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ABSTRACT

KV caching is a fundamental technique for accelerating Large Language Model
(LLM) inference by reusing key-value (KV) pairs from previous queries, but its
effectiveness under limited memory is highly sensitive to the eviction policy. The
default Least Recently Used (LRU) eviction algorithm struggles with dynamic
online query arrivals, especially in multi-LLM serving scenarios, where balancing
query load across workers and maximizing cache hit rate of each worker are
inherently conflicting objectives. We give the first unified mathematical model
that captures the core trade-offs between KV cache eviction and query routing.
Our analysis reveals the theoretical limitations of existing methods and leads to
principled algorithms that integrate provably competitive randomized KV cache
eviction with learning-based methods to adaptively route queries with evolving
patterns, thus balancing query load and cache hit rate. Our theoretical results
are validated by extensive experiments across 4 benchmarks and 3 prefix-sharing
settings, demonstrating improvements of up to 6.92× in cache hit rate, 11.96×
reduction in latency, 14.06× reduction in time-to-first-token (TTFT), and 77.4%
increase in throughput over the state-of-the-art methods.

1 INTRODUCTION

The increasing demands of Large Language Model (LLM) services impose substantial inference
overhead on the LLM serving system (Jaillet et al., 2025). KV caching has emerged as a core technique
to alleviate such costs by storing and reusing the key-value pairs of previously processed tokens as
reusable prefixes for future generation (Vaswani et al., 2017). While practical, its effectiveness under
limited memory is highly sensitive to the eviction policy, particularly in online processing, since the
cache hit rate of a future query depends directly on which tokens have been evicted beforehand (Dan
& Towsley, 1990). Although the traditional Least Recently Used (LRU) eviction policy (O’neil et al.,
1993; Fiat et al., 1991) remains the dominant choice in current LLM-serving system designs (Zheng
et al., 2024; Kwon et al., 2023b; NVIDIA, 2025), its strategy of evicting the oldest tokens within
specific prefix-sharing cache structures is fragile and can be readily compromised under dynamic
query arrivals (Fiat et al., 1991). In worst-case scenarios (Figure 1, left), LRU may evict exactly the
tokens needed by the next query, leading to cache misses and ultimately increasing inference latency.

This instability of eviction becomes more pronounced in a scaled multi-LLM setting, where the
objective of balancing query loads across LLMs inherently conflicts with the goal of maximizing
the cache hit rate for the single model. Such conflicts naturally extend to a general KV cache-aware
load balancing problem. Figure 1 (right) outlines its key trade-offs between caching affinity and
global load balancing: (i) While maximizing caching affinity by routing similar queries to the same
LLM may appear ideal, it inevitably leads to severe global load imbalance. This becomes particularly
problematic when large batches of similar queries are routed to a single LLM, resulting in queueing
delay dominating over actual service time and nullifying the benefits from the high cache hit rate. (ii)
Conversely, distributing queries to balance query load without considering the cache situation leads
to poor cache hit rate and, ultimately, suboptimal end-to-end inference latency. Furthermore, routing
queries across LLMs introduces dependencies within the online sequence of queries, as actions taken
in earlier steps have a sizeable impact on those taken later, creating additional variability, and further
destabilizing existing LRU eviction policies. These complex tensions underscore the need for a
formal mathematical model capturing the underlying dynamics.
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Figure 1: Key trade-offs between single LLM cache affinity and global load balancing in the KV
cache-aware load balancing problem.

Existing work, however, primarily relies on heuristics to address this problem, where they either
adopt a static linear score that ranks each LLM based on cache hit rate and queue length, or employ a
rule-based strategy that switches between highest-hit-rate and least-loaded routing using a predefined
load-balance threshold (NVIDIA, 2025; llm d, 2025; Zheng et al., 2024). While easy to implement,
these methods suffer from key limitations and struggle to optimize both objectives. They are inherently
static and unable to adapt to dynamic query arrival patterns. Their modeling of queue workload
is limited to the raw counts of pending queries, which is overly simplistic and fails to capture the
true dynamics of system congestion. They are also fundamentally limited in achieving optimal
performance, as they are rooted in heuristics, lack formal modeling, and therefore fail to capture the
intricate coupling between cache eviction and load balancing.

This work establishes the first unified model of KV cache-aware load balancing to fill the gap between
practical designs and theoretical understanding. The model formalizes the end-to-end latency of a
query on each LLM by decomposing it into service time and queuing delay, explicitly modeling
service time as a function of cache state and defining the queue load of each LLM as the cumulative
service time of its assigned queries, with the objective of minimizing the makespan across LLMs.
Within this formulation, our formal analysis reveals the inherent limitations of the LRU-based eviction
policies, whose competitive ratio degrades to O(n) in the worst case.

These insights further motivate the proposition of two principled algorithms, RLT and LBGR. For
each LLM, RLT introduces Randomized Leaf Token eviction to replace traditional LRU, improving
robustness to dynamic query arrival patterns and achieving a worst-case competitive ratio of O(log n).
LBGR then routes queries greedily by estimating the end-to-end latency for each LLM using a
dynamic, online learning-based strategy. In particular, it estimates the service time and queue load
using a global cache tracker and applies exponential decay to the queue load estimate to account for
its natural reduction over time. To capture residual latency beyond service and queueing delays, an
online residual regression model is deployed and continuously updated during runtime.

We validate the effectiveness of our algorithms through extensive experiments across 4 benchmarks
and 3 distinct prefix-sharing settings, demonstrating improvements of up to 6.92× in cache hit rate,
11.96× reduction in latency, 14.06× reduction in time-to-first-token (TTFT), and 77.4% increase in
throughput compared with the state-of-the-art methods. To summarize, our main contributions are:

1. We present the first unified formal model for the KV cache-aware load balancing problem, which
captures the intricate coupling between local cache eviction and global load balancing.

2. Within this model, we provide a formal analysis that reveals the theoretical limitations of existing
system designs and motivates two simple yet effective algorithms, RLT and LBGR.

3. RLT introduces Randomized Leaf Token eviction in prefix-sharing KV cache structure, improving
robustness to dynamic query arrivals and achieving a worst-case competitive ratio of O(log n),
which is exponentially better than the O(n) achieved by the existing LRU-based eviction policy.
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4. LBGR employs an online regression model that incorporates cache state to dynamically estimate
end-to-end latency and greedily route queries to the LLM with the lowest predicted latency,
providing greater adaptability to dynamic query patterns than prior static heuristic-based methods.

5. We conduct extensive evaluations on 4 benchmarks across 3 prefix-sharing settings, which validate
the effectiveness of the proposed algorithms, showing notable reductions in end-to-end latency.

2 BACKGROUND

KV Cache Management. Recent work on KV cache management falls into two strands. Context-
aware methods leverage model-driven signals to compress the KV cache, retaining only a fixed-budget
subset (Zhang et al., 2023; Xiao et al., 2023; Liu et al., 2023). Examples include H2O, which preserves
high-attention tokens, and StreamingLLM, which retains initial attention sinks (Zhang et al., 2023;
Xiao et al., 2023; Liu et al., 2023). Another strand aims to improve KV cache efficiency via memory
layout and interface design (Kwon et al., 2023b; Zheng et al., 2024). vLLM reduces fragmentation
with fixed-size virtualized memory pages (Kwon et al., 2023b), while RadixAttention enables prefix
sharing and reuse via a radix tree (Zheng et al., 2024). However, those systems rely on LRU-based
KV cache eviction, which is fragile under dynamic or adversarial query arrivals. The lack of formal
analysis further reveals a gap between practical designs and theoretical understanding.

KV Cache-Aware Load Balancing. In multi-LLM serving, KV cache–aware load balancing arises
from the need to balance queue load while preserving KV reuse (Sun et al., 2024; Zheng et al., 2024;
Lee et al., 2024). Most systems use heuristics that trade off cache affinity and queue load (NVIDIA,
2025; Zheng et al., 2024; llm d, 2025). For instance, SGLang switches between hit-rate and load-based
routing using a fixed threshold (Zheng et al., 2024), while others use static linear scores (NVIDIA,
2025; llm d, 2025). While practical, these methods are largely heuristic, lack formal modeling, and
may underperform under dynamic query arrivals. See extended related work in Appendix D.

3 FORMAL PROBLEM FORMULATION AND THEORETICAL ANALYSIS

While modeling all aspects of the KV cache-aware load balancing is intractable, its essential properties
can be effectively captured through a simplified Mixed-Integer Programming (MIP) formulation that
minimizes the makespan across all LLMs during serving.

3.1 UNIFIED ONLINE FORMULATION FOR KV CACHE-AWARE LOAD BALANCING

Let M denote the number of workers (LLMs) 1, indexed by i ∈ [M ], each denoted by mi and
equipped with a KV cache of size Bi tokens. We are given a sequence of N queries, Q = {qj}Nj=1,
which are processed in a fixed order (online arrival). Each query qj has an input length of |qj | tokens,
and its response aj consists of |aj | tokens. We use two variables to track the state of each worker mi

after processing j queries: (1) P (j)
i , which denotes the total accumulated load on worker mi, and (2)

S
(j)
i , which represents the cache state of worker mi. The system is initialized at j = 0 with P

(0)
i = 0

and S
(0)
i = ∅ for all i ∈ [M ]. For any query qj , we define hij = h(S

(j−1)
i , qj) as the number of

cache-hit tokens on mi. Let αCACHED and αMISS denote the time costs of processing cached and
uncached tokens, respectively. Then, the service time cost for qj on mi can be defined as

Costij = αCACHED · hij + αMISS · (|qj | − hij) +Oij (1)

where Oij is the time cost of generating the output aj . Let xij ∈ {0, 1} be the binary decision
variable indicating whether query qj is routed to worker mi, subject to

∑M
i=1 xij = 1,∀j ∈ [N ].

Once the assignment xij is made for qj , the system state is updated for all workers accordingly. The
queue load of each worker is incremented by the service time cost only if it was assigned the query:

P
(j)
i = P

(j−1)
i + xij · Costij . (2)

1Throughout, we use “LLM” and “worker” interchangeably and assume all deployed LLMs are of the same
type.
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The cache state is updated only for the worker that processes the query:

S
(j)
i =

{
UPDATECACHE(S

(j−1)
i , qj , Bi) if xij = 1

S
(j−1)
i if xij = 0

(3)

where UPDATECACHE(·) is a function (e.g., an LRU policy) that returns the new cache state of mi.

The objective is to find the assignment x = {xij} that minimizes the following makespan:

minx

(
maxi∈[M ]{P

(N)
i }

)
.

3.2 THEORETICAL LIMITATIONS OF LRU-BASED EVICTION

Leaf-LRU. Building on our unified model above, we formally analyze the performance of LRU-based
eviction policies, focusing on Leaf-LRU (L-LRU), the eviction algorithm used in SGLang, one of the
state-of-the-art LLM serving systems. In SGLang, the RadixAttention mechanism stores KV values
in a radix tree structure organized at token granularity, and evicts the least recently used leaf tokens
using L-LRU when memory is saturated. Since the process time of token hits is negligible compared
to that of misses, we ignore the hit cost and focus on the total number of token misses.

Cache Matching and Arrival Model. As the response aj of each query qj is also cached in the
radix tree, we define the complete token path Γj := qj∥aj as the concatenation of the prompt and
its generated tokens. Accordingly, we extend the query set Q to the set of complete token paths
Q̃ := {Γj}Nj=1. Cache matching then reduces to longest-prefix path matching in the radix tree. In the
following analysis, we assume an arbitrary (potentially adversarial) arrival order over Q̃.

Competitive Ratio of Leaf-LRU in RadixAttention. We compare L-LRU against the optimal
eviction strategy (OPT), which evicts the leaf token whose next appear lies furthest in the future. Our
analysis covers both single-query and batch processing settings. Following (Fiat et al., 1991), we
partition Q̃ into disjoint phases {¶v}, where each phase ¶v (except possibly the last) contains exactly
Bi distinct tokens. In any phase ¶v (v ≥ 2), a token is defined as clean for L-LRU if it was not in the
cache at the end of ¶v−1 and has not yet appeared in ¶v; new if it appears for the first time in ¶v; and
old if it has already been seen earlier in ¶v . Inspired by (Fiat et al., 1991), we begin by establishing a
lower bound on the number of misses incurred by OPT during a phase in the following Lemma 1 2.
Lemma 1. In RadixAttention, the amortized number of misses incurred by OPT in a phase ¶v with c
clean tokens is lower bounded by max{c/2, 1}.

We then analyze the maximum number of misses that L-LRU can incur in a phase ¶v with c clean
tokens. Misses can occur in only two cases: (1) when a new token appears, or (2) when a previously
evicted old token reappears. We first derive an upper bound on the number of misses assuming that
case (2) does not occur (Lemma 2), and then show that case (2) indeed never arises (Lemma 3).
Lemma 2. For any phase ¶v with c clean tokens, the number of misses incurred by L-LRU under
single-query processing is at most Bi − L+ c, assuming no old token reappears after eviction.

Lemma 3. Under single-query processing in L-LRU, no old token reappears in any ¶v after eviction.

Using Lemmas 1 to 3, we establish the competitive ratio of L-LRU under single-query processing.
Theorem 4 (Single-Query). Under single-query processing setting, the competitive ratio of L-LRU
in RadixAttention on worker mi with cache capacity Bi is upper bounded by (Bi−L+2) and lower
bounded by (Bi − L+ 1), where L denotes the minimum length over all Γj ∈ Q̃.

We next consider a continuous batching setting, where the system handles β distinct queries con-
currently during processing. Building on the previous analysis, we present the competitive ratio of
L-LRU under this setting in the following Theorem 5.
Theorem 5 (Batch). Consider the continuous batch setting with batch size β. Let Lmax and L
denote the maximum and minimum lengths over all Γj ∈ Q̃. If βLmax ≤ Bi, where Bi is the cache
capacity of worker mi, and all queries in a batch are distinct, then, the competitive ratio of L-LRU in
RadixAttention is upper bounded by (Bi − L− β + 3) and lower bounded by (Bi − L− β + 2).

2All proofs are provided in Appendix C.
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Our analysis (Theorems 4 and 5) shows that L-LRU achieves an O(n) competitive ratio in the worst
case. When fixing the KV cache size Bi and the maximum length Lmax, decreasing the minimum
length L drives the competitive ratio toward Bi. This indicates that when lengths of queries are highly
imbalanced, the competitive ratio increases and the performance of L-LRU may degrade.

4 METHODOLOGY

Motivated by the formal model and analysis above, we integrate a randomized eviction algorithm (Sec-
tion 4.1) with a learning-based greedy routing algorithm that routes queries based on estimated
end-to-end latency (Section 4.2) to balance query load while maintaining a high cache hit rate.

Algorithm 1 RLT
1: Marking token set initialization: T ← ∅
2: KV cache size: Bi

3: Complete token paths: Q̃← Q

4: for Γj ∈ Q̃ do
5: S

(j)
i ← S

(j−1)
i

6: for t ∈ Γj do
7: T ← T ∪ {t}
8: if |T | = Bi + 1 then
9: T ← {t}

10: if t ∈ S
(j)
i then

11: continue
12: else
13: if S(j)

i is full then
14: U ← {leaf tokens in S

(j)
i } \ T

15: Choose u ∈ U uniformly at random
16: S

(j)
i ← EVICT(S

(j)
i , u)

17: S
(j)
i ← LOAD(S

(j)
i , t)

Algorithm 2 LBGR
1: ▷ /* Online Routing Thread */
2: for qj ∈ Q do
3: for i ∈ [M ] do
4: Estimate the h̃ij via global radix tree
5: Ĉostij ← αCACHEDh̃ij +αMISS

(
|qj |− h̃ij

)
6: ϕij ← ϕ

(
h̃ij , |qj | − h̃ij , P̃

(j−1)
i

)
7: Êij ← Ĉostij + P̃

(j−1)
i + θ⊤i ϕij

8: i∗ ← argmini∈[M ] Êij , xij := 1[i = i∗]

9: ∀i ∈ [M ], P̃
(j)
i ← P̃

(j−1)
i + xij Ĉostij

10: Route qj to mi∗

11: ▷ /* Online Updating Thread */
12: if observe actual latency Eij then
13: θi ← ONLINEUPDATE

(
θi, ϕij , Eij − Êij

)
14: P̃i ← RELEASELOAD

(
P̃i, Ĉostij , ρ,∆t

)
15: ▷ /* Background Decay Thread */
16: Every ∆t time units: ∀i, P̃i ← ρP̃i

4.1 RANDOMIZED LEAF TOKEN EVICTION

Inspired by the classical marking algorithm (Fiat et al., 1991), we introduce the Randomized Leaf
Token eviction algorithm, RLT. As detailed in Algorithm 1, RLT iterates over each token in every path
Γj ∈ Q̃ and marks accessed tokens by adding them to a marking set T (lines 4–7 in Algorithm 1).
Once Bi + 1 unique tokens have been marked, all marks are cleared except for the most recently
accessed token (lines 8–9 in Algorithm 1). When a requested token is not in the cache and the cache
is full, RLT evicts an unmarked leaf token uniformly at random from the current cache before loading
the new token (lines 13-17 in Algorithm 1).

Competitive Ratio of RLT. The effectiveness of RLT stems from its use of randomness, which
breaks the dependence on query arrival order and enhances robustness against dynamic or adversarial
query arrivals, yielding more stable performance. We formally establish its competitive ratio in both
single-query and batch processing settings in the following Theorem 6 and corollary 7.

Theorem 6 (Single-Query). RLT is Θ(log(Bi − L))-competitive on worker mi with cache capacity
Bi under single-query processing setting, where L is the minimal length over all Γj ∈ Q̃.

Corollary 7 (Batch). RLT is Θ(log(Bi−L− β))-competitive on worker mi with capacity Bi under
continuous batching setting, where L is the minimal length over all Γj ∈ Q̃, and β is the batchsize.

Our analysis shows that RLT achieves a competitive ratio of O(log n), which is a logarithmic improve-
ment over L-LRU. We further prove that no dependent algorithm can achieve a better competitive
ratio than RLT in either single-query or continuous batching settings (Theorem 8 and corollary 9).

Theorem 8 (Single-Query). No randomized eviction algorithm can achieve a competitive ratio better
than Θ(log(Bi−L)) on worker mi with cache capability of Bi in the single-query processing setting,
where L denotes the minimal length over all Γj ∈ Q̃.
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Corollary 9 (Batch). No randomized eviction algorithm can achieve a competitive ratio better than
Θ(log(Bi − L− β)) on worker mi with cache capability of Bi in the continuous batching setting,
where L denotes the minimal length over all Γj ∈ Q̃ and β is the batch size.

4.2 LEARNING-BASED GREEDY ROUTING

To handle dynamically evolving arrivals, we introduce the Learning-Based Greedy Routing (LBGR)
algorithm (Algorithm 2), which estimates per-LLM end-to-end latency via an online regression and
greedily routes each query to the LLM with the lowest estimate.

Overall Cost Formulation. The end-to-end latency Eij of routing query qj to worker mi can be
modeled in the decomposition of Eij = Costij + P

(j−1)
i . Building on this, LBGR estimates this

latency via the following predictive model:

Êij = Ĉostij︸ ︷︷ ︸
service time estimation

+ P̃
(j−1)
i︸ ︷︷ ︸

queue load estimation

+ θ⊤i ϕij︸ ︷︷ ︸
residual correction

(4)

where Ĉostij is the estimated service time, P̃ (j−1)
i is the current estimated queue load of mi (see

below), and θ⊤i ϕij is a learned regression term (see below) that captures residual latency bias.

Service Time Estimation. Building on the global radix tree in SGLang (which records the cache
state of each worker and enables efficient estimation of cache hit rates; see Appendix E for futher
discussion), we estimate the number of cache-hit tokens for query qj on worker mi as h̃ij , serving as
a proxy for the true hit count hij(S

(j−1)
i , qj) under cache state S(j−1)

i . The estimated service time is
then:

Ĉostij = αCACHED · h̃ij + αMISS ·
(
|qj | − h̃ij

)
(5)

where we omit the time cost of output token generation and absorb it into the learned residual term.

Queue Load Estimation. To approximate queue load, each mi maintains a queue load P̃i that is
updated with each incoming query. When qj is routed to mi (xij = 1), the load is incremented as:

P̃
(j)
i = P̃

(j−1)
i + xij · Ĉostij . (6)

To further simulate the natural reduction in queue load over time, we apply exponential decay
independently every ∆t > 0 time units: P̃i ← ρP̃i, where ρ ∈ (0, 1) is the decay factor. Upon
completion of qj , LBGR releases any remaining load associated with qj (line 13 in Algorithm 2).

Greedy Routing with Online Residual Correction. Latency bias naturally arises from complex
environmental factors that are not captured by service time or queue load. To account for these fluctu-
ations, we learn a lightweight residual model for each mi using online linear regression parameterized
by θi. For each query qj , we extract the feature vector ϕij := ϕ

(
h̃ij , |qj | − h̃ij , P̃

(j−1)
i

)
, and predict

end-to-end latency Êij for all workers i ∈ [M ] using Equation (4). The query qj is then dispatched
to the worker with the lowest estimated latency, i∗ = argmini∈[M ] Êij . Upon observing the realized

latency Eij , the model θi is updated online by minimizing the squared loss
(
Eij − Êij

)2
.

5 EVALUATION

Models. Following (Zheng et al., 2024), we evaluate two types of LLMs: dense Llama-3.1 mod-
els (Grattafiori et al., 2024) and the sparse (MoE) Mixtral model (Jiang et al., 2024), with model sizes
ranging from 8B to 70B. We vary the number of deployed workers from 1 to 10, with 4 workers used
as the default setting. All experiments for Llama-3.1-8B-Instruct are run on 10 NVIDIA L40 GPUs,
while experiments with Llama-3.1-70B-Instruct and Mixtral 8×7B use 4 NVIDIA H200 GPUs.

Baselines. For the eviction policy, we compare RLT with the default L-LRU used in SGLang (state-of-
the-art LLM serving system). For load balancing, we evaluate LBGR against three routing algorithms:
(i) random routing, (ii) round-robin routing (SGLang, 2025c), and (iii) cache-aware routing (SGLang,
2025a). These combinations yield three baselines: (1) Random+LRU 3, (2) Round-Robin+LRU,
and (3) Cache-Aware+LRU, where Cache-Aware+LRU is the current state-of-the-art.

3We use LRU to denote L-LRU in baseline names for simplicity.
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Figure 2: Results on Llama-3.1-8B-Instruct (Latency, TTFT, and Throughput normalized for compar-
ison). Rows correspond to: GSP (top), ShareGPT (second), UltraChat (third), and Loogle (bottom).
For the first four metrics, lower is better; for the last two, higher is better. Our algorithms consistently
outperform all baselines across all benchmarks and metrics.

Workloads. Following (Zheng et al., 2024), we evaluate over 3 distinct prefix-sharing workloads
under limited cache memory, spanning both synthetic and real-world scenarios: (1) Synthetic prefix-
caching test using the Generated Shared Prefix (GSP) benchmark (SGLang, 2025b); (2) Multi-turn
conversations using real-world logs from ShareGPT (sha, 2023) and UltraChat (Ding et al., 2023);
(3) Long-document QA using Loogle (Li et al., 2024). We extend these benchmarks by introducing
variability in prompt lengths to simulate realistic and challenging serving conditions. The number
of output tokens is varied from 4 to 128, with 4 used as the default. Furthermore, we consider two
distinct query arrival orders: (i) a random query order, and (ii) a worst-case round-robin order, with
the random order used by default. All workloads follow a Poisson arrival process, and we vary the
request rate from 4 to 20 requests/s, with 12 requests/s used as the default.

Metrics. We report four main performance metrics: cache hit rate, throughput, latency, and time
to first token (TTFT). For latency and TTFT, we report the median (P50) to reflect the typical user
experience and the 95th percentile (P95) to capture tail latency. Furthermore, we provide a fine-
grained breakdown of runtime overhead, reporting time cost for eviction and routing operations. For
additional experimental setup details, see Appendix A.

End-to-End Performance. We present the main results on Llama-3.1-8B-Instruct across 4 bench-
marks in Figure 2. Our methods, Cache-Aware+RLT, LBGR+LRU, and LBGR+RLT, consistently
outperform all baselines, achieving the lowest latency and TTFT on every benchmark. On average,
LBGR+RLT achieves 30.9× and 44.49× improvements in median latency and TTFT compared to
Random+LRU, and improves over the state-of-the-art Cache-Aware+LRU by 11.96× in median
latency and 14.06× in median TTFT. For tail performance, it still achieves an average 2.03× improve-
ment in P95 latency and 2.62× speedup in P95 TTFT over Cache-Aware+LRU. When applying
RLT, Cache-Aware+RLT achieves 6.98× and 6.40× faster than Cache-Aware+LRU in median
latency and TTFT on average. With the learning-based strategy, LBGR+LRU also outperforms
Cache-Aware+LRU, achieving 9.98× lower median latency and 9.58× lower median TTFT on
average. Furthermore, LBGR+RLT achieves the highest cache hit rate and throughput across all
benchmarks, averaging 36.45% higher hit rate, 36.51% higher throughput than Cache-Aware+LRU.
These results demonstrate the strong and comprehensive efficiency gains of our algorithms under
dynamic query arrivals with varying lengths.

Model Size & Architecture. We evaluate the generalizability of our algorithms across model
scales and architectures, using Llama-3.1-70B-Instruct as a representative large dense model and
Mixtral-8×7B-Instruct-v0.1 as a sparse MoE model. As shown in Figure 3, our methods consistently
outperform all baselines on the ShareGPT benchmark across all metrics. LBGR+RLT achieves the
lowest latency and TTFT, reducing median latency by 38% and TTFT by 44.87% compared with the
best baseline, and also achieves the highest hit rate and throughput on both models. These results
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Figure 3: Results on Llama-3.1-70B-Instruct (top) and Mixtral-8×7B-Instruct-v0.1 (bottom) under
the ShareGPT benchmark. Our algorithms consistently outperform all baselines across metrics.
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Figure 4: Results on Llama-3.1-8B-Instruct under the Loogle benchmark with the worst-case round-
robin arrival order. Round-robin alternates queries to disrupt KV locality. LBGR+RLT counters this,
outperforming all baselines across all metrics.

4 6 8 10 12 14 16 18 20

0.25

0.50

0.75

1.00

No
rm

al
ize

d
M

ed
ia

n 
La

te
nc

y

4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
P9

5 
La

te
nc

y

4 6 8 10 12 14 16 18 20
0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
M

ed
ia

n 
TT

FT

4 6 8 10 12 14 16 18 20

0.25

0.50

0.75

1.00
No

rm
al

ize
d

P9
5 

TT
FT

4 6 8 10 12 14 16 18 20
0.20

0.25

0.30

0.35

0.40

Ov
er

al
l H

it 
Ra

te

4 6 8 10 12 14 16 18 20

0.8

0.9

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Random+LRU Round-Robin+LRU Cache-Aware+LRU LBGR+RLT

Figure 5: Results on Llama-3.1-8B-Instruct under GSP benchmark with varying request rates.

demonstrate the generalizability and adaptability of our algorithms serving both large dense and
sparse MoE models. Additional results on other benchmarks are provided in Appendix B.

Query Order. We evaluate the robustness of our algorithms on Loogle under worst-case query
arrivals, where queries from each document arrive in a round-robin manner. As shown in Figure 4,
LBGR+RLT maintains the strongest performance in the worst-case setting, achieving the lowest
median and P95 latency and TTFT, and the highest hit rate and throughput compared with all baselines.
Notably, it reduces median latency and TTFT by 22.8× and 15.5× compared to Cache-Aware+LRU.
These results highlight the robustness of our algorithms under adversarial query arrivals.

Request Rate. We vary the request rate from 4 to 20 to evaluate the robustness of our method under
different query arrival intensities. As shown in Figure 5, LBGR+RLT consistently achieves the
lowest latency and TTFT at both median and P95 across all request rates. It also consistently delivers
the highest cache hit rate and throughput across all settings. These results underscore the strong
performance and robustness of our method under varying query loads.

Number of Workers. We assess the performance of our algorithms under different numbers of
deployed workers (LLMs), varying the number of workers from 2 to 10. As shown in Figure 6,
LBGR+RLT consistently outperforms all baselines across all metrics and settings. Even with as
few as 2 workers, it maintains leading performance. These results underscore the scalability and
generalizability of our algorithms across varying numbers of deployed workers.

KV Cache Size. We evaluate the impact of the KV cache size by varying the allocated GPU memory
percentage from 50% to 90% on L40. As shown in Figure 7, our algorithms consistently outperform
all baselines across all metrics and cache size settings. As the cache size increases, the performance
gap between our method and the baselines widens significantly. Even under constrained settings (e.g.,
using only 50% of GPU memory), our method maintains a clear lead. These results demonstrate the
robustness and strong performance of our algorithms under varying KV cache availability.

Ablation Study on the Effectiveness and Overhead of RLT and LBGR. Table 1 presents a detailed
analysis of the effectiveness and runtime overhead of our algorithms. Using RLT, Cache-Aware+RLT
consistently outperforms Cache-Aware+LRU across all metrics, reducing median latency and TTFT
by 28.1% and 42.7%, respectively. This confirms the effectiveness of RLT under dynamic and length-
imbalanced query arrivals. Furthermore, adopting the learning-based routing strategy, LBGR+LRU
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Figure 6: Results on Llama-3.1-8B-Instruct under GSP benchmark with varying number of workers
(LLMs), where the x-axis denotes the number of workers.
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Figure 7: Results on Llama-3.1-8B-Instruct under GSP benchmark with varying size of KV cache,
where the x-axis denotes the percentage of GPU memory used by the KV cache.

Table 1: Ablation comparison of performance and runtime overhead between Cache-Aware+LRU
and our methods on the GSP benchmark. Time-based metrics (↓) are reported in milliseconds (ms),
while hit rate (↑) and throughput (↑) are measured in percentage and requests per second, respectively.

Method P50 Latency P95 Latency P50 TTFT P95 TTFT Hit Rate Throughput Average
Eviction Time

Average
Routing Time

Cache-Aware+LRU 26680.55 46766.77 25022.76 46139.36 23.89% 10.73 0.13 0.47
Cache-Aware+RLT (Ours) 19191.25 38917.27 14332.81 37504.69 26.36% 11.05 0.71 0.51

LBGR+LRU (Ours) 6025.11 24561.47 2958.01 21073.78 33.33% 11.80 0.09 1.03
LBGR+RLT (Ours) 2263.61 15334.89 1088.57 11495.05 37.31% 11.92 1.05 1.45

achieves even greater gains over Cache-Aware+LRU, reducing median latency and TTFT by 77.4%
and 88.2%, respectively. This highlights the adaptiveness and effectiveness of LBGR compared
to static routing strategies used in SGLang. Combining both algorithms, LBGR+RLT achieves the
best performance, reducing median latency and TTFT by 11.8× and 23×, respectively. This shows
that integrating learning-based routing with randomized eviction provides strong robustness and
performance. In terms of runtime overhead, the total added runtime overhead of RLT and LBGR
is only about 2ms per query, which is negligible compared to overall end-to-end latency. This
demonstrates the practicality of our algorithms for real-world deployment.

More Experiments. We present additional results by varying the shared-prefix ratio, number of
serving queries, output token length, and maximum batch size, where our methods achieve the best
performance across all settings (Appendix Figures 10 to 13). We also conduct two ablations: (i)
comparing RLT and L-LRU on a single worker, where RLT shows clear improvements (Appendix Ta-
ble 2), and (ii) evaluating the impact of decay interval ∆t, which highlights the importance of timely
queue load decay for effective query routing (Appendix Figure 14). See Appendix B for details.

6 LIMITATIONS AND CONCLUSION

This work presents the first unified mathematical model that captures the core tensions between
KV cache eviction and query routing in the KV cache-aware load balancing problem. Our analysis
identifies the theoretical limitations of existing approaches and leads to principled algorithms that
combine provably competitive randomized eviction with learning-based methods for adaptive query
routing under dynamic workloads. We validate proposed algorithms through extensive experiments
across 4 benchmarks and 3 different prefix-sharing settings, demonstrating substantial improvements
in inference efficiency and notable reductions in end-to-end latency.

One limitation of our current implementation is the lack of evaluation for multi-modal inference. We
focus on text-only KV cache and implement our algorithms based on the SGLang codebase, leaving
support for multi-modality for future work. Furthermore, our available computation resources limit
the experiments to at most 10 workers in a single-domain setup, which may not fully capture the
behavior in larger or geo-distributed deployments. Exploring broader scales and additional domains
is left for future investigation.
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REPRODUCIBILITY STATEMENT

We have taken concrete steps to ensure reproducibility of our results. An anonymized repository is
included in the supplemental materials, containing the complete source code, configuration files, and
scripts necessary to reproduce the experiments. All implementation details, such as model versions,
hardware specifications, and evaluation procedures, are described in Section 5 and Appendix A. The
design and implementation of our proposed algorithms are presented in Section 4 and Appendix A.
For theoretical results, complete and detailed proofs are provided in Appendix C.
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A EXPERIMENTAL DETAILS

Models. Following (Zheng et al., 2024), we evaluate two types of LLMs: dense Llama-3.1 mod-
els (Grattafiori et al., 2024) and the sparse (MoE) Mixtral model (Jiang et al., 2024), with model sizes
ranging from 8B to 70B. The number of deployed workers varies between 1 and 10 during evaluation,
and is set to 4 by default unless otherwise specified. All experiments for Llama-3.1-8B-Instruct are
run on 10 NVIDIA L40 GPUs, while experiments with Llama-3.1-70B-Instruct and Mixtral 8×7B
use 4 NVIDIA H200 GPUs. Unless otherwise specified, we fix the KV cache size to approximately
200k tokens for each model to ensure a fair comparison. We use BF16 precision for all models, and
apply quantization to FP8 for Llama-3.1-70B to accommodate memory limitations and maintain
a 200k-token KV cache. With these settings, the 200k-token KV cache fits naturally within the
maximum available GPU memory for Llama-3.1-Instruct-8B on L40 and Llama-3.1-Instruct-70B on
H200 without requiring manual adjustment. For Mixtral, we manually configure the KV memory
budget to use 80% of the GPU memory to support a comparable cache size. Unless otherwise
specified, we allow each worker to automatically maximize the running batch size (maximum running
queries) subject to the available GPU memory.

Baselines. For the eviction policy, we compare our randomized eviction algorithm, RLT, against the
default adopted L-LRU eviction strategy in SGLang. This choice is motivated by two main reasons:
(i) LRU-based eviction is the dominant approach in existing systems (Zheng et al., 2024; Kwon
et al., 2023b; llm d, 2025; NVIDIA, 2025) and thus represents the mainstream design choice, and
(ii) Our implementation builds on the SGLang codebase, which is the state-of-the-art open-source
LLM serving system, and uses L-LRU as its built-in eviction policy. Therefore, comparing against
L-LRU is both reasonable and representative, and also demonstrates the effectiveness of our proposed
method. For load balancing, we evaluate LBGR against three routing algorithms: (i) random routing,
(ii) round-robin routing (SGLang, 2025c), and (iv) cache-aware routing (SGLang, 2025a). Round-
robin routing cycles through workers in order, whereas cache-aware routing switches between the
highest-hit-rate and the least-loaded routing based on a predefined heuristic load-balance threshold.
These combinations yield three baselines: (1) Random+LRU, (2) Round-Robin+LRU, and (3)
Cache-Aware+LRU, where Cache-Aware+LRU is the current state-of-the-art.

Workloads. Following prior work (Zheng et al., 2024), we evaluate over 3 distinct prefix-sharing
workloads under limited cache memory, spanning both synthetic and real-world scenarios: (1)
Synthetic prefix-caching test using the Generated Shared Prefix (GSP) benchmark (SGLang, 2025b);
(2) Multi-turn conversations using real-world logs from ShareGPT (sha, 2023) and UltraChat (Ding
et al., 2023); (3) Long-document QA using Loogle (Li et al., 2024). We extend these benchmarks by
introducing variability and imbalance in prompt lengths to simulate realistic and challenging serving
conditions. The number of output tokens is varied from 4 to 128, with 4 used as the default.

For the GSP benchmark, we consider 128 groups, each containing 32 queries (a total of 4096 queries)
that share the same prefix and prompt length, differing only in their suffixes. To introduce prompt-
length imbalance, we assign lengths cyclically across groups using 5 values spanning 3 representative
scales: small (512 tokens), medium (1024 and 2048 tokens), and large (4096 and 8192 tokens).
All groups share the same prefix ratio, with 4 settings evaluated (0.3, 0.5, 0.7, 0.9) and 0.5 used as
the default. For the multi-turn conversation setting, we evaluate two benchmarks, ShareGPT and
UltraChat, using 128 clients, each maintaining an independent multi-turn conversation. To capture
the imbalance and dynamic nature of real-world conversations, we vary the number of conversation
rounds per client across {2, 4, 6, 8}, with each round introducing a 1024-token user input (padded
as needed to reach the target length). In the long-document QA task on the Loogle benchmark, we
randomly select 512 documents, each paired with the full set of questions. To reflect input-length
imbalance, we vary the document length by truncating each one to one of four target lengths: {1024,
2048, 4096, 8192} tokens.

Furthermore, we consider two distinct query arrival orders: (i) a random query order, and (ii) a
worst-case round-robin order. Unless otherwise specified, we use the random order as the default
setting. For the GSP and Loogle benchmarks, we additionally evaluate under a round-robin order,
where we iterate over groups (or documents) in a fixed cycle and issue one query per group/document
each turn, repeating this cycle until all queries have been dispatched. All workloads follow a Poisson
arrival process, and we vary the request rate from 4 to 20 requests/s, with 12 requests/s used as the
default.
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Figure 8: Results on Llama-3.1-70B-Instruct (Latency, TTFT, and Throughput normalized for
comparison). Rows correspond to: GSP (top), ShareGPT (second), UltraChat (third), and Loogle
(bottom). For the first four metrics, lower is better; for the last two, higher is better. Our algorithms
consistently outperform all baselines across all benchmarks and metrics.

Metrics. We report four main performance metrics: cache hit rate, throughput, latency, and time to
first token (TTFT). For latency and TTFT, we report median (P50) and P95. Furthermore, we provide
a fine-grained breakdown of runtime overhead, including the time cost for eviction operations in
L-LRU and RLT, and the routing operations of LBGR.

Implementation. Our implementation is based on the SGLang-0.4.6 codebase, a state-of-the-art
open-source LLM serving system. We implement RLT in Cython to minimize eviction overhead,
and integrate LBGR into SGLang’s existing Rust-based cache-aware routing framework as a drop-in
replacement policy. In the implementation of LBGR, we scale the overall time cost estimation to a
per-1k-token unit to improve regression stability and reduce sensitivity to noise. For service time
estimation (Ĉostij), we fix the cached token coefficient to αCACHED = 0 ms per 1k tokens and the
uncached token coefficient to αMISS = 1000 ms per 1k tokens. For the background decay thread,
we smooth the worker queue load using exponential decay with factor ρ = 31/32, updated every
20ms. For the online residual model, we use a 4-dimensional linear regression model with three input
features and one bias term, updated online with a learning rate of 0.992.

B ADDITIONAL EXPERIMENTAL RESULTS

Model Size & Architecture. We evaluate the generalizability of our algorithms across model
scales and architectures, using Llama-3.1-70B-Instruct as a representative large dense model and
Mixtral-8×B-Instruct-v0.1 as a sparse MoE model. As shown in Figure 8 and Figure 9, our methods
consistently outperform all baselines across all benchmarks and evaluation metrics. LBGR+RLT
achieves the lowest average latency and TTFT, reducing median latency by 5.46× and TTFT by
7.19× compared to the best baseline on Llama-3.1-70B-Instruct, and reducing both median latency
and TTFT by 24.2% on Mixtral. It also achieves the highest average cache hit rate and throughput on
both models. These results demonstrate the robustness and adaptability of our algorithms in serving
both large dense and sparse MoE models.

Shared-Prefix Ratio & Number of Shared-Prefix Queries. We evaluate the impact of two key
factors related to prefix sharing on algorithm performance: the shared prefix ratio (i.e., the fraction of
tokens shared across queries in a group, see Appendix A for details), and the number of shared-prefix
queries per group. As shown in Figure 10, when varying the shared prefix ratio from 0.3 to 0.9 on
the GSP benchmark, our method consistently achieves strong performance across all settings. Even
at low sharing (ratio = 0.3), our method outperforms all baselines by a clear margin, and at high
sharing (ratio = 0.9), it continues to maintain the advantage. We further vary the number of queries
per shared-prefix group from 4 to 128. Figure 11 shows that LBGR+RLT consistently outperforms all
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Figure 9: Results on Mixtral-8×7B-Instruct-v0.1 (Latency, TTFT, and Throughput normalized for
comparison). Rows correspond to: GSP (top), ShareGPT (second), UltraChat (third), and Loogle
(bottom). For the first four metrics, lower is better; for the last two, higher is better. Our algorithms
consistently outperform all baselines across all benchmarks and metrics.
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Figure 10: Results on Llama-3.1-8B-Instruct under GSP benchmark with varying shared prefix ratio.
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Figure 11: Results on Llama-3.1-8B-Instruct under GSP benchmark with varying number of queries,
where the x-axis denotes the number of queries per shared-prefix group.

baselines across almost all group sizes. As the number of queries per group increases, the performance
gap between LBGR+RLT and the baselines continues to widen. These results demonstrate the strong
robustness and adaptability of our algorithms under diverse prefix-sharing conditions.

Number of Output Tokens. Figure 12 presents the performance of our method, LBGR+RLT,
under varying maximum generated output lengths, ranging from 4 to 128 tokens. The results clearly
show that LBGR+RLT outperforms all baselines across all metrics and output lengths, further
demonstrating its strong performance under diverse output generation lengths.

Maximum Concurrent Queries. We vary the limit on the maximum number of concurrent queries
per worker from 1 to 64. As shown in Figure 13, LBGR+RLT significantly outperforms all baselines
across all settings, demonstrating its strong performance under varying batch sizes. Notably, Cache-
Aware+RLT consistently outperforms Cache-Aware+LRU across all metrics and settings, which
validates our theoretical analysis transferring in practice: Our eviction algorithm, RLT, achieves
a significantly better competitive ratio compared to L-LRU in both the single-query and batch
processing settings.

Performance of RLT on Single Worker. We evaluate the performance of RLT on a single worker
under the worst-case query arrival order in the GSP benchmark, using 64 shared-prefix groups with
32 queries each. Table 2 reports the normalized comparison between L-LRU and RLT, showing that
RLT reduces median latency and median TTFT by 45% and 47%, respectively. It also improves tail
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Figure 12: Results on Llama-3.1-8B-Instruct under GSP benchmark with varying maximum output
token lengths.
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Figure 13: Results on Llama-3.1-8B-Instruct under GSP benchmark with varying limits on the
maximum number of concurrent queries processed by each worker.
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Figure 14: Ablation results on Llama-3.1-8B-Instruct under GSP benchmark with varying decay
interval ∆t from 10ms to 80ms.

Table 2: Comparison of RLT and L-LRU on the single worker under round-robin query arrivals on
the GSP benchmark.

Algorithm Normalized
P50 Latency

Normalized
P95 Latency

Normalized
P50 TTFT

Normalized
P95 TTFT Hit Rate Normalized

Throughput
L-LRU 1.0 1.0 1.0 1.0 6.06 % 0.62
RLT 0.55 0.53 0.55 0.54 41.93% 1.0

performance, reducing P95 latency and P95 TTFT by 45% and 46%. Notably, RLT significantly
boosts cache hit rate, achieving a 6.92× higher hit rate and a 77.4% increase in throughput over
L-LRU.

Decay Interval ∆t. To investigate the impact of the decay factor used in LBGR, we vary the decay
interval ∆t from 10ms to 80ms. As shown in Figure 14, increasing ∆t leads to a drop in performance.
This result highlights the importance of the background decay thread: applying timely queue load
decay enables a more accurate reflection of the current query load state for each worker. Without
decay, or under a weak decay setting (i.e., a large ∆t), the estimated queue load becomes stale and
less responsive to recent traffic, which degrades routing decisions and overall performance.

C THEORETICAL PROOFS

C.1 COMPETITIVE RATIO OF L-LRU

Lemma 1. In RadixAttention, the amortized number of misses incurred by OPT in a phase ¶v with c
clean tokens is lower bounded by max{c/2, 1}.

Proof. We denote by d the number of tokens in the cache of OPT that do not appear in the cache of
L-LRU at the beginning of phase ¶v. Similarly, let e denote the number of tokens in the cache of
OPT that do not appear in the cache of L-LRU at the end of phase ¶v .

By definition, there are c clean tokens in ¶v, each of which is not present in the cache of L-LRU at
the start of the phase. Thus, each clean token must cause a cache miss for L-LRU.
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Now, consider the overlap between the caches of OPT and L-LRU at the start and end of ¶v .

At the start of ¶v. There are d tokens in OPT’s cache that are not in L-LRU’s cache. Therefore, at
least c− d of the clean tokens are also not present in OPT’s cache, which means OPT incurs at least
c− d misses during this phase.

At the end of ¶v. There are e tokens in OPT’s cache that are not in L-LRU’s cache. Two possible
types of tokens may remain in L-LRU’s cache: (i) ghost tokens that in the first path Γj processed in
¶v that were not accessed at all during ¶v but remained in the cache, and (ii) new tokens accessed
during ¶v . The occurrence of the first type is because the phase boundary may split the first path Γj

between ¶v−1 and ¶v . Due to the leaf-based eviction behavior of L-LRU, the prefix of Γj (in phase
¶v−1) may still exist in the cache even if not accessed in ¶v, while its suffix (in ¶v) will be evicted
first, as evictions target leaf tokens first. Since the entire path Γj must exist in the cache for both
OPT and L-LRU after being processed, we denote a as the number of the prefix tokens of Γj , and b
as the number of its suffix tokens (new tokens).

Note that the ghost tokens can only exist in the first path Γj at the end of ¶v. Suppose that u ghost
tokens from paths other than Γj exist in the cache. Then L-LRU will only be able to hold Bi − a− u
new tokens, requiring space for a+ u more tokens. Since ghost tokens are least recently used, they
will be evicted first to make room for the new tokens. As a result, L-LRU will evict u such tokens
from other paths and a from Γj , leaving only b of Γj (either ghost or new tokens) in the cache.

We then analyze the cache state of OPT. The e different tokens in OPT’s cache but not in L-LRU’s
fall into three types: (i) w tokens that never exist in the cache of L-LRU from the start to the end of
¶v; (2) y new tokens from Γj that were evicted by L-LRU; and (3) z ghost tokens from Γj that were
evicted by L-LRU. Thus, we have e = w + y + z. Consider the following three cases:

• Case1: When y > 0. This indicates that OPT contains the full a ghost tokens. Hence,
OPT holds w + a tokens that never appear during ¶v, leaving only Bi − (w + a) slots to
process Bi new tokens. Therefore, it must occur at least w + a misses. Since at most a
tokens from Γj are evicted by L-LRU, we have y + z ≤ a. Thus, OPT must occur at least
w + a ≥ w + y + z ≥ e misses.

• Case 2: When y = 0 and z > 0. Since z > 0, it indicates that a > b and there are only b
ghost tokens left in the cache of L-LRU (i.e., b = a+b−a), and therefore, OPT holds a total
b+z ghost tokens in the cache. Therefore, it ocurrs at least w+b+z ≥ w+y+z = w+z = e
misses.

• Case 3: When y = 0 and z = 0. Then, we have w = e, and OPT occurs at least e misses.

Combining the above, the number of misses incurred by OPT in phase ¶v is at least max{c−d, e} ≥
1
2 (c− d+ e). Summing over all phases, the amortized number of misses incurred by OPT in a phase
¶v is at least c/2. Finally, since OPT must incur at least one miss per phase (because a cache of size
Bi cannot hold all Bi + 1 different tokens), the amortized number of misses per phase is at least
max{c/2, 1}.

Lemma 2. For any phase ¶v with c clean tokens, the number of misses incurred by L-LRU under
single-query processing is at most Bi − L+ c, assuming no old token reappears after eviction.

Proof. If c ≥ L, then Bi − L + c ≥ Bi. Since misses only occur for new tokens and there are at
most Bi new tokens in a phase, the maximum number of misses for L-LRU in this case is Bi, which
is bounded by Bi − L+ c.

If c < L, we analyze the maximum number of new tokens that can incur misses. Consider the first
path Γj after processing the initial clean tokens c1.

As shown in Figure 15 (a), if Γj is completed during the phase, there are at least L − c new tokens
that must be processed that do not incur any misses. This is because Γj consists of three components:
(i) tokens already stored in the cache, (ii) tokens that might be evicted while loading the initial clean
tokens (at most c1), and (iii) its own clean tokens (c2). The second and third parts (which will incur
misses) together account for at most c tokens, and the first part, at least L − c tokens, will not result
in additional misses. Then, the total number of misses of L-LRU is bounded by Bi − L+ c.
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Figure 15: Visualizing key ideas in theoretical proofs

If Γj is not completed during the phase, as shown in Figure 15 (b), the maximal number of misses for
L-LRU is y + c1 + c2 = y + c, where y is the number of prefix tokens of Γj that initially exist in the
cache but are evicted when loading the initial clean tokens. Assume there are w prefix tokens from
the initial clean tokens, and z other distinct tokens remaining in the cache that are on the same paths
as the initial clean tokens and Γj . Then, we have

y ≤ Bi − z − (w + c1) (7)

where c1 is the initial clean tokens. Therefore, the total number of misses can be bounded as

y + c ≤ Bi − z − (w + c1) + c ≤ Bi − z + c− L ≤ Bi + c− L (8)

where it follows from z ≥ 0 and w + c1 ≥ L.

Therefore, the maximal total number of misses of L-LRU is bounded by Bi −L+ c assuming that no
old token reappears after being evicted.

Lemma 3. Under single-query processing in L-LRU, no old token reappears in any ¶v after eviction.

Proof. Let us analyze the first occurrence of such a case for an old token. This token can be either
a leaf or an internal token in its path Γj . As shown in Figure 15 (c), assume this old token has y
prefix tokens, and z tokens have been accessed among these y prefix tokens during this phase. This
indicates that at least Bi − y + z new tokens must have been accessed by the time the old token
is evicted. To see this, note that if this token is being evicted, all other leaf tokens currently in the
cache must have been accessed more recently. Furthermore, because tokens within the same path are
processed consecutively, the prefix tokens of these other leaf tokens are also more recently accessed.

Since z of the old token’s prefix tokens have already been visited, at least Bi− y+ z new tokens have
been accessed at the time the old token is evicted. When revisiting this old token, its y prefix tokens
must be accessed again, of which z have already been processed. Thus, there are y − z new tokens
to be assessed before the revisit. In total, this means Bi − y + z + y − z = Bi tokens are accessed
before the old token is revisited. Therefore, the phase ¶v ends here, and case (2) cannot occur.

Theorem 4 (Single-Query). Under single-query processing setting, the competitive ratio of L-LRU
in RadixAttention on worker mi with cache capacity Bi is upper bounded by (Bi−L+2) and lower
bounded by (Bi − L+ 1), where L denotes the minimum length over all Γj ∈ Q̃.

Proof. For the first phase ¶1, since the cache is initially empty, OPT behaves the same as L-LRU.
For any subsequent phase ¶v (v > 1), we analyze the following two bounds:

Upper Bound. First, note that OPT incurs at least max{c/2, 1} misses in any phase ¶v if there are c
clean tokens in that phase, according to Lemma 1. Furthermore, by the definition of a phase, where
each phase consists of Bi distinct tokens, the start of each phase is always associated with a path that
ends with the clean tokens.

Next, let us analyze the maximum number of misses that L-LRU can incur for a given phase ¶v with
c clean tokens. A miss can occur in one of two cases: (1) a new token appears, or (2) an old token
appears after being evicted.
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According to Lemma 3, case (2) cannot occur during a phase, so according to Lemma 2, the total
number of misses of L-LRU is bounded by Bi − L+ c.

Therefore, the upper bound of the competitive ratio of L-LRU is bounded by

max
c

{
Bi − L+ c

max{c/2, 1}

}
= Bi − L+ 2 (9)

Lower Bound. We construct a set of paths that share the same L − 1 prefix but with only one leaf
token different. We then repeatedly query Γ1,Γ2, . . . ,ΓBi−L+2 in a loop. In this scenario, OPT can
only incur 1 miss, while L-LRU incurs Bi −L+ 1 misses in each phase. Therefore, the lower bound
for the competitive ratio of L-LRU is Bi − L+ 1.

Based on the proof of single-query processing, we introduce the proof of batch processing

Theorem 5 (Batch). Consider the continuous batch setting with batch size β. Let Lmax and L
denote the maximum and minimum lengths over all Γj ∈ Q̃. If βLmax ≤ Bi, where Bi is the cache
capacity of worker mi, and all queries in a batch are distinct, then, the competitive ratio of L-LRU in
RadixAttention is upper bounded by (Bi − L− β + 3) and lower bounded by (Bi − L− β + 2).

Proof. We assume that βLmax ≤ Bi, which ensures that the cache can always hold β queries
simultaneously at any point during generation. Based on this, there will be no abnormal evictions,
such as evicting the KV values of tokens that belong to queries currently being generated. We now
consider the following two bounds.

Upper Bound. According to Theorem 4, consider the scenario where case (2) does not occur. Let
us examine the first complete batch Sj that follows the initial clean tokens within any phase ¶v.
Following the same analysis, if c ≥ L + β − 1, we have Bi − L − β + c + 1 ≥ Bi, so the total
number of misses is bounded by Bi − L− β + c+ 1. If c < L+ β − 1, we analyze the maximum
number of new tokens that can incur misses. If Sj is completed during the phase, there are at least
L+ β − 1− c new tokens that must be processed but do not incur any misses. This is because the
tokens in Sj can be categorized into three components: (i) tokens already present in the cache, (ii)
tokens that may be evicted when loading the initial clean tokens and will incur misses when revisited,
and (iii) its own clean tokens that incur misses. The first part, which does not contribute to additional
misses, contains at least L+ β − 1− c tokens. This follows from the fact that the minimal number of
distinct tokens in a batch is L+ β − 1. Therefore, the total number of misses of L-LRU is bounded
by Bi − L− β + 1 + c.

If Sj is not completed during the phase, that is, if any queries in Sj are not finished, then the batch
is considered unfinished. In this case, the maximal number of misses can be represented as y + c,
where y is the number of prefix tokens of Sj that initially reside in the cache but are evicted when
loading the initial clean tokens. This is because, in the continuous batch setting, new queries can be
regarded as incurring misses and as a continuation of those that have already been completed. Let
w be the number of prefix tokens of the initial clean tokens, and let z denote the number of other
distinct tokens remaining in the cache that are on the same paths as the initial clean tokens and Sj .
Thus, the total number of misses is bounded as follows:

y + c ≤ Bi − z − (w + c1) + c ≤ Bi − z + c− L+ 1− β ≤ Bi + c− L+ 1− β (10)

where the inequalities follow from z ≥ 0 and w + c1 ≥ L− 1 + β.

Therefore, when case (2) does not occur, the total number of misses of L-LRU is bounded by
Bi − L− β + 1 + c.

Now, consider the first time situation (2) occurs, where a miss is caused by revisiting an old token that
has been evicted. It is possible that there are multiple old tokens involved, with at most β different
old tokens evicted and revisited simultaneously. Let us focus on the oldest among them, i.e., the old
token that was visited earliest during the phase. Applying the same analysis as in Theorem 4 to this
oldest token, we conclude that, upon revisiting, at least Bi new tokens must have been accessed since
it was evicted. Therefore, the phase ¶v ends here, and case (2) cannot occur again within the same
phase.
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For OPT, it incurs at least max{c/2, 1} misses, according to Lemma 1. Thus, the competitive ratio
of L-LRU is upper-bounded by

max
c

{
Bi − L− β + c+ 1

max{c/2, 1}

}
= Bi − L− β + 3 (11)

Lower Bound. We construct Bi −L+ 2 paths that share the same L− 1 tokens prefix but with only
one leaf token different, {Γ1,Γ2, . . . ,ΓBi−L+2}. Furthermore, we construct Bi−L−β+3 batches,
where u-th batch contains paths {Γ1,Γ2, . . . ,Γβ−1,Γu+β−1}. We can do the following querying:
1, 2, . . . , Bi − L − β + 3 batch in a loop. Therefore, for each phase, OPT can only incur 1 miss,
whereas the L-LRU incurs Bi − L − β + 2 misses per phase. Therefore, the lower bound for the
competitive ratio of L-LRU is Bi − L− β + 2.

C.2 COMPETITIVE RATIO OF RLT

Theorem 6 (Single-Query). RLT is Θ(log(Bi − L))-competitive on worker mi with cache capacity
Bi under single-query processing setting, where L is the minimal length over all Γj ∈ Q̃.

Proof. First, by Lemma 1, any algorithm, including OPT, incurs an amortized number of misses of
at least max{c/2, 1} per phase. We now bound the expected number of misses incurred by RLT in a
given phase. Following the analysis in (Fiat et al., 1991), we partition the Bi new tokens into two
groups: (1) clean tokens, which are not present in RLT’s cache at the start of phase ¶v , and (2) stale
tokens, which are present in the cache at the beginning of ¶v but may be evicted during the phase.

In this setting, a miss can occur either when accessing a clean token or when accessing a stale
token that has been evicted earlier in the phase. To maximize the number of misses, an adversarial
request sequence first accesses all clean tokens, causing the eviction of some stale tokens. Subsequent
requests to these evicted stale tokens could then incur the maximal number of additional misses. This
is because accessing all clean tokens first increases the chance that the stale tokens will be evicted,
therefore increasing the number of misses.

The number of misses incurred by clean tokens is clearly c. For each stale token, the expected cost of
a miss equals the probability that it has been evicted by the time it is accessed. This probability is
maximized at c/s, where c is the number of clean tokens (i.e., the maximum number of evicted stale
tokens at any moment during the phase), and s is the number of stale tokens that have not yet been
accessed at that point.

According to Theorem 4, the total number of misses in a phase is upper bounded by min{Bi −
L + c,Bi}. Therefore, the number of stale tokens that may incur a miss in RLT is at most n =
min{Bi − L+ c,Bi}. Hence, the total expected number of misses caused by stale tokens is upper
bounded by:

n−c−1∑
u=0

c

n− u
= c(Hn −Hc) (12)

where H represents the Harmonic number.

Then, the expected number of misses incurred by RLT in a phase is upper bounded by c+c(Hn−Hc).
Accordingly, the competitive ratio of RLT is bounded by:

max
c

{
c+ c(Hn −Hc)

max{c/2, 1}

}
(13)

Assuming L ≥ 2, which holds in most practical LLM-serving scenarios, the above expression yields
a competitive ratio of:

Θ(log(Bi − L+ 2)) = Θ (log(Bi − L)) (14)

Therefore, RLT is Θ(log(Bi−L))-competitive on worker i with cache capacity Bi under single-query
processing.

Corollary 7 (Batch). RLT is Θ(log(Bi−L− β))-competitive on worker mi with capacity Bi under
continuous batching setting, where L is the minimal length over all Γj ∈ Q̃, and β is the batchsize.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. Following the same analysis in Theorem 6, we have that the total number of misses in a phase
is upper bounded by min{Bi −L− β + c+ 1, Bi}. Therefore, n = min{Bi −L− β + c+ 1, Bi}
gives the maximum number of stale tokens that may result in misses in RLT. Accordingly, the total
expected number of misses caused by stale tokens is also upper-bounded by:

n−c−1∑
u=0

c

n− u
= c(Hn −Hc) (15)

Then, the competitive ratio of RLT is similarly bounded by:

max
c

{
c+ c(Hn −Hc)

max{c/2, 1}

}
(16)

With L ≥ 2, we have the following competitive ratio:

Θ(log(Bi − L− β + 3)) = Θ (log(Bi − L− β)) (17)

Therefore, RLT is Θ(log(Bi − L − β))-competitive on worker i with cache capacity Bi under
continuous batching generation.

Next, we show that no dependent algorithm can achieve a competitive ratio better than Θ(log(Bi−L))
in the single-query processing setting, and Θ(log(Bi − L− β)) in the continuous batching setting.
Theorem 8 (Single-Query). No randomized eviction algorithm can achieve a competitive ratio better
than Θ(log(Bi−L)) on worker mi with cache capability of Bi in the single-query processing setting,
where L denotes the minimal length over all Γj ∈ Q̃.

Proof. To establish the lower bound, we apply Yao’s principle (Yao, 1977). Specifically, we first
show that there exists a distribution of input query paths {x1, x2, . . . , xn} such that any deterministic
eviction algorithm D incurs a competitive ratio of at least HBi−L+2.

The construction is as follows: each path shares a common prefix of length L−1 but differs in the last
tail token. We sample each query path Γj uniformly at random from the index set j ∈ [Bi − L+ 2],
where [Bi − L+ 2] = {1, . . . , Bi − L+ 2}. Under this distribution, the expected number of cache
misses incurred by any D is:

E[MissD] = Bi +
n− (Bi − L+ 1)

Bi − L+ 2
≥ n

Bi − L+ 2
(18)

where the first Bi terms account for the initial misses for Bi tokens, incurred by the (Bi − L+ 1)
distinct query paths, the second term corresponds to subsequent misses, where each of the remaining
n− (Bi − L+ 1) query paths has a probability 1

Bi−L+2 of incurring a miss.

Next, by Lemma 1, we have a lower bound on the number of misses incurred by OPT:

MissOPT ≥ V (max{c/2, 1}) ≥ V (19)

where V is the number of phases in the query sequence. When V is a random variable, it follows that
E[MissOPT] ≥ E[V ].

Since OPT always evicts the token whose next use is furthest in the future, it will evict the tail token
furthest in the future. Suppose such a token is evicted at time w and reappears at time y. Then, there
will be no cache misses between w and y. This is because there are only Bi − L+ 2 distinct query
paths, and the cache can hold at most Bi − L + 1 of them, which means only the evicted path is
temporarily excluded. Furthermore, any other tail token must appear at least once between w and
y; otherwise, it would have been a better candidate for eviction due to its more distant reuse, which
contradicts the eviction rule of OPT. Thus, the expected number of queries between two consecutive
misses (i.e., between w and y) follows the structure of the classical coupon collector’s problem:

E[y − w] = (Bi − L+ 2)

Bi−L+2∑
u=1

1

u
= (Bi − L+ 2)HBi−L+2 (20)
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which leads to
E[MissOPT] =

n

(Bi − L+ 2)HBi−L+2
(21)

Therefore, the competitive ratio of any deterministic algorithm D is lower bounded by:

E[MissD]

E[MissOPT]
= HBi−L+2 (22)

Finally, we leverage Yao’s principle to establish a lower bound for the competitive ratio of any
randomized algorithm. Let Xn denote the random variable representing the input query paths
{xj}nj=1. Then, we have

EXn [MissD(Xn)] ≥ HBi−L+2EXn [MissOPT(X
n)] (23)

We assume D is the distribution over the deterministic algorithms. Taking the expectation over
D ∼ D, we have

EXnED[MissD(X
n)] ≥ HBi−L+2EXn [MissOPT(X

n)] (24)

By the definition of expectation, it indicates that there exists a specific sequence of input paths
{x∗

j}nj=1, such that
ED[MissD({x∗

j})] ≥ HBi−L+2MissOPT({x∗
j}) (25)

Therefore, for any randomized eviction algorithm, its competitive ratio under the single-query
processing setting is lower bounded by:

HBi−L+2 = Θ(log(Bi − L)) (26)

Corollary 9 (Batch). No randomized eviction algorithm can achieve a competitive ratio better than
Θ(log(Bi − L− β)) on worker mi with cache capability of Bi in the continuous batching setting,
where L denotes the minimal length over all Γj ∈ Q̃ and β is the batch size.

Proof. Following the analysis in Theorem 8, we first construct Bi − L + 2 distinct paths
{Γ1,Γ2, . . . ,ΓBi−L+2}, each sharing the same L − 1 tokens prefix but differing in their final
(tail) token. Based on these paths, we define Bi − L− β + 3 distinct batches, where the u-th batch
consists of the paths {Γ1,Γ2, . . . ,Γβ−1,Γu+β−1}. Now consider the given query batch sequence,
{x1, x2, . . . , xn}, where each xi is a batch picked uniformly at random from the total Bi−L−β+3
batches. Then, the expected number of misses incurred by any deterministic algorithm D is then
lower bounded by:

E[MissD] = Bi +
n− (Bi − L− β + 2)

Bi − L− β + 3
≥ n

Bi − L− β + 3
(27)

where this follows from the fact that at least Bi − L− β + 2 distinct batches are required to fill an
initially empty cache.

According to Lemma 1 and Theorem 8, the expected number of misses incurred by OPT satisfies

E[MissOPT] ≥ E[V (max{c/2, 1})] ≥ E[V ] (28)

where V is the number of phases for the given queries.

Next, note that under the given query batches, OPT only evicts one token at a time. This is because
each batch contains exactly one unique tail token from the last path Γu+β−1, and this setup mirrors the
single-query setting analyzed in Theorem 8. Therefore, by applying the same analysis, the expected
number of tokens between any two misses (say, between w and y) follows:

E[y − w] = (Bi − L− β + 3)

Bi−L−β+3∑
u=1

1

u
= (Bi − L− β + 3)HBi−L−β+3 (29)

which leads to
E[MissOPT] =

n

(Bi − L− β + 3)HBi−L−β+3
(30)
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Therefore, the competitive ratio of any deterministic eviction algorithm D in the continuous batching
setting is lower bounded by:

E[MissD]

E[MissOPT]
= HBi−L−β+3 (31)

Finally, by Yao’s principle, we conclude that for any randomized eviction algorithm under the
continuous batching setting, its competitive ratio is at least

HBi−L−β+3 = Θ(log(Bi − L− β)) (32)

D EXTENDED RELATED WORK

KV Cache Optimization. The computational complexity of Large Language Models (LLMs) in
token generation scales quadratically with sequence length (Jaillet et al., 2025; Ainslie et al., 2023;
Vaswani et al., 2017). KV caching is a fundamental optimization that mitigates this complexity by
storing the computed KV pairs for past tokens and reusing them for future queries (Kwon et al.,
2023a; Lee et al., 2024; Sheng et al., 2024). However, the limited memory capacity of KV caches
remains a bottleneck for long-context generation, where storing the entire historical token context is
impractical (Zhang et al., 2023; Xiao et al., 2023). Researchers, therefore, have explored memory
reduction through quantization techniques that compress cached KV values (Lin et al., 2016; Wu
et al., 2020; Zhou et al., 2018; Jiang & Agrawal, 2018). This involves converting the full-precision
values (e.g., FP16) stored in the cache to lower-precision integer formats (e.g., INT8) (Yao et al.,
2022; Sheng et al., 2023; Hooper et al., 2024). However, outlier KV values often lead to significant
performance degradation during quantization (Dettmers et al., 2022; Xiao et al., 2024). This has
motivated specialized techniques such as SmoothQuant (Xiao et al., 2024) and KVQuant (Hooper
et al., 2025), which smooth or isolate outliers to improve quantization robustness.

KV Cache Management. Recent work on KV cache management falls into two complementary
strands. Context-aware methods leverage model-driven signals (e.g., attention weights or token
importance) to score tokens, retaining only a fixed-budget subset and evicting the rest (Zhang et al.,
2023; Xiao et al., 2023; Liu et al., 2023). Representative examples include H2O, which preserves
Heavy-Hitters with high attention scores (Zhang et al., 2023), and StreamingLLM, which retains
initial attention sink tokens that anchor model stability (Zhang et al., 2023; Xiao et al., 2023). While
effective at reducing memory, these strategies risk performance degradation on tasks requiring
high-fidelity recall, since pruning may inadvertently discard critical long-range context. Another
strand is system-oriented and context-agnostic, focusing on improving KV-cache utilization through
redesigned memory layouts and management interfaces (Kwon et al., 2023b; Zheng et al., 2024).
vLLM’s PagedAttention virtualizes the cache into fixed-size pages to reduce fragmentation and
support efficient sharing under tight GPU memory (Kwon et al., 2023b), while RadixAttention
uses a radix tree over token prefixes to enable prefix reuse and fine-grained allocation/eviction for
high-throughput serving (Zheng et al., 2024). However, those systems rely primarily on LRU-based
policy for KV cache eviction, which is fragile under adversarial or bursty query patterns and can yield
negligible hit-rate improvements in the worst case. This reliance, coupled with the lack of formal
analysis for ordered, prefix-sharing KV cache structures, reveals a gap between practical designs and
theoretical understanding in KV cache eviction.

KV Cache-Aware Load Balancing. In multi-LLM serving, balancing queue load while preserving
KV reuse gives rise to the problem of KV cache–aware load balancing (Sun et al., 2024; Zheng
et al., 2024; Lee et al., 2024). Most systems tackle this with heuristics that trade off cache affinity
against query load (NVIDIA, 2025; Zheng et al., 2024; llm d, 2025). SGLang, for example, employs
a rule-based strategy that switches between highest-hit-rate routing and least-loaded routing based on
a predefined load-balance threshold (Zheng et al., 2024). Other systems instead adopt a static linear
scoring function that combines prefix-match benefits with current load to guide routing (NVIDIA,
2025; llm d, 2025). SkyLB focuses on decentralized deployments, employing per-region coordinators
and a multi-region prefix trie to preserve KV locality across regions (Xia et al., 2025). While practical,
these methods remain largely heuristic and lack formal modeling for the underlying KV cache-aware
load balancing problem, leaving them vulnerable to suboptimal performance under dynamic query
patterns.
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E DISCUSSION ON GLOBAL RADIX TREE

In our implementation of LBGR, we directly use the existing global radix tree in SGLang to estimate
the cache hit rate for each worker for an incoming query. This global radix tree caches queries at
the character level, avoiding tokenization and significantly reducing runtime overhead. It maintains
per-worker cache state, where each worker corresponds to a subtree consisting of multiple root-to-leaf
character paths, and each path may be associated with multiple workers simultaneously. For a new
query, it performs a longest-prefix match against the subtree of each worker and estimates the hit
rate based on the character-level match. This estimate may deviate from the true cache hit rate based
on the worker’s token-level cache due to two factors: (i) a mismatch between character-level and
token-level granularity, and (ii) staleness or inconsistency in the shared tree caused by concurrent
updates. The same global radix tree is also used across all baselines in our experiments, including the
state-of-the-art method. A detailed investigation of this structure and its associated biases is beyond
the scope of this work and is left for future research.

F LLM USAGE

We used LLMs only for language polishing and grammar correction. All technical content, theoretical
analysis, algorithm design, and experimental results were developed independently by the authors.
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