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ABSTRACT

Reliable datasets and high-performance models work together to drive significant
advancements in protein representation learning in the era of Artificial Intelli-
gence. The size of protein models and datasets has grown exponentially in recent
years. However, the quality of protein knowledge and model training has suffered
from the lack of accurate and efficient data annotation and cleaning methods.
To address this challenge, we introduce ProtAC, which corrects large Protein
datasets with a scalable Automatic Cleaning framework that leverages both se-
quence and functional information through multimodal learning. To fulfill data
cleaning, we propose the Sequence-Annotation Matching (SAM) module in the
model, which filters the functional annotations that are more suitable for the cor-
responding sequences. Our approach is a cyclic process consisting of three stages:
first pretraining the model on a large noisy dataset, then finetuning the model on a
small manually annotated dataset, and finally cleaning the noisy dataset using the
finetuned model. Through multiple rounds of “train-finetune-clean” cycles, we
observe progressive improvement in protein function prediction and sequence-
annotation matching. As a result, we achieve (1) a state-of-the-art (SOTA) model
that outperforms competitors with fewer than 100M parameters, evaluated on mul-
tiple function-related downstream tasks, and (2) a cleaned UniRef50 dataset con-
taining ∼50M proteins with well-annotated functions. Performing extensive bi-
ological analysis on a cleaned protein dataset, we demonstrate that our model is
able to understand the relationships between different functional annotations in
proteins and that proposed functional annotation revisions are reasonable.
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Figure 1: (a) Schematic diagram of recursive data cleaning for protein function annotation and
expert-curated ground-truth annotations. We take protein ID Q8I4R4 as an example. This cycle is
repeated many times, and the modified annotations are more consistent with the results of manual
screening by biologists than the original annotations in the database. (b) Performance of ProtAC and
other models with less than 100M parameters on downstream tasks related to function prediction.
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1 INTRODUCTION

Proteins, central components of cellular machinery, have been the focus of extensive experimental
and computational approaches aimed at elucidating their functions. The advent of high-throughput
sequencing technologies (Reuter et al., 2015) has led to a significant increase in the number of
sequenced genomes in past two decades, resulting in the creation of extensive protein databases.
These databases serve as training resources for the advancement of deep learning in protein research
(Chen et al., 2024; Elnaggar et al., 2021; Lin et al., 2023; Ferruz et al., 2022; Nijkamp et al., 2023).
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Figure 2: Model architecture and training objec-
tives of ProtAC.

Language models (LM) are highly valued for
their effectiveness in natural language process-
ing, and a specialized version known as Protein
Language Model (PLM) has been extensively
utilized in protein representation learning. This
variant leverages protein sequences as training
data, as amino acid sequences serve as the fun-
damental coding for proteins. PLMs demon-
strate exceptional capabilities in comprehend-
ing protein functions (Rives et al., 2021; Bran-
des et al., 2022; Meier et al., 2021; Vig et al.,
2020) and structures (Rives et al., 2021; Lin
et al., 2023; Rao et al., 2020; Vig et al.,
2020), thereby facilitating de novo protein de-
sign (Verkuil et al., 2022).

Recent studies (Xu et al., 2023; Zhang et al.,
2023b) have demonstrated that PLMs leveraging multimodal information, such as sequence, func-
tional annotation, and structure data from proteins, exhibit superior capabilities compared to models
pretrained solely on sequences. However, despite significant advancements in computational meth-
ods, particularly in deep learning, which have achieved near laboratory-level precision in protein
structure prediction (Jumper et al., 2021; Baek et al., 2021; Abramson et al., 2024) and expanded
the structural coverage of the known protein-sequence space (Varadi et al., 2022), accurate protein
function prediction remains a challenge. High-quality protein structure databases (Burley et al.,
2017) and biological knowledgebases (Boutet et al., 2007) are still relatively limited in scale com-
pared to the vast amount of validated sequences available. Existing automatic annotation methods,
primarily statistical and rule-mining-based approaches (Consortium, 2019) applied to large-scale
protein datasets, often face challenges when applied to large-scale protein datasets due to the com-
plex mapping between protein sequences and functions, resulting in inaccuracies in protein property
annotations. These issues12 not only impact data quality but also introduce uncertainty into subse-
quent research endeavors (MacDougall et al., 2020; Aleksander et al., 2023). Therefore, the identi-
fication and removal of noise and errors to enhance the accuracy and reliability of protein datasets
are crucial in the fields of bioinformatics and proteomics. Effective solutions are urgently needed to
address these challenges.

Building upon the latest advancements in protein multimodal learning methods (Xu et al., 2023;
Brandes et al., 2022), we propose an innovative learning framework that integrates multiple modal-
ities of protein data, including sequence and functional information. Drawing inspiration from the
concept of matching in Vision-Language Learning (Li et al., 2021; 2022), our framework effec-
tively discerns between reliable and unreliable information within large-scale protein datasets. Our
approach introduces a novel multi-round training strategy, where each round involves model pre-
training on a noisy dataset followed by finetuning on a manually curated dataset. Subsequently, the
model is tasked with cleansing the noisy dataset by predicting and selecting credible protein func-
tion information. The cleaned dataset is then recursively utilized in the next round of pretraining.
A visual representation of the concept of recursive data cleaning for protein datasets is depicted
in Fig.1a. This iterative process enables the replacement of noisy datasets in subsequent rounds,
leading to mutual enhancement of both dataset quality and model performance.

1https://www.uniprot.org/help/evidences
2https://www.ebi.ac.uk/QuickGO/term/ECO:0007669
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Our study explores efficient model training approaches and finds that using pretrained weights is
more effective than training from scratch for enhancing model training and dataset quality. Models
with larger parameter sizes outperform smaller models in functional prediction tasks and dataset
quality improvement. Our model achieves SOTA results in protein function prediction tasks, sur-
passing models with similar parameter sizes (Fig.1b) and remaining competitive against larger
PLMs. We evaluate the data cleaning capabilities of our model using the newly updated SwissProt
dataset, which experts have validated but the model has never seen. This evaluation shows that our
model has exceptional anomaly detection capabilities and greatly improves the accuracy of protein
function prediction, nearly matching the proficiency of human biologists. Furthermore, we conduct
a detailed biological analysis of the cleaned dataset, successfully verifying that our modifications to
noisy protein information are biologically meaningful and align with biological principles.

2 RELATED WORK

Protein Multimodal Learning Mutual understanding of sequence and function plays a signif-
icant role in exploring biological behaviors. Recently, multimodal models have been developed
to integrate information from protein sequence and function. ProteinBERT (Brandes et al., 2022)
adopts the classical BERT architecture and leverages local attention to integrate protein sequence
information and utilizes global attention to learn function information; OntoProtein (Zhang et al.,
2022) learns protein representations under the context of a knowledge graph, which contains GO
text description and related protein information; ProGen (Madani et al., 2020) incorporates protein
function labels to generate functional proteins, but it lacks the consideration the role that biomedical
text can play. ProtST (Xu et al., 2023) enhances both representation learned by protein sequence
and biomedical texts.

Protein Functional Annotation Prediction The accuracy of protein function prediction is an im-
portant reflection of PLM capabilities. Gene Ontology (GO) (Ashburner et al., 2000) annotations
provide a detailed description of protein functions in biological systems. Predicting GO annotations
for uncharacterized proteins is crucial for exploring unknown protein landscapes. In each Critical
Assessment of Functional Annotation (CAFA), several noteworthy protein GO annotation prediction
models appear (Yao et al., 2021; Wang et al., 2023; Kulmanov et al., 2018; Zhou et al., 2019), show-
ing significant progress. AnnoPRO (Zheng et al., 2023) combines protein sequence representation
with GO functional family information to capture the intrinsic correlation between protein features
and significantly improve the annotation performance of low-abundance protein families.

Knowledge Distillation and Data Cleaning Knowledge Distillation (KD) (Hinton et al., 2015)
aims to improve the performance of student models by distilling knowledge from teacher models.
Different from most existing KD methods, which simply force the student to have the same cat-
egory predictions as the teacher, Li et al. (2022) proposed CapFilt, which can be interpreted as a
more effective way to perform KD in the context of Vision-Language Pretraining (VLP), where the
captioner distills knowledge through semantically rich synthetic captions, while the filter distills
knowledge by removing noisy captions. We apply this idea to large protein dataset cleaning for the
first time. See more related work in Appendix A.

3 METHOD

We present ProtAC, an automatic data cleaning framework for large protein datasets that leverages
unified knowledge from protein sequence and functional annotations. In this section, we first intro-
duce our model architecture and its training objectives, and then describe our data cleaning strategy.

3.1 MODEL ARCHITECTURE

Overview: Our model structure consists of four main components: Sequence Encoder, Annotation
Encoder, Annotation Decoder, and SAM Filter (the model architecture is shown in Fig.2). As a
versatile learning framework, the first three main modules can be easily replaced with mainstream
PLMs, which greatly expands the scope of further model design and lays the foundation for inspiring
future directions of protein multimodal representation learning.
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Figure 3: Data cleaning workflow of ProtAC. The left part of the figure outlines the cleaning process,
and the right half of the figure details the caption process.

Sequence Encoder: We investigate two widely used PLMs: ESM2 (Lin et al., 2023), one of the
current SOTA sequence-only PLMs, known for its superior protein feature extraction capabilities,
making it a common choice for protein representation learning, especially in multimodal learning
tasks; ProteinBERT (Brandes et al., 2022), a multimodal PLM based on the BERT architecture,
which captures sequence information through its local part and functional information through its
global part, with a cross-attention mechanism promoting the interaction between the two parts. For
our Sequence Encoder, we use the local part of ProteinBERT and ESM2. Input sequence is partially
masked and tokenized.

Annotation Encoder and Decoder: We modify the global part of ProteinBERT as our Annota-
tion Encoder. The input annotation information in the form of a fixed-size binary vector is partially
masked and encoded into the annotation embedding. The sequence information is injected by in-
serting an additional cross-attention layer between the feed-forward networks of each block of the
Annotation Encoder. The output embedding is used as a multimodal representation of the sequence-
annotation pair. Annotation Decoder adopts the same structure as Annotation Encoder. The in-
put annotations (all masked to zero vectors) are combined with the sequence information injected
through the cross-attention layer to predict the correct annotation list.

Sequence-Annotation Matching (SAM) Filter: This module consists of a simple linear layer that
can identify whether the input sequence and annotation match by processing the fused features of
the sequence-annotation pair. The output of the SAM filter [Punmatch, Pmatch] is a two-dimensional
vector where the two dimensions represent the probability of a match and the probability of a mis-
match of the input sequence and annotation pair, respectively.

3.2 UPSTREAM TASKS AND OBJECTIVES

Overview: We jointly optimize three objectives during training, one understanding-based objec-
tive and two generation-based objectives, and compute three losses to activate different modules, as
shown below.

Masked Language Modeling (MLM) activates the Sequence Encoder. It aims to predict the
identity of amino acids that have been randomly masked out of protein sequences:

LMLM = −
∑
i∈M

log p(xi|x\M ), (1)

where for a randomly generated mask M that includes 15% of positions i in the sequence x, the
model is tasked with predicting the identity of the amino acids xi in the mask from the surrounding
context x\M , excluding the masked positions. This masked language modeling objective (Devlin
et al., 2018) causes the model to learn dependencies between the amino acids. Although the training
objective itself is simple and unsupervised, solving it over millions of evolutionarily diverse protein
sequences requires the model to internalize sequence patterns across evolution.
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Sequence-Annotation Matching (SAM) activates the Annotation Encoder. It aims to predict
whether a pair of sequence and annotation is positive (matched) or negative (unmatched). Let S de-
note input sequence and A denote input annotation. We use Annotation Encoder’s output embedding
as the joint representation of the sequence-annotation pair, and append the SAM Filter to predict a
two-class probability psam. The SAM loss is defined as the cross-entropy H between p and y:

LSAM = E(S,A)∼DH(ysam, psam(S,A)), (2)

where ysam is a 2-dimensional one-hot vector representing the ground-truth label. We follow the
strategy proposed in ALBEF (Li et al., 2021) to sample hard negatives for the SAM task with zero
computational overhead. For each sequence in a mini-batch, we sample one negative annotation
embedding from the same batch. Likewise, we also sample one hard negative sequence for each
annotation. This results in the quantity of negative pairs being twice that of positive pairs for each
mini-batch. Consequently, in practical training, we employ focal loss (Lin et al., 2017) in lieu of
cross-entropy loss to mitigate the adverse effects arising from the imbalance in sample quantities.

Annotation Prediction (AP) activates the Annotation Decoder. This loss minimized by Annota-
tion Decoder during training is a sum of the categorical cross-entropy over the protein sequences
and the binary cross-entropy over the annotations, namely

LAP = −
∑
j∈N

(yA
j log(pAj ) + (1− yA

j ) log(1− pAj )), (3)

where N denotes the dictionary size of annotation list, yAj ∈ {0, 1} is the true label for annotation
j, and pAj ∈ [0, 1] is the predicted probability that the protein has annotation j.

The overall training objective of ProtAC is:

L = min
θ

(LMLM + LSAM + LAP), (4)

where θ denotes all trainable parameters including those of the three major modules and all projec-
tion heads. We minimize the loss functions of all upstream tasks simultaneously during training.

3.3 DATA CLEANING WORKFLOW

Overview: We propose a multi-round data cleaning strategy with three stages in each round,
namely pretrain, finetune and caption. Our core aim is to facilitate a reciprocal enhancement of
model performance and dataset quality through a cyclical process, wherein the initialized model
goes through the pretraining stage and the finetuning stage, producing a pretrained model and a
finetuned model, respectively. Both models are subject to evaluation covering upstream and down-
stream tasks. The pretrained model will replace the initialized model in subsequent cycles, while the
finetuned model will enter the caption stage to perform data cleaning on the noisy dataset, thereby
producing a cleaned dataset that will replace the noisy dataset in the next cycle (data cleaning work-
flow is shown in Fig.3).

Stage Pretrain: Our models will load last-round pretrained weights except in the first round where
methods for initializing models vary across different versions. Pretraining dataset is the combination
of Uniref50 (noisy dataset) and SwissProt-trainset (well-annotated dataset).

Stage Finetune: Our model inherits the weights from Stage Pretrain and is finetuned for 10 epochs
on SwissProt-trainset, which enables the model to have a high ability to distinguish between fake and
real protein annotations, so the model utilizes the knowledge gained during finetuning and performs
well in Stage Caption. The pretrained or finetuned models are evaluated by downstream tasks.

Stage Caption: We use [P ori
unmatch, P

ori
match] and [P pred

unmatch, P
pred
match] to represent the SAM Filter

output of original and predicted sequence-annotation pair. The SAM Filter of our finetuned model
determines whether the original annotation or the model-predicted annotation is closer to the corre-
sponding protein sequence through two key conditions:

1. The model predicts that the compatibility between the annotation and this specific pro-
tein sequence has been predicted to be positive, indicating a successful match, i.e.
P pred
unmatch<P pred

match.
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Pretrained Model Param. GO-BP GO-MF GO-CC EC

AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fmax

Param. >100M

ProtBert (Elnaggar et al., 2021) 420M 0.188 0.279 0.464 0.456 0.234 0.408 0.859 0.838
OntoProtein (Zhang et al., 2022) 110M 0.284 0.436 0.603 0.631 0.300 0.441 0.854 0.841
ProtST-ESM-2 (Xu et al., 2023) 782M 0.342 0.482 0.647 0.668 0.364 0.487 0.898 0.878
SaProt-650M (Su et al., 2023) 650M / 0.486 / 0.682 / 0.479 / 0.882

Param. <100M

CNN (Shanehsazzadeh et al., 2020) 38M 0.165 0.244 0.380 0.354 0.261 0.387 0.540 0.545
ResNet (Rao et al., 2019) 6.5M 0.166 0.280 0.281 0.267 0.266 0.403 0.137 0.187
LSTM (Rao et al., 2019) 28M 0.130 0.248 0.100 0.166 0.150 0.320 0.032 0.082
Transformer(Rao et al., 2019) 38M 0.135 0.257 0.172 0.240 0.170 0.380 0.187 0.219
ESM2-8M (Rives et al., 2021) 8M 0.154 0.284 0.410 0.394 0.187 0.373 0.477 0.468
ESM2-35M (Rives et al., 2021) 35M 0.212 0.340 0.501 0.489 0.248 0.417 0.562 0.571
ProtAC-PB 3M∗ 0.139 0.221 0.350 0.327 0.180 0.254 0.410 0.424
ProtAC-ESM2-8M 8M∗ 0.239 0.354 0.454 0.423 0.307 0.431 0.579 0.558
ProtAC-ESM2-35M 35M∗ 0.268 0.379 0.577 0.603 0.321 0.461 0.615 0.619

Table 1: Downstream task performance. We use three color scales of blue to denote the first, second
and third best performance in models < 100M and color with pink the overall best performance
including models > 100M. Abbr., PB: ProteinBERT; Param.: Parameter. ∗ indicates the number of
parameters we use for downstream tasks, see Tab. S1 for details of the full model. Performant PLM
baselines are further introduced in the Appendix A.3 so as the discussion of performance difference.

2. The model-predicted annotation matches the protein sequence more closely than the origi-
nal annotation, i.e. P ori

match<P pred
match .

Only when both conditions are satisfied will original annotation be replaced by model-predicted an-
notation. The cleaned dataset will replace previous noisy dataset in the next round of Stage Pretrain.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and Annotations: We use UniRef50 as of May 2018 for pre-training and captioning
tasks, which contains 30.16 million protein sequences. SwissProt, updated to July 2023, contains
560,000 well-annotated sequences. We divide this database into two parts: 30,000 sequences are
randomly selected for the test set, and the remaining approximately 530,000 sequences are used
as the fine-tuning dataset. For the keyword prediction task, we further split the SwissProt test set
in a 3:2 ratio, assigning 18,000 sequences to the training set and 12,000 sequences to the test set.
The keywords associated with each sequence serve as labels to form the Swiss-keyword dataset. In
the SwissProt caption task, we aggregate the newly updated sequences in SwissProt from 2023 to
January 2024. We exclude sequences that overlap with sequences in the UniRef50 and SwissProt
training datasets, resulting in a total of 458 sequences. This dataset is called the Swiss-caption
dataset (see Appendix Tab.S3 for dataset details). We constructed annotation dictionaries of 7533
GO terms and 753 keywords, respectively (see Appendix B.1 for setup details).

Model and Training Configurations: We developed a ProteinBERT-based model and two ESM2-
based models with different parameter versions: a small version using ESM2-8M and a basic version
using ESM2-35M. Typically, we trained all models on eight A800 GPUs (time costs are shown in
Fig. S6 and Tab. S8) with a training batch size of 256 for each model (equivalent to 32 proteins per
GPU). We used the AdamW optimizer and an exponential learning rate scheduler, where the learning
rate started at 1e-6, ramped up to 2e-5 during the first epoch, and then exponentially decreased back
to 1e-6. Other settings are detailed in Appendix Tabs.S1 and S2.
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Downstream Benchmark Tasks: To illustrate model capability in protein function annotation,
we adopt two well-known benchmark tasks related to protein function, furthermore, we design a
Keyword prediction task and a GO caption task using newly updated proteins in SwissProt:

• Public Functional Annotation Tasks: We adopted two established benchmarks intro-
duced by DeepFRI (Gligorijević et al., 2021), specifically for Enzyme Commission (EC)
number prediction and Gene Ontology (GO) term prediction. The GO benchmarks are di-
vided into three different branches: molecular function (abbreviated as GO-MF), biological
process (GO-BP), and cellular component (GO-CC).

• Keyword Prediction Task: Keywords (Magrane & Consortium, 2011) are another impor-
tant form of protein function annotation. To evaluate the transfer learning ability of the
model, we designed a classification task. The sequence encoder and annotation decoder
of the pretrained model were frozen and the application layer was finetuned to evaluate
keyword prediction.

• Gene Ontology Caption Task: To evaluate the model’s ability to predict functions on
never-seen sequences, we provide protein sequences and fully masked annotations from
the Swiss-caption dataset as input to predict the corresponding GO annotations, which are
then compared with newly curated GO terms from the SwissProt dataset.

4.2 EXPERIMENTAL RESULTS

0.359

14.9

38.9% 
faster

13.9% 
higher

a.

c. d.

b.

Figure 4: (a) Performance of different model versions during pretraining. The solid line represents
the results of the model trained on the cleaned dataset, and the dashed line represents the results of
the model trained on the original dataset. Each model was pretrained for four epochs and evaluated
on the SwissProt test set after each epoch, using accuracy for SAM, F1-Max, AUROC, and recall
for GO prediction. (b) Comparison of the improvement of pretraining on the original dataset and the
cleaned dataset by GO prediction results. (c) Comparison between Finetuned and pretrained mod-
els. Cleaned: model trained on cleaned dataset; uncleaned: model trained on original dataset. The
final results are presented after completing four rounds, where each round consists of pretraining
the model for one epoch, followed by a finetuning phase of ten epochs. (d) Comparison of different
pretraining strategies using ProtAC-ESM2-8M. Cleaned*: after the fourth epoch, the cleaned ver-
sion is pretrained on the cleaned UniRef50 for one more full epoch. The dashed line demarcates two
separate comparative analyses. Abbr., C: Cleaned; UC: Uncleaned.

Our model shows SOTA performance in protein function prediction tasks, surpassing models
with less than 100 million parameters and remaining competitive with larger PLMs. Tab.1 shows
that our ProtAC-ESM2-35M ranks in the top three in four downstream tasks, achieves the highest
score in GO-CC, and closely follows OntoProtein, a ProtBERT-based model with more than 400
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million parameters, in GO-BP and GO-MF. In addition, our two ESM2-based models outperform
their corresponding pretrained backbones in all tasks, and ProtAC-ESM2-8M not only outperforms
ProtAC-PB, a model with similar number of parameters, but also surpasses ESM2-35M in three of
the four tasks.

Models with pretrained weights exhibit superior performance compared to those trained from
scratch. Fig.4a demonstrates that at an equivalent parameter count, the pretrained ProtAC-ESM2-
8M model matches the SAM capability of the from-scratch ProtAC-PB model but significantly ex-
cels in GO prediction, indicating enhanced data cleaning efficiency through pretraining. Further-
more, as illustrated in Tab.2, comparisons between the 8M-cleaned and PB-cleaned versions reveal
that, pretrained models consistently outperform their from-scratch counterparts.

Larger models exhibit superior performance. Fig.4a reveals that, among pretrained models,
ProtAC-ESM2-35M outperforms ProtAC-ESM2-8M in both SAM and GO prediction, suggesting
that increased model size enhances data cleaning efficacy. Additionally, Tab.2 shows that the 35M-
cleaned model achieves the best outcomes across all four models, further supporting the conclusion
that larger parameter sizes result in improved model performance.

Finetuned model KW

AUROC Fmax

ProtAC-ESM2-8M-cleaned 0.8509 0.6474
ProtAC-ESM2-8M-uncleaned 0.8476 0.6424
ProtAC-ESM2-35M-cleaned 0.8602 0.6802
ProtAC-ESM2-35M-uncleaned 0.8533 0.6575
ProtAC-ProteinBERT-cleaned 0.7571 0.4871

Table 2: Keyword prediction results of ProtAC. In
the main text, the four models listed in the table
from top to bottom are referred to by the following
abbreviated names: 8M-cleaned, 8M-uncleaned,
35M-cleaned, 35M-uncleaned, and PB-cleaned.

Our curated dataset demonstrates efficacy.
We applied Kaiming initialization (He et al.,
2015) to the 8M-version model, followed by
one epoch of pretraining using both the original
dataset (Scratch-original) and a dataset refined
through four cleaning cycles (Scratch-epoch4).
Validation is conducted on the SwissProt test
set during training (See Fig.4b). Our findings
indicate that the maximum Fmax for Scratch-
epoch4 surpassed that of Scratch-original by
13.9%, and notably, Scratch-epoch4 achieved
this benchmark Fmax in 38.9% less training
time. This evidence underscores the significant
enhancement in the model’s protein function
prediction capabilities attributable to our metic-
ulously cleaned dataset.

Finetuned models surpass their pretrained
counterparts in performance. Fig.4c illustrates that finetuned models outshine pretrained ones
across all four metrics. For the 8M-version models, those finetuned on cleaned datasets exhibit supe-
rior performance to their uncleaned counterparts; conversely, for PB-version models, those finetuned
on original datasets fare better. The results indicate substantial enhancements in SAM and GO pre-
diction for models trained on original datasets following finetuning. Nevertheless, the performance
gains from finetuning are more pronounced for models with fewer parameters than for those with a
larger parameter count.

Our cleaning strategy yields positive results. Fig.4a demonstrates that pretraining models on
cleaned datasets enhances SAM and GO prediction capabilities compared to models pretrained on
noisy datasets, indicating the effectiveness of our data cleaning approach for protein function pre-
diction. Tab.2 further supports this observation by showing that models trained on cleaned datasets
outperform those trained on original datasets of the same architecture. Additionally, our training
approach utilizing different datasets is highlighted in Fig.4d, where Scratch-epoch4 outperforms
Scratch-original in three out of four metrics, showcasing the continuous improvement in dataset
quality facilitated by our cleaning strategy. Notably, the performance of the Cleaned* model ex-
cels in all four metrics, indicating that extended pretraining enhances the outcomes of our cleaning
strategy (more comparison is shown in Appendix B.2).

Data caption results show significant improvement. Fig.5 shows that after training, our model’s
prediction performance in Swiss-caption has been significantly improved, and is far better than the
original functional annotations of the dataset. Finetuned models generally outshine pretrained mod-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

els in GO caption performance. Larger parameter sizes contribute to better performance, pretrained
models outperform scratch-trained models, and the ProtAC-ESM2-35M-finetuned model stands out
as the top performer among all versions. The quantities of sequences in UniRef50 cleaned by each
model in every round are also delineated in Appendix Fig.S5.

4.3 BIOLOGICAL ANALYSIS

Figure 5: Protein function caption results across
three model versions. The function of 418 se-
quences out of 458 has been captioned in newly
updated SwissProt dataset. Notably, original
GO yields an F1-Max of 0.0695, an AUROC of
0.1099, and a recall of 0.0344. Abbr., P: Pre-
trained; F: Finetuned.

GO annotation comparison for same protein
To further validate the biological significance
of the data cleaning results for ProtAC, we con-
duct a manual verification of the GO annota-
tions before and after cleaning on a sampled
set of protein data (see Appendix B.3.5 for de-
tailed process). The newly added GO terms
for the selected five clusters (Tab. S5; Tab. S9;
Fig. 6a) are supported by evidence. For ex-
ample, UniRef50 A0A1I4VGP3 (Fig. 6a, top)
contains a member sequence, A0A1I4VGP3,
which originally lacked corresponding GO an-
notations. After data cleaning with Pro-
tAC, GO:0005886 is added in the first three
rounds, and GO:0055085 is added in the fourth
round. Upon review, the current GO annota-
tion for this cluster in UniProt is GO:0016020.
Both GO:0005886 and GO:0055085 are child
terms of GO:0016020. Further investiga-
tion into the family and domain information
for A0A1I4VGP3 reveals that it matches the
IPR002549 family in the InterPro database.
This family, known as the Transmembrane
protein TqsA-like family, regulates quorum-
sensing signal transmission by either enhanc-
ing the secretion of autoinducer-2 (AI-2) or in-
hibiting its uptake. This information suggests
the potential inclusion of GO:0005886 and GO:0055085, indicating that ProtAC may enhance the
granularity of protein annotations. Similarly, UniRef50 A0A1I1LTJ9 (Fig. 6a, bottom) contains
two member sequences, both of which are annotated with GO:0016020 in the latest version of
UniProt. Following ProtAC curation, GO:0016020 is added in the first round; in the second and third
rounds, GO:0009881 and GO:0006355 are added; in the fourth round, GO:0006355 is removed, and
GO:0030435 and GO:0046872 are added. Upon analysis, GO:0009881 and GO:0046872 are identi-
fied as co-occurring terms with GO:0016020, and these annotations are also supported by evidence
from family and domain databases for the two member sequences of UniRef50 A0A1I1LTJ9.

Protein comparison for same GO We further analyze whether the protein sequences in clusters
annotated with ”transmembrane” related terms contained transmembrane regions. We first filter
152 GO annotations containing the term ”transmembrane” from a total of 7,533 GO annotations
in the GO dictionary. Subsequently, we randomly sample 20 clusters that contain neither of these
152 GO annotations before using ProtAC and contain some of these 152 GO annotations after the
cleaning process. We use the Phobius Protein Functional Analysis tool 3 to predict transmembrane
regions in all member sequences of the selected clusters. Among the 20 sampled clusters, 11 clusters
are no longer present in UniRef50, and one cluster’s sequences do not predict any transmembrane
regions (Fig.6b). Transmembrane regions are predicted in the remaining 8 clusters. These results
further underscore the biological relevance of ProtAC’s performance in refining GO annotations
(more biological analysis shown in Appendix B.3).

4.4 ABLATION STUDY

3https://www.ebi.ac.uk/jdispatcher/pfa/phobius
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Figure 6: (a) Examples of GO variation analysis for the same protein in each cleaning round.
We use two color to denote the GO annotations in the newest UniRef and supported by family
databases. The child term would be a more specific term; the co-occurring terms would be co-
annotated for the same protein or gene. (b) Predicted structures of transmembrane proteins. We use
two different colors to distinguish between transmembrane domains and other sequences.

Model Pre. GO Cap. GO EC KW

Full loss 0.2179 0.2132 0.4026 0.4282

w/o LSAM 0.2488 0.0506 0.3348 0.4311
w/o LMLM 0.3974 0.1114 0.3857 0.4607
w/o LAP / 0.0344 0.3477 0.3785

Table 3: Ablation study on three losses us-
ing pretrained models. We show the Fmax

for four function prediction tasks. Abbr., Pre.
GO: GO prediction task in pretraining; Cap.
GO: GO caption task. Notably, Pre. GO
is dependent on LAP for its functionality.
Gray denotes the performance decay or van-
ishment compared with full loss.

In the Experimental Results section, we have con-
ducted comprehensive comparisons regarding the
impact of the cleaned dataset, various cleaning
strategies, and different model sizes on training ef-
fectiveness. Hence, in this section, we primarily in-
vestigate the influence of three losses on model per-
formance. We pretrain ProtAC-PB for one epoch.
Tab.3 shows that, eliminating LSAM and LMLM ,
which are not directly related to function prediction,
enhances the Fmax of pretraining GO and down-
stream Keyword prediction. However, removing any
of the three losses significantly reduces the Fmax

for GO captioning and downstream EC tasks. This
underscores the critical importance of synthetic data
filtration for model training (Shumailov et al., 2024).

5 CONCLUSION

We introduce ProtAC, a recursive cleaning frame-
work that uses protein multimodal learning to optimize noisy annotations in large-scale protein
datasets while enhancing the learning capabilities of PLMs. We develop a model with fewer than
100M parameters that achieves SOTA results on multiple function-related downstream tasks while
also cleaning up a high-quality protein dataset.

However, limited by computational resources, our learning framework still has significant room for
improvement. For instance, a protein’s structure dictates its functionality, making structural infor-
mation crucial for models to learn functional annotations accurately. Moreover, the vast research
literature related to protein functions contains an abundance of extractable feature. Therefore, incor-
porating other modalities of information into our research is one of our future goals. In addition, this
work has already demonstrated the immense potential of larger-scale PLMs, and we plan to explore
the boundaries of protein function research further by introducing higher parameter-level PLMs in
future studies. We also anticipate that the achievements of this work, including the curated dataset,
can be applied to other tasks in protein representation learning, e.g. large-scale pretraining of protein
models or de novo protein design.
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A MORE RELATED WORK

A.1 LARGE-SCALE PROTEIN DATASETS

Large datasets can help to improve the scalability of the model and provide a more comprehensive
representation of the underlying data distribution. They play a crucial role in protein generation
such as the pretraining of sequence generation models (Alamdari et al., 2023; Zhang et al., 2023a;
Gruver et al., 2024). Their comprehensive coverage of protein sequences from thousands of species
enables the development of more robust and generalizable computational models. UniProt dataset
(Magrane & Consortium, 2011) offers unparalleled representation of protein diversity sith over 200
million sequences from more than 20,000 species. This allows researchers to draw insights from a
huge array of proteins. In contrast to specialized databases like Protein Data Bank(PDB) (Burley
et al., 2019) and Gene Expression Omnibus (GEO) (Clough & Barrett, 2016) which focus on nar-
row data types, UniProt consolidates information from genomic, proteomic, and functional sources.
This multi-modal view facilitates analysis of proteins from numerous angles. UniRef90, a protein
sequence database that clusters sequences at 90 percents identity (Suzek et al., 2007), further en-
hances UniProt by reducing redundancy through sequence clustering. Similarly, UniRef50 is built
by clustering UniRef90 seed sequences that have at least 50% sequence identity to and 80% overlap
with the longest sequence in the cluster. The non-redundant sequences improve annotation quality
and search efficiency. Regular updates also ensure researchers have access to the latest discoveries.
By leveraging the scale and diversity of data in UniProt and UniRef, scientists can gain a deeper
understanding of proteins and their many functions. These large-scale databases are foundational to
modern bioinformatics.

A.2 PROTEIN ANNOTATION DESCRIPTION

Comprehensively describing the diverse functions of proteins is critical for interpreting their roles
in biological systems. While several annotation types exist, GO terms (Ashburner et al., 2000) and
Keywords (Magrane & Consortium, 2011) are especially valuable. GO terms from the Gene Ontol-
ogy allow consistent representation of molecular functions, biological processes, and cellular com-
ponents across species. Their widespread use enables both granular annotation of individual proteins
and higher-level pathway enrichment analysis. This dual utility makes GO terms a fundamental
tool for functional genomics research (Huang et al., 2009). Keywords from UniProtKB similarly
provide standardized vocabulary for protein functions. Manually curated for Swiss-Prot and auto-
matically assigned for TrEMBL, Keywords capture multifaceted functional aspects in a structured
ontology (Magrane & Consortium, 2011). The hierarchical organization into categories like molecu-
lar function and biological process aids literature indexing and database searching. By consolidating
expert knowledge into controlled terminologies, GO terms and Keywords empower accurate com-
putational analysis and biological interpretation. Their adoption throughout public bioinformatics
databases highlights the indispensable role protein function annotation plays in translating sequence
data into actionable knowledge.

A.3 PERFORMANT BASELINE DISCUSSION

Here we introduce Performant baselines used in our work. ProtBert (Elnaggar et al., 2021), trained
on massive protein databases, captured biophysical features and evolutionary information through
self-supervised learning. ProteinBERT (Brandes et al., 2022) is a different model from ProtBert. We
use it as one of our backbones. OntoProtein (Zhang et al., 2022) leverages knowledge graphs to in-
tegrate protein sequence and biomedical text information, achieving substantial improvements over
ProtBert. ProtST (Xu et al., 2023) enhances protein language models by jointly learning from pro-
tein sequences and biomedical text as well. There baselines employ significantly larger parameters
than ProtAC and captures connections between protein and functional annotations using efficient
approaches like knowledge graphs and LLMs. SaProt (Su et al., 2023) is a large-scale protein lan-
guage model that innovatively integrates both protein sequence and structural information through a
novel structure-aware vocabulary system, achieving SOTA performance on protein prediction tasks.
ProtT3 (Liu et al., 2024) is for Protein-to-Text Generation by incorporating a PLM as its protein
understanding module and using a cross-modal projector to bridge the modality gap between pro-
teins and text, since it is not applied on protein function prediction tasks, we do not consider it as a
baseline in our work.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 FUNCTIONAL ANNOTATION SETUPS

To construct an exhaustive Gene Ontology (GO) dictionary, we enumerated the number of occur-
rences of all GO terms in the UniRef and SwissProt datasets. We considered only those GO terms
that appeared 100 times or more, resulting in a dictionary of 7533 terms (see Tab.S4 for composi-
tion analysis of the GO dictionary). The keyword dictionary included all keywords that appeared in
the Swiss-keyword dataset, totaling 753 keywords. See Appendix A.2 for an overview of GO and
keywords.

B.2 ADDITIONAL EXPERIMENTS RELATED TO METHODOLOGY

B.2.1 FROM-SCRATCH TRAINING SETUPS

We developed two distinct parametric models based on ProteinBERT, labeled as ”ProtAC-PB-small”
and ”ProtAC-PB-base”. The ”small” variant incorporates 6 layers and 4 attention heads, while
the ”base” model comprises 12 layers and 8 attention heads. These models underwent training on
eight A800 GPUs, utilizing an AdamW optimizer in conjunction with a learning rate scheduler that
includes a warm-up step followed by exponential decay. The initial learning rate was set to 1e-6,
which was increased to 3e-4 during the warm-up phase, before being exponentially decreased back
to 1e-6. The decay factor for the learning rate was maintained at 0.9, with the warm-up period
lasting for 1 epoch. Moreover, the models were trained with a batch size of 128.

B.2.2 CLEANING STRATEGY WORKS FOR MODEL TRAINED FROM-SCRATCH

Fig. S1(a) illustrates the evolution of the base model’s annotation prediction F1-score throughout
the pretraining stage over three rounds. The graph demonstrates a progressive increase in the growth
rate of the model’s F1-score curve through successive cleanup cycles, coupled with a significant
improvement in the peak value achieved. This pattern underscores the effectiveness of our data-
cleaning strategy in enhancing the model’s learning performance.

B.2.3 CONTINUOUS CLEANING STRATEGY

We explored two distinct data cleaning methodologies: the continue caption strategy and the not-
continue caption strategy, obtaining valuable insights from both. Our validation approach comprised
several steps: Initially, in Epoch 1, the small model was pretrained and fine-tuned using the uniref90
(original) dataset, followed by data cleaning to produce uniref90 (epoch1). Subsequently, in Epoch
2, the model was pretrained and fine-tuned on uniref90 (epoch1), and data cleaning was performed
against both uniref90 (original) and uniref90 (epoch1) to create uniref90 (epoch2-nocontinue) and
uniref90 (epoch2-continue). In Epoch 3, the model underwent pretraining and its training met-
rics were evaluated on uniref90 (epoch2-continue) and uniref90 (epoch2-nocontinue), respectively.
Fig. S1(b) delineates the comparative analysis of the annotation prediction performance of the small
model utilizing the no-continue caption and continue caption strategies. This figure illustrates two
distinct curves that trace the maximum F1-score trajectories of the small model in Epoch 3, follow-
ing pretraining on the uniref90 (epoch2-continue) and uniref90 (epoch2-nocontinue) datasets, cor-
respondingly. The data clearly indicates that pretraining on the uniref90 (epoch2-continue) dataset
results in a higher F1-score, thus underscoring the superior training effectiveness of the continue
caption strategy. Based on these findings, the continue caption strategy was consistently employed
for both training and data cleaning throughout our investigation.

B.2.4 IMPACT OF MODEL PARAMETERS ON CLEANING PROCESS TIME AND DATA
CLEANING EFFICACY

Fig. S1(c) provides a comparative analysis of the temporal investment and testing performance
across four iterative cleaning cycles for the small model and three cycles for the base model. The
aggregate time spent per epoch by both models was meticulously recorded, and the refined models’
annotation prediction proficiency was assessed using the SwissProt test set, employing the maxi-
mum F1-score metric. The outcomes of this assessment are depicted in a line graph. The analysis
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indicates that the duration required for the small model to undergo four cleaning cycles is approx-
imately two-thirds that of the base model’s completion of three cycles. Furthermore, the small
model exhibits superior F1-score and AUC values relative to the base model, suggesting that the
small model achieves improved learning efficiency and outcomes over multiple iterations within a
reduced timeframe.

B.2.5 SEPARATE COMPARISONS OF ESM2 SERIES MODELS USING CLEANING STRATEGY
WITH THE ORIGINAL PRETRAINED VERSION

As demonstrated in Tab. S6, which presents a comparison between two parameterized versions of
ESM2 trained using our workflow, both versions exhibit significant enhancements in protein func-
tion prediction. This improvement underscores the efficacy of our training strategy in optimizing
predictive performance.

B.2.6 DETAILS ABOUT ADAPTIVE TRAINING

Inspired by works from Active learning (Sener & Savarese, 2017; Killamsetty et al., 2021; Mirza-
soleiman et al., 2020), we designed adaptive training to enhance pretraining efficiency. We use
[P ori

unmatch, P
ori
match] and [P pred

unmatch, P
pred
match] to represent the SAM Filter output of original and pre-

dicted sequence-annotation pair. We then use the condition P ori
match ≥ P pred

match to obtain a mask to
filter samples where the model believes that the original annotations match the sequence better than
the predicted annotations. These samples are intended to be further learned by the model, and we
focus on updating only the loss they contribute in order to reduce the model’s training time. This
reduced the training time while ensuring or even improving the training effect (Tab. S7). We use
pseudo code (see Algorithms 1) to explain the mechanism of Adaptive Training. We applied adap-
tive mask in the pre-training stage of each round (except the first round) and recorded the number
of samples updated in each step (see Fig. S7). As cleaning rounds continue, the number of up-
dated samples in the training step gradually decreases, and it can be seen that the noise level of the
pretraining dataset is reduced.

B.3 MORE BIOLOGICAL ANALYSIS

B.3.1 COMPARISON OF VISUALIZATION RESULTS: ORIGINAL VS. CLEANED DATASET
MODEL TRAINING

To verify that the cleaned dataset improves the performance of our model, we compared the cluster-
ing results of the model trained by the original Uniref vs. the model trained by the cleaned Uniref.
We select protein sequences in cellular component GO domain in the Swissprot-test dataset. We then
apply t-SNE to visualize the clustering of the seq embeddings from the model’s sequence encoder.
The clustering results (depicted in Fig. S2) demonstrate that embeddings derived from the model
trained on the cleaned dataset exhibit significantly better coherence and separation. Taking three dis-
tinct subcellular compartments, namely cytosol (GO:0005829), extracellular region (GO:0005576),
and nucleus (GO:0005634), which are spatially separated, as an example. We visualized the pro-
tein data that only contains annotations for one of these three compartments. It is evident that the
embeddings obtained from models trained on the original data exhibit significant overlap, whereas
the embeddings obtained from models trained on the cleaned data are distinctly separated from each
other. This indicates that the cleaned dataset can enhance the model representative ability.

B.3.2 COMPARATIVE VISUALIZATION OF ORIGINAL AND CLEANED SEQUENCE
EMBEDDINGS

We conduct visualization analyses on the original dataset and the cleaned dataset, verifying the
improvement of data quality. We first extract the sequences where the GO terms are revised after
cleaning and then select a list of GO terms with a high number of occurrences. To ensure a fair
comparison, we choose the model trained on SwissProt for embedding extraction. Then, we apply
t-SNE to obtain the clustering outcomes of the original sequence embeddings vs. cleaned sequence
embeddings. Fig. S3 reveals that the embeddings from the cleaned dataset result in markedly im-
proved clustering, characterized by enhanced grouping and distinctiveness for sequences associated
with the same GO terms. This outcome demonstrates the improved quality of the cleaned dataset.
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B.3.3 COMPARISION OF THE BIOPHYSICAL EMBEDDINGS OF AMINO ACIDS

The biophysical properties of amino acids, e.g., hydrophobicity, aromaticity, and charge, are widely
recognized to profoundly impact the structural configurations of proteins. We visualize the biophys-
ical properties of amino acids. Fig. S4 illustrates the comparative analysis of clustering outcomes
between the model trained on the original dataset and one trained on the cleaned dataset. The find-
ings indicate that models trained on the cleaned dataset show a slight improvement in clustering
performance. In this regard, the distances between similar amino acids are more compact compared
to before the cleaning process (e.g., hydrophobic (aromatic), polar neutral, positive amino acids),
while there is a clear separation on the plane between hydrophobic amino acids and hydrophilic
amino acids (positive and negative amino acids). This suggests that data cleaning significantly con-
tributes to the model’s ability to categorize the underlying biophysical characteristics of amino acids
more effectively

B.3.4 QUANTIFICATION OF NOISY LEVELS OF FUNCTIONAL ANNOTATIONS

In order to quantify the noise level of the cleaned dataset, we introduced Jaccard Similarity. We use
it to compare the distribution similarity between the cleaned dataset and the ground truth dataset.
The higher the similarity, the closer the cleaned dataset is to the true annotation, that is, the lower the
noise level. We applied it on the Swiss-caption dataset. The Jaccard similarity coefficient measures
the overlap between two sets by dividing the size of their intersection by the size of their union,
shown as the following equation:

J(A,B) =
|A ∩B|
|A ∪B|

=

∑n
i=1 min(Ai, Bi)∑n
i=1 max(Ai, Bi)

(5)

Here A denotes the cleaned dataset, B denotes Swiss-caption, and the results are shown in Tab. S10.
As the number of cleaning rounds continues, the similarity increases, which means that the noise
level is decreasing.

B.3.5 MANUAL CURATION OF GO ANNOTATIONS FOR IDENTICAL PROTEINS

The verification process involves the following steps: (1) random extracting 30 UniRef clusters with
newly added GO terms after cleaning; (2) querying UniProt (as of 2024-07-30) for the existing
GO annotations and associated family and domain information for sequences in these clusters; (3)
verifying whether the new GO terms added by ProtAC correspond to updates in existing databases or
to their ancestor or child terms, and assessing whether the family and domain information provides
supportive evidence for the newly added GO terms. Among the randomly sampled 30 clusters, those
that are either deprecated or have an excess of member sequences that can not be manually verified
are excluded from the analysis.

Model version Seq encoder Anno encoder Layer Head Parameters
ProtAC-ProteinBERT ProteinBERT local part

ProteinBERT global part
6 4 27M

ProtAC-ESM2-8M ESM-8M 6 4 29M
ProtAC-ESM2-35M ESM-35M 12 8 78.56M

Table S1: ProtAC model details

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

AUC

Fmax
Base model pretrain Comparison of caption strategy 

(a) (c)(b)

2.43x 
speedup

Comparison of model size

Figure S1: Visualisation of training results. The horizontal axis measures the training steps, where
each step encompasses 1600 batches, and the vertical axis denotes the maximum F1-score achieved
by the model in annotation prediction. (a) Annotation prediction curves of the base-model in the
training phase of round1-3. (b) Comparison of the effects of different caption strategies on model
training results. (c) Comparison of the learning effects of models at different scales.

GO:1990904 GO:0005829 GO:0005576 GO:0005840 GO:0005634 GO:0005886

(a) (b)

original cleaned

Figure S2: Visualization results by using the model trained on original (a) vs. cleaned dataset
(b). The improved clustering outcome demonstrates that the cleaned dataset enhances the model
representative ability.
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(a) (b)

Original Uniref Cleaned Uniref

Figure S3: Visualization results of original vs. cleaned sequence embeddings. The cleaned dataset
achieves better clustering results which validates the improved quality of the cleaned data.

(a) (b)
Hydrophobic (aromatic) Negative Small (<130 Dalton)

Hydrophobic (aliphatic) Polar neutral Medium

Positive Special cases Big (>150 Dalton)

Trained by original dataset Trained by cleaned dataset

Figure S4: Biophysical embedding of amino acids.
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Figure S5: Captioned sequences count in UniRef50

ProtAC-ESM2-8M

Pretrain Finetune Caption

ProtAC-ESM2-35M

ProtAC-ProteinBERT

~18h/epoch ~44h/epoch~24h/epoch

Figure S6: Time cost of each model version for one cleaning epoch/round

Hyperparameter Value
Input sequence length 512
Optimizer AdamW
Scheduler ExponentialLR
Pretraining epoch per round 0.2 (ESM-8M)

1 (ProteinBERT&ESM-35M)
Finetuning epoch per round 10
Round 4
Pretraining dataset UniRef50 2018 5
Finetuning dataset SwissProt 2023
Init LR 2e-5
LR decay rate 0.9
Min LR 1e-6
Training batch size (8GPUs) 512

Table S2: ProtAC training details

UniRef50-2018 SwissProt SwissProt(keyword) SwissProt(caption)
trainset testset trainset testset

∼30.16M ∼530K ∼30K 18K 12K 458

Table S3: Datasets details
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Figure S7: Pretraining samples of ProtAC-ESM2-8M and ProtAC-ESM2-35M updated in every
step.

GO Classification Amount
CC (Cellular Component) 962
BP (Bioligical Process) 3346
MF (Molecular Function) 3225
Total 7533

Table S4: GO dictionary details
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UniRef50 Cluster Round 1 Round 2 Round 3 Round 4

A0A1I4VGP3 GO:0005886 GO:0005886 GO:0005886 GO:0005886;
GO:0055085

A0A1M6PSU4
GO:0005886;
GO:0009246;
GO:0016874

GO:0005886;
GO:0009246;
GO:0016874

GO:0005886;
GO:0009246;
GO:0016874

GO:0016020;
GO:0016874;
GO:0009103;
GO:0005886;
GO:0045227

A0A1I1LTJ9 GO:0000160
GO:0009881;
GO:0000160;
GO:0006355

GO:0009881;
GO:0000160;
GO:0006355

GO:0009881;
GO:0046872;
GO:0030435;
GO:0000160

A0A1W9WW14 - - GO:0016491;
GO:0005783

GO:0016491;
GO:0005783

A0A1M2W1M6 - -

GO:0016020;
GO:0005783;
GO:0009926;
GO:0009734

GO:0016020;
GO:0005783;
GO:0009926;
GO:0009734

Table S5: GO comparison for same proteins. We use two color to denote the GO annotations in the
newest UniRef and supported by family databases.

Model GO-BP GO-MF GO-CC EC

AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fmax

ESM2-8M 0.154 0.284 0.410 0.394 0.187 0.373 0.477 0.468
ProtAC-ESM2-8M 0.239 ↑55.2% 0.354 ↑24.6% 0.454 ↑10.7% 0.423 ↑7.4% 0.307 ↑64.2% 0.431 ↑15.5% 0.579 ↑21.4% 0.558 ↑19.2%

ESM2-35M 0.212 0.340 0.501 0.489 0.248 0.417 0.562 0.571
ProtAC-ESM2-35M 0.268 ↑26.4% 0.379 ↑11.5% 0.577 ↑15.2% 0.603 ↑23.3% 0.321 ↑29.4% 0.461 ↑10.6% 0.615 ↑9.4% 0.619 ↑8.4%

Table S6: Separated comparisons between ESM2 and ProtAC-ESM2

Model Round Adaptive Mask Pretraning Time (Avg.)/h

ProtAC-PB 1 ✘ 15.8
2 ∼ 4 ✔ 13.8↓12.7%

ProtAC-ESM2-8M 1 ✘ 17.8
2 ∼ 4 ✔ 13.3↓25.3%

ProtAC-ESM2-35M 1 ✘ 32.9
2 ∼ 4 ✔ 30.2↓8.2%

Table S7: Pretraining time comparison between Round 1 and rest Rounds

Model Pretraining/h Finetuning/h Caption/h
ProtAC-PB 14.3 3.1 1.3
ProtAC-ESM2-8M 14.5 5.2 4.5
ProtAC-ESM2-35M 30.9 5.8 8.5

Table S8: ProtAC average time consumption for each stage
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UniRef50 Cluster Round 1 Round 2 Round 3 Round 4

A0A2G5F261
GO:0005886;
GO:0016020;
GO:0051119

GO:0005886;
GO:0016020;
GO:0051119

GO:0008643;
GO:0016020;
GO:0051119;
GO:0000139;
GO:0005886;
GO:0051260

GO:0008643;
GO:0016020;
GO:0051119;
GO:0005886

A0A1Y3BA38 - GO:0016020

GO:0016020;
GO:0055085;
GO:0015031;
GO:0000329

GO:0016020;
GO:0055085;
GO:0003333;
GO:0000329;
GO:0030435

A0A2E6UZN8 GO:0005886 GO:0005886;
GO:0022857

GO:0005886;
GO:0022857

GO:0005886;
GO:0022857

A0A1W9TJ44 - GO:0005886 GO:0005886;
GO:0034755

GO:0005886;
GO:0034755;
GO:0042597

A0A1G6UTG6 - - GO:0022857;
GO:0016020

GO:0022857;
GO:0016020;
GO:0015562

A0A1L7W0J8

GO:0005886;
GO:0022857;
GO:0055085;
GO:0016020

GO:0005886;
GO:0022857;
GO:0055085;
GO:0016020

GO:0005886;
GO:0022857;
GO:0055085;
GO:0016020

GO:0005886;
GO:0022857;
GO:0055085;
GO:0016020

A0A1M6U3I0 GO:0005886 GO:0005886
GO:0005886;
GO:0022857;
GO:0046677

GO:0005886;
GO:0022857;
GO:0046677

A0A1I3THQ2

GO:0005886;
GO:0005267;
GO:0071805;
GO:0034765

GO:0005886;
GO:0005267;
GO:0071805;
GO:0034765;
GO:0016020;
GO:0022841

GO:0005886;
GO:0005267;
GO:0034765;
GO:0016020

GO:0005244;
GO:0016020;
GO:0005516;
GO:0005267;
GO:0005886;
GO:0071805;
GO:0034765

Q6ARZ3

GO:0022857;
GO:0016020;
GO:0005886;
GO:0015562;
GO:0009279

GO:0016020;
GO:0005886;
GO:0015562;
GO:0009279

GO:0016020;
GO:0015562;
GO:0009279

GO:0016020;
GO:0015562;
GO:0009279;
GO:0055085;
GO:0046677

A0A1I0Q9V5

GO:0046677;
GO:0022857;
GO:0055085;
GO:0005886;
GO:0140359

GO:0046677;
GO:0022857;
GO:0055085;
GO:0005886;
GO:0140359

GO:0046677;
GO:0022857;
GO:0055085;
GO:0005886;
GO:0140359

GO:0046677;
GO:0022857;
GO:0055085;
GO:0005886;
GO:0140359

A0A1M6TVP5

GO:0005886;
GO:0022857;
GO:0015112;
GO:0042128

GO:0005886;
GO:0022857;
GO:0015112;
GO:0042128

GO:0005886;
GO:0008643;
GO:0015112;
GO:0042128

GO:0005886;
GO:0008643;
GO:0015112;
GO:0042128

Table S9: The added comparison of GO annotations for identical proteins. We use two color to
denote the GO annotations in the newest UniRef and supported by family databases or belonging
to the parent GO terms in the latest UniRef.
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Model Round Jaccard Similarity

ProtAC-PB

1 0.1011
2 0.1475
3 0.1594
4 0.1744

ProtAC-ESM2-8M

1 0.1622
2 0.2350
3 0.2363
4 0.2301

ProtAC-ESM2-35M

1 0.2425
2 0.2862
3 0.2821
4 0.2820

Table S10: Noise level of Swiss-caption. The higher the value, the more similar the captioned
annotation is to the ground truth distribution, that is, the lower the noise level.

Algorithm 1 Adaptive Training
1: Input: pA, yA, pS {pA: predicted annotation, yA: original annotation, pS : predicted sequence}

2: Output: LAP
3: [P pred

unmatch, P
pred
match]← SAM(AnnoEncoder(pA, pS))

4: [P ori
unmatch, P

ori
match]← SAM(AnnoEncoder(yA, pS))

5: Mask ← P ori
match ≥ P pred

match {Create mask to filter samples}
6: if Mask contains any True then
7: Nupdate ←

∑
(Mask) {Count samples to be updated}

8: end if
9: LAP ← FocalLoss(pA, yA)

10: LAP ← LAP [Mask] {Apply mask to loss}
11: return LAP
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