
OPTIMIZING LLM QUERIES IN RELATIONAL DATA ANALYTICS WORKLOADS

Shu Liu * 1 Asim Biswal * 1 Amog Kamsetty 1 Audrey Cheng 1 Luis Gaspar Schroeder 1 2

Liana Patel 3 Shiyi Cao 1 Xiangxi Mo 1 Ion Stoica 1 Joseph E. Gonzalez 1 Matei Zaharia 1

ABSTRACT
Batch data analytics is a growing application for Large Language Models (LLMs). LLMs enable users to perform
a wide range of natural language tasks, such as classification, entity extraction, and translation, over large datasets.
However, LLM inference is highly costly and slow: for example, an NVIDIA L4 GPU running Llama3-8B can
only process 6 KB of text per second, taking about a month to handle 15 GB of data; processing a similar amount
of data costs around $18K on OpenAI’s GPT-4o. In this paper, we propose novel techniques that can significantly
reduce the cost of LLM calls for relational data analytics workloads. Our key contribution is developing efficient
algorithms for reordering the rows and the fields within each row of an input table to maximize key-value (KV)
cache reuse when performing LLM serving. As such, our approach can be easily applied to existing analytics
systems and serving platforms. Our evaluation shows that our solution can yield up to 3.4× improvement in job
completion time on a benchmark of diverse LLM-based queries using Llama 3 models. Our solution also achieves
a 32% cost savings under OpenAI and Anthropic pricing models.

1 INTRODUCTION

One of the most popular applications of large language
model (LLM) batch inference is data analytics. A grow-
ing number of analytics platforms now support LLM in-
vocations for complex analytical tasks. For instance,
leading database vendors, such as AWS Redshift (aws),
Databricks (dat), and Google BigQuery (goo), have inte-
grated LLM functionality into their SQL APIs. Similarly,
DataFrame libraries and programming frameworks (Chase,
2022; Patel et al., 2024) offer LLM support for querying
relational (table-based) data. With these new APIs, users
can write queries like the following:

SELECT user_id, request,
support_response,↪→

LLM('Did {support_response} address
{request}?', support_response,
request) AS success

↪→
↪→

FROM customer_tickets
WHERE support_response <> NULL

where the LLM is invoked for each row in the customer
ticket table to analyze whether the customer service requests
are effectively addressed. Increasingly, analysts wish to
leverage LLMs in such queries for tasks including classifica-

*Equal contribution 1UC Berkeley 2Technical University of
Munich 3Stanford University. Corresponding author: Shu Liu
<lshu@berkeley.edu>.

Proceedings of the 6 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

tion, entity extraction, summarization, and translation (dat).
Going forward, we will refer to queries that invoke LLMs
over relational data as LLM queries.

Unfortunately, applying LLMs to real-world datasets (which
can contain millions of rows) incurs significant computa-
tional and monetary costs. Accordingly, there has been
growing research on LLM inference optimization. In par-
ticular, recent work (Kwon et al., 2023; Zheng et al., 2023;
Ye et al., 2024; Juravsky et al., 2024; Gim et al., 2024)
leverages prompt caching, a technique that stores the atten-
tion states of frequently reused prompt segments in GPU
memory, known as key-value (KV) cache (Vaswani et al.,
2023). Reusing cached state whenever a similar prefix of
prompts appears again can significantly reduce inference
latency (Zheng et al., 2023). In addition, prompt reuse also
brings economic benefits. Recently, providers like OpenAI,
Anthropic, and Google Gemini (OpenAI; ant, 2024; gem,
2024) have introduced prompt caching as a service, charg-
ing 2–10× less for cached prompts. Therefore, maximizing
prefix hits in the prompt KV cache is crucial for reducing
both LLM request time and monetary costs.

However, simply invoking LLMs over relational data within
analytical engines and connecting to a backend inference
server with a prompt cache often results in low cache hit
rates. This approach fails to exploit relational workloads to
fully maximize cache reuse.

In this work, we identify and present solutions to optimize
relational data analytics workloads for offline LLM infer-
ence. In particular, given an LLM query, we propose re-



Optimizing LLM Queries in Relational Data Analytics Workloads

quest reordering at the row and field granularity of the
relational data. Our key insight is that, with oracular knowl-
edge of all requests to be sent to the LLM, we can reorder
both the requests and the fields inside each request to in-
crease the number of cache hits. In real datasets, there can
be many sharing opportunities across rows and fields. For
example, joining feature tables, referencing popular items,
or repeating similar context in RAG queries (Lewis et al.,
2021). These common patterns lead to repeating values in
different fields, leaving rooms for significantly improving
cache hit rates by optimizing request order and format.

Finding the optimal ordering of requests is challenging due
to the exponential number of choices to order the fields and
rows of data in a query. For a table with n rows and m
fields, there are n!× (m!)n potential orderings. One way to
reduce this search space is to apply the same field ordering
across all rows. However, as we show in Sec 3.2, this can
reduce the prefix hit count by up to a factor of m compared
to reordering fields on a more fine-grained, per-row basis.
To support per-row field reordering, we introduce Optimal
Prefix Hit Recursion (OPHR), an algorithm that divides
the table into smaller subtables and reorders each subtable
to maximize the prefix hits. While OPHR achieves high
hit rates, its complexity is exponential, which makes it im-
practical for large datasets. To address this challenge, we
propose Greedy Group Recursion (GGR), an approximate
algorithm that leverages functional dependencies (such as
primary and foreign key relationships from the data schema)
and table statistics, which are readily available in many
databases and analytics systems, to reduce the search space.
In particular, functional dependencies help identify corre-
lated fields, reducing the number of fields that need to be
reordered at each step, thus decreasing the solver runtime. In
addition, GGR leverages the cardinality and length statistics
to efficiently approximate the greedy objective.

We implement our techniques in Apache Spark (Zaharia
et al., 2012) and use vLLM (Kwon et al., 2023) as the
model serving backend. Due to the lack of standard work-
loads in this area, we build a benchmark suite of 16 LLM
queries of different types, spanning selection, projection,
multi-LLM invocations, and retrieval-augmented genera-
tion (RAG) queries (Lewis et al., 2021). We evaluate
these queries on recommendation and question-answering
datasets such as Amazon Product Reviews, Rotten Toma-
toes Movies, BIRD, Stanford Question Answering Dataset,
Public Domain MusicXML, RateBeer Reviews, and Fact
Extraction and VERification datasets (He & McAuley, 2016;
Pang & Lee, 2005; Li et al., 2024; Rajpurkar et al., 2016;
Long et al., 2024; Thorne et al., 2018). Our techniques
show 1.5 – 3.4× speed-up in end-to-end query latency and
reduce costs by up to 32% on proprietary model APIs, while
preserving query semantics. In summary, our contributions
are as follows:

• We identify significant opportunities to speed up LLM-
based batch data analytics through reordering rows and
fields of input tables.

• We introduce an optimal reordering algorithm (OPHR)
that maximizes prefix sharing but with exponential
complexity. We propose an efficient greedy algorithm
(GGR) that approximates OPHR by leveraging func-
tional dependencies and table statistics. We show that
a fixed field ordering can yield as much as m (number
of fields) times worse cache hits than our solution.

• We present an LLM query benchmark consisting of 16
queries and 7 real-world datasets to represent a range
of retrieval and processing tasks. Our evaluation with
Llama3-8B and 70B shows up to a 3.4× speedup in
end-to-end query latency compared to naive orderings.
With OpenAI and Anthropic prefix cache pricing mod-
els, our techniques reduce costs by up to 32%.

2 BACKGROUND AND MOTIVATION

This section provides a brief overview of the inference pro-
cess and the key components of the LLM architecture.

LLM inference. LLMs are made up of autoregressive Trans-
former models (Vaswani et al., 2023), which generate text
token by token until a termination token or a length limit is
reached. LLM inference consists of two stages: (i) the pre-
fill stage, where the model processes the input prompts, and
(ii) the decoding stage, where it generates output sequen-
tially, as each token depends on all previously generated
tokens through a chain of conditional probabilities. LLM
inference engines (e.g., vLLM (Kwon et al., 2023), TGI
(Huggingface, 2023), TensorRT-LLM (NVIDIA, 2023b))
typically batch requests continuously (Yu et al., 2022) to
improve throughput. The intermediate computed state for
all tokens involved is stored in memory. This token state is
cached as key and value vectors in the key-value (KV) cache,
consuming up to 800KB per token for a 13B Model (Kwon
et al., 2023). A typical request (involving 2,000 tokens)
can require up to 1.6 GB of memory. Despite batching (up
to 32 requests), inference remains compute-intensive, with
current speeds limited to 2,000 tokens/s per GPU, making
LLM performance a bottleneck for many analytical tasks.

Prompt KV cache. Efficient KV cache management is
critical for high LLM serving throughput. Recent work
improves cache utilization by reusing tokens across requests
with shared prefixes (Zheng et al., 2023). For example, if
two requests share a prefix in prompts, the first will already
have performed some computation on the input tokens and
cached results in the KV cache during the prefill phase.
The subsequent request can then reuse these cached values,
avoiding redundant computation of the shared tokens.

Improving KV cache hit for analytics workloads. Real-



Optimizing LLM Queries in Relational Data Analytics Workloads

world relational databases often exhibit diverse repetitive
data patterns. Columnar storage systems like C-Store and
Parquet (Stonebraker et al., 2018) exploit repeated val-
ues across fields for compression, while techniques like
run-length encoding (RLE), multi-relational data mining,
and correlation analysis (Lemire & Kaser, 2011; Džeroski,
2003; Ilyas et al., 2004) leverage diverse data relationships
to optimize query execution. Relational queries also cre-
ate data groupings based on access patterns. Techniques
such as database cracking and multi-dimensional clustering
(MDC) (Idreos et al., 2007; Chen et al., 2012), including
Delta Lake Z-order (Armbrust et al., 2020), reorganize data
based on query patterns to optimize performance.

These structural repetitive patterns present an opportunity
for prefix KV cache sharing in an LLM query. In our setting,
an LLM is invoked once per row in a relational table, result-
ing in a batch of model requests from a single LLM query.
Since the full table structure and content are known in ad-
vance, we can reorder these requests to maximize shared
prefixes and reduce redundant computation during inference.
Our goal is to maximize the prefix hit count – the sum of the
length of token prefixes reused from the KV cache.

Our Approach: Request Reordering. We leverage table
information to enhance the KV cache hit rate. Specifically,
we introduce algorithms that reorder requests of an LLM
query and fields within each request to maximize prefix
sharing. Our algorithm leverages functional dependencies
and table statistics to reduce runtime while finding near-
optimal orderings that maximize prefix hit count.

3 PROBLEM SETUP

This section introduces the problem setup of maximizing
prefix hits in the prompt cache (Sec 3.1) and highlights cases
where naive fixed field ordering can result in significantly
lower hit rates (Sec 3.2).

3.1 Setup and Objective

In this work, we consider a generic LLM operator that
takes the text of the prompt as well as a set of expressions
listing one or more fields {T.a, T.b, T.c} or {T.∗} of the
table T . This simple design can be easily implemented
in most analytics systems and enables us to dynamically
reorder fields within these expressions to optimize for cache
efficiency. Consider the following example query:

SELECT LLM("Summarize: ", pr.*)
FROM (

SELECT review, rating, description
FROM reviews r JOIN product p ON

r.asin = p.asin↪→
) AS pr

This query sends a list of rows, each with fields review,
rating, and description from table pr to the LLM for a

summarization task.

Objective The goal of request scheduling is to maximize
the prefix hit count by optimizing the order of fields and rows
of an input table with n rows and m fields. Each row may
have a different field order. We represent a request schedule
as a list of tuples L, where each tuple in L represents a
row in the table, and the tuple elements contain the field
values. We adjust the row order by rearranging the tuples in
L, and adjust the field order for that row by rearranging the
elements within each tuple. We pass each tuple alongside
the user question to form an input request to the LLM.

We define the prefix hit count (PHC) of L as the number
of consecutive field cell values shared with the previous
row starting from the first cell, summing over all n rows.
Each cell value must exactly match the corresponding cell
of the previous row (cannot be a substring), and cell values
past the first must match consecutively (must be a prefix).
Formally, a cell in the list of tuples is denoted as L[r][f ],
indicating the value in tuple r at position f . Then, the PHC
for a list of tuples L with n rows and m fields is given by:

PHC(L) =
n∑

r=1

hit(L, r) (1)

Here, the function hit(L, r) represents the prefix hit count
for a single row r in L. For simplicity, we assume that the
input list is sorted. For each row r, the function checks if
the value in each field f matches any previously seen value
in the same field of the previous row r − 1. If all previ-
ous fields match, the hit count is the sum of the squares of
the lengths of the values in those fields until a mismatch oc-
curs. The squared lengths reflect the quadratic complexity of
token processing in LLM inference, where each token com-
putation depends on every preceding token and increases
computational cost quadratically with input length.

hit(L, r) = max
0≤c<m


∑c

f=1 len(L[r][f ])2 if ∀f ≤ c,

L[r][f ] =

L[r − 1][f ]

0 otherwise
(2)

To simplify the design, we make two assumptions. First, we
make a common assumption that at least one tuple (row) can
fit into the KV cache to allow reuse. Second, we assume that
a cell value only counts as a hit if it exactly matches a previ-
ously seen value – substring matches are not allowed. This
is a reasonable assumption in relational databases, where
exact value repetition is common and extensively leveraged
by storage optimization techniques like run-length encod-
ing (Lemire & Kaser, 2011). Column-oriented storage sys-
tems such as C-Store and Parquet (Stonebraker et al., 2018)
also benefit from many exact repetitions in columnar data.
These assumptions simplify design and, as shown in Sec. 6,
demonstrate good real-world performance.



Optimizing LLM Queries in Relational Data Analytics Workloads

Field1 Field2

   
   G2 

𝑛 rows

PHC = 0 PHC = (n-1)(m-1)

Fixed Field Ordering A Better Ordering

Fieldm

 
Gm 

Fieldm

 
Gm 

Field1Field2

   
   G2 

(a) Distinct Values in the First Field

Field1 Field2 Field3

G1 

G2 

G3 

𝒙 rows {

PHC = (𝒙-1) PHC = 3(𝒙-1)

Field3 Field1 Field2

G3 𝒙 rows {

Fixed Field Ordering 

A Better Ordering

Field2 Field1 Field3

G2 𝒙 rows {

Field1 Field2 Field3

G1 𝒙 rows {

(b) Group of Identical Values in each Field, m = 3

Figure 1. Case Study of Fixed Field Ordering: Comparing the PHC of a fixed field ordering to a better ordering in two scenarios. Green
boxes denote cache hits; red boxes indicate cache misses. A box labeled Gi signifies consecutive rows share the same values in Field i;
otherwise, assume values are distinct. Fig 1a shows fixed field ordering can be (n− 1)(m− 1) worse in terms of PHC compared to an
optimized ordering. Fig 1b shows fixed field ordering can be m times worse in PHC compared to an optimized ordering, where m = 3.

3.2 Case Study: Fixed Field Ordering

Relational data typically uses a fixed field order across rows,
which can lead to lower hit rates in real-world databases
with diverse data patterns (Sec 2). In fact, we show that
using a fixed order can reduce the hit rate by up to m times
compared to a per-row field reordering. To illustrate this,
we begin with a simple example and extend it to show the
potential impact of a naive fixed field ordering on prefix
hit counts (PHC). First, consider a table T with n rows
and m fields arranged in an arbitrary (default) order. For
simplicity, we assume each value is of length one. In many
cases, certain fields of an input table may contain highly
unique values, like timestamps or IDs. In the worst case,
suppose the first field of the table contains only unique
values (Fig 1a), and the remaining m− 1 fields contain the
same value across all rows. This ordering yields 0 PHC. A
more optimized ordering (Fig 1a) will place the other m− 1
fields first, yielding a PHC of (n− 1)× (m− 1). Each of
the n− 1 rows has a hit after the initial cold miss, and the
length of each hit is m− 1.

Now consider a scenario where the table contains groups of
consecutive rows with identical values (not necessarily in
the same field). Suppose each field i has one such group with
x consecutive rows of the same value, with other n−x rows
having distinct values, where n is the number of rows. We
denote the group appearing in the Fieldi as Gi, so we have
G1, ..., Gm groups, where m is the number of fields. Now,
consider a scenario where groups in consecutive fields are
non-overlapping across rows, as shown in Fig 1b. With fixed
field reordering, the PHC of this structure is limited to x− 1
no matter which field is prioritized. By contrast, a better
ordering would rearrange the field order for different rows
to prioritize groups with shared values. Fig 1b references a
table with 3x rows and 3 fields. A naive fixed field ordering
for all rows will result in misses on two groups, each with
x rows in Field2 and Field3. However, a better ordering
will pick different Fieldj to prioritize for different rows,
resulting in a 3 times higher hit rate of 3(x− 1).

In the above scenario, PHC improvements from optimized
field ordering can reach m times that of a fixed field ordering.
For example, there can be multiple (instead of just one) such
groups in each field. If each field contains roughly the same
number of such groups, dynamic reordering for different
rows can achieve as much as an m-fold improvement in PHC
over fixed field ordering. Under the OpenAI pricing model,
which charges half price for cached prompts, optimizing
field order for a table with nine fields could yield 42% in
cost savings compared to fixed field ordering, assuming
fixed ordering has a 10% hit rate (e.g., (x−1)

n = 10). This
example highlights the benefits of a more complex field
reordering mechanism for different rows on PHC.

4 RECURSIVE REQUEST REORDERING

We now introduce our algorithms that re-arrange fields to
maximize prefix sharing in the KV cache. We present an
optimal recursive reordering algorithm that maximizes PHC
(Sec 4.1) and introduce a greedy algorithm that efficiently
approximates the optimal algorithm (Sec 4.2).

4.1 Optimal Prefix Hit Recursion (OPHR)

Our Optimal Prefix Hit Maximization (OPHR) algorithm is
a recursive algorithm that finds the optimal PHC for a given
table T by considering all possible ways to split the table
into a group of cells with the same value and two sub-tables.
The algorithm takes as input a table T and computes the
optimal PHC S along with a reordered list of tuples L. If
T only has one row or field, OPHR computes PHC and
trivially returns the sorted T .

In the recursive case, for each field c in T , the algorithm
identifies all distinct values v in the field and the rows Rv

for which the field value is v. For each distinct value v, the
table is split into two sub-tables: one of T excluding rows
Rv and one of Rv excluding field c. PHC for the currently
selected value v is calculated as the sum of the PHC of the
sub-tables and the PHC contribution of v. OPHR evaluates



Optimizing LLM Queries in Relational Data Analytics Workloads

Algorithm 1 Greedy Group Recursion (GGR)
1: Input: Table T , Functional Dependency FD
2: Output: Prefix Hit Count S, Reordered List of Tuples L

3: function HITCOUNT(v, c, T, FD)
4: Rv ← {i | T [i, c] = v}
5: inferred cols← {c′ | (c, c′) ∈ FD}
6: tot len = len(v)2 +

∑
c′∈inferred cols

∑
r∈Rv

len(T [r,c′])

|Rv|
7: return tot len× (|Rv| − 1), [c] + inferred cols
8: end function

9: function GGR(T , FD)
10: if |T |rows = 1 then
11: return 0, [T [1]]
12: end if
13: if |T |cols = 1 then
14: S ←

∑
v∈distinct(T [,1]) HITCOUNT(v, 1, T )

15: Return S, sort([T [i] | i ∈ 1 . . . |T |rows])
16: end if
17: max HC, b v, b c, b cols← −1,None,None, []
18: for c ∈ columns(T ), v ∈ distinct(T [, c]) do
19: HC, cols← HITCOUNT(v, c, T, FD)
20: if HC > max HC then
21: max HC, b v, b c, b cols = HC, v, c, cols
22: end if
23: end for
24: R v ← {i | T [i, b c] = b v}
25: A HC,L A← GGR(T [rows \R v, cols], FD)
26: B HC,L B ← GGR(T [R v, cols \ b cols], FD)
27: C HC, ← HITCOUNT(b v, b c, T, FD)
28: S ← A HC +B HC + C HC
29: L← [[b v] + LA[i] | i ∈ 1 . . . |R v|] + L B
30: return S,L
31: end function

32: return GGR(T , FD)

all possible groups of distinct values in each field and selects
the value that yields the maximum PHC.

Notably, the OPHR algorithm has exponential complexity
with respect to the number of rows and fields due to its
recursive nature and the combinatorial explosion of possi-
ble distinct value groupings (we present a more efficient
algorithm in Sec 4.2).

Optimality Proof In the base case, the OPHR algorithm
trivially computes the best PHC: for the single row case,
the PHC is 0; for the single field case, the PHC is the sum
of the squared lengths of distinct values multiplied by their
occurrences minus one, which accounts for the initial miss
when a value is seen the first time. Next, we prove optimality
by induction. For the inductive case, assume that the OPHR
algorithm is optimal for any table with k ≤ n rows and
l ≤ m fields. For a table T with n + 1 rows and m + 1
fields, the algorithm iterates through each field c. For each
distinct value v in field c, we split T into two sub-tables:
TA (rows not containing v), and TB (rows containing v but
excluding field c). Based on the inductive hypothesis, OPHR

a
a

b
b
b

v
v
v
v

a
a

b
b
b

v
v
v
v

b
b
b

a
a

Max Group Value

Figure 2. GGR picks the group with the maximum hit count at each
step and calculates PHC as the sum of PHC of the elected group
values (yellow box), the sub-table T excluding rows Rv (green
box), and the sub-table of rows Rv excluding the field where the
value is located in (blue box).

optimally computes PHC for both sub-tables because it is
optimal for tables with fewer rows and fields. The PHC for
T is the sum of PHC for TA and TB , plus the contribution
of v. When the distinct value v is used to partition the table,
its full contribution to the PHC is captured. If the table were
not split based on distinct values, this contribution could
be fragmented or lost due to non-contiguous groupings,
leading to suboptimal PHC. Thus, the OPHR algorithm
ensures optimal reordering by selecting the best from all
possible configurations.

4.2 Greedy Group Recursion (GGR) Algorithm

Due to the computational complexity of the OPHR, we
propose a Greedy Group Recursion (GGR) algorithm (Al-
gorithm 1) that approximates OPHR. The GGR algorithm
takes an input table T and returns the PHC S along with a
reordered list of tuples L. It has the same base case as the
OPHR algorithm if T only has one row or one field. At a
high level, the GGR algorithm recursively selects the value
bv with the maximum prefix hit count (lines 3-8) at each
recursion step (lines 17-23) rather than iterating through all
possible distinct values in the entire table. It then prioritizes
the field bc where this bv is in, splits the table into groups of
cells of the same values and recurses on the two sub-tables
(lines 24-26) and calculates the total PHC as the sum of PHC
of the subtables and contributions of bv (line 28) similar to
the OPHR algorithm.

Since GGR does not iterate through all possible distinct
values but instead selects the one that gives the highest hit
count at each step, the number of recursive calls is signif-
icantly reduced (i.e. the maximum depth of recursion is
O(min(n,m)), where the algorithm reduces dimensions of
the table at each recursive step). However, at each recursive
step, the cost of scanning to determine distinct values can
result in quadratic complexity in terms of table size.

4.2.1 Functional Dependencies

We leverage functional dependencies to reduce the number
of fields the GGR algorithm needs to consider at each recur-
sion step. This insight helps improve both the approximation



Optimizing LLM Queries in Relational Data Analytics Workloads

and efficiency of the algorithm, bringing it closer to the op-
timal solution without the need for extensive backtracking
as in the OPHR algorithm. A functional dependency (FD)
is a constraint between two sets of attributes in a relation
from the data. For example, let R be a relation schema
and let X and Y be nonempty sets of attributes in R. We
define an instance r of R that satisfies the FD X ↔ Y if
for every pair of tuples t1 and t2 in r: if t1.X = t2.X then
t1.Y = t2.Y and vice versa. In our GGR algorithm, FDs
help narrow down the fields that must be considered at each
recursion step. Specifically, when a value v in field f is
selected for a given row, all fields functionally dependent
on f are ordered directly besides f in the final ordering
for that row (lines 5-6). As an example, if R(A,B,C) is
a table with attributes (fields) A,B,C where we have an
FD A ↔ C, field C is not in consideration in our recursive
steps when A has already been included in the prefix.

4.2.2 Table Statistics

To further reduce the algorithm runtime, we introduce an
early stopping mechanism that halts recursion by specific
recursion depth (row-wise sub-table recursion, column-wise
sub-table recursion) or when a threshold HITCOUNT score
calculated using table statistics is not exceeded. These statis-
tics are generally widely available, such as the number of
unique entries (i.e., cardinality) and the distribution of length
of values for each field. With this information, our GGR
algorithm estimates a HITCOUNT score for each field c with
HITCOUNT(C) = avg(len(c))2. This score denotes the ex-
pected contribution of a field to the PHC, accounting for
the average length of the values and their frequency. Us-
ing these statistics, the algorithm can prioritize fields more
likely to contribute to the PHC. Additionally, we can further
improve the quality of the solution by establishing a fixed
field ordering for the subtables using table statistics once
the recursion stops. Early termination and falling back to
table statistics allows GGR to avoid scanning the table and
performing recursion on real-world workloads.

4.2.3 Achieving Optimal PHC

While our GGR approximates the OPHR algorithm, it can
achieve optimal PHC in certain cases. When the table has
only one row or one field, GGR matches OPHR by construc-
tion. When functional dependencies are accurate and cover
all the fields of a table, GGR can also identify the optimal
solution. For instance, if one field A functionally determines
all other fields, then GGR prioritize groups of values in A
due to the accumulated HITCOUNT score (line 3 in Algo-
rithm 1), capturing key correlations early and producing the
optimal reordering. However, when fields tie in HITCOUNT,
GGR may be suboptimal, as it lacks the exhaustive search
used by OPHR to resolve such ties. We show more empiri-
cal results in real-world datasets comparing PHC between
GGR and OPHR in Appendix D.1.

5 IMPLEMENTATION

We implement our algorithms in approximately 1.3K lines
of Python code and evaluate them with PySpark (Armbrust
et al., 2015), which is backed by Apache Spark (Zaharia
et al., 2012) – a widely adopted large-scale data processing
engine in industry. The LLM operator implements the actual
LLM inference by calling a configurable LLM endpoint. We
implement this function as a UDF in PySpark. It takes in
a system prompt, a query prompt, and a single row of data
as input (Appendix C). The row and field orders are input
based on the ordering returned by the reordering function.
The operator is also responsible for prompt construction.
Specifically, it converts the user-provided question and the
table row values into a prompt that an LLM can parse. We
use JSON formatting to encode row values to indicate the
relationship between field names and values to the LLM.

6 EVALUATION

In this section, we evaluate the effectiveness of our opti-
mizations within a constructed benchmark suite of queries.
We aim to answer the following questions:

1. How does our request reordering optimization impact
query latency and costs across different LLM query
types and datasets?

2. How does the request reordering algorithm influence
LLM accuracy for different models?

3. What is our algorithm solver time, and how does that
compare to end-to-end query latency?

6.1 Evaluation Benchmark

Given the lack of standard benchmarks for LLM queries,
we construct a benchmark suite to represent real-world data
retrieval and processing tasks (Sec 6.1.1). We define a range
of query types (Sec 6.1.2) over datasets from various sources
to assess the impact of LLMs in relational analytics.

6.1.1 Datasets

Dataset nrows nfields inputavg outputavg Query Type

Movies 15000 8 276 {2, 29, 16, 2} T1-T4
Products 14890 8 377 {3, 107, 62, 2} T1-T4

BIRD 14920 4 765 {2, 43} T1, T2
PDMX 10000 57 738 {2, 72} T1, T2

Beer 28479 8 156 {2, 38} T1, T2
SQuAD 22665 5 1047 11 T5
FEVER 19929 5 1302 3 T5

Table 1. Datasets: nrows and nfields denote the number of rows and
fields, respectively. inputavg and outputavg represent average input
and output token lengths. Query Type is detailed in Sec 6.1.2.
Since inputavg remains consistent across query types, we report a
single overall average, while outputavg varies, with each bracketed
value corresponding to a specific query type.



Optimizing LLM Queries in Relational Data Analytics Workloads

We build our benchmark suite on 7 commonly used rec-
ommendation and natural language processing datasets,
shown in Table 1. These datasets vary in the number
of rows, fields, average input/output token lengths, and
appropriate query types (Sec 6.1.2). The datasets in-
clude Rotten Tomatoes Movie Reviews (Movies) (Pang &
Lee, 2005), Amazon Product Reviews (Products) (He &
McAuley, 2016), BIRD (Li et al., 2024)1, Public Domain
MusicXML (PDMX) (Long et al., 2024), RateBeer Reviews
(Beer) (McAuley et al., 2012), Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016), and Fact
Extraction and Verification (FEVER) (Thorne et al., 2018).
Details on the fields are in the Appendix B.

6.1.2 LLM Queries

Our evaluation consists of 16 queries across 5 query types
corresponding to different real-world use cases, as shown
in Table 1. We discuss each query type below and provide
details on queries for each dataset in Appendix A and B.

(T1) LLM filter. Filter queries mimic SQL WHERE clauses
and use LLMs to categorize data. This query type illustrates
typical use cases in sentiment analysis, categorization, and
content filtering. Given their binary or categorical focus,
these queries often yield short outputs (e.g., ”Yes” or ”No”).
We construct five filter queries spanning all datasets except
for SQuAD and FEVER.
(T2) LLM projection. Projection queries use LLMs to sum-
marize or interpret specific table field(s), similar to a SQL
SELECT statement. These tasks typically produce longer
outputs due to the descriptive nature of the results. We con-
struct five projection queries spanning all datasets except
SQuAD and FEVER.
(T3) Multi-LLM invocation. Multi-LLM queries involve
sequential LLM calls (e.g., a filter followed by a projection),
supporting tasks like multi-step data processing and combin-
ing insights. Output lengths vary by task but generally mix
short and long responses. We construct two example multi-
LLM invocation queries on Movies and Products datasets.
(T4) LLM aggregation. Aggregation queries incorporate
LLM outputs into aggregate functions, like averaging senti-
ment scores given by LLMs for individual reviews. These
tasks usually generate concise numeric outputs for analysis
(e.g., ratings of 1 to 5), resulting in shorter output lengths
similar to filter queries. We construct two example aggrega-
tion queries on Movies and Products datasets.
(T5) Retrieval-augmented generation (RAG). RAG queries
involve fetching external knowledge as context, such as
retrieving relevant document segments before generating
answers. We evaluate FEVER and SQuAD datasets, fetch-
ing 4 contexts for FEVER and 5 contexts for SQuAD for
question answering.

1We use Posts and Comments table joined by PostID from the
BIRD dataset.

6.1.3 Evaluation Setup

Metrics We evaluate end-to-end query latency for each
LLM query. We also measure the monetary cost of us-
ing OpenAI and Anthropic endpoints. Additionally, we
hand-label a subset of the LLM filter queries to evaluate the
reordering implications for query accuracy.
Models We run setups shown in Table 1 using Meta Llama-
3-8B-Instruct (lla, 2024). For RAG queries, we use Alibaba-
NLP/gte-base-en-v1.5 (Li et al., 2023) to embed the context
and use Facebook Similarity Search Library (FAISS) (John-
son et al., 2019) for context retrieval. We also run Llama-
3-70B-Instruct (lla, 2024) for LLM Filter queries. For cost
results, we evaluate with OpenAI GPT-4o-mini and An-
thropic Claude 3.5 Sonnet.
Hardware We evaluate Llama-3-8B-Instruct on a single
NVIDIA L4 GPU (GCP g2-standard-4) with 24GB of GPU
Memory. We also run a larger model Llama-3-70B-Instruct
on 8xL4 GPUs (GCP g2-standard-48). For OpenAI and
Anthropic cost experiments, we utilize their API endpoints.
Baselines Our algorithm (Cache (GGR)) is compared
against two baselines: one without prompt caching (No
Cache) and another with caching enabled but without re-
ordering (Cache (Original)). We do not evaluate the optimal
prefix hit recursion algorithm (Sec 4.1) as it is infeasible
over large tables (e.g., solving a 10-row table takes sev-
eral minutes). The algorithm runtime far exceeds the LLM
inference time for larger tables for the optimal algorithm.

6.2 End-to-End Benchmark Results

Overview. Fig 3 and Fig 4 show the end-to-end latency
results of our techniques on LLM filter, projection, multi-
LLM invocation, aggregation, and RAG queries with the
Llama-3-8B-Instruct model on a single L4. Our evaluation
shows that our approach can achieve 1.5 to 3.4× speedup
over Cache (Original) and 1.8 to 3.8× speedup over No
Cache across 16 queries. We discuss the evaluation for each
query type in detail as below.
LLM filter. This query type uses an LLM operator to filter
rows, often producing concise outputs of only a few tokens
(see Table 1). Examples include question-answering tasks
limited to ’Yes’ or ’No’ responses, or sentiment labels like
’Positive,’ ’Negative,’ or ’Neutral.’ We construct five such
queries on the datasets shown in Fig 3a. Our Cache (GGR)
approach achieves a 2.1 – 3.8× speed-up over No Cache by
caching repeated prefixes from system prompts and input
data. Cache (Original) with prompt caching enabled can
achieve a modest speedup of 1.03 – 1.9× over No Cache by
reusing instruction prompts and repeated values from the
default input table. For queries with short decode stages,
the primary benefit of prompt caching is the saved prefill
computations. Our Cache (GGR) algorithm further reduces
end-to-end latency by 1.8 – 3.0× over Cache (Original)
through reordering rows and fields in the input table to



Optimizing LLM Queries in Relational Data Analytics Workloads

Movies Products BIRD PDMX Beer0

2000

4000

6000

Ru
nt

im
e

(s)

3.8x
2.5x

3.8x
3.0x

2.7x2.6x
2.1x1.8x

3.8x
2.0x

No Cache Cache (Original) Cache (GGR)

(a) Filter Queries

Movies Products BIRD PDMX Beer FEVER S�AD0

2500

5000

7500

10000

Ru
nt

im
e

(s)

3.3x2.4x

2.6x2.4x
3.7x3.4x

1.9x1.9x
2.4x

1.5x

1.9x
1.8x

1.8x1.7x

No Cache Cache (Original) Cache (GGR)

(b) Projection and RAG Queries

Figure 3. End-to-end Result (Filter, Selection, RAG): Our optimizations Cache (GGR) achieve 1.5 – 3.4× speed-up in end-to-end runtime
over caching without reordering (Cache (Original)), and 1.8 – 3.8× over No Cache baseline.

maximize prefix reuse.

Most review datasets, such as Movies, Products, and BIRD,
contain highly distinct values in the first few default fields
due to the joining of reviews with metadata tables. For in-
stance, these tables often begin with a review content
field. Our algorithm prioritizes fields with repeated values,
like description and product title, leading to a
57 – 74% increase in prefix hit rates and a 2.5 – 3× speed-up
over the original ordering. PDMX is a dataset containing 57
fields with many unique, lengthy text entries. In this dataset,
our algorithm raises the hit rate from an initial 12% to 57%,
resulting in a 1.8× reduction in end-to-end latency. This
lower speed-up is due to the nature of long input and 43%
of cache miss from this dataset even for Cache (GGR). The
Beer dataset contains some duplicated values in early fields
like review/profileName and Cache (Original) can
achieve an initial hit rate of 50%. Cache (GGR) can further
increase the hit rate by an additional 30% to reach 80% and
achieve a 2× speedup.
LLM projection. This query type applies the LLM to the
selected data for a specific task, producing longer outputs
ranging from 29 to 107 tokens (see Table 1). For example,
LLMs can be used to summarize the positive aspects of
movies leading to favorable ratings in the Movies dataset.
As shown in Fig 3b, for datasets except for SQuAD and
FEVER (i.e. RAG queries), Cache (GGR) achieves 2.4×
to 3.7× speed-up over No Cache, and 1.5× to 3.4× speed-
up over Cache (Original). Notice that as the output token
length increases, query execution time across all baselines
also grows. In cases where the decode stage dominates,
benefits from prefill caching are less pronounced, leading
to smaller relative performance gains than with LLM Filter
queries with shorter output length. However, for datasets
like BIRD and PDMX, which contain long strings, prompt
caching saves memory during the decode stage, making the
speedup more noticeable with longer decode times.
Multi-LLM invocation. This query type combines Filter and
Selection operations, beginning with an initial LLM filter
(e.g., selecting positive reviews), followed by an LLM sum-
marization of the filtered table. Applied to the Movies and
Products datasets, as shown in Fig 4, Cache (GGR) achieves

Movies (T3) Products (T3) Movies (T4) Products (T4)0

2000

4000

6000

Ru
nt

im
e

(s)

2.7x
1.7x

2.8x

2.2x

3.5x2.5x
3.7x

2.8x

No Cache Cache (Original) Cache (GGR)

Figure 4. End-to-end Result (Multi-LLM Invocation, Aggrega-
tion): Our optimizations Cache (GGR) achieve 1.7 - 2.8× speed-up
over Cache (Original), and 2.7 - 3.7× speed-up over No Cache.

Method Movies Prods. BIRD PDMX Beer FEVER SQuAD

Original 35% 27% 10% 12% 50% 11% 11%
GGR 86% 83% 85% 57% 80% 67% 70%

Table 2. PHR (%) of LLM Filter and RAG queries for Original and
GGR, which achieves 30 – 75% higher hit rates.

a 2.7× and 2.8× speedup over the No Cache baseline for
Movies and Products, respectively. Compared to Cache
(Original), Cache (GGR) attains a speedup of 1.7× and
2.2×. The relative speedup compared to Cache (Original)
reduces for both datasets compared to Filter and Projection
queries. This is because the first LLM invocation for filter-
ing is over distinct reviews for sentiment analysis, so Cache
(Original) and Cache (GGR) performance will be similar,
reducing the overall benefits. For Movies, this number re-
duces from 2.5× to 1.7× as the first invocation accounts
for nearly half the query time; while for Products, the sec-
ond invocation on Projection dominates runtime due to long
decode output length (i.e., around 107), so we can still see
2.2× speed-up over Cache (Original).
LLM aggregation. This query type uses AVG operator to
aggregate the sentiment score on the reviews column with
additional columns provided as context. We achieve a 3.5×
speed-up in the Movies dataset and a 3.7× speed-up in
the Products dataset over the No Cache baseline. We also
achieve 2.5× speed-up on Movies and 2.8× speed-up on
Products over Cache (Original). The results of this query
type are similar to filtering query results, as the average



Optimizing LLM Queries in Relational Data Analytics Workloads

Movies Products BIRD PDMX Beer0

5000

10000

15000

Ru
nt

im
e

(s)

3.2x
3.3x

2.6x

1.9x

2.2x

Cache (Original) Cache (GGR)

Figure 5. Cache (GGR) is able to achieve 1.9 – 3.3× speed-up over
Cache (Original) for filter queries on Llama3-70B.

output length is similar.
RAG. This query is performed on a table of questions and
the top four to five supporting evidence items extracted from
the FEVER and SQuAD datasets. Cache (GGR) achieves
a 1.9× speed-up on both FEVER and SQuAD over the
No Cache baseline. We also achieve a 1.8× speed-up on
FEVER and 1.7× on SQuAD over Cache (Original). In
this experiment, we embed all supporting contexts for a
question/claim into a vector index. We perform a K-nearest
neighbor search on the vector index for each question to
fetch relevant contexts. At runtime, we apply our GGR
algorithm to the table of questions and contexts to maximize
cache hits. Cache (GGR) can achieve 56 – 59% prefix
hit rate improvements over Cache (Original), as multiple
questions might share similar contexts, and Cache (GGR)
can rearrange contexts to maximize prefix reuse.
Results on Different Model Sizes Fig 5 shows the evalu-
ation of our Cache (GGR) method compared with Cache
(original) on filtering queries, using Llama-3-70B-Instruct
with 70B parameters. We run this model on an 8×L4 in-
stance with tensor parallelism and measure the end-to-end
query latency. Cache (GGR) achieves 1.9× to 3.3× speed-
up under this setup, showing a trend similar compared to the
Llama-3-8B model. We evaluate the larger model accuracy
on LLM Filter queries in Sec 6.4. We also show results for
the smaller 1B model in Appendix D.2.

6.3 Cost Savings on Proprietary API Endpoints

This section evaluates the cost efficiency of our GGR al-
gorithm with closed models that support prompt caching.
For OpenAI, cached prompts are offered at a 50% discount
compared to uncached prompts. Anthropic beta prompt
caching (ant, 2024) requires users to manually specify
prompts to cache. Writing to the cache costs 25% more
than the base input token price for any given model while
using cached content costs only 10% of the base rate. We
evaluate OpenAI GPT-4o-mini and Anthropic Claude 3.5
Sonnet, using their pricing models in our cost calculations.23

2GPT-4o-mini charges $0.075/1M tokens for cached tokens
versus $0.15/1M tokens for uncached tokens.

3Claude 3.5 Sonnet standard input tokens are priced at $3 per
million tokens, cache writes at $3.75 per million, and cache reads
at $0.30 per million tokens.

Dataset Model Method PHR (%) Cost ($) Savings (%)

FEVER
4o-mini

Original 0.0 0.81 -
GGR 62.2 0.55 32%

Sonnet
Original 0.0 5.49 -

GGR 30.6 4.33 21%

Table 3. OpenAI and Anthropic Costs: cache hit rate (HR%), cost,
and savings comparison of GGR over Original for GPT-4o-mini
and Claude 3.5 Sonnet in FEVER.

Dataset PHR (%) Est. Cost Savings (%)

Original GGR OpenAI Anthropic

Movies 34.6 85.7 31 73
Products 26.7 83.3 33 73
BIRD 10.4 84.8 39 79
PDMX 11.8 56.6 24 48
Beer 49.9 80.1 20 55
FEVER 11.2 67.4 30 60
SQuAD 11.0 69.7 31 63

Table 4. Estimated cost savings: across datasets using PHR from
Sec 6.2 and OpenAI and Anthropic’s pricing model.

Since both OpenAI and Anthropic require a minimum prefix
length of 1,024 tokens for caching, we duplicate each field
value five times, approximating a more realistic dataset
with detailed conversations and descriptions. We select the
FEVER dataset for its long input length and use 1000 rows
from this dataset. For Anthropic experiments, we specify
cache write for only the first 1,024 tokens per request as
a conservative assumption, as Anthropic does not support
automatic prefix detection.

We evaluate GGR reordering on two tables submitted to the
OpenAI and Anthropic APIs (each row is a request): one
reordered with GGR and one in the original row and field
order. Table 3 shows that GGR achieves 32% cost savings
with GPT-4o-mini and 21% savings with Claude 3.5 Sonnet.
The hit rate in OpenAI for GGR-reordered table is 62.2%,
closely matching the hit rate (i.e., 67%) measured from our
previous experiment in Table 2. Original ordering receives
no cached tokens with 0% cache hits, as the shared prefix
does not meet the 1,024-token minimum. The Anthropic
cache hit rate is around 30.6%, two times lower than the
OpenAI hit rate due to our conservative caching threshold.

Assume that in the future, automatic prefix caching is en-
abled and prompts can be cached at arbitrary token lengths.
We use the hit rate numbers collected from our previous
experiments in Table 2 to simulate cost-saving ratios achiev-
able by GGR, compared to the original unordered algorithm.
GGR yields 20 to 39% cost savings under the OpenAI pric-
ing model and up to 79% cost savings with Anthropic.

6.4 Impact of Reordering on Accuracy

As GGR order alters the input prompt to the LLM, we as-
sess the impact this has on query accuracy using LLM Filter



Optimizing LLM Queries in Relational Data Analytics Workloads

Movies Products BIRD PDMX Beer FEVER

60%

80%

100%

Ac
cu

ra
cy

+3% -1% +0% +1% -6%

+14.2%

Original GGR

(a) Meta-Llama-3-8B-Instruct

Movies Products BIRD PDMX Beer FEVER

60%

80%

100%

Ac
cu

ra
cy

+4% +1% +1% -1% -3% +1.7%

Original GGR

(b) Meta-Llama-3-70B-Instruct

Movies Products BIRD PDMX Beer FEVER

60%

80%

100%

Ac
cu

ra
cy

-3% -2% -1% +4% -3% -2.4%

Original GGR

(c) OpenAI GPT-4o

Figure 6. Accuracy of original v.s. GGR ordering: we perform statistical bootstrapping to get a distribution of exact match accuracy
measurements across 10,000 runs. The numbers indicate the difference in the median accuracy of GGR compared to the original ordering.

Solver Time (s)
Movies Products BIRD PDMX Beer FEVER SQuAD

3.3 4.5 1.2 12.6 8.0 5.6 4.5

Table 5. GGR Solver time (s): GGR runs under 15 seconds for
datasets with up to 30K rows and 57 fields.

queries (Sec 6.1.2) with constrained output. We also eval-
uate a RAG query of FEVER, excluding SQuAD due to
its open-ended questions. FEVER includes ground-truth la-
bels for all records, while 100 rows from other datasets are
manually labeled. Using statistical boostrapping (Wilcox,
2003), we perform 10K runs, sampling with replacement on
each run to obtain a distribution of accuracy results. Accu-
racy experiments are conducted with Llama-3-8B-Instruct,
Llama-3-70B-Instruct, and GPT-4o models, measured as
the percentage of exact matches between the LLM output
and the ground truth labels.

In Fig 6, we plot the accuracy distributions across the boot-
strap runs and the relative difference in median accuracy
of GGR versus original ordering. The accuracy distribu-
tion of GGR ordering is within 5% accuracy of the original
ordering, with the only exception being FEVER with Llama-
3-8B, where the ordering with GGR performs 14.2% better
than the original. This is due to the GGR algorithm places
the “claim” field at the end of the prompt instead of at the
beginning, which Llama3-8B prefers. However, the same
behavior does not hold for the larger models. Overall, we
can see that larger models like Llama-3-70B and GPT-4o are
within 5% of accuracy difference compared with original
ordering and are more robust to field reordering.

6.5 Algorithm Overhead

Latency Table 5 shows the average overheads of GGR
across datasets, using a row recursion depth of four and
column recursion depth of two, or an early stopping thresh-
old of 0.1M hit count. In all cases, GGR runs in under 15
seconds – less than 0.01% of LLM query runtimes.
Memory GGR only requires the input table T (n rows, m
columns) touched by the query to be loaded into memory.
Recursive splitting reduces table size at each step, keeping
total memory usage at O(n×m), aside from minimal stack
and temporary variable overhead.

7 RELATED WORK

Our optimizations build on recent work in LLM inference
as well as prior work integrating machine learning and data
management. We describe several major related areas below.
Inference-optimized systems. There has been a recent
rise of dedicated systems for LLM inference, including
FasterTransformer (NVIDIA, 2023a), Orca (Yu et al., 2022),
vLLM (Kwon et al., 2023), and SGLang (Zheng et al., 2023).
Many systems already explore developing memory-efficient
GPU kernels that perform inference while leveraging shared
prefixes. SGLang’s RadixAttention (Zheng et al., 2023),
Hydragen (Juravsky et al., 2024), and Cascade Inference
(Ye et al., 2024) all implement optimized kernels. Our work
builds upon prior work investigating high-throughput LLM
inference and prefix caching for model serving. In addition,
we leverage full workload information from batch queries
to further improve performance in relational workloads.
LLMs in Relational Data Analytics Many systems support
calling LLMs as operators on relational data, spanning from
production database vendors like Databricks (dat), Google
BigQuery (goo) and AWS Redshift (aws) to programming
frameworks like LOTUS (Patel et al., 2024). While these
works provide APIs for running LLMs over relational data,
they do not explore how reordering data can optimize KV
cache hits. There is also a line of work (Kang et al., 2017;
Lu et al., 2018) that explores using cheaper models for
approximate query generation. This orthogonal direction is
not considered in our paper scope, as our work specifically
focuses on calling LLMs as functions from inside a regular,
given SQL query.

8 CONCLUSION

In this paper, we introduce techniques to optimize LLM in-
vocations in relational data analytics workloads. By leverag-
ing workload information coupled with observations about
the LLM inference process, we can significantly improve
end-to-end query performance and reduce costs without af-
fecting query semantics. Our technique achieves up to 3.4×
decreases in end-to-end query latency with Llama-3-8B and
Llama-3-70B and also achieves up to 32% cost savings
under OpenAI and Anthropic pricing models.



Optimizing LLM Queries in Relational Data Analytics Workloads

ACKNOWLEDGEMENT

We thank Soujanya Ponnapalli for helpful discussions and
feedback, and Jelani Nelson for academic advising. This
research was supported by gifts from Accenture, AMD,
Anyscale, Broadcom Inc., Google, IBM, Intel, Intesa San-
paolo, Lambda, Mibura Inc, Samsung SDS, and SAP.

REFERENCES

Large Language Models for sentiment analysis with Ama-
zon Redshift ML (Preview) — Amazon Web Services
— aws.amazon.com. https://aws.amazon.com/
blogs/big-data/large-language-models-
for-sentiment-analysis-with-amazon-
redshift-ml-preview/. [Accessed 01-03-2024].

AI Functions on Databricks — docs.databricks.com.
https://docs.databricks.com/en/large-
language-models/ai-functions.html. [Ac-
cessed 01-03-2024].

LLM with Vertex AI only using SQL queries in BigQuery
— Google Cloud Blog — cloud.google.com. https:
//cloud.google.com/blog/products/ai-
machine-learning/llm-with-vertex-ai-
only-using-sql-queries-in-bigquery.
[Accessed 01-03-2024].

Prompt caching with claude. https://
www.anthropic.com/news/prompt-caching,
2024.

Context caching. https://ai.google.dev/gemini-
api/docs/caching?lang=python, 2024.

Apr 2024. URL https://ai.meta.com/blog/meta-
llama-3/.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu,
D., Bradley, J. K., Meng, X., Kaftan, T., Franklin,
M. J., Ghodsi, A., and Zaharia, M. Spark sql:
Relational data processing in spark. In Proceed-
ings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, pp.
1383–1394, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450327589. doi:
10.1145/2723372.2742797. URL https://doi.org/
10.1145/2723372.2742797.

Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy,
M., Torres, J., van Hovell, H., Ionescu, A., Łuszczak, A.,
et al. Delta lake: high-performance acid table storage over
cloud object stores. Proceedings of the VLDB Endowment,
13(12):3411–3424, 2020.

Chase, H. LangChain, October 2022. URL https://
github.com/langchain-ai/langchain.

Chen, T., Zhang, N. L., Liu, T., Poon, K. M., and Wang, Y.
Model-based multidimensional clustering of categorical
data. Artificial Intelligence, 176(1):2246–2269, 2012.

Džeroski, S. Multi-relational data mining: an introduction.
ACM SIGKDD Explorations Newsletter, 5(1):1–16, 2003.

Gim, I., Chen, G., seob Lee, S., Sarda, N., Khandelwal,
A., and Zhong, L. Prompt cache: Modular attention
reuse for low-latency inference, 2024. URL https:
//arxiv.org/abs/2311.04934.

He, R. and McAuley, J. Ups and downs: Modeling
the visual evolution of fashion trends with one-class
collaborative filtering. In Proceedings of the 25th In-
ternational Conference on World Wide Web, WWW
’16, pp. 507–517, Republic and Canton of Geneva,
CHE, 2016. International World Wide Web Confer-
ences Steering Committee. ISBN 9781450341431. doi:
10.1145/2872427.2883037. URL https://doi.org/
10.1145/2872427.2883037.

Huggingface. Text Generation Inference, 2023. URL
https://huggingface.co/docs/text-
generation-inference/en/index.

Idreos, S., Kersten, M. L., Manegold, S., et al. Database
cracking. In CIDR, volume 7, pp. 68–78, 2007.

Ilyas, I. F., Markl, V., Haas, P., Brown, P., and Aboulnaga,
A. Cords: Automatic discovery of correlations and soft
functional dependencies. In Proceedings of the 2004
ACM SIGMOD international conference on Management
of data, pp. 647–658, 2004.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with GPUs. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Juravsky, J., Brown, B., Ehrlich, R., Fu, D. Y., Ré, C., and
Mirhoseini, A. Hydragen: High-throughput llm inference
with shared prefixes, 2024.

Kang, D., Emmons, J., Abuzaid, F., Bailis, P., and Zaharia,
M. Noscope: optimizing neural network queries over
video at scale. Proc. VLDB Endow., 10(11):1586–1597,
aug 2017. ISSN 2150-8097.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP ’23, pp.
611–626, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400702297. doi:
10.1145/3600006.3613165. URL https://doi.org/
10.1145/3600006.3613165.

https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://docs.databricks.com/en/large-language-models/ai-functions.html
https://docs.databricks.com/en/large-language-models/ai-functions.html
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://www.anthropic.com/news/prompt-caching
https://www.anthropic.com/news/prompt-caching
https://ai.google.dev/gemini-api/docs/caching?lang=python
https://ai.google.dev/gemini-api/docs/caching?lang=python
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2311.04934
https://arxiv.org/abs/2311.04934
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://huggingface.co/docs/text-generation-inference/en/index
https://huggingface.co/docs/text-generation-inference/en/index
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165


Optimizing LLM Queries in Relational Data Analytics Workloads

Lemire, D. and Kaser, O. Reordering columns for smaller in-
dexes. Information Sciences, 181(12):2550–2570, 2011.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W.,
Rocktäschel, T., Riedel, S., and Kiela, D. Retrieval-
augmented generation for knowledge-intensive nlp tasks,
2021.

Li, J., Hui, B., Qu, G., Yang, J., Li, B., Li, B., Wang, B., Qin,
B., Geng, R., Huo, N., et al. Can llm already serve as a
database interface? a big bench for large-scale database
grounded text-to-sqls. Advances in Neural Information
Processing Systems, 36, 2024.

Li, Z., Zhang, X., Zhang, Y., Long, D., Xie, P., and Zhang,
M. Towards general text embeddings with multi-stage
contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Long, P., Novack, Z., Berg-Kirkpatrick, T., and McAuley,
J. Pdmx: A large-scale public domain musicxml dataset
for symbolic music processing, 2024. URL https:
//arxiv.org/abs/2409.10831.

Lu, Y., Chowdhery, A., Kandula, S., and Chaudhuri, S. Ac-
celerating machine learning inference with probabilistic
predicates. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pp.
1493–1508, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450347037.

McAuley, J., Leskovec, J., and Jurafsky, D. Learning at-
titudes and attributes from multi-aspect reviews, 2012.
URL https://arxiv.org/abs/1210.3926.

NVIDIA. Faster Transformer, 2023a. URL https://
github.com/NVIDIA/FasterTransformer.

NVIDIA. TensorRT LLM, 2023b. URL https://
github.com/NVIDIA/TensorRT-LLM.

OpenAI. Pricing — openai.com. https://
openai.com/pricing. [Accessed 01-03-2024].

Pang, B. and Lee, L. Seeing stars: Exploiting class relation-
ships for sentiment categorization with respect to rating
scales. In Proceedings of the ACL, 2005.

Patel, L., Jha, S., Guestrin, C., and Zaharia, M. Lotus:
Enabling semantic queries with llms over tables of un-
structured and structured data, 2024. URL https:
//arxiv.org/abs/2407.11418.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text,
2016.

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cher-
niack, M., Ferreira, M., Lau, E., Lin, A., Madden, S.,
O’Neil, E., et al. C-store: a column-oriented dbms.
In Making Databases Work: the Pragmatic Wisdom of
Michael Stonebraker, pp. 491–518. 2018.

Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal,
A. Fever: a large-scale dataset for fact extraction and
verification, 2018. URL https://arxiv.org/abs/
1803.05355.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023.

Wilcox, R. R. Bootstrap confidence interval. In Applying
Contemporary Statistical Techniques. Academic Press,
2003.

Ye, Z., Lai, R., Lu, B.-R., Lin, C.-Y., Zheng, S., Chen, L.,
Chen, T., and Ceze, L. Cascade inference: Memory band-
width efficient shared prefix batch decoding, February
2024. URL https://flashinfer.ai/2024/02/
02/cascade-inference.html.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and
Chun, B.-G. Orca: A distributed serving system
for Transformer-Based generative models. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pp. 521–538, Carlsbad,
CA, July 2022. USENIX Association. ISBN 978-
1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/yu.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauly, M., Franklin, M. J., Shenker, S., and Stoica,
I. Resilient distributed datasets: A {Fault-Tolerant} ab-
straction for {In-Memory} cluster computing. In 9th
USENIX symposium on networked systems design and
implementation (NSDI 12), pp. 15–28, 2012.

Zheng, L., Yin, L., Xie, Z., Huang, J., Sun, C., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett,
C., and Sheng, Y. Efficiently programming large language
models using sglang, 2023.

A QUERY EXAMPLES

Our benchmark suite incorporates a broad range of query
types. We show examples of each query type as follows.

LLM filter. This query type leverages LLM for filtering
data within a WHERE clause. The LLM processes and ana-
lyzes information to meet some specified criteria, such as
identifying whether a movie is suitable for kids. This query
type illustrates typical use cases in sentiment analysis and

https://arxiv.org/abs/2409.10831
https://arxiv.org/abs/2409.10831
https://arxiv.org/abs/1210.3926
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://openai.com/pricing
https://openai.com/pricing
https://arxiv.org/abs/2407.11418
https://arxiv.org/abs/2407.11418
https://arxiv.org/abs/1803.05355
https://arxiv.org/abs/1803.05355
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu


Optimizing LLM Queries in Relational Data Analytics Workloads

content filtering, which are important for application tasks,
such as customer feedback analysis and content moderation.

SELECT t.movietitle
FROM MOVIES
WHERE LLM(

'Given the following fields,
determine whether the movie is
suitable for kids. Answer ONLY
with "Yes" or "No".',

↪→
↪→
↪→
movieinfo,
reviewcontent,
reviewtype,
movietitle

) = 'Yes'

LLM projection. This query type makes calls to an LLM
within a SELECT statement to process information from
specified database column(s). It reflects common tasks in
data analytics in which the LLM is used for summarization
and interpretation based on certain data attributes.

SELECT LLM(
'Given the following information,

summarize good qualities in
this movie that led to a
favorable rating.',

↪→
↪→
↪→
reviewcontent, movieinfo

)
FROM MOVIES

Multi-LLM invocation. This query type involves multiple
LLM calls in different parts of the query and addresses sce-
narios in which several layers of data processing or analysis
are required. It represents advanced analytical tasks, such
as combining different data insights.

SELECT LLM(
'Given the information about a

movie, summarize the good
qualities that led to a
favorable rating.',

↪→
↪→
↪→
reviewtype,
reviewcontent,
movieinfo,
genres

)
FROM MOVIES
WHERE LLM(

'Given the following review, answer
whether the sentiment is
"POSITIVE" or "NEGATIVE".
Respond ONLY with "POSITIVE" or
"NEGATIVE", in all caps.',

↪→
↪→
↪→
↪→
reviewcontent

) = 'NEGATIVE'

LLM aggregation. This query type incorporates an AVG
operator that incorporates LLM outputs into further query
processing. For example, one could use LLMs to assign
sentiment scores to individual reviews and then aggregate

these scores to calculate an average sentiment for overall
customer feedback. This query type is essential for tasks
that need to extract insights from complex textual data.

SELECT AVG(
LLM(

'Rate sentiment in numerical
values from 1 (bad) to 5
(good).',

↪→
↪→
reviewcontent, movieinfo

)
) AS AverageScore
FROM MOVIES

Retrieval-augmented generation (RAG). This query type
leverages external knowledge bases for enhanced LLM pro-
cessing, enriching LLM queries with a broader context.
It simulates use cases where queries need to pull in rele-
vant information from external sources, such as document
databases or knowledge graphs, to provide comprehensive
answers.

SELECT LLM(
'Given a question and four

supporting contexts, answer the
provided question.',
VectorDB.search(question, k=4),
question)

↪→
↪→
↪→
↪→

FROM FEVER

B DATASET INFORMATION

We detail the fields and functional dependencies (FDs) used
for each dataset as follows.

MOVIES

columns:
genres, movieinfo, movietitle,
productioncompany, reviewcontent,
reviewtype, rottentomatoeslink,
topcritic

FDs:
movieinfo, movietitle,
rottentomatoeslink

PRODUCTS

columns:
description, id, parent_asin,
product_title, rating, review_title,
text, verified_purchase

FDs:
parent_asin, product_title



Optimizing LLM Queries in Relational Data Analytics Workloads

BIRD

columns:
Body, PostDate, PostId, Text

FDs:
Body, PostId

PDMX

columns:
artistname, bestarrangement, bestpath,
bestuniquearrangement, composername,
complexity, genre, grooveconsistency,
groups, hasannotations, hascustomaudio,
hascustomvideo, haslyrics, hasmetadata,
haspaywall, id, isbestarrangement,
isbestpath, isbestuniquearrangement,
isdraft, isofficial, isoriginal,
isuserpro, isuserpublisher, isuserstaff,
license, licenseurl, metadata,
nannotations, ncomments, nfavorites,
nlyrics, notesperbar, nnotes, nratings,
ntracks, ntokens, nviews, path,
pitchclassentropy, postdate, postid,
publisher, rating, scaleconsistency,
songlength, songlengthbars,
songlengthbeats, songlengthseconds,
songname, subsetall, subsetdeduplicated,
subsetrated, subsetrateddeduplicated,
subtitle, tags, text, title, tracks,
version

FDs:
[metadata, path],
[hasannotations, hasmetadata, isdraft,
isofficial, isuserpublisher, subsetall
]

BEER

columns:
beer/beerId, beer/name, beer/style,
review/appearance, review/overall,
review/palate, review/profileName,
review/taste, review/time

FDs:
[beer/beerId, beer/name]

FEVER

-- FEVER --
columns:
claim, evidence1, evidence2,
evidence3, evidence4

FDs: []

SQuAD

columns:
question, context1, context2,
context3, context4, context5

FDs: []

C PROMPTS

We detail the system and user prompts for each query type
and dataset as follows.

System Prompt

You are a data analyst. Use the provided JSON data
to answer the user query based on the specified
fields. Respond with only the answer,
no extra formatting.

Answer the below query:
{QUERY}

Given the following data:
{fields}

User Prompt - LLM Aggregation

MOVIES: Given the following fields of a movie
description and a user review, assign a sentiment
score for the review out of 5. Answer with ONLY a
single integer between 1 (bad) and 5 (good).

PRODUCTS: Given the following fields of a product
description and a user review, assign a sentiment
score for the review out of 5. Answer with ONLY a
single integer between 1 (bad) and 5 (good).

User Prompt - Multi-LLM Invocation

MOVIES/PRODUCTS: Given the following review, answer
whether the sentiment associated is 'POSITIVE' or
'NEGATIVE'. Answer in all caps with ONLY 'POSITIVE'
or 'NEGATIVE':

User Prompt - LLM Filter

MOVIES: Given the following fields, answer in one
word, 'Yes' or 'No', whether the movie would be
suitable for kids. Answer with ONLY 'Yes' or 'No'.

PRODUCTS: Given the following fields determine if
the review speaks positively ('POSITIVE'),
negatively ('NEGATIVE'), or netural ('NEUTRAL')
about the product. Answer only 'POSITIVE',
'NEGATIVE', or 'NEUTRAL', nothing else.

BIRD: Given the following fields related to posts
in an online codebase community, answer whether the
post is related to statistics. Answer with only
'YES' or 'NO'.

PDMX: Based on following fields, answer 'YES' or
'NO' if any of the song information references a
specific individual. Answer only 'YES' or 'NO',
nothing else.

BEER: Based on the beer descriptions, does this
beer have European origin? Answer 'YES' if it does
or 'NO' if it doesn't.



Optimizing LLM Queries in Relational Data Analytics Workloads

User Prompt - LLM Projection

MOVIES: Given information including movie
descriptions and critic reviews, summarize the good
qualities in this movie that led to a favorable
rating. (also used in multi-invocation)

PRODUCTS: Given the following fields related to
amazon products, summarize the product, then answer
whether the product description is consistent with
the quality expressed in the review. (also used
in multi-invocation)

BIRD: Given the following fields related to posts
in an online codebase community, summarize how the
comment Text related to the post body.

PDMX: Given the following fields, provide an
overview on the music type, and analyze the given
scores. Give exactly 50 words of summary.

BEER: Given the following fields, provide an
high-level overview on the beer and review in a
20 words paragraph.

User Prompt - RAG

FEVER: You are given 4 pieces of evidence as
{evidence1}, {evidence2}, {evidence3}, and
{evidence4}. You are also given a claim as {claim}.
Answer SUPPORTS if the pieces of evidence support
the given {claim}, REFUTES if the evidence refutes
the given {claim}, or NOT ENOUGH INFO if there is
not enough information to answer. Your answer
should just be SUPPORTS, REFUTES, or NOT ENOUGH
INFO and nothing else.

SQuAD: Given a question and supporting contexts,
answer the provided question.

D ABLATIONS

We present two sets of ablation experiments: one comparing
the prefix hit rate (PHR) between GGR and an optimal
oracle, and another examining the impact of using a smaller
LLM model.

D.1 PHR of GGR v.s. OPHR

OPHR is a very expensive brute-force oracle algorithm that
iterates through all possible combinations of value groups
and calculates the prefix hit count. In our empirical evalua-
tion, it is impractical to run on larger datasets.

Thus, we test the first (10, 25, 50, 100, 200) rows for each
dataset and terminate OPHR runs exceeding 2 hours, report-
ing the result of the successful run with the most rows. For
PDMX, we reduce 57 columns to 10 to enable runs on even
as few as 10 rows. The PHR (prefix hit rate) and solver
runtime in seconds across datasets are reported in Table 6,
with the dataset labeled as {dataset}-{#rows}.

We can see that on these small samples of the datasets, our
algorithm (GGR) achieves within 2% of the optimal, but
can be up to hours faster on solver runtime.

Dataset PHR (%) Solver Runtime (s)

OPHR GGR Diff OPHR GGR

Movies-50 80.6 80.6 0% 2556 0.05
Products-25 19.7 18.5 -1.2% 357 0.06
BIRD-50 77.5 76.2 -1.3% 0.43 0.05
PDMX-25 29.4 28.6 -0.8% 822 0.05
Fever-50 7.3 6.9 -0.4% 110 0.23
Beer-10 25.7 25.6 -0.1% 1269 0.08
SQuAD-10 34.0 34.0 0% 1.6 0.05

Table 6. Comparison of Prefix Hit Rate (PHR) and solver runtime
across datasets. GGR achieves near-optimal PHR while being
orders of magnitude faster than OPHR.

D.2 Results of Smaller Model

To analyze the impact of using a smaller model, we run the
Filter Query described in Fig. 3a with the Llama-3.2-1B
model, using the same setup as with Llama-3 8B (i.e., single
L4 instance), and compare the prefix hit rate and end-to-
end query execution time of GGR with the default vLLM
baseline (i.e. Cache Original). The results are reported in
Table 7.

Metric BIRD Movies PDMX

Runtime (orig/GGR) 1.5× 1.3× 1.3×
Orig PHR (%) 10.41 29.32 11.97
GGR PHR (%) 83.99 82.10 56.00

Metric Products BEER

Runtime (orig/GGR) 1.4× 1.2×
Orig PHR (%) 24.06 47.98
GGR PHR (%) 82.10 73.93

Table 7. Cache runtime ratio and prefix hit rate (PHR) (%) com-
parison between original and GGR ordering for Llama-3.2-1B.

We observe similar prefix hit rates with Llama-3.2-1B com-
pared to our previous 8B model runs. This consistency
arises from the effectiveness of GGR field reordering, which
converts non-reusable field contents (0 hits) into reusable
prefixes within the cache. We also observe that under the
same GPU instance setup (e.g., L4 with 24 GB memory),
larger models like Llama-8B (7.6 GB) exhibit larger relative
performance gains from GGR compared to smaller models
like Llama-1B (1.8 GB), despite seeing similar prefix hit
rates. This is because prefix caching benefits from reducing
computational overhead on shared prefixes and enabling
larger batch sizes for LLM generation by reducing memory
usage through sharing. For smaller models, the availability
of ample GPU memory diminishes the relative impact of
prefix caching, as larger batch sizes can be achieved without
relying on caching. But for larger models, or when there is
less available GPU space, prefix caching benefits become
more pronounced.


