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Abstract—Multivariate time series (MTS) prediction is ubiq-
uitous in real-world fields, but MTS data often contains missing
values. In recent years, there has been an increasing interest in
using end-to-end models to handle MTS with missing values. To
generate features for prediction, existing methods either merge
all input dimensions of MTS or tackle each input dimension
independently. However, both approaches are hard to perform
well because the former usually produce many unreliable features
and the latter lacks correlated information. In this paper, we
propose a Learning Individual Features (LIFE) framework,
which provides a new paradigm for MTS prediction with
missing values. LIFE generates reliable features for prediction
by using the correlated dimensions as auxiliary information and
suppressing the interference from uncorrelated dimensions with
missing values. Experiments on two real-world data sets verify
the superiority of LIFE to existing state-of-the-art models. The
full version of this work can refer to arXiv (2109.14844).

Index Terms—Multivariate Time Series Prediction, Missing
Values, Correlated Dimensions, Individual Features

I. INTRODUCTION

Multivariate time series (MTS) data is prevalent in many

fields, such as health care [12, 13] and weather forecasting [2].

Due to sensor damage, irregular sampling, and other reasons,

real-world MTS data usually contains lots of missing values.

For MTS prediction with missing values, a natural idea

is the two-step approach: first fill the missing values with

replacement values, that is, data imputation, and then apply the

complete data to prediction. However, previous studies suggest

that the separation of imputation and prediction processes

has a proclivity for suboptimal results [2, 3]. Besides, it is

usually unnecessary to perform imputation since many real-

world tasks care more about prediction results than restoring

original data. Recent years have witnessed an increasing

interest in exploring end-to-end models, which perform better

than the two-step methods [3, 11]. These models usually

estimate the missing values or treat them as zeros, and then

merge all input dimensions [2, 13] or feed each dimension

independently [7, 15] into Recurrent Neural Networks (RNNs)

or attention-based models to generate features for prediction.

However, merging all input dimensions may result in many

unreliable features, which is caused by the interference of

missing values. Fig. 1 gives a vivid illustration of the fea-

ture generation process above, where X:,d denotes the d-th

dimension. At each timestamp, three input points are converted

to a feature. Once there is a missing value of any input

dimension, the generated feature is unreliable. Adhering to

this line of thought, we can calculate that 30% of input values

are missing, but 80% of generated features are unreliable. On

the other hand, some approaches tackle each input dimension

independently. Thus, the generated feature sequence has the

same unreliable rate as the missing rate of inputs. Nevertheless,

this manner ignores the information provided by the correlated

dimensions. Take the inputs in Fig. 1 as an example, it’s

observed X:,1 and X:,2 are highly correlated. If one dimension

is missing and the other dimension is observed, we should

employ the correlated dimensions as auxiliary information to

make the generated feature sequence more credible.

t0 t2 t4 t6 t8t1 t3 t5 t7 t9
observations: X feature sequence

t0 t2 t4 t6 t8t1 t3 t5 t7 t9

unreliable feature

reliable featureX:,1

X:,2

X:,3

Fig. 1. Feature generation of most existing end-to-end models. Merging all
input dimensions leads to numerous unreliable features.

In this paper, we propose a Learning Individual Features

(LIFE) framework for MTS prediction with missing values.

The roadmap is shown in Fig. 2. The key idea of LIFE is Step

1 and Step 2, which collect credible and correlated dimen-

sions to build features, that is, individual features. Individual

features not only fuse with auxiliary information provided by

correlated dimensions but also discard most of the dimensions

uncorrelated to the concerned dimension. Therefore, LIFE can

generate more reliable features than existing approaches. Our

main contributions are summarized as follows:

• We propose a novel framework LIFE, which provides a

new paradigm for MTS prediction with missing values.

LIFE builds individual features by credible and correlated

dimensions, enabling it to generate many reliable features

for the downstream prediction task.

• We present a general approach for extracting stable and

credible dimensional correlations for MTS with missing

values. We also provide a concrete algorithm for imple-

menting this approach.

• We empirically verify that LIFE outperforms the state-

of-the-art (SOTA) models on two real-world data sets.

II. RELATED WORK

MTS prediction with missing values: Recently, some end-

to-end methods based on deep learning have achieved good
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Fig. 2. Roadmap of LIFE framework. Steps 1 – 4 corresponds to subsections IV-A – IV-D, respectively.

performance in MTS prediction with missing values. These

methods can be roughly divided into two categories: 1) Models

based on RNNs generate features recurrently. Furthermore,

the feature of the current timestamp is repaired concerning

that of the adjacent timestamps. GRU-D [3] develops a decay

mechanism to capture the temporal correlations to repair

missing information. BRITS [2] applies the decay mechanism

to the bidirectional Long Short Term Memory (Bi-LSTM) [6]

model. FG-LSTM [15] focuses on modeling the temporal

dependency for a single input dimension and can be regarded

as running an LSTM for each dimension independently; 2)

Models based on Self Attention employ attention mechanism

instead of recurrence to generate features. SAnD [13] applies

the attention-based method to healthcare applications without

repairing the missing information. However, when generating

features from inputs, the above methods calculate each input

dimension independently or fuse all dimensions. Both manners

would damage the performance because of the lack of dimen-

sional correlations or the problem of unreliable features.

Dimensional correlation measurement: There have been

many studies exploring dimensional correlations for complete

MTS data. The Pearson Correlation Coefficient and Mutual In-

formation can express the correlation between two time series.

Besides, time series distance/dissimilarity can be used to imply

correlation after a simple conversion (e.g., calculating the

reciprocal or negative exponent). Euler distance and Dynamic

Time Warping (DTW) are two commonly used distances.

However, these methods may lead to fictitious correlations

when the data contains missing values. Some kernel-based

methods can handle MTS with missing values and provide

similarity measurement [4, 10]. Still, the missing values could

also damage the results, especially with a large missing rate.

III. PRELIMINARIES

Let X ∈ R
T×D denote a D-dimensional time series with

T timestamps, and s = [st]
T
t=1 ∈ R

T is the corresponding

timestamp sequence. The masking matrix M ∈ {0, 1}T×D

indicates whether the values in X are missing: if Xtd is

observed, Mtd = 1, otherwise Mtd = 0. Let δ ∈ R
T×D
+ denote

the time interval matrix, which consists of the time gap δtd
from the timestamp of last observation to current timestamp.

δtd is defined as:

δtd =

⎧⎨
⎩

st − st−1 + δt−1,d, t > 1,Mt−1,d = 0;
st − st−1, t > 1,Mt−1,d = 1;
0, t = 1.

Note that subscripts [·]t,: and [·]:,d indicate the raw and

column vectors of a matrix, respectively. For example, Xt,:

and X:,d denote the vectors of the t-th timestamp and d-th

dimension, respectively. Suppose a vector u ∈ R
kD consists of

D sub-vectors, each of which has a size of positive integer k,

then let u[d] denote the d-th sub-vector:

u[d] =
(
uk(d−1)+1, uk(d−1)+2, . . . , ukd

)
. (1)

Let the correlation matrix C ∈ [0, 1]D×D denote the

pairwise correlations of D dimensions in MTS, where Cij

represents the correlation value between X:,i and X:,j . The

larger Cij is, the more relevant the two corresponding dimen-

sions are. C is symmetric, and the diagonal elements are 1.

This work aims to predict the supervised signals
{
y(n)

}N

n=1

using the incomplete MTS values
{
X(n)

}N

n=1
, time interval

sequences
{
δ(n)

}N

n=1
, and masking matrices

{
M(n)

}N

n=1
,

where N denotes the number of MTS samples.

IV. LIFE FRAMEWORK

In this section, we present the LIFE framework for MTS

prediction with missing values. Fig. 2 shows the roadmap

of LIFE. Step 1 extracts a credible and stable correlation

matrix by penalizing missing values in qualifying dimensional

correlation. In Step 2, we group the observations by the

correlation matrix, and thus, build individual features using

Self Attention. Step 3 repairs the individual features according

to the temporal information. In Step 4, we obtain the prediction

results by the MTS classifiers or regressors. Finally, we can

optimize the parameters in LIFE by jointly minimizing the

imputation and prediction loss.

A. Correlation Matrix Extraction

This subsection aims to extract the credible and stable

correlation matrix of the MTS data with missing values, which

requires robustness to missing values and hyper-parameter

settings. However, it is quite difficult for the conventional

correlation matrix extraction (CME) methods mentioned in
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Algorithm 1 CME-PDTW algorithm

Input: A data set with N samples. The n-th sample consists

of D-dimensional time series X(n), time interval matrix

δ(n) and masking matrix M(n).

Output: Correlation Matrix C.

1: for n = 1 → N do � traverse each sample

2: X(n)=interpolate
(
X(n)

)
� impute missing values

3: S(n) = zeros(D,D) � PDTW distance

4: Q(n) = zeros(D,D) � weight of this sample

5: for i = 1 → D do
6: for j = i+ 1 → D do
7: S

(n)
ij = S

(n)
ji = PDTW

(
X

(n)
:,i ,X

(n)
:,j

)
8: Q

(n)
ij = Q

(n)
ji = sum

(
M

(n)
:,i +M

(n)
:,j

)
9: end for

10: end for
11: end for
12: S̄ = weighted mean(S,Q)
13: C(non-diag) = normalize

(
1/S̄(non-diag)

)
14: C(diag) = 1

Section II. The reasons lie in two folds. First, some of these

methods exclude the missing values and calculate similarity

only when both points are observed. Obviously, this approach

is not advisable because it discards much useful information.

Second, the other methods first impute the missing values and

then conduct CME. However, the imputation of missing values

could be unreliable. Thus some dimensions with large missing

rates may lead to unstable or even fictitious correlations.

To tackle the drawbacks above, we attempt to punish the

missing values for CME. Since the imputation of missing

values could be untrustworthy, we rely more on observed

values and trust the correlations extracted by dimensions with

low missing rates. Note that we are not trying to give each

pairwise dimensional correlation a precise estimation but only

look for those reliable and stable correlations. We believe

penalizing missing values is a general method for CME and

can be applied to various distances. In the following, we give

a DTW-based algorithm as a concrete implementation.

The key idea of Correlation Matrix Extraction - Penalty

Dynamic Time Warping (CME-PDTW) algorithm is to convert

the pairwise PDTW distances/dissimilarities to a dimensional

correlation matrix. The PDTW distance between X:,d1 and

X:,d2 works by adding penalties of missing values to the

original DTW algorithm:

PDTW(X:,d1
,X:,d2

) = min
π

∑
(i,j)∈π

[
(Xid1

−Xjd2
)
2
+φ(Xid1

,Xjd2
)
]
, (2)

where π is the search path of DTW and φ(·) is the penalty

term. The farther the last observation is, the more unreliable

the estimation of missing value is. So φ(·) should impose more

punishment on the consecutive missing values than sporadic

missing values. For i, j, we formulate φ(·) as follows:

φ (Xid1
,Xjd2

) = p

[
δid1

(1−Mid1
) + δjd2

(1−Mjd2
)

]
. (3)

The produce of CME-PDTW is shown in Algorithm 1.

We use linear interpolation to estimate the missing values

(Line 2) and calculate the pairwise PDTW distances for each

sample (Lines 5-10). Next, we take the weighted mean over

all samples to obtain the averaged distance matrix S̄, and the

weight is proportional to the number of observations (Line 12).

Thus, S̄ is mainly based on those samples with few missing

values. Finally, we transform the distance matrix to the corre-

lation matrix (Line 13-14). The interference of missing values

is inhibited from two aspects to extract credible and stable

correlations. On the one hand, samples with more missing

values are assigned with smaller weights, which weakens their

influence on the results. On the other hand, missing values

will cause large PDTW distances, leading to small values in

the correlation matrix. Thus, only those credible and stable

correlations can be extracted, mainly relying on the samples

and dimensions with low missing rates.

B. Individual Features Construction
The correlation matrix is used to collect the correlated

dimensions for each concerned input dimension. Firstly, pro-

vided a positive integer k, which controls the model complex-

ity, we expand C to a larger matrix C′ ∈ R
kD×3D:

C′
ij = Ci′j′ , i′ = �i/k�, and j′ = j mod D,

where �� denotes the rounding up operation. Next, let It =
(Xt,:, δt,:,Mt,:) denote the input vector at time t and any

missing values are treated as zero. We can transform It into

an embedding vector et ∈ R
kD by a one-layer neural network

and the positional encoding pe(·) as following:

et=σ [W�C′ × It + b] + pe(t), (4)

where W ∈ R
kD×3D is the connection weights, b ∈ R

kD

is the bias, � and × are element-wise and matrix product,

respectively, σ is the sigmoid function, and pe(·) is an

embedding layer (a.k.a. lookup table) which maps the one-hot

encoded timestamp t to an kD-dimensional vector. Notice that

the multiplier W�C′ discards the uncorrelated information for

each concerned dimension, and thus, group the observations

by correlated dimensions. As a result, the k-dimensional sub-

vector et,[d] = (et,k(d−1)+1, . . . , et,kd), as defined in Eq. 1,

only relies on the correlated observations corresponding to

Xtd. We call this sub-vector et,[d] the individual embedding
vector for d ∈ {1, 2, . . . , D}. Thus, the embedding vector et
consists of D individual embedding vectors.

Provided the embedding vector et, we can obtain the

individual features ht using Self Attention. Formally, for each

timestamp t, we use et as the query vector and generate the

feature vector ht as follows:

ht =
∑T

s=1 ases and as = softmax (f (es, et)) ,

where f is a one-layer network that calculates dependency

score between es and et. Notice that the individual vector

ht still has the same size as et. As shown in Fig. 2, we

can obtain the individual feature sequence [ht]
T
t=1 in Step 2,

and an example of individual feature is ht6,[1], which is a

k-dimensional vector corresponding to Xt6,1.
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C. Feature Reparation

Note that some individual features [ht]
T
t=1 are still unre-

liable. If Xtd is missing, then the individual feature ht,[d] is

unreliable (e.g., the hollow star in Fig. 2) according to Eq. (4).

A natural method is to repair the unreliable by temporal

dependency. Here, we employ the decay mechanism [3] and

obtain the repaired individual feature h̃t,[d] as follows:

h̃t,[d] =

{
ht,[d], if Mtd = 1;

γtd ht′,[d] + (1− γtd)ht,[d], if Mtd = 0,

where t′ = t − δtd is the timestamp of the last observed

value for Xtd, γtd is the decay rate, which indicates the how

much information of last observed value remains. Intuitively,

the decay rate can be calculated according to:

γtd = exp [−max (0, wdδtd + ad)] ,

where both w = [wd]
D
d=1 ∈ R

D and a = [ad]
D
d=1 ∈ R

D

are learnable parameters. The repair process is illustrated in

Fig. 2, for example, both the hollow stars h̃t3,[1] and h̃t4,[1]

are repaired by h̃t2,[1] = ht2,[1].

D. Prediction

Provided the repaired individual features (h̃1, h̃2, . . . , h̃T ),
we can obtain the output using a MTS classifier or regressor:

ŷ = fout

(
fagg

(
h̃1, h̃2, . . . , h̃T

))
,

where ŷ denotes the output, fagg aggregates the feature

sequence [h̃t]
T
t=1 to a fixed-size vector, and fout is a one-

hidden-layer network with softmax for classification or only

linear layer for regression. We implement fagg by Dense

Interpolation [14], which shows better performance than the

mean pooling and the attention pooling. The key idea of Dense

Interpolation is to calculate the weighted mean of the whole

sequence at specific timestamps. For more, we refer to [14].

LIFE jointly optimize both prediction and imputation loss:

L = Lpred + αLimp,

where Lpred is the prediction loss, Limp denotes the imputa-

tion loss, and α ∈ R+ is a balancing weight. The prediction

loss is usually the cross-entropy loss for a classification task

or the mean square error (MSE) for a regression/forecasting

task. The intuition of adding imputation loss is to provide

more supervised information for our model, leading to a better

representation of the concerned MTS data. Here, we formulate

Limp as the MSE between the observed and imputation values:

Limp =
T∑

t=1

D∑
d=1

Mtd

(
Xtd − X̂td

)2
/

T∑
t=1

D∑
d=1

Mtd ,

where the imputation values X̂td are generated by

X̂td = g
(
h̃t,[d]

)
,

in which g(·) is a one-layer perceptron.

V. EXPERIMENTS

In this section, we will evaluate the performance of the

proposed model and the CME-PDTW algorithm.

A. Data Sets

In order to verify our idea and evaluate the performance of

LIFE, we use two widely used benchmark data sets [11] in

the community to conduct experiments.

PhysioNet [12] data set contains 4000 records from inten-

sive care unit (ICU). Following [2], we preprocess each record

into 48 timestamps containing 35 measurements (such as pH,

heart rate, etc.), and the total average missing rate is 82.36%.

On this data set, we do mortality classification.

Human Activity [8] data set contains 3D positions of

the waist, chest, and ankles (12 dimensions in total) of 11

activities (e.g., walking). We fix the sampling interval to 100

milliseconds and take the records of 1000 milliseconds as one

sample. There are 4,817 samples in total, and each sample

has 10 timestamps and 12 dimensions. The average missing

rate is 24.45%. In real-world applications, sensor damage can

cause high missing rates of corresponding dimensions. We

first randomly choose n sensors (dimensions) as “damaged

sensors”, and then randomly eliminate 90% observations of

the damaged sensors. We alter n from 0 – 11 to generate 12

data sets and do multi-class classification task on them.

B. Benchmark Methods

We use the following two kinds of methods as baselines:

• Two-Step Models comprise imputation and prediction

independently. We first do imputation: “-a” means filling

in missing values with the average observations over

time and “-m” denotes MICE [1], which is a widely

used imputation method. Then for prediction, we employ

ROCKET [5], one of the SOTA classifiers for MTS

without missing values, or LSTM. Thus, the baselines

are ROCKET-a, ROCKET-m, LSTM-a and LSTM-m.

• End-to-End Models jointly optimize both imputation

and prediction processes. GRU-D [3], BRITS [2], and

SAnD [13] merge all input dimensions, while FG-
LSTM [15] handles each dimension independently.

C. Settings

We normalize the data to ensure that each input dimen-

sion has zero mean and unit variance. Following [3, 13],

the missing values for all end-to-end models are treated as

zero. We make sure all models have comparable numbers of

parameters, that is, about 130 K parameters for PhysioNet

and 20 K parameters for human activity data, which are

sufficient to make each model perform well at an acceptable

computational cost. As the model complexity of LIFE is

mainly dominated by the vector size k of each individual

feature, so the number of parameters requires k ≤ 6 and we

set k = 6. For some parameters that have little impact on

the complexity and performance of the model, we set them

to fixed values: the number of dense interpolated timestamps

is 3 and the weight balancing factor α = 1. All deep
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(b) CME-Pearson
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(c) CME-DTW-i
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(d) CME-DTW-d
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(e) CME-GAK
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(f) CME-PDTW(p=0.01)
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(g) CME-PDTW(p=0.1)
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(h) CME-PDTW(p=0.5)
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(i) CME-PDTW(p=1.0)
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(j) CME-PDTW(p=10)

Fig. 3. Pairwise observation rate and correlation matrices extracted by different CME methods.

models are trained by Adam optimizer [9] with learning rate

0.001 and batch size 64. Training epochs for PhysioNet and

human activity data are 200 and 100, respectively. The hyper-

parameters are optimized by cross validation. We run the codes

on Ubuntu 18.04 system with a single Nvidia TITAN XP

graphic card and 32G memory. Our codes are available at

http://www.lamda.nju.edu.cn/code LIFE.ashx.
The baseline CME methods are based on Algorithm 1

with differences of missing-value processing in Step 2 and

of distance calculation in Step 7. CME-Pearson indicates the

weighted absolute value of the pairwise Pearson Correlation

Coefficient, where all missing values are excluded. CME-
DTW-i and CME-DTW-d impute (linear interpolation) and

drop the missing values, respectively, and then, conduct CME

based on DTW. CME-GAK employs Global Alignment Ker-

nel (GAK) [4], which is a widely used kernel for time series.

It drops missing values and calculate similarity via alignment

and warping technics. CME-PDTW applys the CME-PDTW

algorithm and alter p from {0.01, 0.1, 0.5, 1.0, 10}.

D. CME Results
The first experiment is to evaluate the robustness and

performance of the CME-PDTW algorithm and the baselines.

We conduct CME on the PhysioNet data set. Fig. 3 displays

the average pairwise observation rate (i.e., 1 minus missing

rate) and the extracted correlation matrices.
From Fig. 3, we can see that the missing values will

interfere with CME to a large extent. The correlation matrix

of CME-DTW-i is inundated with fictitious correlations and

far away from the ground truth. The missing values bring

serious fictitious correlations to it. The correlation matrices

obtained by CME-Pearson, CME-DTW-d, and CME-GAK

are not stable. Most large values of the correlation matrices

are corresponding to low observation rates. However, CME-

PDTW performs well and is not sensitive to the only hyper-

parameter penalty coefficient p. As we can see, the correlation

matrices tend to be stable with an increase of p. CME-PDTW

can suppress the interference caused by missing values and

obtain a credible and stable correlation matrix. We employ

p = 0.5 through the experiments.

E. Performance Evaluation

Following [2, 3], we report the results of 5-fold cross

validation and use the following evaluation criteria: area under

ROC curve (AUC score) for PhysioNet since it is a class

imbalance data and accuracy for human activity data.

TABLE I
CLASSIFICATION PERFORMANCES ON PHYSIONET.

Models AUC (± std) Paras (∼K)

Two-
Steps

ROCKET-a 0.8084 ± 0.018 /
ROCKET-m 0.8103 ± 0.015 /

LSTM-a 0.8091 ± 0.017 130.8
LSTM-m 0.8046 ± 0.018 130.8

End-
to-

End

GRU-D 0.8379 ± 0.012 127.7
BRITS 0.8329 ± 0.008 129.0
SAnD 0.8011 ± 0.026 140.9

FG-LSTM 0.8193 ± 0.018 130.3
LIFE 0.8451 ± 0.012 129.3

The results on the PhysioNet data set, as shown in Table I,

indicate that the LIFE model outperforms the others. Note that

the two steps methods perform significantly worse than the

SOTA end-to-end methods, which is consistent with previous

research [2, 3]. Next, we only focus on end-to-end models.

We further investigate the performances of models with

different missing rates. The mean and standard deviation of

accuracy on the human activity data sets are shown in Fig. 4.

The more damaged sensors are, the higher the missing rate is.

We can see that LIFE achieves the best results and significantly

outperforms the others on most of the missing rates. When the

missing rate is high, it can suppress the interference of missing

values and generate as reliable features as possible. When

there are few missing values, it also explores correlations

effectively and maintains good performance. An interesting

aspect of this result is FG-LSTM. It shows that handling

each input dimension separately can bring benefits when the

missing rate is high, but it can also damage the performance

when the missing rate is low. Therefore, it is important to not
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Fig. 4. Performances on human activity data with different numbers of
damaged sensors. Shaded regions is the standard deviation over five trials.

only suppress the interaction of missing values but also utilize

dimensional correlations, as LIFE does.

F. Individual Features Construction Comparison

In order to explore whether the individual feature construc-

tion does bring benefits, we keep the hyper-parameters of LIFE

consistent and change the correlation matrices:

• Ones denotes the Full-1 matrix, which leads LIFE to fuse

all input dimensions, just as most existing models do.

• Rand is a random matrix sampling from [0, 1].
• Diag is a diagonal-1 matrix, which makes LIFE build

feature for each input dimension independently.

• CME-Pearson, CME-DTW-i, CME-DTW-d, CME-
GAK, and CME-PDTW are correlation matrices ex-

tracted via Algorithm 1 with different distances.

TABLE II
CLASSIFICATION PERFORMANCES OF LIFE WITH DIFFERENT

CORRELATION MATRICES ON PHYSIONET.

Correlation Matrix AUC (± std) Paras (∼K)

Ones 0.8204 ± 0.010 129.3
Rand 0.8251 ± 0.009 129.3
Diag 0.8355 ± 0.012 129.3

CME-Pearson 0.8336 ± 0.007 129.3
CME-DTW-i 0.8232 ± 0.010 129.3
CME-DTW-d 0.8346 ± 0.009 129.3
CME-GAK 0.8374 ± 0.012 129.3

CME-PDTW 0.8451 ± 0.012 129.3

The results of LIFE on the PhysioNet data set are shown in

Table II. LIFE with the correlation matrix extracted by CME-

PDTW achieves the highest AUC, which shows the effec-

tiveness of building individual features and the CME-PDTW

algorithm. On the contrary, Ones performs significantly worse

than CME-PDTW, verifying that merging all input dimen-

sions is not acceptable since it will damage the classification

performance. Diag, CME-Pearson, CME-DTW-d, and CME-

GAK also achieve competitive AUCs, verifying that building

individual features can bring benefits. The poor performances

of Rand and CME-DTW-i show the wrong correlations can

damage the performance of downstream prediction task.

VI. CONCLUSION

In this paper, we proposed a novel framework LIFE, which

provides a new paradigm for MTS prediction with missing

values. For each input dimension, LIFE utilizes credible and

correlated dimensions to build individual features. So LIFE

is able to not only suppress the interference of missing

values but also generate reliable and effective features for

prediction. Besides, we also present a CME-PDTW algorithm

for extracting credible and stable dimensional correlations.

Experiments conducted on two real-world data sets show that

LIFE outperforms the existing SOTA models and the CME-

PDTW algorithm can extract credible and stable correlations.

ACKNOWLEDGMENT

This research was supported by the National Key Research

and Development Program of China (2020AAA0109400). The

corresponding author for this work is Yuan Jiang.

REFERENCES

[1] M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, “Multiple
imputation by chained equations: What is it and how does it work?”
International Journal of Methods in Psychiatric Research, vol. 20, no. 1,
pp. 40–49, 2011.

[2] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional
recurrent imputation for time series,” in Advances in Neural Information
Processing Systems 31, 2018, pp. 6775–6785.

[3] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific Reports, vol. 8, no. 1, pp. 1–12, 2018.

[4] M. Cuturi, “Fast global alignment kernels,” in Proceedings of the 28th
International Conference on Machine Learning, 2011, pp. 929–936.

[5] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: Exceptionally
fast and accurate time series classification using random convolutional
kernels,” Data Mining and Knowledge Discovery, vol. 34, no. 5, pp.
1454–1495, 2020.

[6] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[7] H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, and
A. Galstyan, “Multitask learning and benchmarking with clinical time
series data,” Scientific Data, vol. 6, no. 1, pp. 1–18, 2019.
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