Under review as a conference paper at ICLR 2025

SIRD: TRANSFORMERS ASSISTED STEP BY STEP
SYMBOLIC INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, deep learning has gained popularity in solving statistical or approxi-
mate problems. However, working with symbolic data has been challenging for
neural networks. Despite this, the natural sciences are making strides in utilizing
deep learning for various use cases. In this work, we aim to solve the problem
of symbolic integration by using deep learning through integral rule prediction,
enabling faster search and better interpretability. We propose a novel symbolic
integration rules dataset containing 27 million distinct functions and integration
rule pairs. We show that by combining a transformer model trained on this dataset
into SymPy’s integral_steps function, the number of branches explored during the
depth-first-search procedure was reduced by a factor of 3 and successfully solve
functions that the original version was unable to handle.

1 INTRODUCTION

The advancements in computing have led deep learning to become more commonly used for many
applications. Deep learning has been demonstrated to be highly effective in identifying statistical
patterns. It delivers exceptional results in diverse areas such as computer vision (He et al., |2016;
Dosovitskiy et al.|, [2020), speech recognition (Chan et al., [2016} |Gulati et al., |2020), and natural
language processing (NLP) [Vaswani et al.| (2017a)); Devlin et al.| (2018)).

Deep learning for symbolic tasks, such as mathematical reasoning has not been extensively explored.
Automating mathematical reasoning is one such area where numerous studies have been conducted,
forming the foundation of these explorations. Notable studies include those by (Huang et al., 2023
Piotrowski et al., [2019; |[Zaremba et al., [2014; [Loos et al.||[2017)).

Few attempts have been made to address the problem of symbolic integration using data-driven
methods. Earlier works by [Lample & Charton| (2020) (hereafter referred to as ’LC’), [Kubota et al.
(2022), and [Noorbakhsh et al.| (2021) have laid a solid foundation in this area. However, there are
not enough primary follow-up studies on the problem. LC proposed an end-to-end black-box model
that frames the problem as sequence-to-sequence prediction. Using an encoder-decoder transformer,
the model generates the integral given a mathematical function. Despite its good performance,
this approach lacks explainability regarding whether the model memorizes specific patterns or can
generalize the integration of complex functions by focusing on sub-expressions, as noted by |Davis
(2019).

Our approach to solving symbolic integration is similar to systems like AlphaGo (Silver et al.|[2016)
and AlphaGeometry (Trinh et al.l 2024), where a neural model guides the steps toward solving a
specific problem, such as chess in the case of AlphaGo and Olympiad geometry problems in the case
of AlphaGeometry. These systems are efficient because they are trained on the steps of a specific
task and are more interpretable than a system trained in a purely end-to-end fashion. Symbolic
integration is essentially a search problem. When faced with a symbolic integration problem, people
typically employ a systematic approach: they identify an applicable integration rule, apply the rule
to obtain a new expression, and repeat the process until the final integral is found.

In this paper, we introduce the one-of-a-kind dataset Symbolic Integration Rules Dataset (SIRD-
27M), consisting of nearly 27 million mathematical functions and their integration rules. This
dataset is one step towards automating mathematical function integration in an interpretable man-
ner using neural networks. We include the step-by-step integration rules for a given mathematical

Under review as a conference paper at ICLR 2025

function, similar to how we perform integration manually. At each step, we provide the integration
rule that must be applied alongside the expression for complex rules like integration by-parts and
u-substitution rules. Using the step-by-step integration procedure, we train a deep learning model
that predicts the consequent rule and expression for a given mathematical function as the input.
When performed repeatedly, this process simulates a human-like integration process. Compared to
existing works that predict the integral directly in a black-box manner, this process is more accurate
and interpretable. We also present robust benchmarks showing that SIRD can train a highly scalable
and versatile model. Our approach could be applied to enhance the capabilities of general computer
algebra systems.

The significant contributions of the paper are listed as follows:

* Introduced a large-scale, novel dataset - SIRD-Z that can be employed for performing in-
terpretable step-by-step integration operation. The dataset contains over 27M mathematical
functions, corresponding integration rules, and expressions for specific integration rules.

* We propose three mathematical integration tasks to gauge our models’ performance for the
symbolic integration task. These include - Complete Rule Prediction, Rule Prediction, and
Integral Prediction.

* We used the symbolic maths package SymPy (Meurer et al.l [2017) to perform integration
given the model-predicted integration rules. To achieve this, we alter the integral_steps
method of SymPy, replacing it with the proposed guided_integral_steps where we use the
depth-first-search procedure to navigate the integration rules search space compared to inte-
gral_steps that depends on predefined static heuristics. Our proposed guided_integral_steps
consistently explores 3x fewer branches than integral_steps.

2 RELATED WORKS

Solving integrals using deep learning is part of the field of symbolic reasoning. Symbolic reason-
ing (Lavrac & Dzeroskil, |1994; | Newell & Simon,[2007) is a well-explored topic. The art of reasoning
involves the intricate manipulation of symbols and the application of logical rules to perform deduc-
tion (Johnson-Laird, [1999)), which involves drawing conclusions based on given premises, induc-
tion [Lavrac & Dzeroski| (1994), which involves making generalizations based on observed patterns,
and abduction Kovacs & Spens| (2005), which involves generating hypotheses to explain observed
phenomena. In visual question answering, (Y1 et al.,2018) have introduced a technique that merges
neural networks with symbolic rules. This integration enables the system to perform compositional
and interpretable reasoning by leveraging visual and textual data. For the task of program synthe-
sis, (Shin et al.l [2018)) suggested a method that incorporates inferred execution traces to guide the
generation of accurate programs using LLMs.

Mathematical tasks such as multiplication (Kaiser & Sutskever, 2015} Zaremba et al.|[2014), solving
word problems (Huang et al.| 2023; [Wang et al., 2018} |Chatterjee et al.,[2022)), and calculus (Lam-
ple & Chartonl 2020; [Panju & Ghodsil 2020) have been attempted using deep learning. Despite
progress, the current efforts remain largely black box, lacking interpretability and explainability.

In recent times, the community has been exploring the math-solving capabilities of large language
models (LLMs), as highlighted in literature such as (Ji & Gao, 2023} Tang et al., 2023} |Frieder
et al.,|2023)). These models primarily focus on solving mathematical problems expressed in natural
language involving numbers. However, calculus problems, expressed through various symbols and
expressions without words, have been explored using a more end-to-end black-box method (Lample
& Charton, 2020; Noorbakhsh et al., |2021)), which calls for further exploration. In the past, various
attempts (Rich et al.; [Meurer et al.l 2017) have been made to develop parsing rules for different
mathematical functions and use calculus rules to solve problems intuitively. Calculus problems are
search problems where the final solution is several mathematical steps away.

One of the closest works by LC used transformers for symbolic integration. This work utilized lan-
guage models, notably a vanilla transformer, for training with differential equations and integration
problems as input to the network. The model was found to memorize specific functional patterns

'Dataset available atht tp: //tiny.cc/sird27m Supplementary Material for code and model weights

http://tiny.cc/sird27m

Under review as a conference paper at ICLR 2025

F————_——— = — | Function

[substitution_rule,
steps_rule,
partial_fraction_rule,

[substitutionfrule, exp(tan™(x))] —
E RECURSIVELY

Prefix Expression Tree
with Rule

integral_steps{SymPy)

Iad d_rule)

l [substitution_rule, exp, atan, x] |

Model Call
True Label Used During Tokens with Sorted Order Until Correct one is Found
Training Ordered Rules (Depth First Search)

|
|
|
|
|
| Apply Each Rule in the Provided
|
|
|
|
|
|

e Sequence-to-Sequence
(Transformer)
exp(tan(x))/(1 + x%)
Prefix
Expression Tree

Rules in Sequence to Apply |

[mul, pow, add, INT+, 1, pow, x, INT+, 2, INT-, 1, exp, atan, x]

——a—

|
|
|
|
|
|
|
|
|
|
: |
: Probabilities and Filtered |
|
|
|
|
|
|
|
|
|
|
|
| Ilntegral]

Input Sequence

Figure 1: End-to-end integral prediction using guided_integral_steps

and provided correct integrals to functions where even state-of-the-art symbolic mathematical com-
putation programs such as Mathematica (Wolfram Research Inc.) failed. However, as pointed out
by Davis| (2019)), the model has no innate knowledge of any of the integration rules, and its success
is mainly due to repetitive exposure to a certain pattern of mathematical functions.

3 SIRD-27M: SYMBOLIC INTEGRATION RULES DATASET

We train an encoder-decoder model on integral calculation steps rather than integrals (more in Sec-
tion @) For this, we developed a Symbolic Integration Rules Dataset (SIRD-27M) that consists
of 27 million function-integration rule pairs. These pairs represent occurrences in the integral cal-
culation steps when solving integrals for various functions. This dataset encompasses a total of 24
different integration rules (see Appendix [C|for details), including complex rules such as the substi-
tution rule and integration by parts. Since applying these complex rules also requires an expression,
we provide the expression to be used along with the rule. The following sections discuss the steps
of generation, validation, and processing for SIRD-27M.

3.1 DATA SOURCE

LC introduced three datasets for symbolic integration: the Forward Method (FWD) Dataset, the
Backward Method (BWD) Dataset, and the Integration by Parts (IBP) Dataset, released under CC
BY-NC 4.0 license (Lample & Chartonl [2020). All three datasets consist of function and integral
pairs, their difference lies in how the samples are generated. Hence, relatively, each of the three is
out-of-distribution(OOD) with respect to the others. This variance affects parameters such as the
length of function and integral expressions. The characteristics of each dataset are as follows:

Forward Method (FWD) Dataset: In this dataset, the authors generate random functions and per-
form integration using the integrate method from SymPy (see Appendix[A.T|for details). The dataset
is named for its forward generation direction, moving from the function to the integral.

Backward Method (BWD) Dataset: Here, authors generate random functions representing the
integrals. These functions are then differentiated to obtain the functions corresponding to the in-
tegrals. The generation direction is backward, moving from the integral to the function through
differentiation, hence the name.

Under review as a conference paper at ICLR 2025

Table 1: SIRD examples.

Function Rule Appllcat.lol’l Model Input Model Output
Expression Sequence Sequence
2 - [add, pow, z, INT+, 2,
e+ 2 add_rule mul, INT+, 2,] [add_rule]
1 9 I g [mul, pow, add, INT+, 1, pow, I .
exp(tan~'(x))/(1 4 x*) | substitution_rule | exp(tan~'(z)) o, INT+, 2, INT., 1, exp, atan, =] [substitution_rule, exp, atan, x]

Integration by Parts (IBP) Dataset: This dataset used the integration by parts integration rule to
generate the function-integration pair. For two randomly generated functions u and v:

/udv = uv — /vdu (D

There are two integral terms in equation (1} The term [wvdu is already present in the generated
data and [udv is calculated using a simple subtraction operation with uv, thus giving rise to a new
sample.

In this work, we have utilized functions from the FWD dataset to generate function-integration rule
pairs for SIRD-27M. To generate the intermediary function-integration rule pairs while solving for
an integral, we modify the integral_steps method from SymPy. See Appendix [A]for more details on
the mentioned SymPy methods and modified integral_steps to generate SIRD samples. We selected
FWD dataset because its samples are more likely to be successfully integrated by integral_steps due
to an integration operation being used in its generation as described above while BWD is generated
by differentiating random functions. As a result, integrating BWD samples directly is often more
challenging and prone to errors, such as recursion stack overflow. In contrast, the FWD dataset
enabled the generation of more function-integration rule pairs for SIRD.

Input : /(m2 + 2z) dz

Input : /(et“"q(m)/(l +2z?))dz |Input: /(et‘m?](m)/(l + %)) dz

Rule : Add Rule:
i l [
Rule : Substnzlttwn Rule

Rule : Substilution Rule

Input : / z? dz Input : / 2z dz Exp: ' Exp: tan '(z)
! ' v v
Rule : PowerRule Rule : Constant Times Rule Input : /l i Input : /eu dm
Input : 13/3 Input : /ac ik Rule : Constant Rule Rule : Exponential Rule
Rule : Power Rule l l
v Input : u Input : e
Input : z2/2

Figure 2: A tree showing the rules the model chooses while performing a search. (left) x? + 2z
-1
(right) W

3.2 DATA GENERATION

We extract the functions and integration rules at each step when solving functions from the FWD
dataset. One step, i.e., a pair of intermediary function and integration rule, is used as a sample in
SIRD. We modify individual integration rule methods provided by SymPy and the flow of the inte-
gral_steps method to create a data generation script that outputs all the steps (function and integration
rule pairs) for a function from FWD. Appendix [A.2] provides examples and a detailed explanation
of the output syntax and step-by-step data generation script.

Table[T]shows a few examples from SIRD-27M. The third column, Application Expression, contains
expressions that might be required for the application of particular integration rules, such as the
substitution rule or integration by parts rule. A mathematical function can be integrated through

Under review as a conference paper at ICLR 2025

various routes of integration rules when a person follows the typical step-by-step process to solve an
integration problem. As we are modelling integration using intermediary steps, it is possible that in
SIRD-27M, we have different integration rules corresponding to the same function. The two trees
on the right in Figure[J] give an example where the same function can be integrated in multiple ways.
The tree on the left shows a typical step-by-step integration with intermediary functions and rules.

3.3 DATA VALIDATION

The integral_steps method, in its original form, outputs a sequence of integration rules that can
be used to calculate the integral of a function. Our data generation script not only produces this
sequence of integration rules but also generates explicit pairs of function-integration rules for each
step. To validate the correctness of our data generation script, we employ two checks:

* First, we directly compare the output of the original infegral_steps method with the output
of integral_steps generated by our data generation script for an input mathematical function.

» Second, we apply the output sequence of integration rules from our data generation script
to obtain the final integral of the input mathematical function and differentiate it. Then, we
compare the derivative with the input mathematical function.

This process ensures the correctness of the intermediary functions and integration rules generated
by our data generation script.

3.4 DATA PROCESSING

After generating the intermediary steps, we segregate all the function and integration rule pairs, each
forming a sample in SIRD. Hence, a single function from the FWD dataset leads to multiple samples
for SIRD - one for each step towards solving the integral of the function. Afterwards, we remove
the duplicate entries in the dataset.

There are two types of integration rules in the dataset based on their application behaviour: a) simple
rules such as the add rule, multiplication rule, power rule, etc., which do not require any additional
expression for their application (refer to the left in Figure[2)) b) complex rules such as the substitution
rule, integration by parts, etc., which require an additional expression for their application (refer to
the right in Figure [2). For complex rules, the application expression is also available in SIRD.

Looking at a sample from SIRD for training, a mathematical function serves as the input to the
model, and an integration rule along the application expression, if present, serves as the label. It
is required to convert a mathematical function (model input) into a sequence of tokens that main-
tains the relationship between symbols, numbers, and operators for training a sequence-to-sequence
model. Expression trees are widely used to represent mathematical functions. These trees can be
transformed into sequences of tokens using prefix, infix, or postfix notations. Similar to LC, we
adopt the prefix notation of the expression tree, wherein a node is positioned before its children.
This notation offers the added advantage of not necessitating parentheses, as required in infix nota-
tion, resulting in a shorter sequence length when representing the mathematical function.

As for the label, if the sample has a simple rule (without an application expression), there will
be a single-token output sequence, i.e., the integration rule name. In the case of a complex rule
(with an application expression), the application expression is also converted to prefix notation and
appended after the rule name token. This approach to converting the label into a sequence helps
standardize how labels are utilized for model training. It simplifies the process for the model to
learn representations for three key decisions: determining which rule to apply, whether there will be
an application expression, and identifying the content of the application expression. For examples
of input and output sequences, please refer to the fourth and fifth columns in Table[I] Additionally,
the distribution of input sequence lengths is presented in Appendix

We have used same strategy for tokenisation as LC. Our tokens encompass various unary operators
(such as sin, cos, tan, exp, etc.), binary operators (like add, sub, mul, pow, etc.), specific symbols
(e.g., X, u, y, etc.), and numerical values. Furthermore, we’ve included 24 additional tokens corre-
sponding to the integration rules. As previously mentioned, these tokens facilitate the creation of an
expression tree for the input mathematical function and its corresponding prefix notation. Few token
examples can be seen in Table

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 MODEL ARCHITECTURE

We have formulated a step-by-step modelling approach. Given a mathematical function as input, we
train a model to learn which integration rule to apply next to compute its integral. This is modelled as
a sequence-to-sequence prediction. where in given a single variable mathematical function F,.y,
corresponding integration rule and expression (if required in the application of integration rule)
G rulegexpr» an encoder-decoder model is trained on the following objective:

1
min — Z l(S@ (Fexpr)7 Grule&ezpr) (2)
nia
where [denotes loss function used to train the model, Sg represents the encoder-decoder model, ©
represents the learnable model parameters and n denotes number of training samples.

We use SIRD-27M to train the model. We utilize the Transformer architecture from |Vaswani et al.
(2017b)) for the sequence-to-sequence model. Besides symbolic integration, LC empirically found
that the Transformer architecture performs relatively well for a few other symbolic mathematics
tasks. Hence, we decided to maintain the same architecture and configuration.

Regarding the configuration of the Transformer architecture, we employ eight attention heads, six
layers, and an embedding size of 512. We utilized the Adam optimizer Kingma & Ba|(2014) with
a learning rate of 4 * 10~°. The model is trained using a batch size of 256 samples. We limited the
number of tokens in input expressions to 384 and used approximately 21 million samples (80% of
SIRD-27M) for training. The following sections will discuss the definitions, details and evaluations
of different benchmark tasks.

Table 2: Accuracy results for Rule Prediction Tasks. Evaluation is done on 10% SIRD-27M

Task Test Set N;;:::):li :f Approach GAr (::Ii::l(;l;;ly Accuracy (%)
Complete Rule Prediction | SIRD-27M 2742469 Our model - 80.41
2742469 - 81.44
873941 Add Rule 99.96
. 734199 Multiplication Rule 98.34
Rule Prediction SIRD-27M | | oTeoc | Ourmodel |~ o om0 74
94897 Parts Rule 65.74
847606 Other Rules 55.97

4.2 RULE PREDICTION TASKS

We have evaluated our model trained on SIRD on following integration rule prediction tasks.

Complete Rule Prediction: This task aims to observe if, along with the integration rule, the model
can learn which rule should be accompanied by an application expression and predict it accurately.
We evaluate this task on a randomly selected 10% holdout test set of SIRD-27M. A prediction is
correct if the predicted integration rule and application expression match the ground truth label. For
this task, we keep decoding using the model until the end-of-sentence token is observed.

Rule Prediction: In this task, we assess whether the model can accurately predict the correct inte-
gration rule given a mathematical function. Here, we do not consider the application expression in
the evaluation. Here, evaluation is also done on a randomly selected 10% holdout test set of SIRD-
27M. A prediction is correct if the predicted integration rule matches the ground truth label. For this
task, we decode for the single token as the rule token is the first in the output sequence during model
training (Section [3.4).

Table 2] shows the accuracy results for the above-described tasks. We have also quoted individual
rule accuracy numbers for the Rule Prediction task along with the overall accuracy. While reading
these results, it is essential to note that there may be multiple correct rules to apply for a given
mathematical function for the rule prediction tasks (as there can be more than one way to solve
integral). However, in the test set, we only have a single ground truth label for the function.

Under review as a conference paper at ICLR 2025

Table 3: Results for Integral Prediction task. LC model trained on FWD is used. Beam size 1 is
used for decoding the LC model. Timeout of 45 min per function is used for all the approaches.

Test Set NSu;lr:)Ifli ;)f Approach Accuracy (%)
integral_steps 95.55
FWD 7000 guided_integral_steps 95.84
LC 93.39
integral _steps 35.09
BWD 4400 guided_integral_steps 34.00
LC 21.17
integral _steps 92.06
IBP 5700 guided_integral_steps 93.07
LC 89.28

Table 4: Accuracy Results with limit on number of explored nodes for Integral Prediction task

Test Set N;;ﬁ’:; :f Node Limit | integral steps | guided_integral steps
100 79.85 93.71
80 73.91 92.65
FWD 7000 60 66.48 90.25
40 55.74 84.37
400 11.66 19.48
250 10.43 13.84
BWD 4400 200 10.04 11.87
180 9.85 11.76
100 84.69 90.5
80 80.26 89.81
1BP 3700 60 76.44 87.97
40 71.26 83.01

4.3 INTEGRAL PREDICTION

Integral Prediction: This task evaluates the end-to-end performance of the model in calculating
integrals. To achieve this, we developed the guided_integral_steps method (detailed below) by in-
tegrating our model with SymPy’s integral_steps method. guided_integral_steps applies integration
rules based on our model’s predictions at each step. A prediction is correct if the derivative of the
resulting integral matches the input function.

We have reported results using the test sets from the FWD, BWD, and IBP datasets. The function
lengths and complexities in the SIRD-27 dataset are simpler, as they represent intermediary steps,
making the other three datasets out-of-distribution (OOD) and ideal for demonstrating the general-
ization of our approach. Furthermore, considering that SIRD-27M is based on samples from FWD,
we also included evaluations on the BWD and IBP datasets. Both datasets significantly differ from
FWD in generation method and function characteristics, as described in Section @} However, the
current version of SIRD does not support complex mathematical functions involving hyperbolic
trigonometric operators and their inverses (e.g., sinh(x), cosh(x)). The integral_steps method can-
not handle such functions. Consequently, we exclude such functions from the test sets of all three
datasets before evaluation. Additionally, we remove functions with a sequence length greater than
384 when converted to prefix notation.

Guided integral steps: 1t is created by incorporating our model into the integral_steps method of
SymPy. In its original implementation, integral_steps calls SymPy methods corresponding to each
integration rule in a fixed order defined heuristically. The integration rules are checked at every
intermediate step to determine their applicability until the correct one is identified. It performs a
depth-first search through all the defined integration rules at each intermediary step when solving
for the integral.

Under review as a conference paper at ICLR 2025

In the guided_integral_steps, we removed the fixed order of integration rules defined heuristically.
Instead, we run an inference through our model with the expression of the current intermediary step
as input. It performs decoding only for a single token and outputs the probability for each integra-
tion rule token, based on which these rules are ranked and tried at each step. This way, the order
of integration rules explored during the depth-first search becomes dynamic as it depends on the
expression of the current intermediary step. Figure[T]can be referenced for the visual representation
of this flow.

Table 5: Efficiency based on average nodes explored per test function

Test Set | integral steps | guided_integral_steps | Efficiency
FWD 92.98 25.25 37X
BWD 1187.37 380.39 3.12x%
IBP 49.33 17.13 3X

400

frequency
W
S
S}
frequency

N
°
S

100

20 40 60 80
number of branches explored

20
number of branches explored

20 40 60 80
number of branches explored

frequency
frequency

20

20 40 60 8
number of branches explored

40 60 80
number of branches explored

40 60 80
number of branches explored

Figure 3: Branches explored during depth-first-search using (fop) guided_integral_steps (bottom)
integral_steps. [left to right] (first) FWD test set (second) BWD test set (third) IBP test set

Accuracy Comparison: Table[3|shows that guided_integral_steps outperforms the LC model trained
on FWD across all three test sets. Notably, integral_steps also outperforms the LC model, but
guided_integral_steps achieves a higher success rate than integral_steps for the FWD and IBP test
sets. However, for the BWD test set, both approaches perform similarly. The larger function length
in BWD results in longer absolute times for guided_integral_steps due to the model inference call
overhead for each step. In the other two test sets, efficiency improvements (discussed in the next
paragraph) offset this time overhead, which is not the case for BWD. A timeout of 45 minutes was
set for individual functions in these results.

We have ensured the experiments are fair by selecting LC’s model trained on the FWD dataset.
LC showed that models trained on FWD, BWD, or IBP perform well on their own test sets but
struggle on others, revealing an out-of-distribution issue. While training on all datasets combined
improves cross-test performance (Lample & Chartonl [2020), this would make the comparison with
guided _integral_steps unfair. Additionally, it’s unclear whether the improvement in cross-test per-
formance reflects true generalization or pattern memorization, as [Welleck et al.| (2021)) pointed out.
Comparing to LC’s FWD model helps demonstrate the OOD performance of guided_integral_steps
using the BWD and IBP test sets.

Efficiency Comparison: Along with having a better overall success rate, guided_integral_steps
is highly efficient, i.e. given a limit on a number of nodes that can be explored at each step
guided_integral_steps highly outperforms integral_steps. In Table [d we show that the success rate
for guided_integral_steps is far better across test sets for different node limits compared to inte-
gral_steps.

Under review as a conference paper at ICLR 2025

Regarding average nodes explored by each sample, Table [5] shows the efficiency of
guided_integral_steps across the three sets. Not only FWD, which is used to create SIRD-27M,
but it was also able to optimize node exploration for BWD and IBP, demonstrating a highly gen-
eralizing nature. Along with the average results Figure [3] shows the distribution of nodes ex-
plored by the samples, and left skewness can be seen in the top row, which further showcases that
guided_integral_steps can solve integral with the need of exploring a far lesser number of nodes.

We also measured the average runtime for the functions in the FWD test set, with
guided_integral_steps averaging 0.34 seconds compared to 0.52 seconds for integral_steps. Some
functions are significantly more complex and take minutes to complete, where the speedup is also
evident. For practical application in a production system, inference overhead can be further reduced
by techniques such as caching results for commonly occurring expressions, thereby minimizing the
number of inference calls. Additionally, batching multiple inference calls can be employed to opti-
mize performance.

5 CONCLUSION

We present a novel step-by-step approach to the symbolic integration problem. We frame integra-
tion as a search problem and accelerate it using Al, resulting in a fast, accurate, and interpretable
approach. We introduce a new dataset called SIRD-27M, where the task is to predict the integration
rule that should be applied to a given function to find its integral. We show that a model trained on
SIRD can guide the search for the integral, outperforming heuristics-based search and showing su-
perior generalization ability. Our work is a preliminary but strong exploration of using deep learning
for step-by-step symbolic integration, leading the way for further research.

With this work, we are laying the primary foundation for Al-assisted problem-solving in the sym-
bolic integration domain, and it would be intriguing to explore whether its use cases can be extended
to other scientific problems.

6 LIMITATIONS & FUTURE DIRECTIONS

Though our approach performs well in guiding the search for integral rules, one of the primary
drawbacks of this approach is that it depends on the underlying step-by-step integration algo-
rithm integral_steps in our case. Furthermore, there is an overhead of model inference calls at
each step, and inference optimization might be required to optimize the runtime performance of
guided_integral_steps.

The search methodology can be further refined with a beam search encompassing all intermediary
steps when solving integrals for a function. This enhancement will further improve guided integral
steps. Additionally, in this version of our work, we do not utilize the application expressions pre-
dicted by the model for complex rules; however, incorporating them could dramatically reduce the
time required to solve integrals.

REFERENCES

William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition. In 2016 IEEE international
conference on acoustics, speech and signal processing (ICASSP), pp. 4960-4964. IEEE, 2016.

Oishik Chatterjee, Isha Pandey, Aashish Waikar, Vishwajeet Kumar, and Ganesh Ramakrishnan.
Warm: A weakly (+ semi) supervised math word problem solver. In Proceedings of the 29th
International Conference on Computational Linguistics, pp. 47534764, 2022.

Ernest Davis. The use of deep learning for symbolic integration: A review of (lample and charton,
2019). arXiv preprint arXiv:1912.05752, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and J J Berner. Mathematical capabilities of
chatgpt. ArXiv, abs/2301.13867, 2023. URL |https://api.semanticscholar.org/
CorpusID:256415984.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
for speech recognition. arXiv preprint arXiv:2005.08100, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Zeyu Huang, Xiaofeng Zhang, Jun Bai, Wenge Rong, Yuanxin Ouyang, and Zhang Xiong. Solving
math word problems following logically consistent template. In 2023 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 01-08. IEEE, 2023.

Yu Ji and Song Gao. Evaluating the effectiveness of large language models in representing textual
descriptions of geometry and spatial relations. ArXiv, abs/2307.03678, 2023. URL https:
//api.semanticscholar.org/CorpusID:259375953.

Philip N Johnson-Laird. Deductive reasoning. Annual review of psychology, 50(1):109-135, 1999.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Gyongyi Kovéacs and Karen M Spens. Abductive reasoning in logistics research. International
Jjournal of physical distribution & logistics management, 35(2):132—-144, 2005.

Hazumi Kubota, Yuta Tokuoka, Takahiro G. Yamada, and Akira Funahashi. Symbolic integra-
tion by integrating learning models with different strengths and weaknesses. IEEE Access,
10:47000-47010, 2022. ISSN 2169-3536. doi: 10.1109/access.2022.3171329. URL http:
//dx.doi.org/10.1109/ACCESS.2022.31713209.

Guillaume Lample and Frangois Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=SleZYeHFDS.

Nada Lavrac and Saso Dzeroski. Inductive logic programming. In WLP, pp. 146-160. Springer,
1994.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof
search. arXiv preprint arXiv:1701.06972, 2017.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondfej Certik, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Stépan Roucka,
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:
symbolic computing in python. PeerJ Computer Science, 3:¢103, January 2017. ISSN 2376-5992.
doi: 10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103,

Allen Newell and Herbert A Simon. Computer science as empirical inquiry: Symbols and search.
In ACM Turing award lectures, pp. 1975. 2007.

10

https://api.semanticscholar.org/CorpusID:256415984
https://api.semanticscholar.org/CorpusID:256415984
https://api.semanticscholar.org/CorpusID:259375953
https://api.semanticscholar.org/CorpusID:259375953
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/ACCESS.2022.3171329
http://dx.doi.org/10.1109/ACCESS.2022.3171329
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.7717/peerj-cs.103

Under review as a conference paper at ICLR 2025

Kimia Noorbakhsh, Modar Sulaiman, Mahdi Sharifi, Kallol Roy, and Pooyan Jamshidi. Pretrained
language models are symbolic mathematics solvers too! ArXiv, abs/2110.03501, 2021. URL
https://api.semanticscholar.org/CorpusID:238419670.

Maysum Panju and Ali Ghodsi. A neuro-symbolic method for solving differential and functional
equations. arXiv preprint arXiv:2011.02415, 2020.

Bartosz Piotrowski, Josef Urban, Chad E Brown, and Cezary Kaliszyk. Can neural networks learn
symbolic rewriting? arXiv preprint arXiv:1911.04873, 2019.

Albert Rich, Patrick Scheibe, and Nasser Abbasi. Rule-based integration: An extensive system of
symbolic integration rules. Journal of Open Source Software, 3(32):1073. doi: 10.21105/joss.
01073.

Robert H Risch. The problem of integration in finite terms. Transactions of the American Mathe-
matical Society, 139:167-189, 1969.

Eui Chul Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with inferred
execution traces. Advances in Neural Information Processing Systems, 31, 2018.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484-503, 2016. URL http:
//www.nature.com/nature/journal/v529/n7587/full/naturel6961.html.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu, Yitao Liang, and Muhan
Zhang. Large language models are in-context semantic reasoners rather than symbolic rea-
soners. ArXiv, abs/2305.14825, 2023. URL https://api.semanticscholar.org/
CorpusID:258865899.

Trieu Trinh, Yuhuai Tony Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476-482, 2024. URL https://www.nature.
com/articles/s41586-023-06747-5.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017a. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017b. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053clcd4al845aa—-Paper.pdf.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan Song, Long Guo, and Heng Tao Shen. Mathdqn:
Solving arithmetic word problems via deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics. CoRR, abs/2109.13986, 2021. URL https:
//arxiv.org/abs/2109.13986.

Wolfram Research Inc. Mathematica, Version 14.0. URL https://www.wolfram.com/
mathematica. Champaign, IL, 2024.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understanding. Advances in
neural information processing systems, 31, 2018.

11

https://api.semanticscholar.org/CorpusID:238419670
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://api.semanticscholar.org/CorpusID:258865899
https://api.semanticscholar.org/CorpusID:258865899
https://www.nature.com/articles/s41586-023-06747-5
https://www.nature.com/articles/s41586-023-06747-5
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2109.13986
https://arxiv.org/abs/2109.13986
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

Under review as a conference paper at ICLR 2025

Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover efficient mathematical
identities. Advances in Neural Information Processing Systems, 27, 2014.

A SYMPY FUNCTIONS & SIRD SAMPLE GENERATION SCRIPT

A.1 FUNCTIONS FROM SYMPY

For the generation of FWD, |Lample & Charton| (2020) (hereafter referred to as *'LC’) used integrate
function from SymPy, and we used the modified version of infegral_steps function to generate sam-
ples for SIRD utilizing functions from FWD. Here, we briefly explain both the functions and on
what grounds these differ.

* Integrate Function: This is the principal method to integrate functions in SymPy. This
function uses the Risch-Norman algorithm (Rischl [1969) and can solve both definite and
indefinite integrals, though it does not provide the steps of integration.

* Integral steps Function:

— This function imitates how a human would solve an integral problem step by step.
It outputs all the intermediate steps (expressions and integration rules) required to
solve the integral of a given function. Further, these intermediate steps can be input
to another function _manualintegrate, which can apply the steps to generate the final
integral of the function.

— To calculate output of integral_steps, various integration rules’ are implemented in
SymPy. Whenever called with an input, it heuristically searches which integral rule
to apply based on a defined order in the codebase. There are certain functions such
as the add_rule which recursively again calls integral_steps to solve the subproblems.
It tries all the potential rules in a predefined order to either output steps to solve the
integration of a function or fallback to DontKnowRule.

Based on the description, it is clear that infegrate function is far more capable of solving an end-to-
end integration problem than integral_steps. However, we rely on the latter for our study as we re-
quire integration rules instead of just the final integral for a function. Also, currently, integral_steps
cannot generate integration rules for complex functions involving hyperbolic trigonometric func-
tions.

Given the nature of integral_steps implementation for many functions, it might go into an infinite
search loop which either can be broken by timeouts or Maximum Call Stack Exceeded.

A.2 MODIFIED integral_steps TO GENERATE SIRD SAMPLES

As described in section[A.T] integral_steps function generates all the intermediary steps’ expressions
and integration rules while solving for a function using heuristically searching for correct rules
to apply. However, it generates its output in particular syntax, which can be highly dynamic for
different types of inputs. Following are the examples of its output:

Function: z2 + 2z

Output from integral steps: AddRule(substeps=[PowerRule(base=x, exp=2, context=x**2, sym-
bol=x), ConstantTimesRule(constant=2, other=x, substep=PowerRule(base=x, exp=1, context=x,
symbol=x), context=2%x, symbol=x)], context=x**2 + 2*x, symbol=x)

Function: ¢! (%) /(1 + z2)

Output from integral steps: AlternativeRule(alternatives=[URule(u_var=_u, u_func=exp(atan(x)),
constant=1, substep=ConstantRule(constant=1, context=1, symbol=_u), con-
text=exp(atan(x))/(x**2 + 1), symbol=x), URule(u_var=_u, u_func=atan(x), constant=1, sub-
step=ExpRule(base=E, exp=_u, context=exp(_u), symbol=_u), context=exp(atan(x))/(x**2 + 1),
symbol=x)], context=exp(atan(x))/(x**2 + 1), symbol=x)

Writing parsing rules for the above output can make things unnecessarily complex, and there
can be many exceptions, given the highly dynamic nature of output syntax. Hence, to get exact

12

Under review as a conference paper at ICLR 2025

subexpression-integration rule pairs for a function, we created a data generation script by doing the
following:

* Modified each integration rule function in SymPy to output a tuple of subexpression and
rule name.

* For rules like substitution_rule, which require transforming a subexpression of a function
for application, we also included the subexpression to be transformed along with the rule
name in the output tuple.

* Modified the flow of integral_steps to accommodate this extra output along with the origi-
nal.

Following are examples of output from our data generation script for the same functions:

Function: 22 + 2z

Output from Our Script: (AddRule(substeps=[PowerRule(base=x, exp=2, context=x**2, sym-
bol=x), ConstantTimesRule(constant=2, other=x, substep=PowerRule(base=x, exp=1, context=x,
symbol=x), context=2%*x, symbol=x)], context=x**2 + 2*x, symbol=x),
[(Integrallnfo(integrand=x**2 + 2*x, symbol=x), ’add rule’),

(Integrallnfo(integrand=x**2, symbol=x), ’power rule’),

Integrallnfo(integrand=2%x, symbol=x), "'mul_rule’,

(Integrallnfo(integrand=x, symbol=x), ’power _rule’)]).

Function: '@ (*) /(1 + 2?)

Output from Our Script: (AlternativeRule(alternatives=[URule(u_var=_u, u_func=exp(atan(x)),
constant=1, substep=ConstantRule(constant=1, context=1, symbol=_u), con-
text=exp(atan(x))/(x**2 + 1), symbol=x), URule(u_var=_u, u_func=atan(x), constant=1, sub-
step=ExpRule(base=E, exp=_u, context=exp(_u), symbol=_u), context=exp(atan(x))/(x**2 + 1),
symbol=x)], context=exp(atan(x))/(x**2 + 1), symbol=x),
[(Integrallnfo(integrand=exp(atan(x))/(x**2 + 1), symbol=x), ’substitution_rule’, exp(atan(x))),
(Integrallnfo(integrand=1, symbol=_u), ’constant_rule’),
(Integrallnfo(integrand=exp(atan(x))/(x**2 + 1), symbol=x), ’substitution rule’, atan(x)),
(Integrallnfo(integrand=exp(u), symbol=_u), ’exp_rule’)]).

This way, it becomes straightforward to parse the expression-integration rule pairs for a function
constituting SIRD samples.

B INPUT EXPRESSION LENGTH

Before training a sequence-to-sequence model on SIRD-27M, we filtered the training data samples
by the following criteria: The input expression prefix form should not exceed 384 tokens in length,
and the output sequence, which includes both the rule name and the accompanying expression for el-
igible rules, should be no longer than 29 tokens. Figure @ displays the distribution of input sequence
lengths for all samples in SIRD-27M.

C SIRD-27M: DATASET STATISTICS

Symbolic Integration Rules Dataset (SIRD) consists of 27 million+ samples, including 24 integration
rules. Table|[6]lists the frequency of different integration rules in SIRD.

Certain rules have a rather small number of samples. However, we would like to point out that
this is just the representation of patterns/steps we extracted from 10 million samples of the FWD
dataset. When integrating an unseen function, the add rule will still be used ten times more than
other obscure rules. Since the distribution of the rules in our training set matches the distribution in
our testing set, this imbalance is not an issue but a strength in reality.

Particularly for exp_rule: Our dataset consists of distinct integral steps-rules pairs rather than
function-integrals pairs. Most of the complex functions involving exponential terms for example

e will go through either the substitution rule or by parts rule. Only after which exponential rule

13

Under review as a conference paper at ICLR 2025

leb

=
i

frequency
© o o = =
) [e)} (o] o N

o
[N)

20

40

60 80 100

input sequence length

Figure 4: The histogram of the sequence lengths for functions in SIRD-27M.

Table 6: Integration rules and their frequencies in SIRD-27M.

Rule Name No. of Samples
add_rule 8768793
mul_rule 7348761
partial_fractions_rule 3014738
substitution_rule 1922493
cancel_rule 2284315
distribute_expand_rule 1935582
parts_rule 951144
sqrt_linear_rule 332918
quadratic_.denom_rule 388780
constant_rule 324179
trig_rule 27561
trig_expand_rule 123965
sqrt_quadratic_rule 31261
trig_sincos_rule 3674
inverse_trig_rule 1632
power_rule 2547
trig_sindouble_rule 1810
trig_tansec_rule 755
special_function_rule 98
trig_cotcsc_rule 39
trig_substitution_rule 113
hyperbolic_rule 6
exp-rule 2
trig_product_rule 2

can be applied. So in this case we will substitute 22 and then will apply an exponential rule on it. So
it is evident that when looking at the steps we will end up getting the same function-rule pair with
possibly different variables for exponential rule. Hence 2 samples in our dataset represent simple

exponential functions with different variables.

For hyperbolic_rule, as mentioned in Line 368 of Section[4.3] a limitation of SymPy is that its inte-
gral_steps method can not handle complex functions involving hyperbolic trigonometric operators.
Hence, in our dataset, six samples represent two samples with different variables each for cosh, sinh

and tanh functions.

14

Under review as a conference paper at ICLR 2025

D GENERALIZATION BEYOND THE GENERATOR - SYMPY integral_steps

We have observed that guided_integral_steps can integrate certain functions that integral_steps can-
not. We have demonstrated few such examples in Table

Table 7: Examples where the original integral_steps fails but guided_integral_steps succeeds.

Function

e” + (cos™!(x))?

r + (sin”!(z))?

sin(y/z tan(5))

(cos™'(x))? 4+ cos ! (z) + %

4z* 4+ 4z sin~ ' (x) — 20z + (sin" ' (x))? — 10sin”" ' (z) + 25
2/zeV?® 4 2V

15

	Introduction
	Related Works
	SIRD-27M: Symbolic Integration Rules Dataset
	Data Source
	Data Generation
	Data Validation
	Data Processing

	Experiments
	Model Architecture
	Rule Prediction Tasks
	Integral Prediction

	Conclusion
	Limitations & Future Directions
	SymPy Functions & SIRD Sample Generation Script
	Functions from SymPy
	Modified integral_steps to Generate SIRD Samples

	Input Expression Length
	SIRD-27M: Dataset Statistics
	Generalization Beyond the Generator - SymPy integral_steps

