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Abstract

Understanding generalization in deep neural networks is an active area of research.1

A promising avenue of exploration has been that of margin measurements: the2

shortest distance to the decision boundary for a given sample or its representation3

internal to the network. While margins have been shown to be correlated with4

the generalization ability of a model when measured at its hidden representations5

(hidden margins), no such link between large margins and generalization has been6

established for input margins. We show that while input margins are not gener-7

ally predictive of generalization, they can be if the search space is appropriately8

constrained. We develop such a measure based on input margins, which we refer9

to as ‘constrained margins’. The predictive power of this new measure is demon-10

strated on the ‘Predicting Generalization in Deep Learning’ (PGDL) dataset and11

contrasted with hidden representation margins. We find that constrained margins12

achieve highly competitive scores and outperform other margin measurements in13

general.14

1 Introduction15

Our understanding of the generalization ability of deep neural networks (DNNs) remains incomplete.16

Various bounds on the generalization error for classical machine learning models have been proposed17

based on the complexity of the hypothesis space [1, 2]. However, this approach paints an unfinished18

picture when considering modern DNNs [3]. Generalization in DNNs is an active field of study and19

updated bounds are proposed on an ongoing basis [4, 5, 6, 7].20

A complementary approach to developing theoretical bounds is to develop empirical techniques that21

are able to predict the generalization ability of certain families of DNN models. The ‘Predicting22

Generalization in Deep Learning’ (PGDL) challenge, exemplifies such an approach. The challenge23

was held at NeurIPS 2020 [8] and provides a useful test bed for evaluating complexity measures,24

where a complexity measure is a scalar-valued function that relates a model’s training data and25

parameters to its expected performance on unseen data. Such a predictive complexity measure would26

not only be practically useful but could lead to new insights into how DNNs generalize.27

In this work, we focus on classification margins in deep neural classifiers. It is important to note that28

the term ‘margin’ is, often confusingly, used to refer to 1) output margins [9], 2) input margins [10],29

and 3) hidden margins [11], interchangeably. Here (1) is a measure of the difference in class output30

values, while (2) or (3) is concerned with measuring the distance from a sample to its nearest decision31

boundary in either input or hidden representation space, respectively. In this work, we focus on input32

and hidden margins.33

While margins measured at the hidden representations of deep neural classifiers have been shown to34

be predictive of a model’s generalization, this link has not been established for input space margins.35

We show that, in several circumstances, the classical definition of input margin does not predict36

generalization, but a direction-constrained version of this metric does: a quantity we refer to as37
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constrained margins. By measuring margins in directions of ‘high utility’, that is, directions that are38

expected to be more useful to the classification task, we are able to better capture the generalization39

ability of a trained DNN.40

We make several contributions:41

1. Demonstrate the first link between large input margins and generalisation performance, by42

developing a new input margin-based complexity measure that achieves highly competitive43

performance on the PGDL benchmark and outperforms several contemporary complexity44

measures.45

2. Show that margins do not necessarily need to be measured at multiple hidden layers to be46

predictive of generalization, as suggested in [11].47

3. Provide a new perspective on margin analysis and how it applies to DNNs, that of finding48

high utility directions along which to measure the distance to the boundary instead of49

focusing on finding the shortest distance.50

2 Background51

This section provides an overview of existing work on 1) measuring classification margins and their52

relationship to generalization, and 2) the PGDL challenge and related complexity measures.53

2.1 Classification Margins and Generalization54

Considerable prior work exists on understanding classification margins in machine learning mod-55

els [12, 13]. The relation between margin and generalization is well understood for classifiers such as56

support vector machines (SVMs) under statistical learning theory [1]. However, the non-linearity and57

high dimensionality of DNN decision boundaries complicate such analyses, and precisely measuring58

these margins is considered intractable [14, 15].59

A popular technique (which we revisit in this work) is to approximate the classification margin using60

a first-order Taylor approximation. Elsayed et al. [16] use this method in both the input and hidden61

space, and then formulate a loss function that maximizes these margins. However, while this results62

in a measurable increase in margin, it does not result in any significant gains in test accuracy. In a63

seminal paper, Jiang et al. [11] utilize the same approximation in order to predict the generalization64

gap of a set of trained networks by training a linear regression model on a summary of their hidden65

margin distributions. Natekar and Sharma [17] demonstrate that this measure can be further improved66

if margins are measured using the representations of Mixup [18] or augmented training samples.67

Similarly, Chuang et al. [6] introduce novel generalization bounds and slightly improve on this metric68

by proposing an alternative cluster-aware normalization scheme (k-variance [19]).69

Input margins are generally considered from the point of view of adversarial robustness, and many70

techniques have been developed to generate adversarial samples on or near the decision boundary.71

Examples include: the Carlini and Wagner Attack [20], Projected Gradient Descent [21], and72

DeepFool [22]. Some of these studies have investigated the link between adversarial robustness73

and generalization, often concluding that an inherent trade-off exists [23, 24, 25]. However, this74

conclusion and its intricacies are still being debated [26].75

Yousefzadeh and O’Leary [14] formulate finding a point on the decision boundary as a constrained76

minimization problem, which is solved using an off-the-shelf optimization method. While this method77

is more precise, it comes at a great computational cost. To alleviate this, dimensionality reduction78

techniques are used in the case of image data to reduce the number of input features. In this case, the79

classification margin is used for the purpose of model interpretability.80

In this work we propose a modification to the Taylor approximation of the input classification margin81

(and its iterative alternative DeepFool) in order for it to be more predictive of generalization.82

2.2 Predicting Generalization in Deep Learning83

The objective of this challenge was to design a complexity measure to rank models according to their84

generalization gap. More precisely, participants only had access to a set of trained models, along with85
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their parameters and training data, and were tasked with ranking the models within each set according86

to their generalization gap. Each solution was then evaluated on how well its ranking aligns with the87

true ranking on a held-out set of tasks, which was unknown to the competitors.88

In total, there are 550 trained models across 8 different tasks and 6 different image classification89

datasets, where each task refers to a set of models trained on the same dataset with varying hyperpa-90

rameters and subsequent test accuracy. Tasks 1, 2, 4, and 5 were available for prototyping and tuning91

complexity measures, while Task 6 to 9 were used as a held-out set. There is no task 3. The final92

average score on the test set was the only metric used to rank the competitors. Conditional mutual93

information (CMI) is used as evaluation metric, which measures the conditional mutual information94

between the complexity measure and true generalization gap, given that a set of hyperparameter95

types are observed. This is done in order to prevent spurious correlations resulting from specific96

hyperparameters, a step towards establishing whether a causal relationship exists.97

All models were trained to approximately the same, near zero, training loss. Note that this implies that98

ranking models according to either their generalization gap or test accuracy is essentially equivalent.99

Several interesting solutions were developed during the challenge: In addition to the modification of100

hidden margins mentioned earlier, the winning team [17] developed several prediction methods based101

on the internal representations of each model. Their best-performing method measures clustering102

characteristics of hidden layers (using Davies-Bouldin Index [27]), and combines this with the103

model’s accuracy on Mixup-augmented training samples. In a similar fashion, the runners-up based104

their metrics on measuring the robustness of trained networks to augmentations of their training105

data [28].106

After the competition’s completion, the dataset was made publicly available, inspiring further research:107

Schiff et al. [29] generated perturbation response curves that ‘capture the accuracy change of a given108

network as a function of varying levels of training sample perturbation’ and develop statistical109

measures from these curves. They produced eleven complexity measures with different types of110

sample Mixup and statistical metrics.111

While several of the methods rely on using synthetic samples (e.g. Mixup), Zhang et al. [30] take112

this to the extreme and generate an artificial test set using pretrained generative adversarial networks113

(GANs). They demonstrate that simply measuring the classification accuracy on this synthetic test set114

is very predictive of a model’s generalization. While practically useful, this method does not make a115

link between any characteristics of the model and its generalization ability.116

3 Theoretical approach117

This section provides a theoretical overview of the proposed complexity measure. We first explain our118

intuition surrounding classification margins, before mathematically formulating constrained margins.119

3.1 Intuition120

A correctly classified training sample with a large margin can have more varied feature values,121

potentially due to noise, and still be correctly classified. However, as we will show, input margins122

are not generally predictive of generalization. This observation is supported by literature regarding123

adversarial robustness, where it has been shown that adversarial retraining (which increases input124

margins) can negatively affect generalization [23, 25].125

Stutz et al. [26] provide a plausible reason for this counter-intuitive observation: Through the use126

of Variational Autoencoder GANs they show that the majority of adversarial samples leave the127

class-specific data manifold of the samples’ class. They offer the intuitive example of black border128

pixels in the case of MNIST images, which are zero for all training samples. Samples found on129

the decision boundary which manipulate these border pixels have a zero probability under the data130

distribution, and they do not lie on the underlying manifold.131

We leverage this intuition and argue that any input margin measure that relates to generalization132

should measure distances along directions that do not rely on spurious features in the input space.133

The intuition is that, while nearby decision boundaries exist for virtually any given training sample,134

these nearby decision boundaries are likely in directions which are not inherently useful for test set135

classification, i.e. they diverge from the underlying data manifold.136
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More specifically, we argue that margins should be measured in directions of ‘high utility’, that is,137

directions that are expected to be useful for characterising a given dataset, while ignoring those of138

lower utility. In our case, we approximate these directions by defining high utility directions as139

directions which explain a large amount of variance in the data. We extract these using Principal140

Component Analysis (PCA). While typically used as a dimensionality reduction technique, PCA can141

be interpreted as learning a low-dimensional manifold [31], albeit a linear one. In this way, the PCA142

manifold identifies subspaces that are thought to contain the variables that are truly relevant to the143

underlying data distribution, which the out-of-sample data is assumed to also be generated from. In144

the following section, we formalize such a measure.145

3.2 Constrained Margins146

We first formulate the classical definition of an input margin [14], before adapting it for our purpose.147

Let f : X → R|N | denote a classification model with a set of output classes N = {1 . . . n}, and148

fk(x) the output value of the model for input sample x and output class k. For a correctly classified149

input sample x, the goal is to find the closest point x̂ on the decision boundary between the true150

class i (where i = argmaxk(fk(x))) and another class j ̸= i. Formally, x̂ is found by solving the151

constrained minimization problem:152

argmin
x̂∈[L,U ]

||x− x̂||2 (1)

with L and U the lower and upper bounds of the search space, respectively, such that153

fi(x̂) = fj(x̂) (2)

for i and j as above.154

The margin is then given by the Euclidean distance between the input sample, x, and its corresponding155

sample on the decision boundary, x̂. We now adapt this definition in order to define a ‘constrained156

margin’. Let the set P = {p1,p2, ...,pm} denote the first m principal component vectors of the157

training dataset, that is, the m orthogonal principal components which explain the most variance.158

Such principal components are straightforward to extract by first standardizing (z normalizing) each159

feature individually, and then calculating the eigenvectors of the covariance matrix of the standardized160

training data.161

We now restrict x̂ to any point consisting of the original sample x plus a linear combination of these162

principal component vectors, that is, for some coefficient vector B = [β1, β2, ..., βm]163

x̂ ≜ x+

m∑
i=1

βipi (3)

Substituting x̂ into the original objective function of Equation (1), the new objective becomes164

min
β
||

m∑
i=1

βipi||2 (4)

such that Equation (2) is approximated within a certain tolerance. For this definition of margin, the165

search space is constrained to a lower-dimensional subspace spanned by the principal components166

with point x as origin, and the optimization problem then simplifies to finding a point on the decision167

boundary within this subspace. By doing so, we ensure that boundary samples that rely on spurious168

features (that is, in directions of low utility) are not considered viable solutions to Equation (1). Note169

that this formulation does not take any class labels into account for identifying high utility directions.170

While it is possible to solve the constrained minimization problem using a constrained optimizer [14],171

we approximate the solution by adapting the previously mentioned first-order Taylor approxima-172

tion [16, 32], which greatly reduces the computational cost. The Taylor approximation of the173

constrained margin d(x) for a sample x between classes i and j when using an L2 norm is given by174

d(x) =
fi(x)− fj(x)

|| [∇xfi(x)−∇xfj(x) ] PT ||2
(5)

where P is the m× n matrix formed by the top m principal components with n input features. The175

derivation of Equation (5) is included in the supplementary material.176
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The value d(x) only approximates the margin and the associated discrepancy in Equation (2) can be177

large. In order to reduce this to within a reasonable tolerance, we apply Equation (5) in an iterative178

manner, using a modification of the well-known DeepFool algorithm [22]. DeepFool was defined179

in the context of generating adversarial samples with the smallest possible perturbation, which is in180

effect very similar to finding the nearest point on the decision boundary with the smallest violation of181

Equation (2).182

To extract the DeepFool constrained margin for some sample x, the Taylor approximation of the183

constrained margin is calculated between the true class i and all other classes j, individually. A small184

step (scaled by a set learning rate) is then taken in the lower-dimensional subspace in the direction185

corresponding to the class with smallest margin. This point is then transformed back to the original186

feature space and the process is repeated until the distance changes less than a given tolerance in187

comparison to the previous iteration. The exact process to calculate a DeepFool constrained margin is188

described in Algorithm 1. Note that we also clip x̂ according to the minimum and maximum feature189

values of the dataset after each step, which ensures that the point stays within the bound constraints190

expressed in Equation 1. While this is likely superfluous when generating normal adversarial samples191

– they are generally very close to the original x – it is a consideration when the search space is192

constrained, with clipped margins performing better. (See the supplementary material for an ablation193

analysis of clipping.)194

Algorithm 1 DeepFool constrained margin calculation
Input: Sample x, classifier f , principal components P
Parameter: Stopping tolerance δ, Learning rate γ, Maximum iterations max
Output: Distance dbest, Equality violation vbest

1: x̂← x, i← argmax fk(x), d← 0, vbest ←∞, c← 0
2: while c ≤ max do
3: for j ̸= i do
4: oj ← fi(x̂)− fj(x̂)
5: wj ← [∇fi(x̂)−∇fj(x̂)]PT

6: end for
7: l← argminj ̸=i

|oj |
||wj||2

8: r← |ol|
||wl||22

wlP

9: x̂← x̂+ γr
10: x̂← clip (x̂)
11: v ← |ol|
12: d← ||x− x̂||2
13: if v ≥ vbest or |d− dbest| < δ then
14: return dbest, vbest
15: else
16: vbest ← v
17: dbest ← d
18: c← c+ 1
19: end if
20: end while
21: return dbest, vbest

4 Results195

We investigate the extent to which constrained margins are predictive of generalization by comparing196

the new method with current alternatives. In Section 4.1 we describe our experimental setup.197

Following this, we do a careful comparison between our metric and existing techniques based on198

standard input and hidden margins (Section 4.2) and, finally, we compare with other complexity199

measures (Section 4.3).200
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4.1 Experimental setup201

For all margin-based measures our indicator of generalization (complexity measure) is the mean202

margin over 5 000 randomly selected training samples, or alternatively the maximum number available203

for tasks with less than 5 000 training samples. Only correctly classified samples are considered, and204

the same training samples are used for all models of the same task. To compare constrained margins205

to input and hidden margins we rank the model test accuracies according to the resulting indicator206

and calculate the Kendall’s rank correlation [33], as used in [34]. This allows for a more interpretable207

comparison than CMI. (As CMI is used throughout the PGDL challenge, we also include the resulting208

CMI scores in the supplementary material.) To compare constrained margins to published results of209

other complexity measures, we measure CMI between the complexity measure and generalization210

gap and contrast this with the reported scores of other methods.211

As a baseline we calculate the standard input margins (‘Input’) using the first order Taylor approxi-212

mation (Equation 5 without the subspace transformation), as we find that it achieves better results213

than the iterative DeepFool variant and is therefore the stronger baseline; see the supplementary214

material for a full comparison.215

Creating a complexity measure from hidden margins (‘Hidden’) raises the question of which hidden216

layers to consider. Jiang et al. [11] consider three equally spaced layers, Natekar and Sharma [17]217

consider all layers, and Chuang et al. [6] consider either the first or last layer only. We calculate218

the mean hidden margin (using the Taylor approximation) for all these variations and find that for219

the tasks studied here, using the first layer performs best, while the mean over all layers comes in220

second. We include both results here. (A full analysis is included in the supplementary material.) We221

normalize each layer’s margin distribution by following [11], and divide each margin by the total222

feature variance at that layer.223

Our constrained margin complexity measure (‘Constrained’) is obtained using Algorithm 1, although224

in practice we implement this in a batched manner. Empirically, we find that the technique is not225

very sensitive with regard to the selection of hyperparameters and a single learning rate (γ = 0.25),226

tolerance (δ = 0.01), and max iterations (max = 100) is used across all experiments. The number of227

principal components for each dataset is selected by plotting the explained variance (of the train data)228

per principal component in decreasing order on a logarithmic scale and applying the elbow method229

using the Kneedle algorithm from Satopaa et al [35]. This results in a very low-dimensional search230

space, ranging from 3 to 8 principal components for the seven unique datasets considered.231

In order to prevent biasing our metric to the PGDL test set (tasks 6 to 9) we did not perform any tuning232

or development of the complexity measure using these tasks, nor do we tune any hyperparameters233

per task. The choice of principal component selection algorithm was done after a careful analysis of234

Tasks 1 to 5 only, see additional details in the supplementary material. In terms of computational235

expense, we find that calculating the entire constrained margin distribution only takes 1 to 2 minutes236

per model on an Nvidia A30.237

4.2 Margin complexity measures238

In Table 1 we show the Kendall’s rank correlation obtained when ranking models according to239

constrained margin, standard input margins, and hidden margins. It can be observed that standard240

input margins are not predictive of generalization for most tasks and, in fact, show a negative241

correlation for some. This unstable behaviour is supported by ongoing work surrounding adversarial242

robustness and generalization [23, 24, 25]. Furthermore, we observe a very large performance gap243

between constrained and standard input margins, and an increase from 0.24 to 0.66 average rank244

correlation is observed by constraining the margin search. This strongly supports our initial intuitions.245

In the case of hidden margins, performance is more competitive, however, constrained margins246

still outperform hidden margins on 6 out of 8 tasks. One also observes that the selection of hidden247

layers can have a very large effect, and the discrepancy between the two hidden-layer selections is248

significant. Given that our constrained margin measurement is limited to the input space, there are249

several advantages: 1) no normalization is required, as all models share the same input space, and 2)250

the method is more robust when comparing models with varying topology, as no specific layers need251

to be selected.252
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Table 1: Kendall’s rank correlation between mean margin and test accuracy for constrained, standard
input, and hidden margins using the first or all layer(s). Models in Task 4 are trained with batch
normalization while models in Task 5 are trained without. There is no Task 3.

Task Architecture Dataset Constrained Input Hidden (1st) Hidden (all)
1 VGG CIFAR10 0.8040 0.0265 0.5794 0.7825
2 NiN SVHN 0.8672 0.6841 0.7037 0.8281
4 FCN CINIC10 0.6651 0.6251 0.7958 0.2707
5 FCN CINIC10 0.2292 0.3571 0.5427 0.1329
6 NiN OxFlowers 0.8008 -0.1351 0.4427 0.2839
7 NiN OxPets 0.5027 0.3215 0.3623 0.3481
8 VGG FMNIST 0.6004 -0.1233 -0.0656 0.1859

9 NiN CIFAR10
(augmented) 0.8145 0.1573 0.7097 0.4556

Average 0.6605 0.2392 0.5088 0.4110

4.3 Other complexity measures253

To further assess the predictive power of constrained margins, we compare our method to the reported254

CMI scores of several other complexity measures. We compare against three solutions from the255

winning team [17], as well as the best solutions from two more recent works [6, 29], where that of256

Schiff et al. [29] has the highest average test set performance we are aware of. We do not compare257

against pretrained GANs [30]. The original naming of each method is kept. Of particular relevance258

are the MM and AM columns, which are hidden margins applied to Mixup and Augmented samples,259

as well as kV-Margin and kV-GN-Margin which are output and hidden margins with k-Variance260

normalization, respectively. The results of this comparison are shown in Table 2.261

One observes that constrained margins achieve highly competitive scores, and in fact, outperform all262

other measures on 4 out of 8 tasks. It is also important to note that the MM and AM columns show263

that hidden margins can be improved in some cases if they are measured using the representations of264

Mixup or augmented training samples. That said, these methods still underperform on average in265

comparison to constrained input margins, which do not rely on any form of data augmentation.266

Table 2: Conditional Mutual Information (CMI) scores for several complexity measures on the PGDL
dataset. Acronyms: DBI=Davies Bouldin Index, LWM=Label-wise Mixup, MM=Mixup Mar-
gins, AM=Augmented Margins, kV =k-Variance, GN=Gradient Normalized, Gi=Gini coefficient,
Mi=Mixup. Test set average is the average over tasks 6 to 9. There is no Task 3. †Indicates a
margin-based measure.

Task Natekar and Sharma Chuang et al. Schiff et al. Ours

DBI*LWM MM† AM† kV-
Margin 1st†

kV-GN-
Margin 1st†

PCA
Gi&Mi

Constrained
Margin†

1 00.00 01.11 05.73 05.34 17.95 0.04 39.37
2 32.05 47.33 44.60 26.78 44.57 38.08 51.12
4 31.79 43.22 47.22 37.00 30.61 33.76 21.48
5 15.92 34.57 22.82 16.93 16.02 20.33 05.12
6 43.99 11.46 08.67 06.26 04.48 40.06 30.52
7 12.59 21.98 11.97 02.07 03.92 13.19 12.60
8 09.24 01.48 01.28 01.82 00.61 10.30 13.54
9 25.86 20.78 15.25 15.75 21.20 33.16 51.46
Test set
average 22.92 13.93 09.29 06.48 07.55 23.62 27.03

5 A closer look267

In this section we do a further analysis of constrained margins. In Section 5.1 we investigate how the268

performance of constrained margins changes when lower utility subspaces are considered, whereafter269

we discuss limitations of the method in Section 5.2.270
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Figure 1: Comparison of high to low utility directions using subspaces spanned by 10 principal
components, x-axis indicates the first component in each set of principal components. Left: Kendall’s
rank correlation for Task 1 (blue solid line) and 4 (red dashed line). Right: Mean constrained margin
for models from Task 4.

5.1 High to low utility271

We examine how high utility directions compare to those of lower utility when calculating constrained272

margins. This allows us to further test our approach, as one would expect that margins measured273

using the lower-ranked principal components should be less predictive of a model’s performance.274

We calculate the mean constrained margin using select subsets of 10 contiguous principal components275

in descending order of explained variance. For example, we calculate the constrained margins using276

components 1 to 10, then 100 to 109, etc. This allows us to calculate the distance to the decision277

boundary using 10 dimensional subspaces of decreasing utility. We, once again, make use of 5 000278

training samples. We restrict ourselves to analysing the training set of tasks (tasks 1-5) and consider279

one task where constrained margins perform very well (Task 1) and one with poorer performance280

(Task 4). Figure 1 (left) shows the resulting Kendall’s rank correlation for each subset of principal281

components indexed by the first component in each set (principal component index). The right-hand282

side shows the mean margin of all models from Task 4 at each subset.283

As expected, the first principal components lead to margins that are more predictive of generalization.284

We see a gradual decrease in predictive power when considering later principal components. Task285

1 especially suffers this phenomenon, reaching negative correlations. This supports the idea that286

utilizing the directions of highest utility is a necessary aspect of input margin measurements. Addi-287

tionally, one observes that the mean margin also rapidly decreases after the first few sets of principal288

components. After the point shown here (index 1 000), we find that the mean margin increases as289

DeepFool struggles to find samples on the decision boundary within the bound constraints. Due290

to this, it is difficult to draw any conclusions from an investigation of the lower-ranked principal291

components. This also points to the notion that the adversarial vulnerability of modern DNNs is in292

part due to nearby decision boundaries in the directions of the mid-tier principal components (the293

range of 100 to 1 000).294

5.2 Limitations295

It has been demonstrated that our proposed metric performs well and aligns with our intitial intuition.296

However, there are also certain limitations that require explanation. Empirically we observe that, for297

tasks where constrained margins perform well, they do so across all hyperparameter variations, with298

the exception of depth. This is illustrated in Figure 2 (left), which shows the mean constrained margin299

versus test accuracy for Task 1. We observe that sets of networks with two and six convolutional300

layers, respectively, each exhibit a separate relationship between margin and test accuracy. This301

discrepancy is not always as strongly present: for Task 6 all three depth configurations show a more302

similar relationship, as observed on the right of Figure 2, although the discrepancy is still present. The303

same trend holds for all tasks where it is observed (1, 2, 4, 6, 9). It appears that shallower networks304

model the input space in a distinctly different fashion than their deeper counterparts.305
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Figure 2: Mean constrained margin versus test accuracy for PGDL Task 1 (left) and 6 (right). Left:
Models with 2 (green circle) and 6 (blue star) convolutional layers. Right: Models with 6 (blue star),
9 (red square), and 12 (black diamond) convolutional layers.

For tasks such as 5 and 7, where constrained margins perform more poorly, there is no single306

hyperparameter that appears to be the culprit. We do note that the resulting scatter plots of margin307

versus test accuracy never show points in the lower right (large margin but low generalization) or308

upper left (small margin but high generalization) quadrants. It is therefore possible that a larger309

constrained margin is always beneficial to a model’s generalization, even though it is not always310

fully descriptive of its performance. Finally, while our approach to selecting the number of principal311

components is experimentally sound, the results can be further improved if the optimal number is312

known, see the supplementary material for details.313

6 Conclusion314

We have shown that constraining input margins to high utility subspaces can significantly improve315

their predictive power i.t.o generalization. Specifically, we have used the principal components of the316

data as a proxy for identifying these subspaces, which can be considered a rough approximation of317

the underlying data manifold.318

Constraining the search to a warped subspace and using Euclidean distance to measure closeness is319

equivalent to defining a new distance metric on the original space. We are therefore, in effect, seeking320

a relevant distance metric to measure the closeness of the decision boundary. Understanding the321

requirements for such a metric remains an open question. Unfortunately, current approximations and322

methods for finding points on the decision boundary are largely confined to Lp metrics. The positive323

results achieved with the current PCA-and-Euclidean-based approach provide strong motivation that324

this is a useful avenue to pursue. Furthermore, we believe that constrained margins can be used325

as a tool to further probe generalization, similar to the large amount of work that has been done326

surrounding standard input margins and characterization of decision boundaries.327

In conclusion, we propose constraining input margins to make them more predictive of generalization328

in DNNs. It has been demonstrated that this greatly increases the predictive power of input margins,329

and also outperforms hidden margins and several other contemporary methods on the PGDL tasks.330

This method has the benefits of requiring no per-layer normalization, no arbitrary selection of hidden331

layers, and does not rely on any form of surrogate test set (e.g. data augmentation or synthetic332

samples).333
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