	18333	18333	13290	3649
Edges	163788	92802	163788	163788	163788	163788
Feature Dim	6805	6805	6805	6805	6805	6805
Classes	15	15	15	15	10	4

TwitchGamers – Explicit This dataset comprises multiple social network subgraphs from different geographic regions (Rozemberczki & Sarkar, 2021). Nodes represent Twitch gamers, and edges indicate follower relationships. Node features include game-based embeddings, and the classification task focuses on predicting whether a user streams mature content. We use the DE subgraph as ID data and the ES, FR, and RU subgraphs as OOD test data. **OGBN-Arxiv** This

Table 14: TwitchGamers – Explicit dataset statistics

	DE (ID)	ES (OOD)	FR (OOD)	RU (OOD)
Nodes	9498	4648	6551	4385
Edges	315774	123412	231883	78993
Feature Dim	128	128	128	128
Classes	2	2	2	2

dataset is a large-scale citation network spanning research papers from 1960 to 2020 (Hu et al., 2020). Nodes represent papers, categorised by subject area, and edges signify citation links. Node features are derived from word embeddings of paper titles and abstracts. Following (Wu et al., 2023b), we partition the dataset using publication timestamps—papers published before 2015 are used as ID data, while papers published after 2017 serve as OOD data.

Table 15: OGBN-Arxiv dataset statistics

1458
1459
1460
1461
1462
1463

		2015 (ID)	2018 (OOD)	2019 (OOD)	2020 (OOD)
Nodes	53160	29799	39711	8892	
Edges	152226	622466	1061197	1166243	
Feature Dim	128	128	128	128	
Classes	40	40	40	40	

1464
1465
1466

L EXTENDED EXPERIMENTAL RESULTS

1467
1468
1469
1470
1471
1472
1473
1474
1475

In this section, we provide the extended results from the main paper. Table 16. Additionally, we provide the OOD detection performance for each subset of the OOD datasets in Tables 17 to 23, complementing Tables 1 and 3 in the main text. The scores reported in the subset tables are averaged across three runs, with variance reflecting performance deviation across the three seeds. Furthermore, we report an extended version of the ablation study in Tables 24 to 28, supplementing Table 5 in the main text.

1476
1477
1478
1479
1480
1481Table 16: Overall Model performance comparison: out-of-distribution detection is measured by AUROC (\uparrow) / AUPR (\uparrow) / FPR95 (\downarrow) (%) and in-distribution classification results are measured by accuracy (ID ACC) (\uparrow). OOD detection performance was prioritised, with the detection results of our TRIBE against Non- (Real-) OOD Exposure methods.1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504

Metrics	MSP	ODIN	Maha	Non-OOD Exposure				OE	Real OOD Exposure			TRIBE	
				Energy	GKDE	GPN	GNNSAFE		Energy FT	GNNSAFE++	NODESAFE++	w/o OE	w/ OE
Cora	AUROC	82.55	49.87	54.74	83.09	69.54	84.56	91.20 \pm 3.09	93.35 \pm 2.41	79.76	85.13	93.13 \pm 2.62	95.58 \pm 2.12
	AUPR	65.82	26.00	34.43	66.21	46.09	68.02	82.92 \pm 4.96	84.64 \pm 6.04	64.93	67.89	85.28 \pm 4.55	82.74 \pm 4.62
	FPR95	62.39	100.00	96.30	65.21	80.51	58.30	50.53 \pm 22.04	29.23 \pm 12.06	75.22	51.03	37.28 \pm 16.97	42.48 \pm 5.82
	ID ACC	79.91	79.61	79.57	80.34	79.86	81.65	81.56 \pm 7.01	82.66 \pm 6.61	77.69	80.44	82.16 \pm 7.78	74.94 \pm 13.86
Pubmed	AUROC	77.69	50.14	49.55	78.26	72.95	78.22	84.89 \pm 5.47	87.80 \pm 2.74	63.75	79.81	85.69 \pm 5.16	94.29 \pm 7.06
	AUPR	51.43	21.38	29.29	51.22	47.67	52.22	64.86 \pm 3.39	73.25 \pm 6.41	47.20	52.79	65.89 \pm 2.50	64.86 \pm 4.66
	FPR95	69.42	100	95.06	65.34	71.85	67.09	60.85 \pm 18.06	53.38 \pm 17.47	74.15	57.37	54.76 \pm 23.14	56.12 \pm 22.56
	ID ACC	73.72	73.75	62.17	73.43	72.69	72.77	76.06 \pm 12.05	73.12 \pm 14.15	62.24	72.66	72.74 \pm 13.43	68.60 \pm 18.51
Amazon	AUROC	78.80	49.72	62.20	79.25	78.14	78.76	93.82 \pm 1.93	91.08 \pm 2.95	78.38	76.25	93.77 \pm 1.31	95.14 \pm 0.26
	AUPR	28.37	4.83	11.74	28.21	24.65	28.65	69.94 \pm 6.32	68.56 \pm 1.08	27.67	27.61	74.06 \pm 5.16	72.20 \pm 5.85
	FPR95	76.73	100	91.26	70.69	75.04	71.06	37.71 \pm 14.28	50.17 \pm 0.89	79.05	91.02	39.58 \pm 11.44	42.87 \pm 6.44
	ID ACC	75.05	75.30	71.15	75.55	74.65	75.15	76.78 \pm 0.31	77.32 \pm 0.02	73.00	75.80	77.88 \pm 0.35	74.17 \pm 0.05
Coauthor	AUROC	96.52	80.12	73.81	96.73	66.98	92.60	97.99 \pm 0.93	97.84 \pm 1.11	97.79	98.04	—	98.16 \pm 1.14
	AUPR	95.01	77.18	72.35	95.16	71.18	90.50	98.16 \pm 1.56	97.77 \pm 2.11	97.26	96.96	—	98.08 \pm 1.99
	FPR95	13.83	85.22	83.44	13.15	98.47	32.64	3.24 \pm 5.24	3.69 \pm 6.14	7.52	5.98	—	2.81 \pm 4.61
	ID ACC	93.83	93.88	93.80	93.85	87.71	89.54	93.79 \pm 1.99	92.70 \pm 2.16	93.54	93.38	—	93.90 \pm 1.88
Twitch	AUROC	95.74	51.71	82.02	96.64	69.24	69.89	98.98 \pm 1.41	99.02 \pm 1.45	97.65	98.17	—	99.27 \pm 1.17
	AUPR	96.43	56.37	87.05	97.09	80.17	72.77	99.55 \pm 0.44	99.57 \pm 0.47	98.04	98.51	—	99.70 \pm 0.40
	FPR95	21.37	99.97	48.09	15.49	97.04	69.60	4.29 \pm 6.87	4.33 \pm 7.04	10.61	7.76	—	3.31 \pm 5.45
	ID ACC	93.37	93.29	93.29	93.57	87.74	89.39	93.65 \pm 1.50	93.21 \pm 1.86	93.41	93.44	—	93.48 \pm 1.74
Arxiv	AUROC	33.59	58.16	55.68	51.24	46.48	51.73	66.33 \pm 15.32	66.48 \pm 15.44	55.72	84.50	95.76 \pm 2.63	76.79 \pm 34.23
	AUPR	49.14	72.12	66.42	60.81	62.11	66.36	72.59 \pm 13.44	72.71 \pm 13.43	70.18	88.04	97.45 \pm 1.69	83.97 \pm 24.11
	FPR95	97.45	93.99	90.13	91.61	95.62	95.51	81.18 \pm 18.28	80.62 \pm 20.03	95.07	61.29	29.81 \pm 23.16	34.46 \pm 29.93
	ID ACC	68.72	70.79	70.51	70.40	67.44	68.09	70.75	70.75	70.73	70.52	70.36	70.07

1497
1498
1499
1500Table 17: **Cora**: Extended OOD detection performance with three types of OOD (Structure manipulation, Feature interpolation, and Label-leave-out). GS++ is short for GNNSAFE++ and NS++ is short for NODESAFE++. OE indicates OOD exposure.1501
1502
1503
1504

Dataset	Metrics	MSP	ODIN	Mahalanobis	Non-OOD Exposure	OE	Real OOD Exposure	TRIBE						
					Energy	GKDE	GPN	GNNSAFE	NODESAFE	Energy FT	GS++	NS++	w/o OE	w/ OE
Cora-S	AUROC	70.90	49.92	46.68	71.73	68.61	77.47	87.64 \pm 0.39	92.27 \pm 0.74	67.98	75.88	90.19 \pm 0.46	89.57 \pm 8.12	95.15 \pm 0.37
	AUPR	45.73	27.01	29.03	46.08	44.26	53.26	77.93 \pm 0.59	82.32 \pm 0.61	46.93	49.18	81.37 \pm 1.02	80.86 \pm 9.20	89.33 \pm 0.57
	FPR95	87.30	100.00	98.19	88.74	84.34	76.22	73.49 \pm 1.91	38.06 \pm 4.49	95.31	67.73	56.81 \pm 0.81	45.11 \pm 32.56	23.31 \pm 1.04
	ID ACC	75.50	74.90	74.90	76.00	73.70	76.50	77.53 \pm 0.38	78.97 \pm 0.32	71.80	75.50	77.67 \pm 0.42	67.67 \pm 12.64	78.97 \pm 1.22
Cora-F	AUROC	85.39	49.88	49.93	86.15	82.79	85.88	92.76 \pm 0.43	96.11 \pm 0.14	81.83	88.15	95.22 \pm 0.58	92.52 \pm 4.91	97.88 \pm 0.24
	AUPR	73.70	26.96	31.95	74.42	66.52	73.79	87.85 \pm 1.07	91.87 \pm 0.75	70.84	75.99	90.27 \pm 1.26	88.00 \pm 4.94	94.67 \pm 0.56
	FPR95	64.88	100.00	99.93	65.81	68.24	56.17	48.56 \pm 4.52	15.50 \pm 1.48	83.79	47.53	29.01 \pm 3.95	46.51 \pm 37.56	8.13 \pm 1.32
	ID ACC	75.30	75.00	74.90	76.10	74.80	77.00	77.50 \pm 0.26	78.73 \pm 0.40	73.30	75.30	77.67 \pm 0.51	66.23 \pm 8.94	78.10 \pm 0.89
Cora-L	AUROC	91.36	49.80	67.62	91.40	57.23	90.34	93.19 \pm 0.11	91.68 \pm 1.09	89.47	91.36	93.99 \pm 0.79	91.86 \pm 0.54	93.70 \pm 0.04
	AUPR	78.03	24.27	42.31	78.14	27.50	77.40	82.99 \pm 0.45	79.73 \pm 2.31	72.01	78.49	84.19 \pm 2.05	79.37 \pm 0.16	84.03 \pm 0.08
	FPR95	34.99	100.00	90.77	41.08	88.95	37.42	29.55 \pm 2.24	34.14 \pm 6.75	46.55	37.83	26.03 \pm 3.76	35.80 \pm 8.21	28.84 \pm 0.36
	ID ACC	88.92	88.92	88.92	88.97	91.46	89.66	90.29 \pm 0.48	87.97	90.51	91.14 \pm 0.32	90.93 \pm 0.80	90.61 \pm 0.36	

Table 18: **Citeseer** Extended OOD detection performance with three types of OOD (Structure manipulation, Feature interpolation, and Label-leave-out). GS++ is short for GNNSAFE++ and NS++ is short for NODESAFE++. OE indicates OOD exposure.

Dataset	Metrics	Non-OOD Exposure						Real OOD Exposure			TRIBE				
		MSP	ODIN	Mahalanobis	Energy	GKDE	GPN	GNNSAFE	NODESAFE	OE	Energy FT	GS++	NS++	w/o OE	w/ OE
Citeseer-S	AUROC	66.54	49.23	45.26	65.62	61.48	70.55	79.87 \pm 0.56	87.70 \pm 2.27	58.74	68.87	81.30 \pm 0.43	77.32 \pm 8.74	91.89 \pm 0.36	91.90 \pm 0.12
	AUPR	34.78	23.07	21.20	33.63	31.55	41.12	61.44 \pm 1.50	76.81 \pm 1.13	30.07	36.01	64.59 \pm 0.73	59.74 \pm 6.25	80.11 \pm 0.89	79.86 \pm 0.96
	FPR95	85.00	100.00	99.13	87.59	93.71	78.26	74.45 \pm 0.59	65.99 \pm 12.52	95.37	76.44	71.33 \pm 2.10	72.31 \pm 10.55	38.41 \pm 2.29	37.09 \pm 3.07
	ID ACC	65.66	66.10	60.70	65.20	64.70	65.80	65.20 \pm 0.56	69.47 \pm 0.85	59.00	63.00	64.93 \pm 1.29	52.17 \pm 11.42	70.03 \pm 0.78	69.63 \pm 0.51
Citeseer-F	AUROC	78.32	49.86	49.92	79.19	74.69	78.46	84.07 \pm 0.41	85.11 \pm 11.68	72.06	79.23	84.38 \pm 0.31	84.12 \pm 0.41	93.96 \pm 0.73	93.79 \pm 0.16
	AUPR	54.48	23.11	31.20	55.04	50.25	53.21	68.22 \pm 0.73	75.22 \pm 11.74	48.80	55.69	68.77 \pm 0.84	68.84 \pm 0.76	84.67 \pm 2.35	83.61 \pm 0.42
	FPR95	71.27	100.00	99.73	69.67	71.22	73.14	67.75 \pm 1.69	60.72 \pm 34.01	81.09	64.08	64.64 \pm 0.32	65.69 \pm 3.13	23.13 \pm 3.55	23.32 \pm 1.02
	ID ACC	66.20	65.80	53.30	64.50	64.20	63.20	64.70 \pm 0.44	68.73 \pm 0.47	60.50	64.40	65.03 \pm 1.25	64.97 \pm 1.35	68.40 \pm 1.93	69.33 \pm 0.21
Citeseer-L	AUROC	88.42	51.33	53.46	89.98	82.69	85.65	90.73 \pm 0.17	90.59 \pm 0.69	89.44	90.34	91.37 \pm 0.29	91.44 \pm 0.34	90.97 \pm 0.23	90.77 \pm 0.15
	AUPR	64.03	17.97	35.47	64.10	61.21	62.32	64.93 \pm 0.58	65.01 \pm 1.71	62.74	66.66	64.32 \pm 1.55	66.00 \pm 0.49	64.92 \pm 1.49	64.24 \pm 1.75
	FPR95	51.97	100.00	86.32	38.76	50.61	41.37	40.36 \pm 1.19	33.55 \pm 5.29	45.99	31.60	28.32 \pm 0.95	30.35 \pm 2.55	30.84 \pm 0.90	27.24 \pm 2.76
	ID ACC	89.36	89.36	72.51	90.58	89.16	89.30	89.46 \pm 0.76	89.97 \pm 0.30	87.23	90.58	88.25 \pm 0.17	88.66 \pm 0.50	88.55 \pm 0.63	88.45 \pm 0.34

Table 19: **Pubmed** Extended OOD detection performance with two types of OOD (Structure manipulation, Feature interpolation). GS++ is short for GNNSAFE++ and NS++ is short for NODESAFE++. Label-leave-out was left out as discussed in K. OE indicates OOD exposure.

Dataset	Metrics	Non-OOD Exposure						Real OOD Exposure			TRIBE				
		MSP	ODIN	Mahalanobis	Energy	GKDE	GPN	GNNSAFE	NODESAFE	OE	Energy FT	GS++	NS++	w/o OE	w/ OE
Pubmed-S	AUROC	74.31	49.76	55.28	74.33	74.02	74.96	92.45 \pm 1.15	93.17 \pm 1.15	74.41	73.54	92.84 \pm 0.28	95.32 \pm 0.17	97.25 \pm 0.58	98.46 \pm 0.10
	AUPR	17.44	4.83	8.38	17.32	16.89	17.54	65.47 \pm 2.38	69.31 \pm 4.81	16.74	18.00	70.41 \pm 0.33	68.07 \pm 0.81	79.76 \pm 2.17	85.51 \pm 0.38
	FPR95	84.08	100.00	97.59	78.90	81.52	80.33	47.81 \pm 6.10	49.54 \pm 15.93	83.52	92.04	47.67 \pm 6.87	20.32 \pm 1.83	12.97 \pm 3.87	7.55 \pm 0.57
	ID ACC	75.10	75.30	69.30	75.60	75.20	75.80	77.00 \pm 0.44	77.30 \pm 0.62	72.90	75.80	77.63 \pm 0.31	74.20 \pm 0.10	75.93 \pm 0.40	76.80 \pm 0.52
Pubmed-F	AUROC	83.28	49.67	69.12	84.16	82.25	82.56	95.18 \pm 0.13	89.00 \pm 11.30	82.34	78.94	94.70 \pm 0.51	94.96 \pm 0.50	97.44 \pm 0.59	98.05 \pm 0.25
	AUPR	39.29	4.83	15.09	39.10	32.41	39.75	74.41 \pm 1.56	67.81 \pm 19.39	38.60	37.21	77.71 \pm 0.31	76.34 \pm 2.06	81.70 \pm 2.92	85.21 \pm 0.85
	FPR95	69.38	100.00	84.93	62.47	68.56	61.79	27.62 \pm 2.55	50.80 \pm 41.88	74.58	90.00	31.49 \pm 5.20	29.43 \pm 2.90	12.53 \pm 1.63	10.12 \pm 2.35
	ID ACC	75.00	75.30	73.00	75.50	74.10	74.50	76.57 \pm 0.35	77.33 \pm 1.04	73.10	75.30	78.13 \pm 0.06	74.13 \pm 1.16	76.40 \pm 0.60	76.53 \pm 0.38

Table 20: **Amazon-Photo**: Extended OOD detection performance with three types of OOD (Structure manipulation, Feature interpolation, and Label-leave-out).

Dataset	Metrics	Non-OOD Exposure						Real OOD Exposure			TRIBE				
		MSP	ODIN	Mahalanobis	Energy	GKDE	GPN	GNNSAFE	NODESAFE	OE	Energy FT	GS++	NS++	w/o OE	w/ OE
Amazon-S	AUROC	98.27	93.24	71.69	98.51	76.39	97.17	98.60 \pm 0.09	98.54 \pm 0.05	98.97	98.00	98.42 \pm 0.03	98.65 \pm 0.10	98.97	98.14
	AUPR	98.54	95.26	79.01	98.72	81.58	96.39	99.22 \pm 0.05	99.18 \pm 0.03	99.42	98.00	99.00 \pm 0.00	99.00 \pm 0.00	99.42	98.08
	FPR95	6.13	65.44	99.91	4.97	99.25	11.65	0.00 \pm 0.00	0.00 \pm 0.00	0.00	0.00	0.30 \pm 0.05	0.30 \pm 0.05	0.30	0.06
	ID ACC	92.84	92.84	92.79	92.86	87.55	92.16	98.05	92.65 \pm 0.55	91.55 \pm 0.41	91.36 \pm 0.02	92.95 \pm 0.38	92.70 \pm 0.33	92.95	92.70
Amazon-F	AUROC	97.31	81.15	76.50	97.87	58.96	87.91	98.46 \pm 0.01	98.42 \pm 0.03	98.65	98.00	98.77 \pm 0.17	99.04 \pm 0.22	98.97	98.00
	AUPR	95.16	78.47	71.14	95.64	66.76	84.77	98.90 \pm 0.15	98.77 \pm 0.17	99.04	98.00	98.77 \pm 0.17	99.04 \pm 0.22	98.97	98.00
	FPR95	8.72	100.00	76.12	6.00	99.28	49.11	0.44 \pm 0.28	0.30 \pm 0.05	0.30	0.05	0.30 \pm 0.05	0.30 \pm 0.05	0.30	0.06
	ID ACC	92.89	92.71	92.86	92.96	86.18	90.05	92.65 \pm 0.55	91.55 \pm 0.41	91.36 \pm 0.02	92.70 \pm 0.33	92.95 \pm 0.38	92.70 \pm 0.33	92.95	92.70
Amazon-L	AUROC	93.97	65.97	73.25	93.81	65.58	92.72	96.92 \pm 0.33	96.56 \pm 0.35	96.86	96.00	97.34 \pm 0.27	97.92 \pm 0.04	96.86	96.35
	AUPR	91.32	57.80	66.89	91.13	65.20	90.34	96.38 \pm 0.70	95.35 \pm 0.58	95.79	95.13	97.16 \pm 0.99	10.78 \pm 0.99	8.13	3.55
	FPR95	26.65	90.23	74.30	28.48	96.87	37.16	9.29 \pm 1.15	10.78 \pm 0.99	95.35 \pm 0.11	95.35 \pm 0.11	95.38 \pm 0.16	95.35 \pm 0.15	95.47 \pm 0.07	95.47 \pm 0.07
	ID ACC	95.76	96.08	95.76	95.72	89.37	90.07	96.10 \pm 0.29	95.20 \pm 0.11	95.20 \pm 0.11	95.20 \pm 0.11	95.35 \pm 0.15	95.47 \pm 0.07	95.47 \pm 0.07	95.47 \pm 0.07

Table 21: **Coauthor**: Extended OOD detection performance with three types of OOD (Structure manipulation, Feature interpolation, and Label-leave-out).

Dataset	Metrics	Non-OOD Exposure						Real OOD Exposure			TRIBE				
		MSP	ODIN	Mahalanobis	Energy	GKDE	GPN	GNNSAFE	NODESAFE	OE	Energy FT	GS++	NS++	w/o OE	w/ OE
Coauthor-S	AUROC	95.30	52.14	80.46	96.18	65.87	34.67	99.80 \pm 0.17	99.85 \pm 0.07	99.95 \pm 0.02	99.94 \pm 0.02				
	AUPR	94.37	48.83	76.65	95.25	72.65	40.21	99.82 \pm 0.11	99.85 \pm 0.06	99.94 \pm 0.02					
	FPR95	24.75	99.92	70.75	18.02	99.48	99.57	0.26 \pm 0.02	0.23 \pm 0.06	0.13 \pm 0.03					
	ID ACC	92.47	92.34	92.33	92.75	88.62	89.45	92.81 \pm 0.10	92.11 \pm 0.26	92.72 \pm 0.11					
Coauthor-F</td															

1566 Table 22: **Twitch**: Extended OOD detection performance on OOD Twitch sub-graphs ES, FR
1567 and RU. GS++ is short for GNNSAFE++ and NS++ is short for NODESAFE++. OE indicates OOD
1568 exposure.

Dataset	Metrics	Non-OOD Exposure						Real OOD Exposure				TRIBE			
		MSP	ODIN	Mahalanobis	Energy	GKDE	GPN	GNNSAFE	NODESAFE	OE	Energy FT	GS++	NS++	w/o OE	w/ OE
Twitch-ES	AUROC	37.72	83.83	45.66	38.80	48.70	53.00	70.20 \pm 18.91	70.66 \pm 18.90	55.97	80.73	94.53 \pm 2.47	95.48 \pm 1.20	95.97 \pm 1.31	96.80 \pm 1.33
	AUPR	53.08	80.43	58.82	54.26	61.05	64.24	75.88 \pm 17.90	76.13 \pm 17.89	69.49	87.56	97.14 \pm 1.33	97.42 \pm 0.47	96.30 \pm 0.57	97.10 \pm 2.47
	FPR95	98.09	33.28	95.48	95.70	95.37	95.05	90.48 \pm 4.55	89.56 \pm 5.20	94.94	76.76	40.36 \pm 22.32	27.99 \pm 17.57	17.70 \pm 13.41	7.38 \pm 7.06
	ID ACC	68.72	70.79	70.51	70.40	67.44	68.09	70.75 \pm 0.69	70.75 \pm 0.69	70.73	70.52	70.36 \pm 0.30	70.07 \pm 0.33	68.63 \pm 1.41	68.74 \pm 0.79
Twitch-FR	AUROC	21.82	59.82	40.40	57.21	49.15	51.25	49.44 \pm 28.72	49.38 \pm 29.23	45.66	79.66	93.91 \pm 1.73	37.28 \pm 52.74	86.80 \pm 12.59	84.22 \pm 16.97
	AUPR	38.27	64.63	46.69	61.48	52.94	55.37	57.81 \pm 20.56	57.90 \pm 20.87	54.03	81.20	95.94 \pm 0.99	56.13 \pm 36.96	89.05 \pm 11.22	88.71 \pm 12.74
	FPR95	99.25	92.57	95.54	91.57	95.04	93.92	94.69 \pm 7.17	94.62 \pm 7.25	95.48	76.39	45.82 \pm 13.57	67.09 \pm 55.37	52.43 \pm 40.23	65.89 \pm 27.51
	ID ACC	68.72	70.79	70.51	70.40	67.44	68.09	70.75 \pm 0.69	70.75 \pm 0.69	70.73	70.52	70.36 \pm 0.30	70.07 \pm 0.33	68.63 \pm 1.41	68.74 \pm 0.79
Twitch-RU	AUROC	41.23	58.67	55.68	57.72	46.48	50.89	79.34 \pm 16.34	79.39 \pm 16.59	55.72	93.12	98.79 \pm 0.92	97.60 \pm 0.57	86.38 \pm 0.77	93.53 \pm 0.79
	AUPR	56.06	72.58	66.42	66.68	62.11	65.14	84.07 \pm 0.53	84.09 \pm 0.73	70.18	95.36	99.28 \pm 0.59	98.36 \pm 0.64	90.41 \pm 2.50	94.95 \pm 4.94
	FPR95	95.01	93.98	90.13	87.57	95.62	99.93	57.37 \pm 34.19	57.67 \pm 34.76	95.07	30.72	3.25 \pm 3.97	8.29 \pm 5.27	69.67 \pm 7.40	26.29 \pm 18.01
	ID ACC	68.72	70.79	70.51	70.40	67.44	68.09	70.75 \pm 0.69	70.75 \pm 0.69	70.73	70.52	70.36 \pm 0.30	70.07 \pm 0.33	68.63 \pm 1.41	68.74 \pm 0.79

1579 Table 23: **Arxiv**: Extended OOD detection performance on OOD dataset of papers published in
1580 2018, 2019, and 2020. GS++ is short for GNNSAFE++ and NS++ is short for NODESAFE++. OE
1581 indicates OOD exposure.

Dataset	Metrics	Non-OOD Exposure						Real OOD Exposure				TRIBE			
		MSP	ODIN	Mahalanobis	Energy	GKDE	GPN	GNNSAFE	NODESAFE	OE	Energy FT	GS++	NS++	w/o OE	w/ OE
Arxiv-2018	AUROC	61.66	53.49	57.08	61.75	56.29	OOM	65.94 \pm 0.38	66.73 \pm 0.16	67.72	69.58	69.47 \pm 0.63	69.81 \pm 0.58	67.97 \pm 0.10	70.5 \pm 0.20
	AUPR	70.63	63.06	65.09	70.41	66.78	OOM	74.37 \pm 0.29	75.20 \pm 0.27	75.74	76.31	77.63 \pm 0.64	77.68 \pm 0.48	76.42 \pm 0.20	78.59 \pm 0.21
	FPR95	91.67	100.0	93.69	91.74	94.31	OOM	89.88 \pm 0.67	88.80 \pm 0.37	86.67	82.10	83.43 \pm 1.24	81.51 \pm 1.19	86.88 \pm 0.48	81.57 \pm 0.25
	ID ACC	53.78	51.39	51.59	53.36	50.76	OOM	53.21 \pm 0.16	53.10 \pm 0.79	52.39	53.26	53.28 \pm 0.35	51.32 \pm 0.21	52.44 \pm 0.24	52.41 \pm 0.29
Arxiv-2019	AUROC	63.07	53.95	56.76	63.16	57.87	OOM	67.90 \pm 0.37	68.76 \pm 0.16	69.33	70.58	71.32 \pm 63	71.87 \pm 0.59	70.09 \pm 0.21	72.30 \pm 0.23
	AUPR	66.00	56.07	57.85	62.58	62.34	OOM	70.97 \pm 0.29	71.98 \pm 0.33	72.15	72.03	74.45 \pm 0.77	74.74 \pm 0.68	73.24 \pm 0.24	75.56 \pm 0.30
	FPR95	90.82	100.0	94.01	93.97	90.96	OOM	88.83 \pm 0.72	87.44 \pm 0.23	85.52	81.30	81.80 \pm 0.75	79.31 \pm 1.13	85.10 \pm 0.75	79.39 \pm 0.38
	ID ACC	53.78	51.39	51.59	53.36	50.76	OOM	53.21 \pm 0.16	53.10 \pm 0.79	52.39	53.26	53.28 \pm 0.35	51.32 \pm 0.21	52.44 \pm 0.24	52.41 \pm 0.29
Arxiv-2020	AUROC	67.00	55.78	56.92	67.70	60.79	OOM	77.90 \pm 0.32	78.59 \pm 0.10	72.35	74.53	81.15 \pm 0.51	81.82 \pm 0.50	80.10 \pm 0.23	82.03 \pm 0.23
	AUPR	90.92	87.41	85.95	91.15	88.74	OOD	94.64 \pm 0.08	94.83 \pm 0.03	92.57	93.08	95.43 \pm 0.12	92.23 \pm 5.66	95.19 \pm 0.07	95.59 \pm 0.06
	FPR95	89.28	100.0	95.01	89.69	93.31	OOD	85.00 \pm 0.98	83.11 \pm 0.42	83.28	78.36	74.75 \pm 1.99	71.78 \pm 1.32	78.98 \pm 0.56	71.15 \pm 0.62
	ID ACC	53.78	51.39	51.59	53.36	50.76	OOD	53.21 \pm 0.16	53.10 \pm 0.79	52.39	53.26	53.28 \pm 0.35	51.32 \pm 0.21	52.44 \pm 0.24	52.41 \pm 0.29

1590 Table 24: **Cora**: Extended ablation performance of TRIBE.

Model	Cora-S				Cora-F				Cora-L			
	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc
GNNSAFE	87.64 \pm 0.39	77.93 \pm 0.59	73.49 \pm 1.91	77.53 \pm 0.38	92.76 \pm 0.43	87.85 \pm 1.07	48.56 \pm 4.52	77.50 \pm 0.26	93.19 \pm 0.11	82.99 \pm 0.45	29.55 \pm 2.24	89.66 \pm 0.66
\mathcal{L}_{Vib}	94.79 \pm 0.22	88.41 \pm 0.49	26.22 \pm 2.55	78.73 \pm 0.50	97.69 \pm 0.13	93.94 \pm 0.36	94.45 \pm 0.78	77.43 \pm 0.58	93.06 \pm 0.11	83.12 \pm 0.11	30.93 \pm 0.57	90.30 \pm 0.37
$\mathcal{L}_{\text{Vib}} \& \mathcal{L}_{\text{VChd}}$	94.86 \pm 0.29	88.48 \pm 0.54	24.84 \pm 0.65	78.60 \pm 0.40	97.72 \pm 0.10	94.46 \pm 0.26	94.00 \pm 1.06	77.47 \pm 0.45	93.11 \pm 0.16	83.20 \pm 0.18	30.43 \pm 0.11	90.30 \pm 0.18
TRIBE	95.15 \pm 0.37	89.33 \pm 0.57	23.31 \pm 1.04	78.97 \pm 1.22	97.88 \pm 0.24	94.67 \pm 0.56	8.13 \pm 1.32	78.10 \pm 0.89	93.70 \pm 0.04	84.03 \pm 0.08	28.84 \pm 0.36	90.61 \pm 0.36

1598 Table 25: **CiteSeer**: Extended ablation performance of TRIBE.

Model	Citeseer-S				Citeseer-F				Citeseer-L			
	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc
GNNSAFE	79.87 \pm 0.56	61.44 \pm 1.50	74.45 \pm 0.59	65.20 \pm 0.50	84.07 \pm 0.41	68.22 \pm 0.73	67.75 \pm 1.69	64.70 \pm 0.44	90.73 \pm 0.17	64.93 \pm 0.58	40.36 \pm 1.19	89.46 \pm 0.76
\mathcal{L}_{Vib}	90.84 \pm 0.57	79.76 \pm 0.47	45.62 \pm 3.06	69.17 \pm 0.49	93.01 \pm 0.64	82.83 \pm 1.64	31.77 \pm 0.49	69.27 \pm 0.27	90.66 \pm 0.10	64.06 \pm 0.67	34.87 \pm 3.12	87.74 \pm 0.35
$\mathcal{L}_{\text{Vib}} \& \mathcal{L}_{\text{VChd}}$	91.85 \pm 0.31	80.29 \pm 0.69	39.61 \pm 2.68	69.13 \pm 0.21	93.25 \pm 0.87	82.94 \pm 2.15	26.96 \pm 4.64	67.83 \pm 1.42	90.88 \pm 0.25	64.78 \pm 1.62	31.14 \pm 1.19	88.75 \pm 0.31
TRIBE	91.89 \pm 0.36	80.11 \pm 0.89	38.41 \pm 2.29	70.03 \pm 0.78	93.96 \pm 0.73	84.67 \pm 2.35	23.13 \pm 3.55	68.40 \pm 1.93	90.97 \pm 0.23	64.92 \pm 1.49	30.84 \pm 0.90	88.55 \pm 0.63

1605 Table 26: **Pubmed**: Extended ablation performance of TRIBE.

Model	Pubmed-S				Pubmed-F				Pubmed-L	
-------	----------	--	--	--	----------	--	--	--	----------	--

1620
1621
1622 Table 28: **ArXiv**: Extended ablation performance of TRIBE.
1623
1624
1625

Model	ArXiv-18				ArXiv-19				ArXiv-20			
	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc	AUROC	AUPR	FPR95	ID Acc
GNNSAFE	65.94 ± 0.38	74.37 ± 0.29	89.88 ± 0.67	53.21 ± 0.16	67.90 ± 0.37	70.97 ± 0.29	88.83 ± 0.72	53.21 ± 0.16	77.90 ± 0.32	94.64 ± 0.08	85.00 ± 0.98	53.21 ± 0.16
\mathcal{L}_{Vib}	67.41 ± 0.95	75.84 ± 1.02	87.72 ± 1.28	52.46 ± 0.24	69.49 ± 1.08	72.51 ± 1.09	86.35 ± 1.35	52.46 ± 0.24	79.53 ± 1.04	95.05 ± 0.27	80.72 ± 1.85	52.46 ± 0.24
$\mathcal{L}_{\text{Vib}} \& \mathcal{L}_{\text{VCInd}}$	67.95 ± 0.11	76.40 ± 0.21	86.97 ± 0.46	52.43 ± 0.22	70.03 ± 0.25	73.20 ± 0.23	85.43 ± 0.89	52.43 ± 0.22	80.07 ± 0.25	95.12 ± 0.17	79.18 ± 0.65	52.43 ± 0.22
TRIBE	67.97 ± 0.10	76.42 ± 0.20	86.88 ± 0.48	52.44 ± 0.24	70.09 ± 0.21	73.24 ± 0.24	85.10 ± 0.75	52.44 ± 0.24	80.10 ± 0.23	95.19 ± 0.07	78.98 ± 0.56	52.44 ± 0.24

1626
1627 M COMPUTATIONAL COST
1628

1629 Table 29 presents a comparison of the computational cost of TRIBE against **GNNSafe** and **NODE-
1630 SAFE**, all evaluated using the same backbone. Evidently, **TRIBE consistently outperforms the
1631 baselines, achieving superior OOD detection performance at the cost of a 2-3x increase in
1632 training time, a marginal rise in memory usage, and a comparable inference time**. Despite the
1633 additional training cost, this **trade-off is deemed acceptable due to the significantly improved
1634 detection performance and competitive inference time**, as discussed in Appendix A. These results
1635 highlight the strong performance and practical applicability of TRIBE for node-level graph OOD
1636 detection.

1637 Table 29: **Computation cost (single 48GB (49140MiB) NVIDIA RTX A6000 GPU) and OOD
1638 detection performance of TRIBE against SOTA Non-OOD exposure baselines.** The ‘Train’
1639 column is the training convergence time in seconds. The ‘In.’ column is the inference time in seconds.
1640 The ‘Mem.’ column is the maximum memory usage in Mebibytes (MiB). The ‘FPR95’ column is the
1641 OOD detection performance in %, the lower the better.

	Cora - Structure				Citeseer - Structure				Pubmed - Structure				Twitch				Arxiv			
	Train	In.	Mem.	FPR95(↓)	Train	In.	Mem.	FPR95(↓)	Train	In.	Mem.	FPR95(↓)	Train	In.	Mem.	FPR95(↓)	Train	In.	Mem.	FPR95(↓)
GNNSAFE	2.05	0.01	625	73.49	2.25	0.02	693	74.45	4.22	0.02	827	47.81	3.55	0.03	749	81.18	19.72	0.11	3055	87.90
NODESAFE	0.76	0.02	625	38.06	1.45	0.02	693	65.99	1.69	0.02	827	49.54	1.35	0.03	749	80.62	16.79	0.11	3055	86.45
TRIBE	4.02	0.02	653	23.31	9.85	0.02	780	38.41	9.96	0.024	906	12.97	8.01	0.028	794	43.14	39.7	0.13	3490	83.65

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673