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Unleashing the Power of Knowledge Graph for Recommendation
via Invariant Learning
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ABSTRACT
Knowledge graph (KG) demonstrates substantial potential for en-

hancing the performance of recommender systems. Due to its rich

semantic content and associations among interactive entities, it can

effectively alleviate inherent limitations in collaborative filtering

(CF), such as data sparsity or cold-start issues. However, most ex-

isting knowledge-aware recommendation models indiscriminately

aggregate all information in KG, without considering information

specifically relevant to the recommendation task. Such indiscrimi-

nate aggregation could introduce additional noisy knowledge into

representation learning, which can distort the understanding of

users’ genuine preferences, thereby sacrificing the recommenda-

tion quality. In this paper, we introduce the principle of invari-

ance to the knowledge-aware recommendation, culminating in our

Knowledge Graph Invariant Learning (KGIL) framework. It aims

to discern and harness the task-relevant knowledge connections

within KG to enhance the recommendation models. Specifically,

we employ multiple environment generators to simulate diverse

noisy KG-environments. Then we devise a novel attention learning

mechanism for KG and user-item interaction graph, aiming to learn

environment-invariant subgraphs. Leveraging an adversarial opti-

mization strategy, we enhance the diversity of the environments,

meanwhile, promote invariant representation learning across en-

vironments. We conduct extensive experiments on three datasets

and compare KGIL with state-of-the-art methods. The experimental

results further demonstrate the superiority of our approach.

KEYWORDS
Knowledge-aware Recommendation, Invariant Learning

1 INTRODUCTION
In the age of the Internet, information overload has intensified,

making recommendation systems increasingly vital. They are now

ubiquitously integrated into e-commerce platforms, search engines,

and social media sites. The traditional recommendation model, ex-

emplified by collaborative filtering (CF) [14, 15, 21, 38], operates

on the premise that users with similar interaction behaviors tend

to have analogous item preferences. While CF-based models have

seen substantial success across various recommendation scenarios,

their reliance on historical interaction data leads to challenges such

as data sparsity and cold-start issues. Recently, the integration of
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Figure 1: (a) An intuitive example in an e-commerce recom-
mendation scenario. 𝑢1 and 𝑢2 have different preferences,
which can be reflected by their respective relevant triplets.
(b) Diverse KG environments contain a variety of potentially
noisy KG connections. Cross-environment invariant learn-
ing helps distinguish task-relevant connections.

side information from knowledge graphs (KGs) has introduced an

innovative dimension to recommendation models [2, 25], termed

knowledge-aware recommendation. KGs encapsulate vast amounts

of semantic knowledge and factual associations related to items.

They not only offer solutions to the aforementioned challenges but

also hold the promise of enhancing the robustness and explainabil-

ity of recommendation systems [10, 32, 37, 41].

Existing knowledge-aware recommendation studies mainly fall

into the following three categories: 1) Embedding-based meth-

ods [2, 34, 51]: These efforts primarily merge transition-based

knowledge graph embeddings into item embeddings [22], offering

a more comprehensive view of user and item modeling. 2) Path-

based methods [16, 17, 40]: By capitalizing on meta-paths bridging

users and items, these methods harness the inherent connectiv-

ity between users and items to a greater degree. 3) GNN-based

methods [35, 37, 39, 43]: Drawing inspiration from the successes of

graph neural networks (GNNs), they facilitate end-to-end aggrega-

tion of high-order information in KGs. This is achieved by crafting

knowledge-aware aggregations, leading to enhanced user and item

representation learning.

While the above studies have demonstrated efficacy in certain

contexts, they frequently aggregate all the information present

in given KGs without discerning its relevance to the ensuing rec-

ommendation tasks. As a consequence, the performance of the

knowledge-aware recommender becomes heavily contingent on

the quality of input KGs. Unfortunately, KGs often encompass a

plethora of extraneous information, attributable to their long-tailed

entity distributions or knowledge connections unrelated to the

subject matter between items and entities. This redundancy of-

ten compromises the efficiency of KG-enhanced recommendation

models, even sacrificing the recommendation quality. For instance,

Figure 1 (a) shows a KG-enhanced recommendation scenario. 𝑢1
and 𝑢2 have purchased four pieces of clothing 𝑖1, 𝑖2, 𝑖3, and 𝑖4. 𝑢1
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interacts with 𝑖3 and 𝑖4 because of the preference of the 𝑒2 brand,

while𝑢2 interacts with 𝑖3 and 𝑖4 because of the focus on the clothing

fabrics 𝑒4. Hence, there exist informative paths, such as the path

𝑢1 → 𝑖3
𝑟4−−→ 𝑒4

𝑟4−−→ 𝑖4 for 𝑢1, and the path 𝑢2 → 𝑖2
𝑟2−−→ 𝑒2

𝑟2−−→ 𝑖3, 𝑖4
for 𝑢2. These task-relevant connections enhance the capabilities

of the recommendation model. In contrast, there also exist task-

irrelevant noise connections in KG, such as the path 𝑢2 → 𝑖3
𝑟3−−→ 𝑒3

and 𝑢2 → 𝑖2
𝑟1−−→ 𝑒1

𝑟1−−→ 𝑖1. Indiscriminately absorbing the noise

information will largely reduce the effectiveness of KG for rec-

ommendation. To address these issues, existing endeavors adopt

contrastive learning to enhance knowledge semantics. For instance,

[49, 54] employ data augmentation strategies to improve represen-

tation quality; [48, 53] implement contrastive learning to identify

informative connections. Hence, these efforts filter out noisy knowl-

edge by encouraging the model to learn representations that are

invariant across views or environments.

While the aforementioned methods offer somemerit, we contend

that they do not sufficiently consider the diversity of environments

inherent to KGs. Given the inherent variety of noise within KGs,

confining the model to learn invariant representations in a lim-

ited set of KG-environments compromises its capacity to discern

task-relevant knowledge. For illustration, Figure 1 (b) showcases

KG data in multiple noisy environments that retain task-related

knowledge connections. Intuitively, if a model is exposed to KG data

across a broad spectrum of environments, it will inherently priori-

tize and assimilate from those connections stable across these noisy

environments. Consequently, we posit that KG-enhanced recom-

mendation models should simultaneously consider environmental

diversity and cross-environmental invariance. Environmental diver-

sity facilitates the model’s exploration across a spectrum of noisy

environments, while cross-environmental invariance enables it to

discern disparities between these environments, directing its atten-

tion to pertinent task-related knowledge. This naturally prompts

two challenges: How can we generate diverse KG-environments,

and how can we ensure cross-environment invariant learning in

knowledge-aware recommendations?

In this study, we introduce a novel framework, Knowledge Graph

Invariant Learning (KGIL), designed to bolster the efficacy of KG for

recommendations. Its conceptual foundation is rooted in invariant

learning [3, 7, 19, 27], leveraging the principles of sufficiency and

invariance to identify task-relevant knowledge connections from

KGs, thereby enhancing the recommendation. Specifically, to gen-

erate KGs under diverse noisy environments, we employ multiple

independent environment generators to simulate potentially noisy

KG connections. Then we design invariant attention mechanisms

within both the KG and interaction graph and encourage the model

to capture attentive subgraphs. Finally, we adopt an adversarial

optimization strategy to improve the diversity of environments and

the invariance of representation learning.

In essence, our main contributions can be summarized as:

• We argue that encouraging the model to perform invariant learn-

ing across diverse noisy environments can effectively capture

task-relevant knowledge in KG, which is beneficial to achieve

robust and accurate recommendation models.

• We propose a novel framework KGIL. It can generate diverse

noisy environments from KG and encourage the model to learn

representations of users and items that are invariant across these

environments. Hence, it can effectively distill the task-relevant

knowledge while filtering out the noisy connections.

• We conduct experiments on three KG recommendation bench-

mark datasets and compare them with existing state-of-the-art

methods. Extensive experimental results and in-depth analyses

demonstrate the effectiveness of our proposed KGIL.

2 PRELIMINARIES
In this section, we present the primary notations and definitions

utilized in this paper. Subsequently, we offer a formal description

of the knowledge-aware recommendation task.

2.1 Notations and Definitions
In a standard recommendation context, we have a set of users,

denoted as U, and a set of items, represented as I. Let 𝑢 ∈ U
and 𝑖 ∈ I be specific instances of a user and an item, respectively.

The cardinalities of these sets are given by |U| for users and |I |
for items. The interaction matrix, based on historical data such as

clicks, purchases, or ratings, can be constructed as Y ∈ R |U |× |I |
.

An element 𝑦𝑢𝑖 in this matrix indicates that user 𝑢 has previously

interacted with item 𝑖 . If no interaction took place, then𝑦𝑢𝑖 = 0. For

notation consistency, bold font (e.g., u, i) indicates random variables,

while italic font (e.g., 𝑢, 𝑖) signifies their specific instances.
User-Item Interaction Graph (IG). From the interaction ma-

trix Y, we construct the user-item interaction bipartite graph, de-

noted as G𝑏 = {V𝑏 , E𝑏 }. The node setV𝑏 = U ∪ I includes both

user and item nodes. The edge set, E𝑏 = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑦𝑢𝑖 =
1}, encompasses interactions between users and items.

Knowledge Graph (KG). Knowledge graphs represent struc-
tured data capturing real-world semantic facts, such as concepts,

common sense, or relationships between attributes. They provide

auxiliary information to recommendation models, enriching the

context for interactive entities. The KG is denoted as a hetero-

geneous graph, G𝑘 = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ V𝑘 , 𝑟 ∈ E𝑘 }, where each

entity-relation-entity triplet (ℎ, 𝑟, 𝑡) defines the graph. Here, ℎ and

𝑡 stand for the head and tail of knowledge entities, while 𝑟 signifies

the semantic relation between them. The item set I from IG data

forms a proper subset of the entity set V𝑘 , i.e., I ⊆ V𝑘 . We refer

to the entities in the KG corresponding to items as “item entities”.

Other entity nodes are termed “attribute entities”.

2.2 Task Formulation
We delineate the task description for our knowledge-aware recom-

mendation. It can be defined based on the following components:

• Data: The user-item IG data G𝑏 = {V𝑏 , E𝑏 } and the KG data

G𝑘 = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ V𝑘 , 𝑟 ∈ E𝑘 }.
• Model: We aim to devise a function, 𝑦𝑢𝑖 = 𝑓 (𝑢, 𝑖 |G𝑏 ,G𝑘 ), capa-

ble of predicting potential interactions between a user 𝑢 and an

item 𝑖 . Here,𝑦𝑢𝑖 symbolizes the prediction outcome. If𝑦𝑢𝑖 = 1, it

suggests that user 𝑢 is likely to interact with item 𝑖 . Conversely,

𝑦𝑢𝑖 = 0 denotes no potential interaction.

In practice, the construction of KGs is often distinct from the

user-item data collection process [48, 49, 53], leading to the inclu-

sion of extraneous information in the KGs that might not pertain

directly to the recommendation task. In addition, some studies [53]
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Figure 2: The overview of the proposed KGIL framework for knowledge-aware recommendation.

also point out that there also exist certain noisy interactions in

IG. For instance, inadvertent clicks by users can introduce mislead-

ing signals for effective recommendation. The existence of noise

information brings great challenges to the knowledge-aware rec-

ommendation. Owing to the unpredictability of these noises, we

hypothesize that they are derived from diverse noisy environments.

Let S represent the ensemble of all potential noisy environments.

Intuitively, we also posit that both the IG and the KG contain certain

noise-free subgraphs. Inspired by invariant learning literature [3, 7],

we proceed to delineate formal definitions for these subgraphs.

Assumption 2.1 (Invariance Property). Consider a user-item
bipartite graph G𝑏 and a knowledge graph G𝑘 , there exist a noise-free
bipartite subgraph G𝐼

𝑏
= {V𝑏 , E𝐼

𝑏
} such that E𝐼

𝑏
⊆ E𝑏 , and task-

relevant knowledge subgraph G𝐼
𝑘
⊆ G𝑘 . These subgraphs satisfy the

following conditions: i) Suffciency condition: y𝑢𝑖 = 𝑓 (u, i|G𝐼
𝑏
,G𝐼

𝑘
) +

𝜖 , where 𝜖 signifies an independent noise. ii) Invariance condition:
∀𝑠, 𝑠′ ∈ S, 𝑝𝑠 (y𝑢𝑖 |u, i,G𝐼

𝑏
,G𝐼

𝑘
) = 𝑝𝑠′ (y𝑢𝑖 | (u, i,G𝐼

𝑏
,G𝐼

𝑘
), where 𝑝𝑠 and

𝑝𝑠′ denote the distribution under environment 𝑠 and 𝑠′, respectively.

It posits that these invariant subgraphs embedded within the IG

and KG encapsulate sufficient information to forecast each user’s

interaction behaviors. Concurrently, their association with y𝑢𝑖 re-
mains stable and invariant across environments characterized by

varying noise distributions. This inherent invariance quality fa-

cilitates the effective filtering out of noise, thereby fostering the

development of a robust and accurate recommendation model.

3 METHODOLOGY
In this section, we present the Knowledge Graph Invariant Learning

(KGIL) framework for knowledge-aware recommendation. Drawing

inspiration from invariant learning [3, 7, 28], KGIL endeavors to

extract task-relevant knowledge connections fromKG and highlight

informative interactions from IG. The overview of KGIL is depicted

in Figure 2. Now we illustrate the details of each component.

3.1 Environment Generator
KGs supplement items with auxiliary information, effectively mit-

igating the challenge of data sparsity in user-item interactions.

However, numerous studies [13, 34] highlight that the construction

of KGs — typically decoupled from the user-item IG data collec-

tion — often leads to the inclusion of a vast array of task-irrelevant

knowledge, which will detrimentally impact the recommendation

performance. Therefore, to highlight task-relevant connections

within the KG, we design𝑀 independent environment generators

to generate multiple KGs in diverse noisy environments. Specif-

ically, given the KG data G𝑘 = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ V𝑘 , 𝑟 ∈ E𝑘 }, each
triplet (ℎ, 𝑟, 𝑡) will be associated with a random variable 𝑝𝑚 ∼
Bernoulli(𝜔𝑚), where the triplet exists if 𝑝𝑚 = 1 and is dropped

otherwise. We parameterize the Bernoulli distribution weight 𝜔𝑚
via an MLP network Φ𝑚 :

𝜔𝑚 = Φ𝑚 (W𝑟 eℎ | |e𝑟 | |W𝑟 e𝑡 )), (1)

where | | denotes the concat operation; eℎ, e𝑡 , e𝑟 ∈ R𝑑 are the embed-

ding for ℎ, 𝑡 and 𝑟 , respectively;W𝑟 ∈ R𝑑×𝑑 is the transformation

matrix of relation 𝑟 , which projects entities from the 𝑑-dimension

entity space into the relation space [37]. We use 𝜃𝑚 to summarize

the parameters of the 𝑚-th environment generator. To train the

model in an end-to-endmanner, we relax the discrete 𝑝𝑚 to be a con-

tinuous variable in [0, 1] and utilize the Gumbel-Max reparametriza-

tion trick. Specifically, we define the following function:

𝑝𝑚 = sigmoid((log𝛿 − log(1−𝛿) +𝜔𝑚)/𝜏), 𝛿 ∼ Uniform(0, 1), (2)
where 𝛿 is a random variable sampled from a uniform distribution,

and 𝜏 is the temperature hyperparameter. As the temperature 𝜏 →
0, 𝑝𝑚 gets close to binary. Hence, we can define 𝑀 independent

environment generators to generatemultiple newKGs {G1

𝑘
, ...,G𝑀

𝑘
}

to simulate𝑀 different environments.

3.2 Invariant Learning on Knowledge Graph
In this module, we aim to achieve task-relevant information ex-

traction in multiple KGs by designing a shared invariant attention

aggregation mechanism for KG data from diverse environments,

and a knowledge-aware invariant learning task.

3.2.1 Relation-aware Invariant Attention Generation. To au-

tomatically extract semantic information crucial for recommen-

dation tasks from KG data, we turn to the principles of invariant

learning [3, 7, 20, 29, 46]. This idea focuses on discovering invari-

ant KG subgraphs across diverse environments. Recognizing that

3
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KG subgraphs across different environments might have differing

levels of noise, we find it imperative to design a feature learner that

identifies these invariant subgraphs. We introduce the following

attention score generation function for relation:

𝑔(ℎ, 𝑟 ) =
eℎW𝑞 · (e𝑟W𝑘 )⊤√

𝑑
, (3)

whereW𝑞,W𝑘 ∈ R𝑑×𝑑 are trainable weight matrices. This function

determines the degree to which relations serve as the foundation

for collaborative interactions for recommendation. For a given head

ℎ, we use softmax function to normalize the attention scores of its

surrounding relations:

𝑔(ℎ, 𝑟 ) = exp(𝑔(ℎ, 𝑟 ))∑
(ℎ,𝑟 ′ ) ∈N𝑟

ℎ
exp(𝑔(ℎ, 𝑟 ′)) , (4)

where N𝑟
ℎ
refers to the set of neighbor relations centered on the

head ℎ. In order to further determine the importance of each knowl-

edge triplet, we design the following attention score for knowledge

triplets based on the attention score of relation:

𝛼 (ℎ, 𝑟, 𝑡) =
exp

(
(eℎ | |ê𝑟 ) · (e𝑡 | |ê𝑟 )⊤

)∑
(ℎ,𝑟 ′,𝑡 ′ ) ∈Nℎ

exp ((eℎ | |ê𝑟 ′ ) · (e𝑡 ′ | |ê𝑟 ′ )⊤)
, (5)

where ê𝑟 = 𝑔(ℎ, 𝑟 )e𝑟 ; Nℎ refers to the set of neighbor triplets cen-

tered on the head ℎ. We can observe that the design of 𝛼 (ℎ, 𝑟, 𝑡)
first considers the attention score of the neighbor relations, and

then considers the global information of the entire triplet. This

hierarchical strategy can effectively measure the importance of

each knowledge triplet in KG.

3.2.2 Invariant Knowledge Aggregation. In addition to design-

ing the attention generation mechanism, following [39, 48], we also

employ a relational-path aware aggregation mechanism for KG to

distill the invariant knowledge subgraph. Specifically, for the given

KG, we recursively learn the item and attribute representations in

the following way:

e(𝑙+1)
ℎ

=
1

|Nℎ |
∑︁

(ℎ,𝑟,𝑡 ) ∈Nℎ

𝛼 (ℎ, 𝑟, 𝑡)e𝑟 ⊙ e(𝑙 )𝑡 , (6)

where e(𝑙+1)
ℎ

and e(𝑙+1)𝑡 denote the representations of head and

tail, which memorize the relational signals propagated from their

𝑙-th layer neighbors. For each triplet (ℎ, 𝑟, 𝑡), a relational message

e𝑟 ⊙ e(𝑙 )𝑡 is designed for implying different meanings of triplets, via

modeling the relation 𝑟 through the projection or rotation operator

[30]. Furthermore, we utilize the proposed attention score 𝛼 (ℎ, 𝑟, 𝑡)
to decide how important each triplet is to the currently aggregated

information. In subsequent designs, we will use invariant learn-

ing to constrain the attention mechanism to capture invariant KG

subgraphs in diverse environments.

3.2.3 Knowledge-aware Invariant Learning. For the given KG

data {G1

𝑘
, ...,G𝑀

𝑘
}, we need to design the optimization objective

to capture the invariant KG subgraph. Based on Assumption 2.1,

the invariance condition states that the KG invariant subgraph

should ensure invariant predictions across different environments.

It emphasizes that the item representations enhanced by KG should

be also invariant under different environments. Hence, we imple-

ment cross-environment invariance constraints through contrastive

learning. Specifically, given KG data G𝑚
𝑘

and G𝑚+1
𝑘

, we aggregate

𝐿 times based on equation (6), and sum the item representations of

these 𝐿 layers:

z𝑚𝑖 = e(0)
𝑚,𝑖

+ · · · + e(𝐿)
𝑚,𝑖

, z𝑚+1
𝑖 = e(0)

𝑚+1,𝑖 + · · · + e(𝐿)
𝑚+1,𝑖 , (7)

where e(𝑙 )
𝑚,𝑖

and e(𝑙 )
𝑚+1,𝑖 denote the 𝑙-th layer item representations

from G𝑚
𝑘

and G𝑚+1
𝑘

, respectively. Then we adopt the projection

head to map these representations into the space where invariant

learning loss is calculated:

ẑ𝑚𝑖 = Ŵ(2)𝜎 (Ŵ(1)z𝑚𝑖 + b(1) ) + b(2) ,

ẑ𝑚+1
𝑖 = Ŵ(2)𝜎 (Ŵ(1)z𝑚+1

𝑖 + b(1) ) + b(2) ,
(8)

whereW and b denote the learnable weights and bias. To encour-

age the invariance, we should also define the positive and negative

samples. For the given item 𝑖 in environment G𝑚
𝑘
, we define posi-

tive samples as the same item 𝑖 in environment G𝑚+1
𝑘

, and define

negative samples as another different item 𝑗 ≠ 𝑖 in G𝑚
𝑘
. Based on

the positive and negative samples defined above, we define the

following invariant learning optimization objective:

L𝑚
𝑘,𝑖𝑛𝑣

=
1

|V𝑖 |
∑︁
𝑖∈V𝑖

−log
exp(sim(ẑ𝑚

𝑖
, ẑ𝑚+1
𝑖

)/𝜏𝑘 )∑
𝑗∈V𝑖 , 𝑗≠𝑖 exp(sim(ẑ𝑚

𝑖
, ẑ𝑚

𝑗
)/𝜏𝑘 )

, (9)

where sim(·) denotes the similarity measurement, which is defined

as the cosine similarity, and 𝜏𝑘 is the temperature hyperparame-

ter. Please note that here we define L𝑚 as an invariant learning

objective between environment𝑚 and𝑚 + 1. To fully explore the

generated environments, we will consider𝑀 losses in Section 3.4.

3.3 Invariant Learning on Interaction Graph
Equation (9) only considers the invariance constraints on the item

representation space. According to the invariance condition in

Assumption 2.1, we also need to establish a cross-environment in-

variant relationship for the interaction labels of the downstream

recommendation tasks. The sufficiency condition requires that the

captured invariant subgraphs can also correctly predict the interac-

tions between users and items. Therefore, we need to combine the

generated KGs with IG, and design a new aggregation mechanism

for IG for downstream recommendation tasks, so as to achieve joint

invariant learning of KG and IG.

3.3.1 Attention-based Aggregation. We hope to retain inter-

active edges that clearly reflect user interests and can better guide

invariant learning of knowledge graphs. Therefore, we designed

the following attention mechanism to highlight the important user-

item interaction edges:

𝛽 (𝑢, 𝑖) = exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑏 [x𝑖 | |x𝑢 ]))∑
𝑖∈N𝑢

exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑏 [x𝑖 | |x𝑢 ]))
, (10)

where x𝑖 and x𝑢 represent the embedding of items and users, re-

spectively; N𝑢 represents the set of neighbor items of user 𝑢; and

W𝑏 is a learnable weight matrix. 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 activation function is

adopted for non-linear transformation. On the IG data, we design

the following aggregation mechanism to update the embedding of

users and items at each layer:
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x(𝑙+1)𝑢 =
1

|N𝑢 |
∑︁
𝑖∈N𝑢

𝛽 (𝑢, 𝑖)x(𝑙 )
𝑖

, x(𝑙+1)
𝑖

=
1

|N ′
𝑖
|
∑︁
𝑖∈N′

𝑖

x(𝑙 )𝑢 + e(𝑙+1)
𝑖

,

(11)

where N ′
𝑖
represents the set of neighbor users of item 𝑖 on the

IG graph, and e(𝑙+1)
𝑖

represents the (𝑙 + 1)-th layer representation

obtained by KG aggregation as shown in equation (6). Therefore,

this aggregation method allows users and items to simultaneously

consider the captured task-relevant semantic knowledge, thereby

realizing KG-enhanced information aggregation.

3.3.2 Invariant Attention Learning. In order to achieve invari-

ance conditions in IG, we need to combine IG with KGs in differ-

ent environments. Across these𝑀 environments, we leverage the

shared weight parameters to simultaneously aggregate information

and learn invariant attention scores to KG and IG based on equa-

tions (6) and (11). Specifically, under environment𝑚 and𝑚 + 1, we

aggregate 𝐿 times and sum the representations of these 𝐿 layers to

obtain the final user and item representations:

h𝑚𝑛 = x(0)𝑚,𝑛 + · · · + x(𝐿)𝑚,𝑛, h𝑚+1
𝑛 = x(0)

𝑚+1,𝑛 + · · · + x(𝐿)
𝑚+1,𝑛, (12)

where the subscript 𝑛 indicates that we do not distinguish between

users or items; x(𝑙 )𝑚,𝑛 and x(𝑙 )
𝑚+1,𝑛 denote the 𝑙-th layer representations

of from 𝑚 and 𝑚 + 1 environments, respectively. Similar to the

invariant learning in KGs, we also learn the representations z̃𝑚𝑛
and z̃𝑚+1

𝑛 through a project head. Finally, we define the following

invariant learning objective in IG:

L𝑚
𝑏,𝑖𝑛𝑣

=
1

|V𝑏 |
∑︁

𝑛∈V𝑏

−log exp(sim( ˜h𝑚𝑛 , ˜h𝑚+1
𝑛 )/𝜏𝑏 )∑

𝑗∈V𝑏 , 𝑗≠𝑛
exp(sim( ˜h𝑚𝑛 , ˜h𝑚

𝑗
)/𝜏𝑏 )

, (13)

where 𝜏𝑏 is the temperature hyperparameter. Equation (13) is de-

fined from the perspective of the global view, which considers

both KG and IG information, thus achieving knowledge-enhanced

invariant learning for user and item representations.

3.3.3 InvariantModel Prediction. We implement the sufficiency

condition inAssumption 2.1 by defining invariantmodel predictions

under𝑀 different environments. For item and user representations

in environment𝑚, we predict their matching scores through the

inner product, and then we define the BPR loss as follows:

L𝑚
𝑏𝑝𝑟

=
∑︁

(𝑢,𝑖, 𝑗 ) ∈D
− log𝜎 (𝑦𝑚𝑢𝑖 − 𝑦𝑢 𝑗 ), 𝑦𝑚𝑢𝑖 = h𝑚𝑖

⊤h𝑚𝑖 , (14)

where D = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ D+, (𝑢, 𝑗) ∈ D−} is the training

dataset consisting of the observed interactions D+
and unobserved

counterparts D−
; 𝜎 is the sigmoid function. Under environment𝑚,

we sum the invariant learning in KG and global invariant learning

in IG and define them as L𝑚
𝑖𝑛𝑣

= L𝑚
𝑘,𝑖𝑛𝑣

+ L𝑚
𝑏,𝑖𝑛𝑣

. For simplicity, we

also define the optimization goal of invariant model prediction as:

L𝑚
𝑟𝑒𝑐 = L𝑚

𝑏𝑝𝑟
+ L𝑚

𝑖𝑛𝑣
. In the inference stage, we adopt the mean

representations of the items and users in𝑀 environments to make

the final predictions.

3.4 Model Optimization
3.4.1 Cross-environment Invariant Learning. So far, we have

used environment𝑚 as an example to achieve the sufficiency and

invariance conditions of invariant learning. In order to consider

the invariance principle across more diverse environments, for the

given𝑀 environment generators, we achieve our final optimization

goal by minimizing the mean and variance over𝑀 environments:

Θ∗ = argmin

Θ

{
1

𝑀

𝑀∑︁
𝑚=1

L𝑚
𝑟𝑒𝑐 + 𝜆Var({L𝑚

𝑖𝑛𝑣 : 1 ≤ 𝑚 ≤ 𝑀})
}
, (15)

where Θ outlines all the parameters that can be learned in the

model except the environment generators; 𝜆 is a hyperparameter.

This way of achieving sufficiency and invariance under different

environments allows the model to accurately capture task-relevant

KG subgraphs and informative IG subgraphs, thereby achieving

more accurate and robust recommendation predictions.

3.4.2 Multi-environment Exploration. The purpose of the envi-
ronment generators is to generate more diverse noisy environments,

thereby improving the robustness of the model. To fully explore the

types of noise that may be ignored for the current given model, we

update the parameters of the environment generator by defining

the following optimization goals:

𝜃∗
1
, ..., 𝜃∗𝑀 = argmax

𝜃1,...,𝜃𝑀

Var({L𝑚
𝑖𝑛𝑣 : 1 ≤ 𝑚 ≤ 𝑀}). (16)

It encourages the environment generators to explore more diverse

environments by maximizing the variance of 𝑀 invariant learn-

ing objectives, which can further generate environments that are

challenging for the model, thus improving the robustness against

diverse noise. Combining equations (15) and (16), we find that it is

a bi-level optimization problem, which is usually difficult to solve.

In our implementation, we use an alternating optimization strat-

egy to update the model parameters and environment generator

parameters separately. Specifically, we define𝑇 iterations as a cycle.

During the process of model training, the parameters of environ-

ment generators will be updated every 𝑇 iterations.

3.5 Model Analysis
3.5.1 Model Size. The model parameters of KGIL include: 1)𝑀

environment generators {𝜃1, ..., 𝜃𝑀 }; 2) ID embeddings of users,

items, relations, and attribute entities {e𝑢 , e𝑖 , e𝑟 , e𝑒 |𝑢 ∈ U, 𝑖 ∈
I, 𝑟 ∈ E𝑘 , 𝑒 ∈ V𝑘 }; and 3) Weights for attention generation (i.e.,
W𝑞,W𝑘 ,W𝑏 ), and project heads for invariant learning.

3.5.2 Time Complexity. While KGIL employs𝑀 distinct envi-

ronment generators, we contend that its time complexity remains

on par with prevailing methods [48, 49, 53, 54]. Our time complexity

is primarily derived from three main components: 1) Environment

generators have a complexity of O(𝑀 |V𝑘 |𝑑) to generate KGs. As
we update the parameters of generators periodically (i.e., every
𝑇 iterations), the computational overhead is mitigated. 2) Aggre-

gation of KG and IG demands O(𝑀 ( |V𝑘 | + |V𝑏 |)𝑑𝐿). 3) Invariant
learning has a complexity of O(𝑀𝐵( |U| + 2|I |)𝑑), with 𝐵 repre-

senting the distinct count of users and items within a batch. It’s

notable that most current efforts [48, 54] utilize two or more views

for contrastive learning. Consequently, their aggregation process

typically demands multiple times of O((|V𝑘 | + |V𝑏 |)𝑑𝐿). In our

implementation, we observed optimal performance when setting

𝑀 = 3, indicating that our environment generators do not add sig-

nificant complexity. Considering the performance and complexity
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Table 1: Statistics of experimental datasets.

Statistics Last-FM Yelp2018 MIND

# Users 23,566 45,919 100,000

# Items 48,123 45,538 30,577

# Interactions 3,034,796 1,183,610 2,975,319

# Density 2.7e-3 5.7e-4 9.7e-4

Knowledge Graph

# Entities 58,266 47,472 24,733

# Relations 9 42 512

# Triplets 464,567 869,603 148,568

trade-offs, we believe that the marginal complexity introduced by

our technique is justifiable.

4 EXPERIMENTS
To evaluate the effectiveness of KGIL, we carry out a series of

experiments to address the following Research Questions:
• RQ1: How does KGIL compare against various state-of-the-art

recommendation models?

• RQ2:What is the contribution of each component within the

KGIL framework to its overall recommendation performance?

• RQ3: Can KGIL aid the model in acquiring robust representa-

tions and how proficient is it at mitigating noise issues?

4.1 Experimental Settings
4.1.1 Datasets. To ensure a comprehensive and persuasive evalu-

ation, we utilize three publicly available recommendation datasets,

each reflecting distinct real-world scenarios:

• Last-FM: Originating from user listening records on music plat-

forms, it treats various tracks as candidate item sets.

• Yelp2018: Derived from the 2018 edition of Yelp’s rating data,

it focuses on local businesses, which are designated as items.

• MIND: Sourced from the anonymous behavior logs on the Mi-

crosoft News website, it includes user clicks on news articles and

knowledge graphs built from Wikidata using headline entities.

These datasets exemplify music, businesses, and news recommenda-

tion scenarios, respectively. Regarding interaction data, we employ

the 10-core preprocessing method to refine the datasets, retaining

only users and items with occurrences exceeding 10 times. For the

knowledge graph data, we follow existing literature and adopt adap-

tive construction techniques tailored for each dataset. The detailed

statistics of these datasets are shown in Table 1.

4.1.2 Evaluation Metrics. To maintain a consistent comparison,

we adopt the full-ranking strategy across all experiments when

assessing recommendation performance. For each user, items with

which they have never interacted are considered negative, while

items included in the dataset are deemed positive. For top-N rec-

ommendations, we rely on two widely-used evaluation metrics:

Recall@N and NDCG@N, with N defaulting to 20. Ultimately, we

present the average outcomes for all users within the testing set.

4.1.3 Baselines and Settings. To demonstrate the superiority of

our proposed method, we incorporate a variety of baseline methods.

These span from traditional CF models to the embedding-based

Table 2: Overall performance comparison for all methods on
three datasets. The highest results are in bold.

Method

Last-FM Yelp2018 MIND

Recall NDCG Recall NDCG Recall NDCG

BPRMF 0.0715 0.0637 0.0625 0.0388 0.0384 0.0253

NeuMF 0.0699 0.0615 0.0631 0.0390 0.0308 0.0237

GC-MC 0.0709 0.0631 0.0659 0.0410 0.0386 0.0261

LightGCN 0.0738 0.0647 0.0661 0.0415 0.0408 0.0266

SGL 0.0879 0.0775 0.0684 0.0431 0.0416 0.0272

CKE 0.0732 0.0630 0.0651 0.0414 0.0387 0.0247

KTUP 0.0783 0.0681 0.0640 0.0420 0.0362 0.0302

RippleNet 0.0791 0.0684 0.0664 0.0428 0.0372 0.0283

CKAN 0.0812 0.0660 0.0622 0.0389 0.0361 0.0275

KGNN-LS 0.0880 0.0642 0.0637 0.0402 0.0395 0.0302

KGAT 0.0873 0.0744 0.0712 0.0443 0.0340 0.0287

KGIN 0.0900 0.0779 0.0736 0.0482 0.0380 0.0293

MCCLK 0.0671 0.0603 0.0630 0.0397 0.0327 0.0194

KGCL 0.0896 0.0806 0.0738 0.0487 0.0351 0.0221

KGRec 0.0936 0.0805 0.0741 0.0482 0.0419 0.0306

KGIL 0.0942 0.0817 0.0745 0.0498 0.0417 0.0310

method, GNN-based knowledge-aware recommenders, and self-

supervised knowledge-graph recommendation methods. Owing to

spatial constraints, comprehensive descriptions of these baseline

methods and settings can be found in Appendix A.

4.2 Performance Comparison (RQ1)
In evaluating recommendation performance, we compare our pro-

posed KGIL with existing baseline methods across three datasets,

yielding the subsequent observations:

• Most KG-enhanced recommendation models significantly sur-

pass the traditional CF-basedmethods. Nevertheless, a discernible

performance gap remains between some KG-enhanced tech-

niques and the state-of-the-art self-supervised learning method,

e.g., SGL, in the CF domain. This discrepancy may stem from the

inherent nature of most existing KG data, which is not specifi-

cally tailored for recommendation tasks, thereby incorporating

vast amounts of task-irrelevant connections. If the recommenda-

tion systems indiscriminately assimilate the information with-

out discerning the crucial knowledge, it will involve substantial

noise for the representation learning of users and items. Con-

trarily, our method effectively identifies and leverages invariant

attentive subgraphs from KGs via the proposed invariant atten-

tion generation mechanism. It ensures a holistic and precise

utilization of the task-relevant triplet data within KGs, poten-

tially paving the way to overcome these limitations.

• When set against self-supervised learning endeavors, such as

SGL, MCCLK, and KGCL, our method manifests significant im-

provements. A closer examination reveals that while most cur-

rent self-supervised learning techniques rely on random data

augmentation to generate views, KGIL implements learnable

environment generators for this purpose. These environment

generators explore a broader spectrum of noisy environments

by adversarially maximizing the variance in invariant learning

objectives. Concurrently, our design encourages the model to

attenuate both the mean and variance of these objectives. It

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Unleashing the Power of Knowledge Graph for Recommendation via Invariant Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: The impact of different components in KGIL.

MIND Last-FM Yelp2018

Ablation Recall NDCG Recall NDCG Recall NDCG

KGIL 0.0417 0.0310 0.0942 0.0817 0.0745 0.0498

w/o EG 0.0401 0.0296 0.0923 0.0795 0.0726 0.0473

w/o IKG 0.0385 0.0282 0.0912 0.0789 0.0719 0.0466

w/o IIG 0.0399 0.0291 0.0930 0.0801 0.0740 0.0494

endows our model with an enhanced capability to filter out the

noise and pinpoint task-relevant information.

4.3 Ablation Study (RQ2)
4.3.1 Impact of Different Components. To assess the individ-

ual contributions of KGIL’s components to its performance, we

evaluate the following three model variants:

• “w/o EG”: This version excludes the environment generators

in KGIL. In its place, we employ random data augmentation to

simulate diverse KG environments.

• “w/o IKG”: This KGIL variant omits the invariant attention mech-

anism for KG. Consequently, all triplet information is aggregated

with uniform attention scores.

• “w/o IIG”: Without the invariant attention mechanism for the

user-item interaction graph in this KGIL variant, users and items

propagate and aggregate messages across interaction graph con-

nections with consistent attention scores.

As depicted in Table 3, KGIL’s performance diminishes to varying

extents when any of these components is absent. The “w/o EG”

variant exhibits the most pronounced degradation. This aligns with

our assertion that learnable data augmentation—by enhancing the

spectrum of noisy environments—empowers the model to discern

task-specific details and cultivate robust, invariant representations.

Concurrently, the attention mechanism not only enables the model

to filter irrelevant information but also to harness triplet facts of

varying significance, thereby optimizing information utilization

and bolstering recommendation performance.

4.3.2 Sensitivity to the key hyperparameters. We further in-

vestigate the influence of two pivotal hyperparameters in KGIL:𝑀

and 𝜆. Here,𝑀 denotes the number of environments, and 𝜆 signi-

fies the coefficient regulating the variance. We establish their value

ranges as 𝑀 ∈ {2, 3, 4, 5} and 𝜆 ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, with the

corresponding outcomes illustrated in Figure 3. From the results,

performance is generally improved when employing more than

three environments. As for the variance-controlling coefficient 𝜆,

performance variations are scarcely noticeable once the coefficient

surpasses 0.5. Consequently, the final performance of the model

showcases resilience against variations in these hyperparameters.

4.4 Model Benefits Analysis (RQ3)
4.4.1 Robustness to Information Noise. We conduct experi-

ments to assess how KGIL handles noisy triplets in KG and interac-

tions in IG. To do this, we introduce varying levels of random noise.

In the KG, we randomly select a designated proportion of triplets

and replace their tail entities. For the user-item interaction graph,

we add a set proportion of random noisy interaction edges to the
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Figure 3: Performance over diverse hyperparameters.

training data, while the test set remains unchanged. Figure 4 shows

KGIL’s performance in comparison to established models such as

SGL, KGIN, KGCL, and KGRec. We conduct experiments on the

MIND and Yelp2018 datasets. While noise reduces the performance

of all models, KGIL demonstrates a lesser degree of degradation.

In the experiment with noisy triplets, as the noise ratio increases,

KGIL’s performance consistently stays within an acceptable range.

Its robustness surpasses that of other baseline models. This high-

lights KGIL’s ability to generate diverse noisy environment distribu-

tions, enabling the model to extract robust and invariant representa-

tions from data, even amidst noise. In essence, unlike conventional

models that mainly rely on data augmentation, KGIL employs a

learnable data augmentation strategy. From an adversarial per-

spective, it also encourages the diversity of environments and the

invariance of subgraph learning. Hence, it helps the model to filter

out noise and discern the relevance of different triplet facts in KG

according to the downstream recommendation task.

The experiment with noisy interactions in IG shows a more sig-

nificant performance drop than that with noisy triplets in KG. We

postulate that the intrinsic sparsity of interaction graph data exac-

erbates the impact of added noise interactions on recommendation

efficacy, relative to noise introduced to triplets. Nevertheless, from

multiple curve trends, the performance of KGIL consistently out-

performs its competitors, with a rate of decline parallel to the SGL

model. We attribute this robustness to KGIL’s fusion of invariant

learning and the attention mechanism for KG data. By leverag-

ing the environmental diversity and the principle of invariance in

KG learning, KGIL derives robust entity representations. Hence, it

encourages the model to highlight task-relevant knowledge from

noisy KG. Furthermore, the invariant attention-based aggregation

process in both KG and IG, enhances the invariant representation

learning for users and items with task-relevant knowledge, thereby

bolstering the recommendation performance.

4.4.2 Cold-Start Recommendation. To evaluate the efficacy

of our framework under a cold-start scenario characterized by ex-

tremely sparse interaction data, we categorize users in the dataset

into five groups based on their interaction frequency. A lower group

ID corresponds to decreased user activity, exacerbating the cold-

start challenge. We compare KGIL with several baselines across
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(b) MIND dataset
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(d) MIND dataset

Figure 4: Impact comparison w.r.t. noise ratio added in KG
and IG. The bar displays Recall@20, while the curve displays
the drop percentage of performance.

varying cold-start levels. The results are depicted in Figure 5. The

results clearly indicate that KGIL adeptly addresses the cold-start

issue, consistently outperforming other models. The superior per-

formance stems from KGIL’s ability to derive robust item repre-

sentations by pinpointing informative connections within the KG.

Subsequently, it employs an invariant attention mechanism to uti-

lize task-relevant information towards interaction graph learning.

Hence, even in the case of cold-start users, KGIL equips the recom-

mendation model to discern and reflect users’ potential preferences

with remarkable accuracy.

5 RELATEDWORK
Knowledge-aware Recommendation. Due to the existence of
extensive prior information, KG can effectively alleviate many prob-

lems in recommendation models, including data sparsity or cold

start issues. Early studies [6, 31, 34, 51] are mainly based on embed-

ding methods, which use embedding technology to represent the

relations and entities in KG, and provide additional prior informa-

tion for the recommendation model. Represented by CKE [51] and

TransE [5], these methods [6, 47] tend to learn first-order graph con-

nections. Despite their effectiveness, they still fall short in modeling

long-range semantics and latent user preferences. The path-based

efforts [16, 17, 33, 40] explore the long-range connectivity between

target users and item entities by extracting different semantic paths

via KG. For example, RippleNet [33] collects paths from users to

historical items, and then injects the knowledge information from

item entity representation into user representations. However, with

the large-scale growth of interaction data, such methods [17, 33]

require either extremely time-consuming search, or artificial pre-

definition of domains to filter paths. Until recently, GNN-based

methods [35–37, 39, 43] use the message-passing mechanism to

absorb structural information into node representations, thereby

achieving strong representation capabilities for users and items.

CKAN [43] adopts different propagation strategies for knowledge

signals and collaborative signals. KGAT [37] employs the atten-

tion mechanism to perform graph convolution operations on the
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Figure 5: Recommendation performance over different cold-
start user groups on Last-FM dataset.

heterogeneous hybrid graph. KGIN [39] adopts an adaptive aggre-

gation method on the heterogeneous graph and uses high-order

information to learn fine-grained user potential intentions.

Invariant Learning in Graphs and Recommendation. Invari-
ant learning [1, 3, 7, 8, 27] is emerging as a pivotal technique to

enhance model generalization. This approach often posits that cer-

tain stable features exist within data that causally determine the

target labels. Moreover, the relationship between these stable fea-

tures and labels remains invariant across different environments.

Conversely, environmental features tend to encapsulate informa-

tion that lacks a causal linkage to labels [11, 46], often manifesting

as shortcuts [12] or noise [29]. Recently, the graph field has seen a

surge in the application of invariant learning [18, 24, 45]. To discern

stable features, DIR [46] makes interventions on environmental fea-

tures, whereas GREA [23] employs both environment removal and

replacement data augmentation. Meanwhile, CAL [29] and DisC

[11] leverage random replacement of environmental features to seg-

regate stable features from environmental ones. Correspondingly,

there have been initiatives to integrate the principles of invari-

ant learning into recommendation systems. For instance, InvPref

[42] iteratively decomposes the invariant preference and variant

preference from biased observational user behaviors to achieve

debiasing in the recommendation. InvCF [50] addresses the issue of

popularity distribution shifts in CF models by acquiring invariant

representations. Furthermore, invariant learning has showcased im-

pressive outcomes in diverse recommendation contexts, including

CTR prediction [52] and multimedia recommendations [9].

6 CONCLUSION
In this paper, we propose KGIL, a novel framework designed to

enhance knowledge-aware recommendation systems. Drawing in-

spiration from invariant learning, our approach equips the KG-

enhanced recommendation models with the capacity to capture

invariant subgraphs across environments, thereby harnessing the

full potential of the side information provided by the KG. To achieve

this, we begin by generating the noisy environments from KG, fa-

cilitated by the design of multiple environment generators. Sub-

sequently, we design attention mechanisms tailored for both KG

and interaction graphs and encourage the model to extract cross-

environment invariant attentive subgraphs. Finally, adversarial

optimization is employed to encourage the diversity of generated

environments and the invariance of the representation learning.

We conduct extensive experiments and compare KGIL with existing

efforts. Experimental results further demonstrate the superiority of

our proposed KGIL framework.
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A MORE IMPLEMENTATION DETAILS
A.1 Baselines
• BPRMF [26] is a classic matrix factorization (MF) method that

ranks candidate items based only on implicit feedback and calcu-

lates pairwise ranking loss with user and item ID embeddings.

• NeuMF [15] integrates multi-layer perceptrons into MF to learn

nonlinear feature interactions between users and items.

• GC-MC [4] utilizes a bipartite graph to model recommenda-

tion tasks and captures interaction patterns in the form of link

prediction based on the graph autoencoder framework.

• LightGCN [14] is a GNN-based model, which realizes message

propagation between users and items by simplifying GCN.

• SGL [44] is a self-supervised learning method for GNN-based

recommendation, it constructs multiple graph views for con-

trastive learning to obtain robust representations for CF.

• CKE [51] is an embedding-based method using TransR to guide

the entity representation in KG, integrating the derived semantic

information into the CF framework for enhancement.

• KTUP [6] lets the KG and interaction graph strengthen each

other, so that the learned representation contains the relation-

ship knowledge between entities that are complementary to the

interaction.

• RippleNet [33] is an embedding-based approach that leverages

ideas that propagate user preference over KG.

• KGNN-LS [35] takes into account the user’s preference for

KG relations and the label smoothing problem of information

aggregation to generate a user-specific item representation.

• KGAT [37] combines the KG and interaction graphs and de-

signs an attention mechanism-based messaging strategy for

recursively propagating user/item embeddings.

• CKAN [43] based on KGNN-LS, adopts different neighborhood

aggregation mechanisms for user-item interaction graph and

KG respectively to obtain the embedding of users and items.

• KGIN [39] uses KG as auxiliary information to learn the user’s

potential intentions, and captures long-range semantic informa-

tion through the relation-aware aggregation strategy.

• MCCLK [54] performs hierarchical contrastive learning on

multi-level views while leveraging structural semantics and col-

laborative semantics to mine additional supervisory signals.

• KGCL [49] performs contrastive learning on KG, aiming to

reduce the impact of information noise on the knowledge graph-

enhanced recommendation system.

• KRDN [53] proposes a pruning-based denoising framework,

which is employed on irrelevant knowledge connections and

noisy interactions.

• KGRec [48] devises a self-supervised rationalization method to

identify informative knowledge connections.
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