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ABSTRACT

Neural networks are known to be data-hungry, and collecting large labeled
datasets is often a crucial step in deep learning deployment. Researchers have
studied dataset aspects such as distributional shift and labeling cost, primarily us-
ing downstream prediction accuracy for evaluation. In sensitive real-world appli-
cations such as medicine and self-driving cars, not only is the accuracy important,
but also the calibration – the extent that model uncertainty reflects the actual cor-
rectness likelihood. It has recently been shown that modern neural networks are
ill-calibrated. In this work, we take a complementary approach – studying how
dataset properties, rather than architecture, affects calibration. For the common
issue of dataset imbalance, we show that calibration varies significantly among
classes, even when common strategies to mitigate class imbalance are employed.
We also study the effects of label quality, showing how label noise dramatically
increases calibration error. Furthermore, poor calibration can come from small
dataset sizes, which we motive via results on network expressivity. Our experi-
ments demonstrate that dataset properties can significantly affect calibration and
suggest that calibration should be measured during dataset curation.

1 INTRODUCTION

Neural networks often require large amounts of labeled data to perform well, making data curation
a crucial but costly aspect of deployment. Thus, researchers have studied dataset properties such
as distributional shift (Miller et al., 2020) and the bias in crowd-sourced computer vision datasets
(Tsipras et al., 2020) among others. Often, the evaluation criteria in such studies is downstream
prediction accuracy. However, neural networks are increasingly deployed in sensitive real-world
applications such as medicine (Caruana et al., 2015), self-driving cars (Bojarski et al., 2016), and
scientific analysis (Attia et al., 2020), where not only accuracy matters but also calibration. Cali-
bration is the extent to which model certainty reflects the actual correctness likelihood. Calibration
can be important when costs of false positives and false negatives are asymmetric, e.g., for a deadly
disease with cheap treatment, doctors might initiate treatment when the probability of being sick
exceeds 10%. Beyond simple classification, calibration can be important for beam-search in NLP
(Ott et al., 2018) and algorithmic fairness (Pleiss et al., 2017). Calibration in machine learning has
been studied by e.g Zadrozny & Elkan (2001); Naeini et al. (2015). Niculescu-Mizil & Caruana
(2005) have shown that small scale neural networks can yield well-calibrated predictions. However,
it has recently been observed by (Guo et al., 2017) that modern neural networks are ill-calibrated,
whereas the now primitive Lenet (LeCun et al., 1998) achieves good calibration.

In this work, we take a complementary approach; instead of focusing on network architecture, we
study how calibration is influenced by dataset properties. We primarily focus on computer vision and
perform extensive experiments across common benchmarks and more exotic datasets such as satel-
lite images (the eurosat dataset (Helber et al., 2019)) and species detection (the iNaturalist dataset
(Van Horn et al., 2018)). We consistently find that dataset properties can significantly affect calibra-
tion, causing effects comparable to network architecture. For example, we consider the ubiquitous
problem of class imbalanced datasets, a common issue in practice (Van Horn et al., 2018; Krishna
et al., 2017; Thomee et al., 2016). For such datasets, the miscalibration is not uniform but instead
varies across the different classes. This problem persists even when common strategies to mitigate
class imbalanced are employed. Another practical concern is generating high-quality labels via e.g.
crowdsourcing (Karger et al., 2011). We demonstrate how labeling quality affects calibration, with
noisier labels resulting in worse calibration. Additionally, we show that just the size of the dataset

1



Under review as a conference paper at ICLR 2021

classclass

ca
lib

ra
tio

n 
er

ro
r (

ec
e)

ca
lib

ra
tio

n 
er

ro
r (

ec
e)

cifar10 cifar100

eurosat iNaturalist

Figure 1: Calibration error for individual classes under class-imbalance. The classes are ordered
from the most (left) to the least (right) amount of samples. Fewer samples result in larger calibration
errors. Imbalance is injected in CIFAR10/100 and eurosat randomly, removing any correlation with
class-specific properties. We do not modify Inaturalist, which already suffers from imbalance; thus
classwise calibration is correlated with class-specific properties.

has a strong effect on calibration. This also holds when one artificially increases the dataset size
by data augmentation. We motivate our findings by considering the geometry of the cross-entropy
loss and utilizing recent results on network expressivity (Yun et al., 2019). If the dataset is suffi-
ciently small compared to the number of parameters, we argue that the lack of minimizer for the
cross-entropy loss biases the network to high confidence and poor calibration. Our results highlight
an underappreciated aspect of calibration and suggest that for sensitive applications, one should
measure calibration during dataset curation.

2 BACKGROUND

Calibration. Calibration has a traditional place in machine learning (Zadrozny & Elkan, 2001;
Naeini et al., 2015). Before the advent of modern deep learning, Niculescu-Mizil & Caruana (2005)
showed that neural networks can yield well-calibrated predictions for classification. However, Guo
et al. (2017) showed that modern neural networks are ill-calibrated. Modern neural networks are
modeled as e.g. resnet (He et al., 2016) or densenets (Huang et al., 2016). It is important to note that
accuracy and calibration do not necessarily follow each other, but can move independently – modern
neural networks are ill-calibrated, but still yield excellent accuracy. Beyond image classification, the
importance of calibration in NLP has further been studied by Ott et al. (2018) and its relationship to
fairness by Pleiss et al. (2017).

Metrics for Calibration. We let {xi} ∈ Rn×dx be a dataset of n datapoints with dx features and
take {yi} to be the labels. Following Guo et al. (2017), we assume that a neural network h outputs
h(xi) = (p̂i, ŷi), where ŷi is the predicted class and p̂i is the estimated probability that the prediction
is correct. For evaluating calibration, we divide the interval [0, 1] into M equally sized bins and
assign predictions to bins based upon p̂. Within each bin Bm we define the accuracy as acc(Bm) =

1
|Bm|

∑
i∈Bm

1(ŷi = yi). Similarly, we define the confidence as conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂i. For
a well-calibrated model, we would expect the confidence and accuracy of each bin to be close to
each other. Calibration error can be measured by their difference, evaluated on the test set. The
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resulting metric is known as the expected calibration error (Naeini et al., 2015), often abbreviated as
ece. Mathematically, it is defined as follows:

ece =

M∑
m=1

|Bm|
n

∣∣∣∣acc(Bm)− conf(Bm)

∣∣∣∣ (1)

3 EXPERIMENTS

Experimental setup. We consider the following computer vision datasets. Cifar10 & Cifar100
(Krizhevsky & Hinton, 2010) which contains 50,000 RGB images spanning ten or hundred classes
respectively. Classes are balanced. Eurosat (Helber et al., 2019), which is a dataset of satellite
images over continental Europe; there are ten balanced classes and 27,000 images in total. iNatu-
ralist (Van Horn et al., 2018) which is a dataset for species detection. We use the FGVC6 version
(FGVC6, 2019), compromising over 260,000 images and an imbalanced hierarchical class system
compromising e.g., species and phylum. We perform classification at the ”class” level, resulting in
nine classes. Across all datasets, we use the same architecture, Resnet50 (He et al., 2016). We use
hyperparameters from the original resnet paper (He et al., 2016): cross-entropy loss optimized with
SGD using a learning rate at 0.1 and decreased by a factor 0.1 after 50 % and 75 % of the training, a
batch size of 128, a weight decay of 0.0001, and momentum of 0.9. For the cifar/eurosat/inaturalist,
networks are trained over 62/30/331 × 103 gradient steps, corresponding to 160 epochs for each
dataset. We use randomized cropping and random horizontal flipping for data augmentation, see
Appendix A for data preprocessing. Experiments are repeated five times, with mean and standard
deviations reported. Calibration error is measured in expected calibration error(ece) as in eq. (1),
using M = 15 and evaluated on the test set.

Inbalanced dataset. A common problem in practice, not necessarily found in benchmark datasets,
is class imbalance (i.e., the number of available samples varies between classes), see Van Horn et al.
(2018); Krishna et al. (2017); Thomee et al. (2016). Here we study how imbalanced datasets affect
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Figure 2: Calibration error under label noise, simulated by randomly reassigning labels for a fraction
of the training labels. Across datasets, label noise degrades network calibration. Thus, label noise
from e.g. crowd sourcing can affect not only accuracy, but also calibration (Karger et al., 2011).
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Figure 3: Calibration error under non-uniform label noise. We linearly increase label noise from 0
to 0.5 among classes, and sort them thereafter. Increased noise leads to worse calibration.

the calibration error for individual classes. Whereas the iNaturalist dataset is naturally imbalanced,
the cifar and eurosat datasets are not. For these datasets, we simulate long-tailed class imbalance
following Cao et al. (2019). We randomly reorder the classes from = 1 to n, and only keep a
αi−1 fraction of examples for class i. Given some desired ratio ρ between the class with the most
and fewest samples, one picks α such that αn−1 = ρ. Following Buda et al. (2018), we also
consider a step-imbalance, where half of the classes are downsampled by a factor ρ. We consider
ρ = 100 as done by e.g. Cao et al. (2019) and keep the test set balanced. For cifar/eurosat, we
randomly chose what classes to subsample to eliminate class-specific properties. Since iNaturalist is
already imbalanced, we keep it as it is, but note that the class-specific properties are correlated with
class-specific imbalance. After this procedure, we train the DNNs as normal and give the average
calibration error for individual classes. The results are shown in Figure 1. Generally, classes with
fewer examples have significantly higher ECE, showing how imbalance can have a significant effect
on model calibration. For the iNaturalist dataset, we have some outlier classes which is likely due
to class-specific effects, e.g., the class with the most labels might be unusually hard to calibrate.

Methods for Imbalanced Datasets. As class imbalanced is a problem of practical importance,
there is ample work on mitigating this issue. One common strategy is to sample the dataset un-
evenly when generating mini-batches, attempting to obtain a roughly balanced dataset. One can
both oversample minority classes (Buda et al., 2018) and undersample the majority class (Japkow-
icz & Stephen, 2002). Another strategy is instead to weight the objective function to give all classes

Table 1: Calibration error for various mitigation strategies used in imbalanced datasets. We give the
calibration error for the class with the most/fewest labels (referred to as min/max), and the ratio of
these two errors. Two types of imbalance are considered, exponential and step. While improving in
some cases, classwise imbalance remains even when mitigation strategies are used.

exp-inbalance cifar10 cifar100 eurosat

method min max ratio min max ratio min max ratio

original 0.12 0.48 4.24 0.34 0.61 1.82 0.05 0.3 7.06
sampling 0.16 0.62 3.99 0.39 0.66 1.68 0.05 0.22 4.85
weighted 0.1 0.35 3.67 0.22 0.4 1.79 0.08 0.14 1.75
label smooth 0.08 0.35 4.31 0.16 0.27 1.73 0.1 0.29 2.96
focal (Lin et al., 2017) 0.1 0.46 4.88 0.29 0.56 1.91 0.06 0.28 4.5
CB (Cui et al., 2019) 0.09 0.34 3.98 0.2 0.32 1.57 0.08 0.14 1.84

step-imbalance cifar10 cifar100 eurosat

method min max ratio min max ratio min max ratio

original 0.04 0.63 16.57 0.16 0.73 4.6 0.02 0.43 19.62
sampling 0.06 0.77 13.17 0.19 0.74 3.85 0.02 0.43 19.94
weighted 0.08 0.34 4.62 0.15 0.3 2.01 0.1 0.18 1.94
label smooth 0.08 0.47 5.58 0.12 0.48 3.95 0.09 0.33 3.47
focal (Lin et al., 2017) 0.03 0.56 20.54 0.14 0.66 4.77 0.03 0.37 16.72
CB (Cui et al., 2019) 0.07 0.41 6.24 0.15 0.3 2.04 0.08 0.17 2.22
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Figure 4: Calibration error under different dataset sizes. We subsample the datasets, and give the
size as a fractions of the original size. Across all tasks, smaller datasets consistenly yield poorer
calibration, highlighting how dataset size influences not only accuracy but also calibration.

approximately the same weight in the objective function. A common strategy is weight classes in-
versely proportional to their frequency (Wang et al., 2017). Recently, Cui et al. (2019) has proposed
to reweight based upon the ”effective” number of samples, which is defined per a mathematical
formula. We here investigate if the calibration issues of an imbalanced dataset persist when us-
ing such mitigation strategies. Thus, we consider the standard cross-entropy (original), resampling
inversely proportional to the frequency (sampling), reweighting inversely proportional to the fre-
quency (weighted), the weighting scheme of Cui et al. (2019) (CB), and the focal loss of Lin et al.
(2017) (focal). Additionally we consider label smoothing (Szegedy et al., 2016) (label smooth). We
construct imbalanced datasets as in the previous section. Due to limited computational resources,
we only consider the three smallest datasets for these experiments. Calibration errors are given in
Table 1, and we give the largest and smallest calibration error among classes and the average ratio
of the two. We see that issues of imbalanced calibration errors, while sometimes improving, still
persist. Standard deviations are given in Table 2 in Appendix A.

Label Quality. When collecting labels, for example via crowdsourcing, a common issue is label
quality (Patterson & Hays, 2012; Su et al., 2012; Callison-Burch & Dredze, 2010). For example,
workers might have poor incentives to perform well or lack the necessary skills for quality labeling.
To study the effects of potentially mislabeled data, we artificially inject symmetric noise into the
training set. This is done by selecting a random subset of the training set corresponding to some
fixed fraction, and then shuffling the labels of this set. This setup follows conventions in label noise
literature (Patrini et al., 2017; Han et al., 2018). Given these noisy labels, we train the networks and
evaluate them on the original test-set (which has no noise). We consider five levels of label noise in
increments of 0.1, starting at 0.0. The resulting calibration errors for various noise levels are given
in Figure 2, where we see that label noise increases the calibration error across all datasets. Addi-
tionally, we consider the effects of non-uniform noise, studied by e.g. Crammer et al. (2006). For
class i, we linearly increase a noise level pi from 0.0 to 0.5. Classes are randomly ordered. For each
image with original class i, with probability pi we assign it to a new random class. The reassignment
probability to class i is proportional to pi. Results are given in Figure 3, where noisier classes suffer
from worse calibration. This underscores how label quality control in e.g. crowdsourcing (Su et al.,
2012) can be not only important for accuracy, but also for calibration of downstream models.
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Figure 5: Calibration error under combinations of data augmentations. Following He et al. (2016),
we consider randomized cropping and flipping. Removing these components, often used to artifi-
cially enlarge the dataset, increases the calibration error.

Dataset size. The perhaps most common concern for collecting data is the dataset size, and model
accuracy typically grows with this size (Hestness et al., 2017). Crowdsourcing labels and bound-
ing boxes for images is common practice, with many researchers investigating strategies to reduce
needed queries (Su et al., 2012) In practice, dataset size can be limited by costs of labeling, but also
by obtaining the actual data (Suram et al., 2017). Motivated by this, we study the effect of dataset
size upon the calibration error. We simply subsample the training sets of the datasets uniformly at
random and thereafter train on them, comparing different sizes of the resulting dataset. We consider
subsampled sizes, measured in fractions of the original size, from 1.0 to 0.2 in increments of 0.2,
and also consider 0.1. The test set is not subsampled. The results of these experiments are given in
Figure 4. We see that smaller datasets have substantially larger calibration errors, demonstrating the
dramatic effect that dataset size can have not only on accuracy, but also on calibration error.
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Figure 6: Calibration error of an NLP task during
training for different dataset sizes. The dataset is
subsampled, and we give the relative size.

Augmentations. Beyond actual dataset size, it
is common to artificially increase the size of the
dataset by augmenting it, e.g., randomly crop-
ping the images or slightly shifting the color
balance (Cubuk et al., 2018). We have seen
that the size of the dataset influences calibra-
tion, and now consider the effect of increasing
the effective dataset size via augmentations. We
use both randomized cropping and horizontal
flipping for our training and consider removing
these components while keeping other training
parameters fixed. The outcome of this exper-
iment is shown in Figure 5, and we see that
removing data augmentations significantly in-
creases the calibration error. Viewing data aug-
mentation as a strategy of extending the training
set, we again see how smaller training sets in-
crease the calibration error, just as in Figure 4.
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NLP. While we primarily focus on computer vision, we here consider experiments in NLP. Language
models often generate text via beam-search, and it has been observed that calibration is important
for this process (Ott et al., 2018). Here we investigate the effect of dataset size on calibration in NLP.
We considering translation of the IWSLT’14 German to English dataset (Cettolo et al., 2014) using
transformer architectures (Vaswani et al., 2017) with code and default hyperparameters from the
publicly available fairseq codebase (Ott et al., 2019). As before, we simply subsample the training
set uniformly at random for variable sizes and train the transformer with all other training parameters
fixed. Figure 6 shows how the mean calibration error, with standard deviations as error bars, varies
during training. Again we see how the dataset size influences the calibration. It is natural to guess
that there might be word-level calibration issues too, e.g., rare words might have worse calibration.

4 THEORETICAL MOTIVATION

Figure 4 and Figure 5 show that the size of the dataset affects calibration, with smaller datasets
resulting in worse calibration. To explain this, let us consider the cross-entropy loss. We will let
lij denote the logit for image i and class j. Furthermore, let ci be the index of the correct class for
image i. The soft-max cross-entropy loss function is then defined as

` =
∑
i

`i = −
∑
i

log
exp(lici)∑
j exp(lij)

= −
∑
i

(
lici + log

(∑
j

exp(lij)
))

(2)

We note that this loss function decreases monotonically as the logit lici increases. This implies
that there is no global minimizer, but instead that if the other logits are fixed, we have `i → 0 as
lici →∞. The logit tending to infinity implies that the confidence of the prediction tends to 1. The
lack of minimizer for soft-max cross-entropy is in stark contrast with e.g. label smoothing, which
penalizes large confidence, see Figure 7. Let us imagine that the network has infinite capacity. If we
optimize it for a sufficient amount of time, we would expect ` to tend to zero, which implies that the
logits tend to infinity. This corresponds to the confidence on the training set tending to 100%, which
most likely implies overconfidence and poor calibration. We can formalize this observation, but we
first need to state some assumptions.

Assumption 1 Let {xi} ∈ Rn×dx be a dataset of n datapoints with dx features each. Let {yi} ∈
{0, 1}n×c be a one-hot label encoding that assigns each image one out of c classes, where c is a
constant. We assume that all datapoints {xi} are distinct, i.e. xi 6= xi,∀i 6= j.

Under such assumptions, recent results in network expressivity say that one can essentially memo-
rize a training set (Yun et al., 2019) if the width is at least of order O(

√
n). In an idealized setting,

where we optimize the function without computational considerations, such expressivity means that
the loss function can be optimized towards its minimizer 0. This means train set confidence growing
to 100%, likely translating to poor calibration. We formalize this line of argument in Theorem 1.

Theorem 1 Let Assumption 1 hold. Let f be a Relu networks with four or more layers and with
width at least Ω(

√
n) and parameters w. Let ` be equal to the loss function in eq. (2). Then (i)

minw `(f(w)) no global minima; (ii) the confidence tends to 1 as `→ 0.

The formal proof is given in Appendix B, we here provide some intuition. To prove (i) and (ii), it
suffices that the network can fit the training set with 1.0 accuracy. This is typically the condition in
practice (Zhang et al., 2016), and whereas we consider an idealized argument without computation
costs, the conclusions agree with our experimental results. For the sake of contradiction, let us
assume that we are in a global minima with parameters w and 100% accuracy. Now consider `i
when we scale the final layer by (1 + α) for α > 0. The network output is then (1 + α)lij , and `i is
− log

(
exp((1 + α)lici)/

∑
j exp((1 + α)lij) = log(1 +

∑
j 6=i exp

(
(1 + α)(lij − lici)

)
. The fact

that we have perfect train accuracy means that (lij − lici) < 0 ∀j 6= ci. Thus, the loss must shrink,
as
∑

j 6=i exp
(
(1 + α)(lij − lici)

)
decreases with α and as log is monotone. By contradiction, we

are not in such a global minima. The results of Yun et al. (2019) say that we can always find weights
which achieves perfect accuracy using O(

√
n) parameters, and thus that there are no issues with

fitting that dataset that prevents the loss from tending to 0. Thus, if the dataset is small compared to
the number of parameters, we expect overconfidence and poor calibration. This conclusion agrees
with observations of Guo et al. (2017), who show that depth and width increases miscalibration.
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5 RELATED WORK

There is much recent work on how datasets influence the behavior of neural networks. Tsipras
et al. (2020) shows how the process used to collect labels for imagenet can introduce bias into the
resulting dataset. Miller et al. (2020) studies how the shift between different datasets can influence
the performance of question and answering systems. Recht et al. (2019) construct new test sets
for imagenet and cifar10, and observe differences in generalization compared to the original test
sets. Imbalanced datasets is a common issue when applying machine learning in practice (Van Horn
et al., 2018; Krishna et al., 2017; Thomee et al., 2016), and researcher often describe the ”heavy-
tail” of class labels (Cui et al., 2019). Traditional work on class imbalance includes Japkowicz &
Stephen (2002) which investigates different sampling strategies, applicable to most machine learning
models. For models of empirical risk minimization, one can instead reweight samples. A relatively
recent reweighting scheme is proposed by Cui et al. (2019), where one uses the effective number of
samples, which can be calculated from a simple formula.

For generating datasets, a common strategy is to employ crowdsourcing, where one lets ordinary
people assign labels in a large-scale automated fashion, commonly via Amazon’s Mechanical Turk
system (Keith et al., 2017). Typical applications of crowdsourcing include analyzing images and
providing bounding boxes (Patterson & Hays, 2012; Su et al., 2012), providing linguistic annotations
for natural language (Callison-Burch & Dredze, 2010), or evaluating the relevance of search engines
results (Alonso, 2013). Another application is machine learning debugging Ribeiro et al. (2016).
The idea of eliciting and aggregating crowdsourced labels efficiently has inspired much algorithmic
work (Khetan & Oh, 2016; Zhang et al., 2014). Common issues include finding tasks that result
in high-quality labels, dealing with inconsistent labels (Karger et al., 2011; Zheng et al., 2017) and
heterogenous workers (Ho et al., 2013).

Figure 7: The softmax-cross entropy and label
smoothing as a function of the logit of the cor-
rect class (other logits are zero). Cross-entropy
decreases monotonically, resulting in large logits
after optimization.

Calibration in machine learning has been stud-
ied for a long time (Zadrozny & Elkan, 2001;
Naeini et al., 2015) due to its practical impli-
cations. For neural networks, Caruana et al.
(2015) demonstrated that shallow neural net-
works can yield well-calibrated predictions on
classification tasks. In contrast, Guo et al.
(2017) show how modern neural networks are
ill-calibrated, with width and depth resulting in
worse calibration scores, and investigate mit-
igation strategies. Neural network calibration
has implications in NLP (Ott et al., 2018), fair-
ness (Pleiss et al., 2017) and reinforcement
learning (Kuleshov et al., 2018). For applica-
tions such as medicine (Miner et al., 2020), me-
teorology (Ren et al., 2015) and autonomous
vehicles (Bojarski et al., 2016) it can be impor-
tant for performance. Reliable uncertainty esti-
mates also allow one to integrate DNNS with
other probabilistic models, incorporating e.g.
camera information (Kendall & Cipolla, 2015).

6 CONCLUSIONS

We have investigated the effects that datasets can have on network calibration. By generating label
noise and class imbalance synthetically, we show how calibration error increases with label noise
and few samples. We also study how calibration changes with dataset size. Our work points towards
the importance of high-quality dataset curation for generating well-calibrated predictions, and high-
light issues that are relevant in high-stakes applications such as autonomous vehicles and medical
applications. These calibration issues can potentially be mitigated both at dataset curation time and
training time; we defer such studies to future work. A practical takeaway from this work is that for
sensitive applications, one should evaluate calibration when collecting datasets.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

John Miller, Karl Krauth, Benjamin Recht, and Ludwig Schmidt. The effect of natural distribution
shift on question answering models. arXiv preprint arXiv:2004.14444, 2020.

Adam S Miner, Albert Haque, Jason A Fries, Scott L Fleming, Denise E Wilfley, G Terence Wilson,
Arnold Milstein, Dan Jurafsky, Bruce A Arnow, W Stewart Agras, et al. Assessing the accuracy
of automatic speech recognition for psychotherapy. npj Digital Medicine, 3(1):1–8, 2020.

Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the... AAAI Conference on Artificial Intel-
ligence. AAAI Conference on Artificial Intelligence, volume 2015, pp. 2901. NIH Public Access,
2015.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learn-
ing. In Proceedings of the 22nd international conference on Machine learning, pp. 625–632,
2005.

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Analyzing uncertainty in
neural machine translation. arXiv preprint arXiv:1803.00047, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952, 2017.

10



Under review as a conference paper at ICLR 2021

Genevieve Patterson and James Hays. Sun attribute database: Discovering, annotating, and recog-
nizing scene attributes. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2751–2758. IEEE, 2012.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. In Advances in Neural Information Processing Systems, pp. 5680–5689, 2017.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? arXiv preprint arXiv:1902.10811, 2019.

Ye Ren, PN Suganthan, and N Srikanth. Ensemble methods for wind and solar power forecasting—a
state-of-the-art review. Renewable and Sustainable Energy Reviews, 50:82–91, 2015.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Hao Su, Jia Deng, and Li Fei-Fei. Crowdsourcing annotations for visual object detection. In Work-
shops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

Santosh K Suram, Yexiang Xue, Junwen Bai, Ronan Le Bras, Brendan Rappazzo, Richard Bernstein,
Johan Bjorck, Lan Zhou, R Bruce van Dover, Carla P Gomes, et al. Automated phase mapping
with agilefd and its application to light absorber discovery in the v–mn–nb oxide system. ACS
combinatorial science, 19(1):37–46, 2017.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From
imagenet to image classification: Contextualizing progress on benchmarks. arXiv preprint
arXiv:2005.11295, 2020.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In Advances in
Neural Information Processing Systems, pp. 7029–7039, 2017.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight
analysis of memorization capacity. In Advances in Neural Information Processing Systems, pp.
15558–15569, 2019.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. In Icml, volume 1, pp. 609–616. Citeseer, 2001.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. Spectral methods meet em: A
provably optimal algorithm for crowdsourcing. In Advances in neural information processing
systems, pp. 1260–1268, 2014.

Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. Truth inference in
crowdsourcing: Is the problem solved? Proceedings of the VLDB Endowment, 10(5):541–552,
2017.

11



Under review as a conference paper at ICLR 2021

Table 2: Standard deviations corresponding to Table 1. We round to two digits.
cifar10 cifar100 eurosat

exp min max ratio min max ratio min max ratio

original 0.02 0.03 0.84 0.02 0.02 0.13 0.01 0.04 2.32
sampling 0.02 0.04 0.83 0.01 0.02 0.07 0.01 0.07 1.71
weighted 0.01 0.01 0.44 0.03 0.06 0.14 0.01 0.02 0.34
label smooth 0.01 0.04 1.06 0.0 0.01 0.03 0.0 0.05 0.48
focal (Lin et al., 2017) 0.02 0.03 0.99 0.03 0.01 0.13 0.01 0.05 1.3
CB (Cui et al., 2019) 0.01 0.04 0.61 0.01 0.04 0.15 0.01 0.02 0.32

cifar10 cifar100 eurosat

step min max ratio min max ratio min max ratio

original 0.01 0.02 4.37 0.02 0.01 0.56 0.01 0.07 5.53
sampling 0.01 0.03 2.82 0.02 0.01 0.38 0.0 0.05 5.7
weighted 0.01 0.05 1.18 0.01 0.04 0.39 0.03 0.03 0.98
label smooth 0.0 0.04 0.48 0.0 0.02 0.19 0.0 0.02 0.26
focal (Lin et al., 2017) 0.01 0.05 4.74 0.01 0.02 0.48 0.01 0.04 6.33
CB (Cui et al., 2019) 0.01 0.07 1.75 0.01 0.06 0.49 0.01 0.04 0.59

A APPENDIX

Data Preprocessing. For the cifar10 and cifar100 datasets, we use the original dataset size of 32-
by-32 pixels. Cropping is performed by first padding with 4 pixels on each side, and thereafter
performing a random 32-by-32 crop. For the eurosat dataset, the images are subsampled to 32-by-
32 pixels. Since the eurosat dataset does not have a dedicated train/test split, we split it ourselves,
using a fixed random tenth of the dataset for testing across all experiments. Random cropping is
performed as for cifar. For the inaturalist dataset, the images are resized into 64-by-64 images, and
we pad by 8 pixels on each side before extracting a random 64-by-64 crop.

Table 3: Hyper-parameters for computer vision.

Parameter Value
init. learning rate 0.1
learning rate decay per step 0.1
decay after {50%, 75%}
SGD momentum 0.9
batch size 128
horizontal flipping True
cropping True
weight decay 0.0001
loss cross-entropy

Table 4: Hyper-parameters used for Transformers (Vaswani et al., 2017). The architecture is
”transformer-iwslt-de-en” of Fairseq (Ott et al., 2019).

Parameter Value
learning rate 0.0005
β1, β2 0.9, 0.98
εadam 0.00000001
batch size 32
label smoothing 0.1
dropout probability 0.3
max-tokens 4096
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Figure 8: Classwise calibration error for all methods for exponential-inbalanced datasets. Class
shuffling uses the same seed between methods.
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Figure 9: Classwise calibration error for all methods for step-imbalanced datasets. Class shuffling
uses the same seed between methods.
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B PROOF

The results of Yun et al. (2019) mean that under Assumptions 1, there exists a four-layer Relu
network with Ω(

√
n) parameters that can memorize the dataset, perfectly matching the one-hot

encoding of the labels. For details, we refer to Yun et al. (2019).

Proof Sketch for Theorem 1. We start with part (i). Assume for contradiction that we are in a global
minima with loss `0 and perfect accuracy. Now, consider `i when we scale the final layer by (1 +α)
for α > 0. The network output is then (1 + α)lkj , and `i is − log

(
exp((1 + α)lici)/

∑
j exp((1 +

α)lij) = log(1+
∑

j 6=i exp
(
(1+α)(lij− lici)

)
. The fact that we have perfect train accuracy means

that (lij − lici) < 0 ∀j 6= ci. Thus the loss must shrink, as
∑

j 6=i exp
(
(1 +α)(lij − lici)

)
decreases

with α and as log is monotone. This contradicts us being in such a global minima. If we do not have
perfect accuracy, there must be some example k such that `k must be larger than log 2 (since there
is another class with larger logit). Results of Yun et al. (2019) says that we can find network with
perfect accuracy and thereafter scale the weight to less than log 2

n . (ii). The confidence for a single

example is exp(lici )∑
j exp(lj)

= exp(−`i). We have noted how ` → 0, since ` =
∑

i `i we have `i → 0.

This implies that exp(−`i)→ 1 which means that the confidence approaches 1. �
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