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Abstract

We analyze VeLO (versatile learned optimizer [17]), the largest scale attempt to
train a general purpose “foundational” optimizer to date. VeLO was trained on
thousands of machine learning tasks using over 4000 TPU months with the goal
of producing an optimizer capable of generalizing to new problems while being
hyperparameter free, and outperforming industry standards such as Adam. We
independently evaluate VeLO on the MLCommons optimizer benchmark suite.
We find that, contrary to initial claims: (1) VeLO has a critical hyperparameter
that needs problem-specific tuning, (2) VeLO does not necessarily outperform
competitors in quality of solution found, and (3) VeLO is not faster than competing
optimizers at reducing the training loss. These observations call into question
VeLO’s generality and the value of the investment in training it.

1 Introduction

Meta-learning, or learning to learn, refers to the appealing vision of learning the learning algorithm
itself, similarly to how deep learning replaced the tradition of handcrafted feature engineering [11].
Meta-learning has found compelling applications in various facets of AI. In particular, one notable
application of meta-learning is to learn improved optimization strategies [1] that provide better or
faster optimization than hand-crafted optimizers [4]. After initial successes in relatively small scale
problems, researchers have recently focused on scaling learned optimizers [5, 17].

A noteworthy example is VeLO [17]. Trained on a huge array of tasks with over 4000 TPU months,
it aspires to be a ‘foundational’ optimizer capable of solving any new problems more rapidly than
hand-designed optimizers such as Adam. VeLO claimed multiple remarkable abilities, such as being
at least 4× faster than Adam on 50% of tasks in the VeLOdrome suite. If true, VeLO would eventually
pay for its up-front training cost by accelerating learning across the community. Nevertheless,
evaluating optimizers – especially learned optimizers – is itself a very difficult problem with multiple
facets including iteration and time-efficiency, quality and generalisation of minima discovered,
hyperparameter sensitivity [8, 4, 7], and generalisation of the learned optimiser itself.

In this work, we critically analyse VeLO’s performance to understand if it is as effective as claimed.
Our evaluation casts doubt on its claimed efficacy, and whether scaling-up training is the silver bullet
for optimizer learning that it has been in other areas of AI. Our contributions are: (1) Validation of
VeLO: We conduct a rigorous, independent evaluation of VeLO’s performance using an extended anal-
ysis based on the MLCommons benchmark.(2) Claims Reassessment: Our empirical results challenge
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several key claims made in the original VeLO paper, specifically that of being hyperparameter-free,
outperforming baselines in minimizing training objectives, and offering optimization speedups. (3)
Introduction of Explicit Metrics: We introduce a set of carefully selected metrics that directly align
with the fundamental objectives an optimizer should fulfil. These metrics serve as a standardized
framework for comparing VeLO against other optimizers.

2 Preliminaries

Let fθ be a function parameterized by θ where θ is defined over some domain θ ∈ Θ. We refer to
fθ as the optimizee; the function being optimized. Performance of fθ on a task Ti sampled from a
distribution of tasks p(T ) can be measured by a loss function Li(fθ, Ti). The goal of learning is to
find the minimizer θ∗ = argminθ∈Θ Li(fθ, Ti). Gradient descent minimizes the loss function by
producing a sequence of updates in the form:

θt+1 = θt − αt∇θLi(fθ, Ti) (1)

Learning to optimize strategies reformulate gradient descent as

θt+1 = θt + g(Li(fθ, Ti)), (2)

which recovers standard gradient descent when g(·) is a simple scaling g(Li(fθ, Ti)) =
−αt∇θLi(fθ, Ti). These approaches assume that performance can be improved by paramaterizing
the function g with some learnable parameters λ, e.g., defining a small MLP.

Learning-to-optimize is usually formulated as a bi-level optimization problem where the goal is to the
learn optimizer g so that the optimizee f achieves low loss on some task distribution after learning.
More specifically:

λ∗ = argmin
λ

M∑
i=1

L(θ∗i (λ), λ, Ti) (3)

s.t. θ∗i (λ) = argmin
θ

Li(θ, λ, Ti) (4)

where Eq. 4 is solved with the learnable optimizer Eq. 2, and the optimizer learning objective is in
Eq. 3. Compactly, the gradient of the loss, after t steps, on a given sampled task would then be [16]:

dLt

dλ
=

∂Lt

∂λ
+

T∑
k=1

∂Lt

∂θt

(
T∏

i=k

∂θi
∂θi−1

)
∂θk
∂λ

, (5)

which allows the optimizer to be learned with gradient descent.

3 Background and Motivation

Learning Optimizers Searching for simple and symbolic update rules for training neural networks
dates back to the 90’s [18, 3]. More recently, [1] parameterized the optimization algorithm as an
LSTM which acts coordinate-wise on the inner-loop problem. Various work has since explored the
design space of learning optimizers. The space spans a) the parameterization of the learned optimizer
including it’s IO representation, b) the meta-training task distribution, c) meta-optimizers (optimizer
used to update the learned optimizer) and d) the outer-loop objective function for estimating the
learned optimizer performance.

Parameterizations included LSTMs [1, 14], hierarchical RNNs [22, 5], MLPs [15], transformers
[10] and hyper-networks [17]. Tree structured search spaces [6], domain-specific languages [2] and
evolutionary strategies [12] were also explored. Search spaces and black-box parameterizations
can be learned using various techniques such as gradient-based meta-learning [1], or evolutionary
strategies [6]. Meta-loss functions also vary between inner-loop training [1, 14], validation loss
[15, 23], or more complex objectives that measure resource-efficiency [13] and speed [24].

Benchmarking optimizers Benchmarking optimizers – especially in deep learning – is extremely
challenging, as there are many facets to optimizer quality including iterations and clock-time to
convergence, quality of the solution found in non-convex problems, generalisation of the final
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solution to a validation or testing set, hyperparameter sensitivity, consistency of performance across
different workloads, etc [21, 7, 20]. As discussed in [8], this is the reason behind multiple apparently
contradictory claims in the literature, and the lack of consensus on benchmarks and metrics compared
to other areas of machine learning and AI. All this makes it challenging to compare optimizers as
they may excel at one facet while falling down in another.

For the reasons discussed above, apples-to-oranges comparisons are common in the literature, and can
lead to misleading conclusions. For example, comparing optimizer performance without controlling
hyperparameter tuning or HPO objective [21]. This has led to a few attempts to establish common
evaluation frameworks for optimizers, notably MLCommons [8], which can control for HPO.

Benchmarking learned optimizers This challenge of optimizer evaluation is further exacerbated
when considering benchmarking of learned optimizers, as the cost of optimizer learning, and the ro-
bustness of the learned optimizer to diverse and out-of-distribution tasks open up additional important
criteria. As optimizer learning is a costly process, most learned optimizers justify themselves with
amortization arguments: The idea that the up-front cost of optimizer learning can be paid off by the
learned optimizer’s improved solution to multiple subsequent tasks. However, the learned optimizer
needs to be applied on new tasks for this justification to hold, as good solutions to the training tasks
have already been found during optimizer training. Thus, the practical value of a learned optimizer
is intrinsically intertwined with both its efficacy and how well it generalizes to new tasks. All this
makes fairly benchmarking learned optimizers even harder than handcrafted optimizers.

The VeLO optimizer [17] aspired to achieve both efficient optimization and cross-task generalization
by large scale optimizer training on a huge problem suite. It then evaluated the resulting optimizer on
the VeLOdrome task suite [17] and an early version of the MLCommons optimizer benchmark suite
[8] where it claimed to provide decisive efficiency improvements over competitors, thus justifying its
huge up-front training cost. This paper critically evaluates these claims.

4 VeLO: Versatile Learned Optimizer

VeLO Architecture VeLO [17] is a learned optimizer trained with the outer-objective (Eq 3) of
minimizing the training loss. The learned optimizer is parameterized as a hierarchical hypernetwork; a
per-tensor LSTM that generates the parameters for a per-parameter MLP. The per-tensor hypernetwork
operates on features aggregated from each parameter tensor, i.e: neural network layer. VeLO
optimizer states and inputs include current iteration number, momentum at different timescales,
squared gradients, adafactor-style accumulator, loss exponentially-moving average features, and
tensors rank.

VeLO Training The meta-training task distribution included MLPs, CNNs, ResNets, ViTs, auto-
encoders, variational auto-encoders, RNNs, and vanilla Transformers of various sizes. The archi-
tectures included dynamic configurations such as initialization and activation functions. Standard
training datasets for image and language domains such as 16 × 16 ImageNet, CIFAR 10 and 100,
Fashion MNIST, LM1B, and Wikipedia English among others. The meta-optimizer used was standard
evolutionary strategy with antithetic-samples [19]. Meta-training spanned a total of 4000 TPU months
with an online HPO procedure divided across 4 phases. Problem sizes and training unroll lengths
were gradually increased over a curriculum which was found to improve meta-generalization.

VeLO Claims Some key VeLO claims are (a) achieving a 4× speedup over learning rate-tuned
Adam on 50% of tasks while being 16× times faster on 14% of VeLOdrome suite of tasks ([17],
Fig. 1). (b) out-performing hyperparameter tuned Adam on a suite of tasks from the MLCommons
algorithms track in terms of the training loss ([17], Sec. 4.2), (c) out-performing hyperparameter
tuned Adam’s generalization (validation loss) on the same benchmark ([17], App. G.7).

It can be seen that VeLO’s claims span learned optimizer benchmarking practical objectives of (a)
training speedups and (b) absolute performance gains on both train and validation metrics while (c)
meta-generalizing to new tasks distributions including VeLOdrome and MLCommons benchmark,
which is a key justification behind amoritizing VeLO’s meta-training cost.

Caveats Besides the inputs discussed in the architecture paragraph above, VeLO needs one special
input: It must be prompted with the total training steps it is expected to run for in order to initialize
its states. This is then used to estimate the fraction of training remaining online during learning. For
an explanation of how to control for this factor of variation fairly, we refer the reader to appendix B.
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5 Benchmark Design

To examine VeLO’s claims, our point of departure is the most recent time-to-result benchmark by
MLCommons [8]. Comparing training curves to measure speedups is ill-posed. Therefore, the
MLCommons [8] protocol measures learning speed by fixing a performance target (e.g., loss), and
measuring time/steps taken for an optimizer to reach this target. Since VeLO also reported improved
solution quality, we extend this protocol to the complementary perspective of fixing an optimization
time/step budget and measuring the loss achieved at this point.

Baselines and Workloads The original VeLO paper mainly compared with Adam. For more
thorough evaluation, we train several GD variants, namely SGD with Heavy Ball Momentum, SGD
with Nesterov Momentum, Adam, NAdam (Adam with Nesterov Momentum) and NAdamW. We
train all baselines with default hyperparameters as reported in appendix C. All algorithms are trained
for a maximum allowed budget, either runtime or steps, on 4 workloads from the MLCommons
benchmark, namely ResNet-50 on Imagenet, GNN on OGBG, DLRM on Criteo-1TB and U-Net on
FastMRI. A workload is a fixed architecture, dataset and training objective. Please refer to [8] for
details.

Measuring Training Speedups The key evaluation hyperparameter in MLCommons is the notion
of a performance target (e.g., in units of loss) that defines a successful optimization. We can then
measure speedups in terms of the wall-clock time or number of iterations taken to reach the target.

Establishing performance targets is somewhat involved in the MLCommons methodology. First
one sets a maximum allowed runtime in wall-clock or step count for each workload, runs multiple
trials of all algorithms for the full budget, and then measures the performance of all algorithms trials
at 75% of the maximum allowed budget. Then, for each algorithm on each workload, the median
performance is selected, and the best performing algorithm defines the target for the workload. This
translates to targetw = maxa{medians{La,s,w}} for all w ∈ W where La,s,w is the performance
metric of interest achieved by algorithm a on trial s and workload w.

Subsequently we can measure the time/steps ta,s,w that the sth trial of any given algorithm a
takes to reach the target performance level targetw on workload w. To aggregate results, we can
employ performance profiles [9, 8]. Denote algorithms by A = {a1, a2, .., ak} and workloads
as W = {w1, w2, .., wn}. Then, given a workload w, we record the median time/steps taken for
algorithm a to achieve the performance target across all trials/seeds as ta,w = medians{ta,s,w}.
Then, to score an algorithm â on a workload w, the performance ratio is defined as:

râ,w =
tâ,w

mina∈A ta,w
(6)

The performance profile ρâ(τ) for an algorithm â on a random workload w drawn uniformly from W
is the probability of having a performance ratio râ,w of at most τ :

ρâ(τ) =

(
1

n

)
× |{w : râ,w ≤ τ}| (7)

Following [8], the final score Ba for each algorithm integrates the performance profile over a pre-
defined range rmax resembling a space of τs and normalized by rmax−1. This means that an algorithm
that is consistently the fastest across all workload would have a score of 1.

Figure 1: Illustration of optimizer learning
metrics: Time/steps to performance target
vs performance achieved at time budget.

In summary, for individual benchmarks w and algo-
rithm a, we report time-to-target ta,w. We measure
both wall-clock-time to target (denoted time-control
condition), and steps to target (step-control condition).
To aggregate across benchmarks we report the aggre-
gate MLCommons score Ba.

Measuring Training Quality While MLCommons
mainly focuses on training speedup, the complementary
metric to is quality of solution found within a certain
time/step budget. To this end, we also assess training
and validation performance pa,w (e.g., loss, accuracy)
after algorithm a reaching a certain time/step quota for
workload w (denoted performance-control).
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For the specific workload budgets and targets found, please see Appendix A. The training speedup
vs training-quality metrics are illustrated schematically in Figure 1. Finally, see appendix F for a
comparison of similarities and extensions between our evaluation and VeLO’s original assessment.

6 Experiments

We now set out to assess whether VeLO’s claims are justified, and hence whether its large up-front
training cost can be justified from an amortization perspective.

Specifically, we ask the following questions:

(Q1) Is VeLO hyperparameter free as claimed?

(Q2) Does VeLO indeed outperform existing hand-crafted optimizers on training and validation loss
minimization as claimed?

(Q3) Does VeLO indeed provide dramatically faster optimization than standard baselines?

Conclusion 1: VeLO is Not Hyperparameter Free but Hyperparameter Sensitive. Recall that
the VeLO has one user-defined input: It requires prompting with the total number of steps (Sec 4 and
[17]). It will accelerate (attempt to converge faster, but possibly reach a worse minima) if prompted
with fewer steps. We study the MLCommons time-to-performance target protocol for different values
of this hyperparameter. We consider prompting with steps corresponding to either 100% or 75% of
MLCommons wall-clock max runtime. From the results in Table 1 we see that the prompt is actually
a key hyperparameter. For example, the 75% prompt reaches the Criteo training target before timeout,
while the 100% prompt doesn’t succeed in time. Meanwhile the 100% prompt reaches the OGBG
training target before timeout, while the 75% prompt does not (it behaves too greedily and converges
to a poor optimum worse than the required performance target). Overall VeLO is in fact sensitive to
the number of steps hyperparameter, often crucially so.

Table 1: Influence of VeLO’s step prompt hyperparameter. Time (↓, sec) taken to reach MLCommons
training and validation performance targets. The prompt is given as steps corresponding to 100% or
75% of MLCommons wall-clock budget for the task. (-) indicates timeout.

Workload Criteo FastMRI ImageNet OGBG

Tr
ai

n VeLO (100%) - - - 13215
VeLO (75%) 6088 - - -

V
al VeLO (100%) - 5728 62587 8779

VeLO (75%) - 5913 58713 7238

Conclusion 2: VeLO Does Not Outperform Baselines in Minimizing Both Training and Valida-
tion Losses. VeLO reported outperforming hand-crafted optimizers in terms of achieving lower
training and validation losses, both on VeLOdrome and MLCommons (algorithm) benchmark suites.
But the associated experiments on MLCommons compared against Adam alone [17]. Meanwhile, [8]
observe that different optimizers often ‘win’ on different benchmarks. So we directly compare VeLO
against a range of off-the-shelf optimizers with default hyperparameters in terms of optimization
quality after a fixed step-budget on MLCommons. From the results in Table 2 (see full details in
Appendix E), we see a different picture: VeLO is not a consistent winner in either train or validation
loss achieved, despite that we conducted no HPO at all on the baselines. We attribute this discrepancy
two factors: (1) VeLO [17] evaluating insufficient competitors in their original comparison – since as
we see different competitors win on different benchmarks/metrics. (2) VeLO’s evaluation primarily
focused on VeLOdrome benchmarks, which were reportedly more similar to VeLO’s training distribu-
tion [17], and focused less on the MLCommons suite which was reportedly more different. To the
extent that this is the explanation, it suggests that VeLO is not as general purpose as claimed, and
thus undermines the amortization argument used to justify its up-front training cost.

Conclusion 3: VeLO Does Not Provide Faster Training. VeLO claims substantially faster
training. It was trained for the objective of fast training loss minimisation, and empirically observed
to also provide fast validation loss minimisation. However, again these original claims were largely
based on the VeLOdrome benchmark (which may be unrealistically easy, as discussed in the previous
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Table 2: Training and validation losses (↓) across workloads after training each algorithm for a fixed
number of steps. VeLO is not a consistent winner.

Workload Criteo-1TB FastMRI ImageNet OGBG
Optimizer

Tr
ai

n

Adam 0.1225 ± 0.00015 0.2702 ± 0.00693 0.0470 ± 0.00587 0.0165 ± 0.00033
Heavy Ball 0.1293 ± 0.00045 0.2809 ± 0.00282 0.2582 ± 0.02502 0.0341 ± 0.00026

NAdam 0.1239 ± 0.00302 0.2692 ± 0.00396 0.0571 ± 0.00060 0.0173 ± 0.00033
NAdamW 0.1220 ± 0.00018 0.2750 ± 0.00102 0.0470 ± 0.00106 0.0197 ± 0.00196
Nesterov 0.1301 ± 0.00096 0.2811 ± 0.00505 0.2512 ± 0.02606 0.0331 ± 0.00008

VeLO 0.1229 ± 0.00034 0.2804 ± 0.00008 0.1046 ± 0.00342 0.0153 ± 0.00088

V
al

id
at

io
n

Adam 0.1237 ± 0.00005 0.2850 ± 0.00003 1.9438 ± 0.00717 0.0515 ± 0.00020
Heavy Ball 0.1299 ± 0.00062 0.2899 ± 0.00008 1.6870 ± 0.02763 0.0466 ± 0.00038

NAdam 0.1256 ± 0.00315 0.2851 ± 0.00022 1.9528 ± 0.00120 0.0509 ± 0.00027
NAdamW 0.1237 ± 0.00005 0.2851 ± 0.00016 1.6345 ± 0.01098 0.0483 ± 0.00157
Nesterov 0.1305 ± 0.00067 0.2899 ± 0.00004 1.7022 ± 0.03822 0.0462 ± 0.00027

VeLO 0.1240 ± 0.00008 0.2851 ± 0.00022 1.5017 ± 0.02693 0.0522 ± 0.00126

section), and in terms of MLCommons they were based on comparison to Adam alone. We now
compare VeLO to a range of off-the-shelf optimizers with default hyperparameters on our four
MLCommons tasks using the time/steps to performance target protocol of MLCommons. The
MLCommons benchmark results presented in Table 3 in terms of the aggregate MLCommons score
Ba, which integrates over the algorithms’ performance profiles (see Appendix D and E for details).

Surprisingly, VeLO is far from best in training speed (which might be expected given it is optimised
for training efficacy), although it surpasses some baselines in speed of minimising the validation loss.
VeLO’s loss to Adam in training efficiency we attribute to (1) weak generalisation to the MLCommons
task suite, and (2) Adam’s default learning rate decay schedule potentially being more effective than
the outcome of the amount of HPO applied with Adamin in [17]. VeLO’s comparative success in
validation is potentially attributable to several MLcommons workloads being in the overfitting regime1,
so VeLO’s less effective minimisation of the train loss can lead to better validation than competitors.
(Note that while we measure validation performance, all optimizers are run with default parameters
and not tuned on validation metrics.). This is particularly the case in the time-control condition
because since Velo is slower per-iteration than the baselines, it runs fewer iterations than baselines
when using a wall clock-time budget, and thus effectively benefits from early stopping compared to
the baselines. Finally, returning to the hyperparameter sensitivity issue from Experiment 1, we also
compare VeLO with 75% of the total step-prompt and see a noticeable impact in the score distribution.

Table 3: Optimizer speed evaluation (MLCommons
score Ba, (↑), Eq. 7). Time-To-Result and Steps-To-
Results are reported when fixing wall-clock time and
steps respectively across train and validation targets.

Optimizer Train Scores Validation Scores
Time Step Time Step

NAdam 0.24 0.25 0.00 0.23
NAdamW 0.36 0.25 0.49 0.36

Adam 1.00 1.00 0.24 0.50
Nesterov 0.00 0.00 0.00 0.00

HeavyBall 0.00 0.00 0.00 0.00
VeLO 0.19 0.00 0.71 0.39

VeLO Short 0.16 0.03 0.74 0.59

7 Conclusion

Learned optimizers have shown substantial
success on narrowly defined task distributions.
VeLO scaled up optimizer learning to train a
foundational optimizer on a vast task distribu-
tion at huge cost. The vision was that it would
then generalize to arbitrary machine learning
workloads, and outperform hand-crafted opti-
mizers, thus justifying its up-front training
cost. We were initially optimistic and ex-
cited to see this in action. However ultimately,
our independent evaluation on the MLCom-
mons optimizer benchmark called into ques-
tion most of VeLO’s big claims of being hyper-
parameter free, and providing improved and
faster optimization.

1A regime where fully minimizing the training loss ultimately worsens validation performance
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A Benchmark Details

Setting Maximum Allowed Wall-Clock Time Across Hardware The MLCommons benchmark
is based on fixing a maximum allowed wall-clock time for each workload, denoted time-control
condition. To transfer this maximum allowed wall-clock runtime across hardware, we compute the
ratio between time per step of algorithms on their hardware (8×V100) and ours (1×A100-80GB or
2×A100-80GB). Then, this ratio is used as a multiplier factor of the maximum allowed wall-clock
time for each workload.

To get time per step for the original V100 hardware, we use total number of steps each algorithm runs
for and the equivalent wall-clock time for those steps as supplemented by the authors in table 28 in
[8]. For a given workload, the bold time entry is the maximum allowed wall-clock runtime. For the
algorithm with this bold-entry, the steps it runs for in the wall-clock time can be found in the Steps
row. For reference, we copy the numbers here as in table 4.

Table 4: Steps and corresponding runtime for the target-setting algorithms from [8] table 28 on (8 x
V100 16GB) Hardware.

Workload Datasheet for (8 x V100 16GB) Hardware

Criteo 1TB FastMRI ImageNet OGBG
DLRMsmall U-Net Resnet-50 GNN

Optimizer NAdamW Nesterov Heavy Ball Nesterov
Steps 10,667 38,189 186,667 80,000
Runtime (sec) 7703 8859 63,008 18,477
Time Per Step (sec) 0.7221336833 0.2319777947 0.3375422544 0.2309625

To transfer the wall-clock time, we execute the implementation of the algorithm with this bold time
entry as found here on our hardware for 5% of it’s steps. Then, we compute our time-per-step on
both 1× and 2× A100 GPUs. Finally, we use the ratio between the V100 and A100 time-per-step as
a factor multiplication of the wall-clock time. The time per step hardware benchmarking results for
A100 GPUs are shown in table 5. To maximally utilize our infrastructure, we use 2 GPUs for FastMRI
and ImageNet workloads and 1 GPU for Criteo and OGBG experiments. The final maximum allowed
wall-clock runtime are also reported in table 5.

Table 5: Steps and corresponding runtime for the target-setting algorithms on A100-SXM4-80GB
Hardware. The steps FastMRI workload is benchmarked for are 1101 steps less than the 5% ratio.
This is because FastMRI data loading introduces initial noise in the algorithm and hence time per
step are evaluated over the final 808 steps.

Criteo 1TB FastMRI ImageNet OGBG
DLRMsmall U-Net Resnet-50 GNN

Steps (∼5% of table 4) 533 808 9,000 4,000

1×A100-SXM4-80GB Hardware

Runtime (sec) 569 367 8,387 743
Time Per Step (sec) 1.067542214 0.4542079208 0.9318888889 0.185745

2×A100-SXM4-80GB Hardware

Runtime (sec) 513 220 3,951 666
Time Per Step (sec) 0.9624765478 0.2699386503 0.4381237525 0.1665

Final Maximum Allowed Wall-Clock Times

Number of GPUs 1 2 2 1
Maximum Allowed Time 11,387 10,308 81,783 14,859

Established Targets in Maximum Allowed Time/Steps We set targets and measure time/steps to
reach those targets as standardized in the MLCommons benchmark. To set the self-tuning regime
targets, we use the methodology introduced in section 5 as done originally by [8]. We set separate
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targets for the time-control and step-control conditions. Targets and maximum allowed runtimes
for both time-control and step-control conditions in table 6. The tables also include the maximum
allowed wall-clock time or maximum allowed steps to run for.

Table 6: Total allowed runtimes and targets for all workloads. The target metrics are cross-entropy
loss (CE), structural similarity index measure (SSIM), accuracy and mean average precision (mAP)

Criteo 1TB FastMRI ImageNet OGBG
DLRMsmall U-Net Resnet-50 GNN

Wall-Clock Time-Control Condition

Maximum Allowed Time 11,387 10,308 81,783 14,859
Metric CE SSIM Accuracy mAP
Training Target 0.12215 74.543% 98.709% 75.946%
Validation Target 0.12367 72.671% 71.012% 27.867%

Step-Control Condition

Maximum Allowed Steps 7,000 36,000 150,000 80,000
Metric CE SSIM Accuracy mAP
Training Target 0.1225 74.535% 98.147% 76.547%
Validation Target 0.12408 72.659% 70.600% 27.849%

Measuring Training Quality For measuring training quality, we measure the final performance
pa,w achieved within a certain time/step budget. The time and steps budgets used are the maximum
allowed wall-clock time and maximum allowed steps used for the time-to-result benchmark. These
maximum runtime are presented in table 6 as maximum allowed steps and maximum allowed time
for step-control and time-control conditions respectively.

B Managing VeLO Inputs

VeLO requires total steps at input to intialize optimizer states. This is used to compute percentage
of remaining training, a feature input to the LSTM hypernetwork. We can follow two different
approaches to provide this input to VeLO. First, we could refactor the benchmark and VeLO im-
plementation to provide the percentage of time remaining directly as input while the experiment is
running. This would be computed as the ratio of time remaining and total allowed runtime. The
remaining time can be computed directly from the benchmark accumulated_submission_time variable
from the MLCommons benchmark which is updated every step by the profiler. A simpler approach is
estimating the steps VeLO can take within the maximum allowed wall-clock time. We opt for the
latter. In table 7, we provide the estimates over two runs of VeLO for 5% of the step hints discussed
in appendix A.

The implementation is written in jax. Jax compiles the computational graphs using XLA. We ommit
the compilation times from the estimates since they take insignificant ratio from the whole training
runtime but can potentially influence the estimate over 5% of the runtime. To explain the rows in
table 7, we first run VeLO for a fixed number of steps corresponding to row Steps Run. These are the
same steps used earlier in appendix A. Then, we measure the total runtime as reported in Observed
Runtime (sec). The Time Per Step (sec), the ratio of the first and second row are used to estimate
the hyperparameter, Estimated Total Steps. Subsequently, we average the total steps VeLO can fit
in the runtime over the two estimates. We train the workloads using VeLO from start to finish once
and then update the total steps for each workload given the actual observed steps and run for two
more trials. Since we take median over trials, the evaluation of VeLO is insensitive to any outliers
produced by the estimates.

For the performance-control condition, where we run for a total fixed number of steps, we run VeLO
from start to finish given the maximum allowed steps in table 6. Meanwhile, for the VeLO Short run,
denoted also as VeLO (75%) in table 1, which is prompted with 75% with the steps VeLO can run in
the maximum allowed wall-clock time, we use 75% of the steps reported in the final row of table 7.
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Table 7: VeLO main hyperparameter estimate; total steps it will run for.

Criteo 1TB FastMRI ImageNet OGBG
DLRMsmall U-Net Resnet-50 GNN

Number GPUs 1 2 2 1

VeLO Total Steps Estimate 1

Steps Run 533 44,799 9,018 4,000
Observed Runtime (sec) 791 12080 4651 750
Time Per Step (sec) 1.484052533 0.2696488761 0.5157462852 0.1875
Estimated Total Steps 7672 38227 158572 79248

VeLO Total Steps Estimate 2

Steps Run 533 65,576 9,018 4,000
Observed Runtime (sec) 791 17863 4635 746
Time Per Step (sec) 1.484052533 0.2724014883 0.5139720559 0.1865
Estimated Total Steps 7672 37841 159119 79672

Trial 1 Estimated Steps 7672 38034 158845 79460
Trial 1 Actual Steps (used
in trials 2/3)

7545 37160 156960 74972

C Default Hyperparameters

For all default hyperparameters used for Adam and SGD variants, please refer to table 8. The learning
rate schedule consists of a linear warmup followed by cosine decay as illustrated in figure 2. The
schedule requires a total number of steps to operate on. We set the total steps of the schedule to
75% of the step hint provided by the MLCommons benchmark for each workload. The step hint is
approximately the total steps the SGD variants can run for given the maximum allowed wall-clock
time of the benchmark. We set the warmup and cosine decay steps to the first 5% of the schedule
steps and the remaining 95% respectively.

Table 8: Default Hyperparameters for all baseline optimizers.

Hyperparameter Adam NAdamW NAdam Heavy Ball Nesterov

Base LR 5e-3 1e-2 1e-2 5e-2 5e-2
L2 Regularization - 4e-3 - - -

β1 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 - -

Schedule linear warmup linear warmup linear warmup - -
+ cosine decay + cosine decay + cosine decay - -

Warmup Steps 5% 5% 5% - -
Decay Steps 95% 95% 95% - -

Minimum LR 1e-4 1e-4 1e-4 - -
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Figure 2: The Learning Rate schedule used for Adam variants from table 8. The first 5% of steps are
the linear warmup to the maximum LR, which is followed by 75% of cosine decay to a minimum LR.
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D Time-Controlled Experiments Results

D.1 Time-To-Result Measurements

Table 9: Total wall-clock time (sec) to achieve the train target performance. These numbers are used
to plot the performance profiles in figure 3. A value of inf indicates that that baseline was unable to
achieve the target within the maximum allowed runtime.

Workload Criteo FastMRI ImageNet OGBG
Optimizer

Adam 3746 5817 48341 9277
HeavyBall inf inf inf inf
NAdam 4096 inf inf inf
NAdamW 6232 inf 70831 inf
Nesterov inf inf inf inf
VeLO inf inf inf 13215

VeLO Short 6088 inf inf inf

Figure 3: Time-to-Target performance profiles of baselines vs VeLO and VeLO with 75% (VeLO
Short) prompt on training targets.
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Table 10: Total wall-clock time (sec) to achieve the validation target performance. These numbers
are used to plot the performance profiles in figure 4. A value of inf indicates that that baseline was
unable to achieve the target within the maximum allowed runtime.

Workload Criteo FastMRI ImageNet OGBG
Optimizer

Adam 7644 inf inf inf
HeavyBall inf inf inf inf
NAdam inf inf inf inf
NAdamW 6939 inf 63502 inf
Nesterov inf inf inf inf
VeLO inf 5728 62587 8779
VeLO Short inf 5913 58713 7238

Figure 4: Time-to-Target performance profiles of baselines vs VeLO and VeLO with 75% (VeLO
Short) prompt on validation targets.

D.2 ImageNet

Name train/loss train/accuracy validation/loss validation/accuracy
Adam 0.0481 ± 0.00531 98.6401 ± 0.16370 1.9405 ± 0.00915 69.8780 ± 0.03027
Heavy Ball 0.1961 ± 0.06906 94.1552 ± 2.11355 1.7592 ± 0.05631 66.1827 ± 0.22902
NAdam 0.0558 ± 0.00040 98.3976 ± 0.05396 1.9516 ± 0.00162 70.0233 ± 0.13590
NAdamW 0.0479 ± 0.00101 98.7139 ± 0.01168 1.6328 ± 0.00854 71.4420 ± 0.06245
Nesterov 0.1572 ± 0.04028 95.4427 ± 1.31832 1.7840 ± 0.00779 66.2933 ± 0.34269
VeLO 0.0862 ± 0.00715 97.4058 ± 0.27273 1.5358 ± 0.02996 72.9073 ± 0.09617
VeLO Short 0.1445 ± 0.00158 95.6785 ± 0.04413 1.3775 ± 0.00333 73.2160 ± 0.10806
HPO 0.5380 ± 0.00695 92.0088 ± 0.23923 1.1170 ± 0.00383 77.4887 ± 0.11420
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D.3 FastMRI

Name train/loss train/ssim validation/loss validation/ssim
Adam 0.2702 ± 0.00693 74.2444 ± 0.51236 0.2850 ± 0.00002 72.6139 ± 0.01243
Heavy Ball 0.2806 ± 0.00298 72.8935 ± 0.20797 0.2897 ± 0.00014 71.9518 ± 0.05269
NAdam 0.2692 ± 0.00396 74.3033 ± 0.50080 0.2851 ± 0.00022 72.6006 ± 0.03608
NAdamW 0.2750 ± 0.00102 73.4651 ± 0.09084 0.2851 ± 0.00015 72.5916 ± 0.04572
Nesterov 0.2809 ± 0.00508 72.9652 ± 0.48978 0.2898 ± 0.00005 71.9132 ± 0.02163
VeLO 0.2737 ± 0.00324 74.0819 ± 0.41933 0.2851 ± 0.00008 72.6663 ± 0.00503
VeLO Short 0.2763 ± 0.00128 73.6923 ± 0.09914 0.2850 ± 0.00026 72.6646 ± 0.02622
HPO 0.2716 ± 0.00371 74.2704 ± 0.30959 0.2851 ± 0.00067 72.6110 ± 0.13964

D.4 Criteo-1TB

Name train/loss validation/loss
Adam 0.1222 ± 0.00098 0.1237 ± 0.00005
Heavy Ball 0.1268 ± 0.00110 0.1279 ± 0.00094
NAdam 0.1237 ± 0.00280 0.1255 ± 0.00317
NAdamW 0.1226 ± 0.00059 0.1237 ± 0.00003
Nesterov 0.1296 ± 0.00173 0.1298 ± 0.00153
VeLO 0.1232 ± 0.00039 0.1240 ± 0.00005
VeLO Short 0.1236 ± 0.00024 0.1242 ± 0.00003
HPO 0.1219 ± 0.00085 0.1237 ± 0.00012

D.5 OGBG

Please note that on HPO results, 2 trials out of 3 were unstable, hence, the missing standard deviations.
Name train/loss train/mAP validation/loss validation/mAP
Adam 0.0165 ± 0.00045 76.3886 ± 1.51418 0.0515 ± 0.00021 27.3651 ± 0.18156
Heavy Ball 0.0329 ± 0.00012 31.9587 ± 0.42343 0.0461 ± 0.00022 23.0116 ± 0.01945
NAdam 0.0174 ± 0.00026 74.3218 ± 1.07672 0.0509 ± 0.00027 27.2395 ± 0.63613
NAdamW 0.0196 ± 0.00181 68.3208 ± 5.45994 0.0483 ± 0.00157 27.6925 ± 0.23413
Nesterov 0.0323 ± 0.00040 33.1559 ± 0.62190 0.0458 ± 0.00024 23.6963 ± 0.38710
VeLO 0.0164 ± 0.00037 76.6425 ± 0.92113 0.0510 ± 0.00017 27.4374 ± 0.30907
VeLO Short 0.0180 ± 0.00058 72.5836 ± 0.96198 0.0491 ± 0.00064 28.2645 ± 0.35253
HPO 0.0205 ± nan 58.8443 ± nan 0.0463 ± nan 28.9687 ± nan

E Step-Controlled Experiments Results

E.1 Steps-To-Result Measurements

Table 11: Number of steps to achieve the train target performance. These numbers are used to plot
the performance profiles in figure 5. A value of inf indicates that that baseline was unable to achieve
the target within the maximum allowed runtime.

Workload Criteo FastMRI ImageNet OGBG
Optimizer

Adam 3497 21262 102029 47419
HeavyBall inf inf inf inf
NAdam 4589 inf 121571 inf
NAdamW 4694 inf 117460 inf
Nesterov inf inf inf inf
VeLO 5252 inf inf 71649

VeLO Short 4057 inf inf inf

15



Figure 5: Steps-to-Target performance profiles of baselines vs VeLO and VeLO with 75% (VeLO
Short) prompt on training targets.

Table 12: Number of steps to achieve the validation target performance. These numbers are used to
plot the performance profiles in figure 6. A value of inf indicates that that baseline was unable to
achieve the target within the maximum allowed runtime.

Workload Criteo FastMRI ImageNet OGBG
Optimizer

Adam 5025 13344 inf inf
HeavyBall inf inf inf inf
NAdam 5177 inf inf inf
NAdamW 5277 inf 112463 inf
Nesterov inf inf inf inf
VeLO 6105 17649 114586 46979

VeLO Short inf 17616 89419 34078

E.2 ImageNet

Name train/loss train/accuracy validation/loss validation/accuracy

Adam 0.0470 ± 0.00587 98.6554 ± 0.22522 1.9438 ± 0.00717 69.8487 ± 0.05294
Heavy Ball 0.2582 ± 0.02502 92.2350 ± 0.80171 1.6870 ± 0.02763 66.2940 ± 0.31674
NAdam 0.0571 ± 0.00060 98.3279 ± 0.04514 1.9528 ± 0.00120 69.9993 ± 0.11780
NAdamW 0.0470 ± 0.00106 98.7786 ± 0.04481 1.6345 ± 0.01098 71.4537 ± 0.07961
Nesterov 0.2512 ± 0.02606 92.4685 ± 0.86639 1.7022 ± 0.03822 66.3390 ± 0.35794
VeLO 0.1046 ± 0.00342 96.8478 ± 0.11937 1.5017 ± 0.02693 72.9120 ± 0.09714
HPO 0.5542 ± 0.00117 91.5016 ± 0.06893 1.1154 ± 0.00098 77.4423 ± 0.08693
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Figure 6: Steps-to-Target performance profiles of baselines vs VeLO and VeLO with 75% (VeLO
Short) prompt on validation targets.

E.3 FastMRI

Name train/loss train/ssim validation/loss validation/ssim

Adam 0.2702 ± 0.00693 74.2438 ± 0.51237 0.2850 ± 0.00003 72.6131 ± 0.01279
Heavy Ball 0.2809 ± 0.00282 72.8451 ± 0.14562 0.2899 ± 0.00008 71.9194 ± 0.02081
NAdam 0.2692 ± 0.00396 74.3011 ± 0.49641 0.2851 ± 0.00022 72.5980 ± 0.04064
NAdamW 0.2750 ± 0.00102 73.4640 ± 0.09133 0.2851 ± 0.00016 72.5903 ± 0.04674
Nesterov 0.2811 ± 0.00505 72.9825 ± 0.45841 0.2899 ± 0.00004 71.9274 ± 0.00075
VeLO 0.2804 ± 0.00008 73.5760 ± 0.01010 0.2851 ± 0.00022 72.6630 ± 0.02184
HPO 0.2716 ± 0.00381 74.2566 ± 0.29555 0.2850 ± 0.00080 72.6028 ± 0.13814

E.4 Criteo

Name train/loss validation/loss

Adam 0.1225 ± 0.00015 0.1237 ± 0.00005
Heavy Ball 0.1293 ± 0.00045 0.1299 ± 0.00062
NAdam 0.1239 ± 0.00302 0.1256 ± 0.00315
NAdamW 0.1220 ± 0.00018 0.1237 ± 0.00005
Nesterov 0.1301 ± 0.00096 0.1305 ± 0.00067
VeLO 0.1229 ± 0.00034 0.1240 ± 0.00008
HPO 0.1222 ± 0.00058 0.1238 ± 0.00022
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E.5 OGBG

Name train/loss train/mAP validation/loss validation/mAP

Adam 0.0165 ± 0.00033 76.2472 ± 0.74703 0.0515 ± 0.00020 27.3603 ± 0.18697
Heavy Ball 0.0341 ± 0.00026 29.8791 ± 0.24316 0.0466 ± 0.00038 22.3993 ± 0.03845
NAdam 0.0173 ± 0.00033 74.3650 ± 0.94344 0.0509 ± 0.00027 27.2383 ± 0.63573
NAdamW 0.0197 ± 0.00196 68.1042 ± 5.87819 0.0483 ± 0.00157 27.6927 ± 0.23119
Nesterov 0.0331 ± 0.00008 31.8606 ± 0.30560 0.0462 ± 0.00027 22.9570 ± 0.22694
VeLO 0.0153 ± 0.00088 79.4321 ± 1.70572 0.0522 ± 0.00126 27.5886 ± 0.47789
HPO 4.1961 ± 3.61664 61.3348 ± nan 4.3632 ± 3.73861 28.9854 ± nan
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F Current vs Original VeLO Evaluation Protocol

The original VeLO evaluation codebase was not released. Nevertheless, the authors do evaluate on a
specific version of the MLCommons benchmark that precedes the latest one used in this study [8].
The workloads they chose were:

1. Resnet-50 on ImageNet
2. ViT on Imagenet
3. Transformer on WMT
4. Deepspeech on Librespeech
5. Conformer on Librespeech
6. GNN on OGBG

Meanwhile, we choose the workloads to be as close as possible to the training distribution:

1. Resnet-50 on ImageNet
2. U-Net on FastMRI
3. GNN on OGBG
4. DLRM on Criteo-1TB

Please note that ResNets and Autoencoders (U-Net like architectures) were seen heavily during
training. Moreover, GNNs and DLRMs are implemented as MLPs which are also seen heavily
during training. ImageNet was part of the training datasets employed too. It is unclear whether the
magnitude, sparsity and other properties of the gradients on the above workloads deviate heavily
from the totality of meta-training tasks sampled.

Beside the choice of workloads, the original paper have trained (1) VeLO and (2) 20 hyperparameter
trials of Adam for a fixed number of steps. Results are presented as figures of training curves which
paints comparisons imprecise. Meanwhile, our evaluation uses the MLCommons recommended
total wall-clock time to run for and an approximately equivalent total number of steps across a
wider set of optimizers. We also fix the optimizers hyerparameters to default values chosen one-shot
by the authors to stay faithful to the self-tuning regime instead of sampling for a hyperparameter
search space tuned to target validation performance. To paint a more detailed picture and stronger
conclusions, we report all final results across step and wall-clock time quotas, and detailed raw data
for performance profiles. All in all, our protocol shows that VeLO’s efficacy is invalidated once the
results are stress-tested in a fair setup.
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