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ABSTRACT

Long-Form Question Answering (LFQA) refers to generating in-depth,
paragraph-level responses to open-ended questions. Although lots of LFQA meth-
ods are developed, evaluating LFQA effectively and efficiently remains chal-
lenging due to its high complexity and cost. Therefore, there is no standard
benchmark for LFQA evaluation till now. To address this gap, we make the
first attempt by proposing a well-constructed, reference-based benchmark named
Chinese exAmination for LFQA Evaluation (CALF), aiming to rigorously assess
the performance of automatic evaluation metrics for LFQA. The CALF bench-
mark is derived from Chinese examination questions that have been translated
into English. It includes up to 1476 examples consisting of knowledge-intensive
and nuanced responses. Our evaluation comprises three different settings to ana-
lyze the behavior of automatic metrics comprehensively. We conducted extensive
experiments on 7 traditional evaluation metrics, 3 prompt-based metrics, and 3
trained evaluation metrics, and tested on agent systems for the LFQA evaluation.
The results reveal that none of the current automatic evaluation metrics shows
comparable performances with humans, indicating that they cannot capture dense
information contained in long-form responses well. In addition, we provide a
detailed analysis of the reasons why automatic evaluation metrics fail when eval-
uating LFQA, offering valuable insights to advance LFQA evaluation systems.

1 INTRODUCTION

Long-form Question Answering (LFQA) (Fan et al., 2019) targets at generating in-depth, paragraph-
level responses to open-ended questions. It requires models to have comprehensive domain-specific
knowledge or use evidence from retrieved documents (Nakano et al., 2022; Akash et al., 2023)
to provide accurate and relevant answers. Despite increased efforts have been put to enhance the
reasonableness and completeness of long-form answers, developing automatic, reliable, and human-
aligned evaluation metrics for LFQA is still unexplored. This oversight highlights the necessity for
more robust approaches that can accurately evaluate the quality of generated responses in a way that
aligns with human judgment and ensures trustworthiness.

However, evaluating LFQA is particularly challenging, as paragraph-level answers can overwhelm
evaluators, requiring them to have a comprehensive understanding of the domain. Previous manual
evaluations tend to rely on crowd-sourced workers for annotation, but the limited domain expertise
inevitably causes low reliability. For automatic evaluation for LFQA, ROUGE (Lin, 2004) is always
used to gauge the quality of the response relative to a reference. However, Krishna et al. (2021) have
criticized ROUGE for its limited informativeness in long-form contexts. Recently, Xu et al. (2023)
reveals these shortcomings and advocates for the use of experts to ensure higher annotation quality
and test several automatic evaluation metrics according to expert annotation. Although they analyze
how well automatic metrics align with expert preferences, a modest sample size and reliance on
unstructured and reference-free ELI5 comments severely constrain their benchmark. Also, due to
the advancement of Large Language Models (LLMs) (OpenAI, 2023; 2024), numerous studies begin
to leverage LLMs to develop more nuanced evaluation metrics (Li et al., 2023; Jiang et al., 2024; Fan
et al., 2024a;b). Therefore, the potential of LLMs in LFQA evaluation remains unexplored. Beyond
the above efforts, our objective is to gain a comprehensive understanding of automatic evaluation
methods for LFQA, encompassing both traditional metrics and LLM-based metrics.
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Figure 1: Features of CALF. Our CALF benchmark is built based on Expert Reference, Subject
Diversity, and Three Modes Comparisons. We obtain Expert Reference by collecting data from
Chinese Examinations, where professional teachers write references. To increase Subject Diversity,
we source data from six subjects from more than 120 regional and national examinations. Besides,
we experiment on Human vs. Human, Human vs. Model, and Model vs. Model. settings.

In this paper, we introduce the Chinese exAmination for Long Form QA Evaluation Benchmark
(CALF), comprising 1476 records with high-quality examination problems, responses for the prob-
lems (including human-written and model-generated), and meticulously crafted references. To en-
sure diversity and maintain quality, we source data from six domains—geography, history, politics,
law, medicine, and psychology. They are primarily from the College Entrance Examination Sim-
ulation Questions (CEESQ) and the Postgraduate Entrance Examination Questions (PEEQ). These
documents, initially in image format, are converted to plain text using OCR, with subsequent manual
corrections to ensure accuracy. The overview of features of CALF is displayed in Figure 1.

For geography, history, and politics, we capture context, questions, references, and student re-
sponses, while for law, medicine, and psychology, we collect only context, questions, and references
since we have no access to student responses. Following the methodologies of Xu et al. (2022), con-
sidering that these references are displayed in a concise and structured form for the teachers to use,
we transform these references into more natural and long-form narratives to bridge the gap between
structured and natural discourse.

We use automatic evaluation metrics to compare two responses and select the better one (Xu et al.,
2023) or give a ”tie” option. To ensure a comprehensive evaluation, we establish three comparison
modes: human vs. human, human vs. model, and model vs. model for history, politics, and ge-
ography subjects, and model vs. model exclusively for law, medicine, and psychology subjects as
we have no access to student responses which means that the two responses to be evaluated are ei-
ther model-generated or human-written. Model-generated responses are produced from Llama-3-8b
(Dubey et al., 2024) and GPT-3.5-turbo-1106-preview (OpenAI, 2023). Human-written responses
are collected from online exams. Due to the responses of humans are knowledge-intensive and
nuanced, and the responses from models are lengthy and rich in knowledge, they are effective for
testing the evaluation of LFQA by identifying information in a given text and comparing to select
a better one. Expert annotators from relevant domains are enlisted to participate in the annotation
process, ensuring that the assessments are grounded in domain-specific knowledge.

Using CALF, we critically assess the efficacy of traditional, prompt-only, and trained automatic
evaluation metrics against human judgment. Our experimental findings indicate that no current au-
tomatic metrics achieve parity with human preferences. Also, LLMs are not suitable metrics for
LFQA evaluation using the vanilla prompt, Chain of Thoughts, and G-Eval. We also display agree-
ment rates between automatic evaluation metrics and provide further error analysis to figure out why
current evaluation metrics cannot handle LFQA evaluation. Our results reveal that both traditional
evaluation metrics and LLM-based evaluation metrics cannot exclude the auxiliary information away
from the key information and thus are insensitive to the minor differences in the given comparison
pairs. Therefore, utilizing CoT or majority voting offers minimal improvement to the evaluation
process. At last, we conduct experiments with agents for LFQA evaluation. Suprisingly, the results
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Dataset Num. Dataset Length # of Words Source
Avg. Q Avg. R Max. R Avg. A Max. A

Politics 396 23.7 391.0 624 161.9 459 CEESQ
History 392 22.9 326.7 746 147.8 469 CEESQ

Geography 392 17.4 97.8 209 128.4 386 CEESQ
Law 100 10.7 469.7 642 151.3 394 PEEQ

Psychology 96 10.6 426.7 718 151.4 469 PEEQ
Medicine 100 8.8 322.9 492 161.9 374 PEEQ

Table 1: Statistics of our CALF benchmark. Q, R and A represent questions, references and
responses respectively. CEESQ is College Entrance Examination Simulation Questions while PEEQ
stands for Postgraduate Entrance Examination Questions. The maximum values are denoted using
bold.

reveal that compared with a single model, agent systems do not show significant performance im-
provements. The findings guide our exploration of methods to enhance LFQA evaluation metrics,
calling for a novel approach that captures nuanced semantic differences between responses clearly
and correctly, pointing the way toward future advancements in the field.

2 RELATED WORK

Development of LFQA LFQA (Fan et al., 2019) requires models to generate paragraph-level
responses to open-ended questions which is more complex compared to datasets like SQuAD (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017), and NarrativeQA (Kočiský et al., 2017), where
answers are primarily words or phrases extracted directly from documents. In LFQA, models must
generate nuanced responses based on their knowledge or existing evidence documents. Several stud-
ies have analyzed the discourse structure of long-form answers (Xu et al., 2022) and have sought to
enhance the performance on LFQA. (Chen et al., 2023a; Akash et al., 2023).

Evaluation of LFQA The automatic evaluation of LFQA remains challenging and underexplored.
Initially, ROUGE (Lin, 2004) was used as an automatic evaluation metric to calculate the similarity
between a candidate and a reference. Later, Krishna et al. (2021) pointed out that ROUGE is not
an adequately informative metric for LFQA evaluation. For human annotation, HURDLES (Krishna
et al., 2021) and WEBGPT (Nakano et al., 2022) employed A/B testing, where crowdsourced an-
notators were instructed to choose the better of two candidate answers. Since annotation of LFQA
requires high expertise, the results of crowdsourced workers may be unreliable. To address the
gap, Xu et al. (2023) employed experts for annotation, and tested several evaluation metrics, such
as ROUGE (Lin, 2004), BERTScore (Zhang et al., 2020), and BARTScore (Yuan et al., 2021),
on an expert-annotated dataset. Their findings validated that no existing metrics fully align with
human judgment. However, the dataset they used lacks expert-written references, sourced from
Reddit/ELI5, and is limited in scale, comprising only about 120 samples. In response to these lim-
itations, we propose constructing a high-quality and larger benchmark for the evaluation of LFQA.

3 METHODOLOGY

To reasonably test the evaluation ability of different metrics for LFQA when having a reference
to look up, we construct CALF, a comprehensive benchmark composed of different topics and
questions. In this section, we will describe the construction process of CALF in detail.

3.1 DESIGN PRINCIPLE

Reference-Based Evaluation The evaluation of LFQA systems critically depends on the avail-
ability of high-quality reference answers. These references serve as benchmarks, allowing evaluators
to determine the precision and completeness of responses generated by the QA systems. Specifically,
a reference answer provides a baseline to assess whether the response captures all necessary details
and adheres closely to the factual correctness established in the reference. This dual check ensures
that the generated answer is not only correct but also exhaustive in covering the question’s scope.

However, crafting such references is both challenging and resource-intensive. Producing a reliable
reference requires domain experts who have a vast knowledge and understanding of the subject
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Dataset Human vs Human Human vs Model Model vs Model
Politics 0.80 0.87 0.76
History 0.74 0.77 0.72

Geography 0.75 0.80 0.68

Law N/A N/A 0.74
Psychology N/A N/A 0.75
Medicine N/A N/A 0.72

Table 2: Inter-annotator agreement of our annotation process. For politics, history, and geography,
we have collected human-written answers and thereby annotated them under three settings. For
law, psychology, and medicine, we only have model-generated answers, so we leave out Human vs.
Human and Human vs. Model settings.

matter and thus is rather expensive, as it demands significant time and compensation for these pro-
fessionals to generate each reference. In our settings, references are sourced from academic and
professional examinations, where they are crafted by educational specialists.

Authoritative Data For our benchmark, we source our data from the College Entrance Exami-
nation Simulation Questions (CEESQ) and Postgraduate Entrance Examination Questions (PEEQ).
The former pertains to regional examinations, while the latter is associated with national examina-
tions. We avoid using questions from the actual College Entrance Examination to prevent overlap
with potential training data, ensuring the integrity and independence of our evaluation dataset.

Questions for both CEESQ and PEEQ are meticulously crafted by domain experts who aim to test
students’ understanding and reasoning capabilities. The reference answers accompanying these
questions are well-curated, containing all essential information pertinent to the questions. Addi-
tionally, we enhance our dataset with student responses collected from the corresponding Online
Marking Platforms (OMP). These responses are typically more nuanced and knowledge-intensive
compared to those found in ELI5, reflecting the rigorous academic standards and detailed content
required in examination settings.

Diverse Benchmark To guarantee a diverse and representative benchmark for our LFQA sys-
tem, we meticulously collect questions in six distinct domains: history, politics, geography, law,
medicine, and psychology. For each domain, we draw from a pool of over 20 examination papers,
ensuring a broad spectrum of topics and difficulty levels.

Our data in history, politics, and geography are sourced from CEESQ. Here, we have access to
student responses via the OMP. From this platform, we select pairs of student responses that are
particularly clear and detailed, enhancing the quality of our dataset. In addition, we employ LLMs
to generate model responses, enabling us to rigorously test and compare the evaluation capabilities of
various metrics between human-generated and model-generated responses. For the domains of law,
medicine, and psychology, we do not use real student responses, but rely solely on model-generated
answer pairs. This approach allows us to focus on assessing the performance of our LFQA system
in generating high-quality, accurate responses in highly specialized and technical fields.

3.2 OVERVIEW

CALF consists of 1476 examples from Geography, Politics, History, Law, Medicine, and Psychol-
ogy. The statistics are listed in Table 1. We also categorize the records into seven groups. Detailed
explanations and examples are displayed in Appendix A.1 and Appendix A.2.

3.3 DATA PROCESSING

The data processing pipeline can be divided into three phases: Data Collection, Data Transforma-
tion, and Model Response Generation.

Data Collection We gather examination papers primarily in image format and employ Optical
Character Recognition (OCR) systems to meticulously extract various components such as contexts,
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questions, student responses, and references. For the fields of Law, Medicine, and Psychology,
where student responses are inaccessible, we focus exclusively on extracting contexts, questions,
and references. The OCR system is conducted using the API provided by VolcEngine. After OCR
processing, we conduct a thorough manual review to correct any recognition errors.

Data Transformation References, when sourced from examination settings, are meticulously
structured into concise information points, a format that facilitates scoring for educators. However,
unlike these examination-derived references, those collected from evidence documents in practical
applications often take the form of natural language narratives, incorporating examples, summaries,
and other auxiliary information (Xu et al., 2022). To bridge this gap and enhance the utility of our
references, we employ GPT-4o (OpenAI, 2024) to enrich our concise references with detailed ex-
planations and expanded arguments. We list detailed explanations and human annotations of our
reference transformation process in Appendix B.2. In addition, we provide an example in Appendix
B.3. The transformation prompt is shown in Appendix C.7.

Model Response Generation To rigorously assess the performance of LFQA systems, our bench-
mark employs three comparison modes for each question, i.e., human vs. human, human vs. model,
and model vs. model in Geography, History, and Politics, and model vs. model exclusively in Law,
Medicine, and Psychology. That is, the two responses to be compared are either human-written or
model-generated. When generating model responses, we focus on evaluating whether LLMs can
understand the semantic meaning of texts well and properly select the better response. Therefore,
we do not impose strict requirements on answer quality. Instead, we ensure the difficulty of CALF
by selecting models with similar ranking in the LMSYS Arena (Chiang et al., 2024; Zheng et al.,
2023; 2024b). Specifically, we leverage Llama-3-8B (Dubey et al., 2024) and GPT-3.5-turbo-1106-
preview (OpenAI, 2023) for response generation. For model-generated answers, we prompt using
”Generate reasonable answers to the following questions. Use references or examples if needed”,
and the generation temperature is set to 1.0 to encourage diverse and creative responses.

3.4 HUMAN ANNOTATION

The Human Annotation Process can be separated into the following steps: Annotator Decision,
Annotation Setting, Annotation Process, and After-Annotation Validation.

Annotator Decision LFQA evaluation suffer from distinct challenges. Firstly, paragraph-level
responses can overwhelm annotators, leading to a loss of focus. Secondly, annotators must have
deep domain knowledge to accurately judge responses against references. Lastly, the syntactic and
semantic complexities of long-form responses often intertwine correct and incorrect information
within single sentences. To address these issues, we first hire five annotators from relevant aspects
or who have taken relevant courses, including Computer Science, Law, and Medicine. Then we
provide them with clear and detailed annotation recipes for better quality control.

Annotation Setting Guided by Xu et al. (2023), our evaluation criteria mainly focus on factual-
ity, completeness, and clarity according to the reference. Unlike typical A/B testing, our method
employs a triple-choice format to better capture the subtle differences between answers, as they of-
ten show comparable levels of information overlap with the reference, with additional information
useless or verbose according to the central topic.

Annotation Process The annotators assess two responses against a given reference and select
the more informative and complete answer or declare a ”tie” if both are comparable. The pro-
cess includes Identify Key Information, Check for Key Information in Responses, Handling
Responses, and Compare Overlapping Information. During the process, we treat a piece of in-
formation as the basic unit. Firstly, annotators extract the key information needed to answer the
question and check whether the responses under evaluation contain similar statements. If a similar
one is present, they further assess whether this statement is fully correct, partially correct, or entirely
incorrect. Finally, they will select a better one based on the overlapped information. Our annota-
tion guidelines are provided in Appendix B.1. Detailed explanations and examples of fully correct,
partially correct, and entirely incorrect answers can be found in Appendix B.1 and Appendix B.3.
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Metric Geography History Politics Psychology Medicine Law Avg.

Traditional Metrics

ROUGE 0.482 0.513 0.417 0.448 0.630 0.360 0.471
BLEU 0.349 0.372 0.386 0.479 0.530 0.399 0.425
BERTScore 0.429 0.421 0.379 0.438 0.510 0.460 0.440
BLEURT 0.508 0.474 0.480 0.427 0.430 0.505 0.466
BARTScore 0.490 0.508 0.505 0.479 0.600 0.510 0.515
UniEval 0.533 0.503 0.381 0.323 0.570 0.560 0.470
GPT2♠ 0.429 0.490 0.467 0.427 0.610 0.590 0.502

Prompt-only Metrics

ChatGPT 0.510 0.533 0.495 0.531 0.590 0.520 0.525
ChatGPT-CoT 0.505 0.518 0.530 0.521 0.610 0.520 0.531
G-Eval (ChatGPT) 0.508 0.526 0.520 0.521 0.600 0.610 0.545
GPT-4o 0.490 0.513 0.516 0.510 0.580 0.590 0.532
GPT-4o-CoT 0.503 0.561 0.523 0.563 0.620 0.620 0.563
G-Eval (GPT-4o) 0.482 0.548 0.522 0.531 0.630 0.480 0.531

Trained Metrics

Critique-6B 0.462 0.528 0.424 0.330 0.340 0.460 0.400
AutoJ-13B 0.446 0.508 0.480 0.500 0.580 0.580 0.517
TIGERScore-13B♠ 0.406 0.268 0.212 0.282 0.320 0.320 0.295

Table 3: Performance of Evaluation Metrics. The baselines denoted by ♠ are reference-free metrics.
ChatGPT used here is the GPT-3.5-turbo-1106-preview version. The results are measured by the
matching rate of model preference and human preference in the triple-choice settings. The largest
accuracy rate is denoted using bold. For traditional evaluation metrics, we round their output values
to two place decimals to ensure the option “tie” will happen. The results indicate the inferior capa-
bility of current automatic evaluation metrics to capture and understand key information in a given
text. The results indicate that no evaluation metrics show comparable results with humans.

After-Annotation Validation To minimize bias and subjectivity, each record is annotated by two
independent reviewers. The inter-annotator agreement is reported in Table 2. We annotate politics,
history, and geography in three settings and law, psychology, and medicine in only the Model vs.
Model setting. The inter-annotator agreement indicates that the agreement rate is highest when
comparing human responses with model responses. However, the overall inter-annotator agreement
highlight the challenges of LFQA evaluation, as none of them exceed 90%. When disagreements
occur, a third annotator is asked to make the final decision, and justification is added if necessary.
We provide case studies for annotation and justification in Appendix B.3 to help understand.

4 EXPERIMENTS

We experiment using several automatic evaluation metrics on CALF benchmark. We report their
performance and provide detailed analysis on the evaluation of LFQA on CALF.

4.1 EXPERIMENTAL SETUP

4.1.1 BASELINES

To provide a thorough overview of evaluation metrics on LFQA, we test three kinds of metrics.

Traditional evaluation metrics We test several general-purpose evaluation metrics including
ROUGE-L (Lin, 2004), BLEU (Papineni et al., 2002), BERTScore (Zhang et al., 2020), BARTScore
(Yuan et al., 2021), GPT-2 Perplexity, UniEval (Zhong et al., 2022), and BLEURT (Sellam et al.,
2020). Since these metrics are based on returned values that can hardly be the same, we round these
values to two decimal places to make the option “tie” happen.

Prompt-only evaluation metrics We select GPT-3.5-turbo-1106-preview (OpenAI, 2023) and
GPT-4o (OpenAI, 2024) as our evaluators, because they are always considered one of the most
capable LLMs and they are used as backbones for many tasks. Besides, we implement CoT (Wei
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Metric Geography Politics History
H/H H/M M/M H/H H/M M/M H/H H/M M/M

Traditional Metrics

ROUGE 0.510 0.530 0.357 0.485 0.399 0.383 0.439 0.505 0.602
BLEU 0.459 0.357 0.224 0.424 0.384 0.354 0.021 0.474 0.520

BERTScore 0.479 0.479 0.336 0.424 0.338 0.414 0.378 0.469 0.367
BLEURT 0.622 0.551 0.306 0.515 0.500 0.404 0.480 0.495 0.429

BARTScore 0.551 0.479 0.449 0.600 0.490 0.444 0.510 0.505 0.510
UniEval 0.612 0.525 0.469 0.323 0.455 0.293 0.531 0.500 0.480
GPT2♠ 0.489 0.413 0.398 0.556 0.434 0.444 0.469 0.474 0.541

Prompt-only Metrics

ChatGPT 0.653 0.494 0.397 0.589 0.500 0.404 0.551 0.515 0.551
ChatGPT-CoT 0.693 0.505 0.316 0.626 0.525 0.440 0.561 0.485 0.541

G-Eval (ChatGPT) 0.653 0.500 0.377 0.626 0.495 0.465 0.551 0.520 0.515
GPT-4o 0.653 0.479 0.346 0.677 0.455 0.475 0.571 0.480 0.520

GPT-4o-CoT 0.663 0.489 0.367 0.626 0.495 0.475 0.622 0.536 0.551
G-Eval (GPT-4o) 0.704 0.474 0.275 0.626 0.500 0.465 0.582 0.531 0.551

Trained Metrics

Critique-6B 0.612 0.489 0.255 0.465 0.455 0.323 0.459 0.500 0.571
AutoJ-13B 0.561 0.469 0.285 0.586 0.490 0.444 0.510 0.515 0.571

TIGERScore-13B♠ 0.449 0.392 0.387 0.171 0.202 0.272 0.367 0.306 0.092

Table 4: Detailed Evaluation Metrics Across Different Domains. The baselines denoted by ♠

are reference-free evaluation metrics. H/H stands for Human vs Human, H/M stands for Human vs
Model, and M/M stands for Model vs Model. ChatGPT used here is the GPT-3.5-turbo-1106-preview
version. The matching rate of model preference and human preference in the triple-choice settings
measures all the results. The largest accuracy rate is denoted using bold. For traditional evaluation
metrics, we round their output values to two place decimals to ensure the option “tie” will happen.

et al., 2023) to prompt them to think step by step and get the final answer. Also, we implement
G-Eval (Liu et al., 2023b) with the number of responses equal to 5. Since we only care about the
better one in two responses, we simplify the weighted summation in G-Eval using Majority Voting.

Trained evaluation metrics Metrics tested here are not trained for LFQA specially, but for NLG.
We assume that the metrics for the evaluation of NLG can be transferred to the evaluation of LFQA.
We select Auto-J-13B(Li et al., 2023), TIGERScore-13B(Jiang et al., 2024), and CritiqueLLM-6B
(Ke et al., 2024). The detailed description of trained metrics above is listed in Appendix C.1.

4.1.2 TASK SET

Firstly, We translate the dataset into English using GPT-4o (OpenAI, 2024) with the prompt “Trans-
late the following text into ENGLISH” with temperature equals 1.0 to ensure a fair comparison since
some of the models cannot achieve comparable results in Chinese. To mitigate the influence of the
order of responses displayed on subsequent analysis for using LLMs for evaluation (Pezeshkpour
& Hruschka, 2023), we balance the rate of preference by alternating the sequence of the answers.
As we mentioned in Section 3.4, we set the evaluation as a triple choice according to a reference
between two responses, generated either by humans or models. For traditional evaluation metrics,
we use the provided references as references and the responses as hypotheses for the metrics. Then
we compare the scores of the two responses to make the decision. For close-sourced models, we
adopt a 0-shot setting with a direct prompt to finish the triple-choice task. For open-sourced models,
we modify the data format following their instructions. Since they have structured output, we use
regex to find the corresponding parts and obtain our results. For all of the LLM-based evaluation
metrics, we use temperatures equal to 1.0. The prompt for LLMs is shown in Appendix C.7.
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Figure 2: Comparison of One in Votes and Majority Voting where One in Votes stands for whether
the gold label exists in the votes and Majority Voting stands for the most votes equal to the gold
label. The left is the comparison in the ChatGPT setting and the right is in the GPT-4o setting.

4.2 EXPERIMENTAL RESULTS

The overall experimental results are shown in Table 3. We also report our results without tied QA
pairs in Appendix C.2.

CALF as a Challenging Benchmark The CALF benchmark poses significant challenges for all
existing automatic evaluation metrics for LFQA, with accuracy rates consistently falling below 65%,
suggesting performance levels not much better than random guessing. All traditional metrics are not
suitable for LFQA evaluation due to their static property, thus failing to handle flexible outputs. Even
advanced models like GPT-4o struggle to consistently make correct evaluations, though it remains
the most promising among the available automatic metrics.
To provide a more detailed analysis, we report the accuracy rates for three comparison
modes—human vs. human, human vs. model, and model vs. model—within the domains of ge-
ography, politics, and history, as shown in Table 4.

The results from these detailed experiments reveal that a majority of evaluation metrics perform best
in the human vs. human setting and fail in the Model vs. Model setting and Human vs. Model
setting. We hypothesize that human-written answers tend to be more precise and concise, making
it knowledge-intensive and easier for the evaluation metrics to distinguish the better answer (Saito
et al., 2023). Furthermore, there is a notable variation in performance across different domains,
particularly with LLM-based metrics. For instance, GPT-4o achieves an accuracy of only 35% in
Geography compared to 59% in Law at the model vs model setting.

CoT and G-Eval Provide Limited Improvement for LLMs in LFQA Evaluation To implement
CoT, we prompt the LLMs to ”think step by step.” This method generally yields better performance
compared to vanilla prompts. However, the observed performance gains are not substantial, sug-
gesting that CoT alone is insufficient for significantly enhancing LFQA evaluation.

Additionally, we employ G-Eval by generating responses from LLMs five times and selecting the
most frequent answer. The results show that G-Eval does not consistently improve performance,
further suggesting that LLMs may struggle to robustly determine the better answer (Zheng et al.,
2024a). This underlines the need for more advanced techniques to enhance the reliability and accu-
racy of LFQA evaluations.

To further assess the effectiveness of G-Eval (Liu et al., 2023b), we analyze the consistency of the
model’s responses across five iterations. The results, presented in Figure 2, suggest that by sam-
pling multiple times, the model can make correct decisions, but the consistency of these decisions
across iterations is low. This indicates that while the model has the potential to be used for LFQA
evaluation, its ability to consistently choose the correct answer with higher reliability—or ”confi-
dence”—needs to be improved.

To What Extent Do Automatic Metrics Agree with Each Other? We analyze the agreement
rates between pairs of automatic evaluation metrics, including a baseline called the “always long
response” option, which consistently selects the longer answer. While longer responses may seem
more informative, this is not always the case. We show our results in Figure 3. indicate that LLM-
based evaluation metrics tend to correlate highly with each other and exhibit a slight preference for
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Figure 3: Overall correlation between automatic evaluation baselines. The darker color indicates
a larger correlation. The annotation on each block is calculated by the ratio of the intersection
between BaselineA and BaselineB and the total number of records tested by both BaselineA
and BaselineB.

length-oriented metrics. In contrast, traditional evaluation metrics show lower agreement and are
more likely to produce divergent results. To have a deeper analysis, we list the detailed results under
three modes separately in Appendix C.3.

Do Automatic Evaluation Metrics Mirror Human Challenges? We investigate two scenarios:
i). cases where there is disagreement among human annotators, but the evaluation metrics align
with the meta-review, ii). cases where human annotators agree, and the metrics make the correct
choice. The experimental results detailed in Appendix C.4 reveal that automatic evaluation metrics
do not fully replicate the challenges faced by humans. However, even when human annotators reach
unanimous agreement, the accuracy of automatic metrics is lower, suggesting that these models have
a reduced capacity to capture semantic nuances effectively.

4.3 ERROR ANALYSIS

To provide a comprehensive understanding of why automatic evaluation metrics fall short, we
present an error analysis in Appendix C.5. This analysis explores the specific reasons behind the
failures of LLM-based and traditional evaluation metrics when compared to human evaluation. The
results indicate that traditional metrics primarily fail due to their inherent static nature, making them
unsuitable for the flexible and diverse outputs. On the other hand, LLM-based metrics struggle
because they often fail to capture the key points well, leading to unfair or inaccurate evaluations.

5 CAN LLM AGENTS HELP EVALUATION OF LFQA?

Given the growing trend of leveraging agent for complex reasoning tasks (Yao et al., 2023; Liu et al.,
2023a; Chen et al., 2023b), their potential use for evaluation has garnered attention in recent research
(Chan et al., 2023; Narsupalli et al., 2024). In this section, we aim to investigate whether agents can
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Metric Geography History Politics Psychology Medicine Law Avg.

ChatGPT-ICL 0.482 0.528 0.507 0.500 0.630 0.570 0.538
GPT-4o-ICL 0.497 0.528 0.507 0.531 0.610 0.520 0.533

ChatEval 0.523 0.528 0.503 0.417 0.590 0.570 0.530
ReFeR 0.474 0.461 0.500 0.500 0.660 0.540 0.523

Table 5: Results of evaluation metrics including ICL metrics and Agent-based Metrics. The results
are measured by the matching rate of model preference of human preference. The largest rate is
denoted using bold.

be effectively utilized for LFQA evaluation. We select ChatGPT-ICL and GPT-4o-ICL as our base-
lines with three demonstrations and test on CHATEVAL (Chan et al., 2023), and REFER (Narsupalli
et al., 2024) on our benchmark and list our results in Table 5. The detailed implementation of our
agent system is listed in Appendix C.6. The prompts for agent systems are shown in Appendix C.7.

In-Context Learning Fails to Improve Performance on CALF We tested LLM-based evalua-
tion metrics using three examples, but the results showed no significant improvement, with some
subjects even experiencing a notable performance drop. This underscores the challenges posed by
CALF and the inherent difficulty of LFQA evaluation. Additionally, GPT-4o, despite having more
parameters, only achieved results comparable to ChatGPT, suggesting that larger models do not
necessarily enhance performance in LFQA evaluation.

The Performance of Agent Systems for Evaluation Requires Further Exploration We tested
two SOTA agent systems using our CALF benchmark. The experimental results indicate that nei-
ther system consistently outperforms simple LLMs, although there are instances where evaluation
performance improved for specific subjects. This may be due to hallucinations in one step causing a
cascading effect on subsequent steps, without the opportunity for correction. The optimal structure
and model settings for agent systems in the context of evaluation require further investigation to
unlock their full potential.

6 DISCUSSION AND FUTURE WORK

Here, we discuss the automatic evaluation of LFQA and the feature work in this area.

Evaluation of LFQA Remains Challenging Despite the growing use of LLMs for evaluation
tasks, our findings demonstrate that relying solely on LLMs for LFQA evaluation is challenging
and unreliable. Also, traditional metrics also fall short in this context. Therefore, the exploration
of semantic-sensitive evaluation metrics is essential for accurate LFQA assessment. Our bench-
mark, built on expert-written questions and references, lays a solid foundation for future research in
developing more effective evaluation methods.

Inclusion of Multi-Disciplines In this work, we primarily focus on plain text records within the
realm of social sciences, as we believe that most LFQA tasks originate in this format and domain.
However, recognizing that some LFQA questions may pertain to natural sciences, we plan to expand
our dataset to include subjects like mathematics and physics. By incorporating question types such
as theorem explanations, we aim to enhance the diversity and comprehensiveness of our benchmark,
making it more authoritative and representative across multiple disciplines.

7 CONCLUSION

We present CALF, a comprehensive benchmark consisting of up to 1,500 records from six subjects,
sourced from various Chinese examinations. This benchmark is designed to evaluate the effective-
ness of current LFQA evaluation metrics including traditional metrics, prompt-based metrics, and
trained metrics, and shed light on the evaluation of LFQA. Additionally, we conduct experiments
using agent-system evaluation metrics. Our future work will focus on developing semantic-sensitive
evaluation metrics and expanding the dataset to include a broader range of disciplines.
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A BENCHMARK DETAILS

A.1 QUESTION CATEGORY

We categorize our benchmark into seven groups: Factoid Questions, Comparative Questions, Defini-
tion Questions, Analytical Questions, Evaluation Questions, Inferential Questions, and Application
Questions. The detailed ratios of each question type are presented in Figure 4.

Figure 4: The ratios of each question type in our CALF benchmark, including Factoid Questions,
Comparative Questions, Definition Questions, Analytical Questions, Evaluation Questions, Inferen-
tial Questions, and Application Questions.

A.2 QUESTION DEFINITIONS AND EXAMPLES

In this section, we provide definitions and examples for each kind of question mentioned above
including Factoid Questions, Comparative Questions, Definition Questions, Analytical Questions,
Evaluation Questions, Inferential Questions, and Application Questions.

Factoid Questions Factoid Questions, in the context of Long-Form Question Answering (LFQA),
demand comprehensive, paragraph-level responses to specific factual queries, rather than the brief
Yes/No answers typically associated with factoid queries. These questions are designed to assess
a model’s ability to not only retrieve and present accurate factual information but also to articulate
this information in a coherent, well-structured narrative. The example is shown in Table 7.

Comparative Questions Comparative Questions involve analyzing the similarities and differ-
ences between two or more entities, events, or concepts. These questions prompt the responder
to draw comparisons and highlight distinct features or characteristics. The example is shown in
Table 8.

Definition Questions Definition Questions require a clear explanation or clarification of a specific
term, concept, or object. These questions are focused on ensuring that the respondent accurately
understands and can articulate the meaning of particular terminology. The example is shown in
Table 9.
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Analytical Questions Analytical Questions require breaking down a complex topic or scenario
into its fundamental components to understand the underlying reasons, mechanisms, or causes.
These questions often involve a deep examination of how different factors interact. The example
is shown in Table 10.

Evaluation Questions Evaluation Questions ask the responder to assess or judge the value, qual-
ity, or impact of a particular concept, event, or action. These questions require considering different
perspectives and making informed decisions or arguments. The example is shown in Table 11

Inferential Questions Inferential Questions require drawing conclusions or making deductions
based on the provided information and prior knowledge. These questions often involve interpreting
data or scenarios to reach a logical outcome or understanding. The example is shown in Table 12.

Application Questions Application Questions involve applying theoretical knowledge, concepts,
or principles to real-world scenarios or specific situations. These questions test the ability to use
learned material in practical contexts. The example is shown in Table 13

B ANNOTATION DETAILS

B.1 ANNOTATION RECIPE

Annotation Process: When provided with a question, a reference, and two candidate answers, the
evaluation process should proceed as follows:

1. Identify Key Information: We begin by listing all the key pieces of information required
to answer the question based on the reference. Here, we treat a piece of information as our
basic unit and use them for further selection.

2. Check for Key Information in Responses: For each piece of key information in the ref-
erence, we determine whether it is included in each of the candidate answers. Since key
information may consist of a main argument accompanied by detailed explanations, we
focus only on whether the main argument is present in the answers, disregarding the de-
tailed descriptions. If an answer includes the main argument but provides its own detailed
explanation, it should still be considered correct.

3. Handling Responses: For similar statement pairs in reference and response, we categorize
them into three groups, i.e., Totally Correct, Partially Correct, and Totally Wrong.

• Totally Correct: If an answer contains information that is completely accurate and di-
rectly relevant to the question, it is considered totally correct. Such answers contribute
fully to the overlapping information score.

• Partially Correct: If an answer contains information that is only partially accurate
or relevant, it is considered partially correct. The impact of this information on the
overlapping score is reduced, depending on the extent of correctness and relevance.

• Totally Wrong: If an answer contains information that is entirely incorrect or irrel-
evant to the question, it is considered totally wrong. Such answers should have their
overlapping information score set to 0.

4. Compare Overlapping Information: The final comparison between the two answers will
be based on the amount of overlapping key information. For example, if the reference
contains three key pieces of information, and Answer A contains two of them while Answer
B contains one, Answer A will be considered the better response.

We show our annotation example in Figure 5.

B.2 REFERENCE TRANSFORMATION ANNOTATION

To demonstrate the effectiveness and accuracy of our transformation of references into more natural
language, we randomly sampled 100 examples from our dataset and conducted human annotation
based on the following aspects:
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Type Geography History Politics Psychology Medicine Law

Factuality Error 0 0 0 0 0 0
Newly Added Information 1 0 0 0 0 0
Error Expansion 0 0 0 0 0 0

Table 6: Numbers of errors occur in sampled examples. We sample 100 examples from Geography,
History, Politics, Psychology, Medicine, and Law and human annotate errors occurred in the trans-
formed references compared with original references.

1. Factuality Error: Whether there is a factual error in the transformed references. An-
notators are required to verify the accuracy by cross-referencing with the corresponding
Wikipedia entries.

2. Newly Added Information: Whether there is newly added information in the transformed
references. This is assessed by comparing the number of key information points in the
original reference to those in the transformed reference. Note that each key information
point may include a main argument followed by detailed explanations. The expansion of
explanations is not considered newly added information.

3. Improper Expansion: Whether the expansion of explanations is improper. The trans-
formation primarily involves expanding the detailed explanations of each main argument.
Annotators are asked to evaluate the fluency and topic-centric nature of these expansions.

The results are shown in Table 6 . This indicates that prompting GPT-4o to expand the original
references results in high fluency yet knowledge-equivalent references, ensuring the accuracy of our
transformation process.

B.3 CASE STUDY

Case Study on Reference Transformation: An example of reference transformation is presented
in Figure 6.

Case Study on Justification for Disagreement: An example of justification for inter-annotator
disagreement, resolved by a meta-reviewer, is shown in Figure 7.

Case Study on Totally Correct, Partially Correct, and Totally Wrong Responses: An example
illustrating Totally Correct, Partially Correct, and Totally Wrong responses, based on a reference, is
provided in Table 14.

Case Study on Annotation Process: An example of the human annotation process is displayed
in Figure 8 to aid understanding.

C EXPERIMENTS

C.1 DESCRIPTION FOR TRAINED METRICS

Auto-J Auto-J is a model trained using both pairwise data and single-response data from the dataset
provided by Zheng et al. (2023). It is capable of transferring to 58 real-world scenarios and can
provide detailed natural language explanations for its evaluations.

TIGERScore TIGERScore is a model trained on the MetricInstruct dataset, where it is provided
with a context and a hypothesis to output an error analysis. Based on Llama-2-13B, it tests hypothe-
ses that may contain errors, listing the identified errors and providing a final score as its rating.

CritiqueLLM CritiqueLLM is trained on the Eval-Instruct dataset, which includes pairwise com-
parisons and pointwise grading. This model demonstrates performance comparable to GPT-4o and
can also generate natural language explanations for its evaluations.
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C.2 MAIN EXPERIMENTS WITHOUT TIE OPTION

We present the results after excluding the records human annotated as a tie in Table 15. This trans-
forms the evaluation into an A/B choice. The performance does not show overall significant im-
provement compared to the triple setting mentioned earlier, indicating that automatic evaluation
metrics struggle to determine which answer has more semantic overlap with a given reference. This
further underscores the challenges inherent in LFQA evaluation. Additionally, GPT-4o with Chain-
of-Thought (CoT) still outperforms all other evaluation metrics, demonstrating the superiority of
GPT-4o and the effectiveness of the CoT approach.

C.3 DETAILED CORRELATION BETWEEN METRICS

We additionally present the detailed correlations for Geography, History, and Politics under the three
settings in Figure 9, Figure 10, and Figure 11. The experimental results suggest that when evaluating
two responses of similar lengths, LLM-based evaluation metrics do not significantly suffer from
the “always long answer” dilemma. However, in the Human vs. Model setting, where model-
generated responses are typically longer than human-written ones, these metrics tend to favor the
longer response, even if it does not contain more information that overlaps with the reference.

C.4 DO AUTOMATIC EVALUATION METRICS MIRROR HUMAN CHALLENGES?

We present the results in Table 16 and Table 17, illustrating two scenarios: one where there is a
disagreement between annotators but the metrics align with the meta-reviews and another where
both annotators prefer the same answer and the metrics concur with their decision. Intuitively, when
humans struggle to compare two answers, LLMs may also face similar difficulties, resulting in lower
agreement rates. Upon examining the results from both tables, we observe that, on average, perfor-
mance in the first scenario is lower than in the second across most metrics, though the difference
is moderate. However, a closer analysis at the micro level reveals that for certain subjects, perfor-
mance in the second scenario surpasses that of the first, suggesting subject-specific differences and
more complex challenges when applying automatic evaluation metrics for LFQA evaluation. These
findings indicate that while automatic evaluation metrics may share some challenges with human
annotators, they also encounter additional, distinct difficulties. A more detailed analysis can be con-
ducted by breaking down the evaluation process into discrete steps to gain deeper insights into each
phase.

C.5 ERROR ANALYSIS

Figure 12 illustrates why ROUGE fails when evaluating LFQA. The fundamental issue stems from
the inherent logic of ROUGE, which calculates similarity based on word overlap. In the context
of LFQA, where answers can be quite lengthy, keywords may appear sporadically, leading to an
inaccurate assessment of the overall quality and relevance of the response.

Figure 13 illustrates why LLMs struggle with evaluating LFQA. The primary issue is that LLMs
often fail to focus on the key information related to the given question, leading to scores that are not
strictly based on the critical information from the reference.

C.6 AGENTS IMPLEMENTATION AND DETAILS

CHATEVAL: We implement CHATEVAL using three agents in one round one-to-one discussion.
The three agents are Criric, General Public, and Engineer. They are based on GPT-3.5-turbo, GPT-
3.5-turbo-1106-preview, and GPT-3.5-turbo-0613-preview with a temperature equal to 0.7. The role
descriptions are listed in Figure 14.

REFER: We implement REFER using three reviewers—GPT-3.5-turbo, GPT-4o, and GPT-3.5-
turbo-1106-preview—and one area chair role, also played by GPT-4o. All temperatures are set
to 0.7. Although the original methodology used models from different organizations, Chan et al.
(2023) emphasizes that the role-playing aspect is more critical than the specific models used, so no
significant degradation in performance is expected when using models exclusively from OpenAI.
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Context:
The taxation system of the Tang Dynasty was characterized by the principle that ”those who own
land pay rent, those who have households pay taxes, and those who are able-bodied provide labor.”
Under this system, members of the royal family, officials, aristocrats, filial sons, loyal wives, and
wandering or displaced people would seek protection from local landlords and powerful figures as
dependents to avoid paying taxes and performing labor services required by the state. Consequently,
only 30% to 50% of households and 14% of the population shouldered the entire tax burden of
the state, leading to an extremely inequitable tax system. In the first year of Jianzhong (780 AD),
Emperor Dezong issued an order: ”Let the Commissioners for Examinations and Promotions, along
with the county officials, assess the old tax revenues and the conditions of households, both native
and non-native, to determine the amount of money to be collected for the summer and autumn
taxes.” The two-tax system implemented a ”budgeting based on expenditures” principle. Each year,
the government would first calculate the total fiscal expenditure and then allocate it according to the
actual conditions of land, population, and other factors in each region, ensuring a difference in tax
burdens between the rich and poor while maintaining equitable taxation. This principle prevented
local officials from extorting the people, collecting excessive taxes, or increasing the burden on the
populace.

Question:
Based on Material Two and combined with the knowledge learned, identify the background of the
implementation of the Two-Tax System during the Tang Dynasty and explain the changes in taxation
that it caused.

Reference:
The background includes widespread land annexation, the destruction of the Equal-field system, the
inability to implement the rent, labor, and tax system, and a decrease in national fiscal revenue. The
changes were that the tax standards were primarily based on assets, the tax collection time became
fixed, tax categories were simplified, the number of taxpayers increased, and the authority to assess
taxes was further centralized under the imperial court.

Table 7: An example of a Factoid Question including context, question, and reference.

During the evaluation, we prompt the LLM agents to focus on information that overlaps with the
reference. We first obtain ratings for two answers and then compare them to make the final decision.

C.7 PROMPTS

Prompt for Reference Transformation: The prompt used for Reference Transformation is pro-
vided in Table 18.

Prompt for ChatGPT: The prompt used for ChatGPT is shown in Table 19.

Prompt for G-Eval: The prompt used for G-Eval is displayed in Table 20.

Prompt for CHATEVAL: The prompt used for CHATEVAL is presented in Table 21.

Prompt for REFER: The prompts used for REFER, including the prompts for reviewers, are
provided in Table 22, and the prompt for the area chair (AC) is provided in Table 23.
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Context:
After the War of Independence, the original Confederation government became nominal and on the
verge of collapse as each state sought to protect the interests of its ruling elite. At the same time,
foreign powers, led by Britain, were resentful of and hostile toward the United States’ indepen-
dence. The founders of American constitutionalism began to further systematize and Americanize
Montesquieu’s theories, establishing the principle of separation of powers and checks and balances.
When the Constitutional Convention was convened in 1787, there was no consensus among the af-
fluent bourgeoisie. However, when Shays’ Rebellion of 1786-1787 threatened their fundamental
interests, these differences were replaced by consensus. The U.S. Constitution grants legislative
power to Congress, free from interference by the executive branch, and gives Congress the power
to impeach the president. The executive power is exercised by the president, who is elected by the
voters and is accountable only to them. The president has the power to veto legislation passed by
Congress. Judicial power is vested in the Federal Supreme Court and any lower courts that Congress
may establish at any time. The Supreme Court has the power of final adjudication, and federal judges
are appointed by the president with the consent of the Senate. Judges may serve for life as long as
they faithfully perform their duties and cannot be removed except by impeachment by Congress.
Additionally, the Constitution stipulates that no official of one branch of government may hold a
position in another branch during their term of office. Excerpted and adapted from Wei Haiqun’s
”The Historical Development and Implications of the U.S. Separation of Powers System.”

Question:
Based on Material Two and combined with the knowledge learned, summarize the reasons for the
establishment of the separation of powers system in the United States. Explain the main differences
between the power separation system in the Tang Dynasty and the separation of powers system in
the United States.

Reference:
The reasons include the victory of the American War of Independence, the influence of Enlighten-
ment thought, the impetus from farmers’ uprisings, and the need for practical political development.
The main differences are that the separation of powers in the Tang Dynasty was based on the histor-
ical tradition of dividing the powers of the chancellors from previous dynasties, while the separation
of powers in the United States was based on a pre-existing democratic tradition before the founding
of the nation. The Tang Dynasty’s separation of powers primarily involved the parallel division of
drafting, issuing, and executing powers, whereas the American separation of powers involved the
intersecting division of legislative, executive, and judicial powers. The Tang Dynasty’s separation
of powers aimed to strengthen the autocratic rule of the emperor, while the American separation of
powers was designed to prevent despotism and tyranny.

Table 8: An example of a Comparative Question including context, question, and reference.
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Context:
(No context provided in the original document)

Question:
Briefly describe the types of criminal objects.

Reference:
The object of a crime refers to the social interests that are harmed by criminal activities and are
protected by criminal law. The object of a crime can be classified into three types based on the
scope of the social relationships being harmed: general object, similar object, and direct object.
The general object refers to the social interests that are harmed by all crimes collectively, which
is the overall social interest. Both the direct object and the similar object are components of the
general object of social interests, and the three have a relationship of particular, partial, and whole.
The similar object refers to the social interests that are harmed by a certain category of crimes. The
similar object of a crime encompasses the common characteristics of a category of crimes and serves
as the basis for classifying crimes. The direct object refers to the specific social interests directly
harmed by a particular crime. The direct object of a crime is a component of the constitution of a
particular crime, directly reflecting the social nature of the interests harmed by that criminal behavior.
The direct object can be further divided into simple object and complex object.

Table 9: An example of a Definition Question including context, question, and reference.

Context:
Corn oil is a type of grain oil produced from corn germ, known for its rich nutritional content and
pleasant flavor. The production process of corn oil consists of crude oil extraction and refining
stages. The oil extraction rate from germ is 40%, and the conversion rate from crude oil to refined
oil is 90%. A company in Zouping, Shandong, is the earliest established and currently the largest
corn oil product research and production enterprise in China, with its corn oil sales accounting for
50% of the domestic market. The company has crude oil pressing plants in Huimin, Shandong;
Tieling, Liaoning; Tongliao and Ordos, Inner Mongolia. It also has refining oil and small packaging
product production bases at its headquarters in Hangzhou, Zhejiang; Guangzhou, Guangdong. The
crude oil is often transported to the refining oil production bases using flexitanks (disposable soft
packaging containers used for storing and transporting various non-hazardous liquid goods), while
the use of tank containers or steel drums for transportation is becoming increasingly rare.

Question:
Analyze the main reasons for the company’s establishment of refining oil and small packaging prod-
uct production bases in Hangzhou and Guangzhou.

Reference:
Proximity to the market, large population coverage, and substantial market size cater to local con-
sumer demands. The cost of transporting crude oil is similar to that of transporting refined oil, and
the process of transitioning from refined oil production to small packaging is seamless, allowing
products to be quickly introduced to the market, which helps ensure product freshness.

Table 10: An example of an Analytical Question including context, question, and reference.
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Context:
Grain production is influenced by various factors, including the amount of agricultural fertilizer used,
population size, regional economic development level, mechanization level, natural disasters, tech-
nology, and agricultural support policies. The Yangtze River Economic Belt has a solid economic
foundation and favorable agricultural production conditions, making it a traditional major grain-
producing region and a key commodity grain base in China. As an important grain-producing area
in the south, the grain output of the Yangtze River Economic Belt has generally shown an upward
trend. However, its share of the national grain output has been declining, from 49.4% in 1978 to
36.35% in 2018. The share of agricultural output value in the national economy has also decreased,
from 17% to 6.7%.

Question:
Some people believe that the improvement in economic levels in the Yangtze River Economic Belt
is detrimental to the development of grain security production. Do you agree? State your opinion
and provide reasons.

Reference:
I agree, and the reasons are that with economic development, the rapid advancement of industrializa-
tion and urbanization will inevitably encroach on agricultural land, leading to a reduction in the area
of grain cultivation. The development of industrialization may exacerbate environmental pollution,
affecting grain quality. Economic development drives the migration of surplus rural labor to cities,
resulting in a shortage of young and able-bodied workers in rural areas, which impacts grain produc-
tion. Alternatively, one might disagree, arguing that economic development allows the government
to increase financial support for agriculture, enhance the construction of water conservancy facilities,
boost farmers’ enthusiasm for grain cultivation, and improve agricultural production conditions and
management levels. Economic development facilitates farmers’ increased investment in agricultural
technology and production materials, which can improve grain yield and quality. Economic devel-
opment can also enhance the operational levels of grain processing enterprises, further promoting
grain production.

Table 11: An example of an Evaluation Question including context, question, and reference.

Context:
In recent years, H City has been enhancing the well-being of its citizens by creating a better eco-
logical and green environment through its Park City construction project. Residents can reach a
park within a 10-minute walk or a 5-minute bike ride. Park construction serves as a public welfare
initiative, ensuring that the benefits of development are more equitably shared among all people.
Moreover, by integrating the ”Park+” and ”+Park” concepts, it promotes the innovation of urban
development ideas, facilitating the transformation from ”city parks” to a ”Park City.” This transfor-
mation has elevated the city’s status, making H City more attractive to new talent and industries,
stimulating tourism development, and positively impacting local employment.

Question:
Using knowledge from ”Economy and Society,” explain how H City has implemented the new de-
velopment concepts in the process of building the ”Park City.”

Reference:
Adhering to green development: H City has created a shared ecological and green environment, pro-
moting harmony between people and nature. Adhering to shared development: The city ensures that
the benefits of development are more equitably shared among all people, meeting their pursuit of a
better life. Adhering to innovative development: The city fosters innovation in urban development
concepts through the ”Park+” and ”+Park” approaches. Adhering to coordinated development: By
enhancing the city’s status, H City stimulates economic growth and promotes the coordinated devel-
opment of the economy and society.

Table 12: An example of an Inferential Question including context, question, and reference.
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Context:
In recent years, driven by emerging technologies such as the Internet, big data, and artificial intel-
ligence, China’s digital economy has developed rapidly. The digital economy, centered on digital
technology innovation, with data resources as key elements and modern information networks as im-
portant carriers, has provided new and powerful momentum for economic and social development.
However, the rapid development of digital technology has also brought a series of challenges, such
as data security, personal information protection, and network regulation. To promote the healthy
development of the digital economy in China, the government has taken a series of measures, includ-
ing strengthening digital infrastructure construction, optimizing the digital business environment,
and improving the legal and regulatory framework for the digital economy. The implementation of
these measures has provided strong support for the development of the digital economy.

Question:
Based on the material, discuss the measures the government should take to improve the legal and
regulatory framework for the digital economy.

Reference:
Formulate and improve laws and regulations related to the digital economy to provide legal pro-
tection for its development. Strengthen the regulation of the digital economy to ensure fair market
competition and protect consumer rights. Establish and improve mechanisms for data security and
personal information protection to safeguard data security and individual privacy rights. Promote
the coordinated development of the digital economy with other sectors, achieving deep integration
between the digital economy and other industries.

Table 13: An example of an Application Question including context, question, and reference.

Reference:
The objective aspects are specifically manifested in any of the following behaviors: randomly beat-
ing others, in a particularly egregious manner; chasing, intercepting, insulting, or intimidating others,
in a particularly egregious manner; forcibly taking or deliberately destroying or occupying public or
private property, in a particularly serious manner; or causing serious disorder in a public place by
inciting trouble.

Totally Correct Answer:
The objective aspects include behaviors such as randomly beating others in a particularly egregious
manner, chasing or intimidating others in a particularly egregious manner, forcibly taking or destroy-
ing public or private property in a particularly serious manner, and causing serious disorder in public
places by inciting trouble.

Partially Correct Answer:
The objective aspects involve behaviors like beating others or intimidating them, forcibly taking or
occupying property, and causing disorder in public places. However, it lacks the emphasis on the
seriousness and egregious nature of these actions as described in the original text.

Totally Wrong Answer:
The objective aspects include behaviors like helping others in public, being polite to strangers, and
following the rules in public places. This answer is completely incorrect as it misrepresents the
negative behaviors described in the original text as positive actions.

Table 14: An example showing Totally Correct Answer, Partially Correct Answer, and Totally
Wrong Answer.
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Question: 

Briefly describe the advantageous conditions that attract the company to build crude oil pressing factories in Huimin, Tieling, Tongliao, and Ordos.What is an instigator in Chinese criminal law?

Reference:

Overall, an instigator in Chinese criminal law refers to an individual who incites others to commit a crime. Specifically, such individuals intentionally lead or 

provoke others to decide to carry out criminal activities.\n\nFirstly, the fundamental characteristic of an instigator is that they incite others to commit a crime 

without directly participating in the criminal behavior themselves. They play a role in inducing others to form criminal intentions. For instance, a person may 

encourage, persuade, or offer some benefit to successfully prompt another to decide to commit acts such as theft or fraud while not partaking in the actual 

criminal process.\n\nSecondly, certain conditions must be met to establish instigation. Subjectively, the instigator must have the intention to induce others to 

form the criminal intent and decide to commit the crime, which is known as the intent to instigate others to commit a crime. This intent must be explicit; the 

instigator must clearly know whom they are instigating and what crime they are instigating. Without explicit intent, instigation cannot be established; 

behavior that inadvertently causes others to form criminal intentions cannot constitute instigation. Objectively, the instigator must have carried out acts of 

instigation, commonly manifested as encouragement, deception, persuasion, requests, bribery, or coercion, prompting specific individuals to commit specific 

crimes. Whether the instigatee actualizes the criminal intent or determination and whether the instigatee actually carries out the criminal act do not affect the 

establishment of the instigator.\n\nRegarding the criminal liability of instigators, several key points are noteworthy. First, instigators are punished according 

to their role in the joint crime. If the instigator plays a major role in the crime process, they will be punished as the main perpetrator; if they only play a minor 

or auxiliary role, they will be punished according to the standard for accomplices. Although instigators typically play a major role and are generally punished 

as main perpetrators, it is possible for an instigator with a minor role to be punished as an accomplice. Second, if the instigatee does not commit the 

instigated crime, the instigator may still be deemed guilty but subject to lighter or reduced punishment. This scenario, usually referred to as \"attempted 

instigation,\" indicates that attempted instigation is also punishable, underscoring the independent and punishable nature of instigative behavior under 

Chinese criminal law. Third, instigating minors to commit crimes should result in harsher punishment, especially in cases where those under 18 are incited to 

commit criminal acts.\n\nThough instigators possess independent criminality or punishability, they are not an independent crime category. The instigator 

should be charged according to the specific crime instigated. For example, if the instigation pertains to robbery, the instigator should be prosecuted under 

robbery charges. In summary, through these three points, we can gain a deeper understanding of the provisions concerning instigators in Chinese criminal law 

and clarify their legal responsibilities.\n\nOf course, this summary does not cover all possible scenarios, and specific legal determinations in practice require 

detailed analysis based on individual cases. However, these basic principles provide a relatively comprehensive understanding of instigators. These principles 

stem from Chinese criminal law and reflect our serious attitude towards and strict control over instigative behavior.

answer a: 

An instigator in Chinese criminal law refers to a person who directly or indirectly instructs or incites others to commit a crime. According to the relevant 

provisions of the Criminal Law of the People's Republic of China, an instigator not only bears the corresponding criminal responsibility for the criminal act but 

may also be punished more severely based on their role and influence in the criminal process. For example, if a person induces and instructs others through an 

online platform, leading to the commission of a fraud crime by the incited person, the instructing behavior, although not directly involved in the fraud, may be 

recognized as an instigator, bearing corresponding criminal responsibility. In legal practice, the determination of an instigator generally requires a 

comprehensive judgment based on the specific circumstances of the case, including the nature, content, and result of the instruction, as well as the identity of 

the instructing person.

answer b:

According to Chinese criminal law, an instigator is a person who deliberately entices or incites others to commit criminal behavior through oral, written, or other 

means. The instigator usually does not directly commit the crime but their actions lead directly to the commission of the crime by others. In criminal law, an 

instigator, like a principal or accomplice, must bear corresponding legal responsibility. For example, if someone incites another person online to rob a store, and 

the incited person commits the robbery, the instigator constitutes an instigator.

�Identify Key Information in reference

�Check for Key Information in Answers

�Handling Responses
�The handling responses criteria classify answers as 

totally correct, partially correct, or totally wrong, 

affecting the overlapping information score 

accordingly. Use purple to display common points.

�Compare Overlapping Information

�Which will be considered the better response?

Answer A Answer B

Figure 5: The overall pipeline of our annotation process. It can be separated into four stages, i.e.,
Identify Key Information, Handling Responses and Check for Key Information in Answers,
Compare Overlapping Information. The texts denoted by blue are key information identified in
reference and answers.
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From Geo 335: 

Briefly describe the advantageous conditions that attract the company to 

build crude oil pressing factories in Huimin, Tieling, Tongliao, and Ordos.

Key information:

- These areas are major corn-producing regions 

with abundant raw materials;

- They are underdeveloped small and medium-

sized cities with cheap land prices and abundant, 

low-cost labor.

Reference:

Let's discuss this issue together. These factors collectively drive the 

development of the region. Firstly, these areas are major corn-producing 

regions with abundant raw materials, ensuring a sufficient supply of raw 

materials for agricultural product processing and related industries. 

Secondly, these regions are underdeveloped small and medium-sized 

cities with cheap land prices, reducing operational costs for enterprises. 

Additionally, abundant and low-cost labor provides companies with a 

large amount of inexpensive labor, further reducing production costs. 

These advantages make the region well-suited for the development of 

agricultural product processing and related industries.

no natural 

transitions

Fragmented

problem

Figure 6: An example showing the reference transformation results. The sentences denoted in red
and green contain the key information used to answer the questions.
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Justification 

Context: 
The Guizhou Plateau is a karst plateau with a highly fragile ecological environment. The diurnal 
variations in water and heat conditions and their impact on vegetation changes can provide 
theoretical support for ecological protection and disaster prevention and mitigation in this region.

Question:
Explain the reasons why the ecological environment in Guizhou Province is highly fragile.

Reference:
Guizhou Province has rugged terrain, primarily characterized by karst topography. The landforms 
develop slowly, with thin soil layers. Abundant rainfall leads to strong water erosion, making the 
soil prone to loss. The underground is filled with caves and fissures, causing significant infiltration 
of surface water, which results in surface water scarcity.

Answer_a:
There are four main reasons why the ecological environment in Guizhou Province is highly 
fragile:Firstly, Guizhou has a karst topography with undulating terrain and complex 
landforms.Secondly, severe soil erosion has led to significant depletion of land resources.Thirdly, 
plains are scarce in Guizhou, with most areas being mountainous, making them more susceptible to 
natural disasters.Fourthly, the rugged terrain and difficult transportation conditions pose challenges 
to ecological protection and restoration efforts.

Answer_b:
There are three main reasons why the ecological environment in Guizhou Province is highly fragile: 
Firstly, the unique karst topography is easily affected by water erosion and dissolution, leading to 
the formation of distinctive landforms; Secondly, the humid climate with abundant rainfall 
intensifies the erosion processes; Lastly, the exceptionally high nighttime rainfall, coupled with 
insufficient vegetation cover, results in severe soil erosion.

I perfer a I perfer b

Human_a Human_b
Analysis:
Human_A leans more towards Answer A because it mentions severe soil erosion, while Answer B 
only refers to erosion without directly stating severe soil erosion. On the other hand, Human_B 
prefers Answer B because it mentions abundant rainfall, which Answer A does not mention. 
However, erosion and soil erosion share the same implied meaning, and Answer A completely omits 
the important point about rainfall. Therefore, ultimately preferring Answer B is more reasonable.

Final decision-maker

I perfer b

Figure 7: An example showing the deal with disagreement between annotators. When a disagree-
ment appears, a final annotator will make the decision and give the justification.
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From Geo 79: 

Briefly describe the reasons for the decrease in oyster size in recent years

Reference:

With the rapid development of the oyster farming industry, the number of oysters has 

increased dramatically, leading to reduced living space and limited food sources. 

Additionally, the construction of reservoirs upstream and the nighttime release of water 

have increased the freshwater content in the river, affecting the oysters' growth 

environment.", "Reference": "I'm happy to answer your question. With the rapid 

development of the oyster farming industry, the number of oysters has increased 

dramatically, which is a positive development but also brings some issues. First, the living 

space for oysters has become increasingly crowded. Second, food sources have become 

quite limited, leading to competition among oysters. Additionally, the construction of 

reservoirs upstream, intended to better manage water resources, has resulted in increased 

freshwater content in the river due to nighttime releases. This change has also impacted 

the growth environment for oysters. In summary, although the oyster farming industry is 

growing rapidly, these potential issues need attention to ensure sustainable development.

Answer a:

With the rapid development of the oyster farming industry, the number of oysters has 

increased dramatically. As a result, their living space has shrunk, and food sources have 

become more limited. Additionally, areas near the river provide necessary production and 

living water for industry, which has impacted oyster growth.

Answer b:

Due to the rapid increase in the number of oysters, their living space has decreased, and 

food sources have also diminished. However, in water-rich regions like the Yangtze and 

Yellow Rivers, fisheries and hydropower industries can still be developed.

Analysis: 

Key Points from the Standard Answer:

1. Rapid development of the oyster farming industry: The industry has grown quickly, 

leading to a significant increase in the number of oysters.

2. Reduced living space: The increased number of oysters has led to overcrowding and 

reduced space for their growth.

3. Limited food sources: The overcrowding has also resulted in limited food availability, 

causing competition among oysters.

4. Impact of upstream reservoir construction: The construction of reservoirs upstream has 

increased freshwater content in the river.

5. Freshwater content affecting growth environment: The nighttime release of water has 

altered the river's composition, impacting the oysters' growth environment.

Answer A mentions the key points about the increase in oysters, reduced living space, and 

limited food sources, aligning well with the standard answer. However, it briefly touches 

on the environmental impact without detailing the freshwater changes.

Answer B discusses the reduction in space and food but overlooks the crucial impact of 

reservoir construction and freshwater changes on oyster growth, making it less aligned 

with the standard answer.

Therefore, Answer A is closer to the requirements of the standard answer and is more 

comprehensive.

Figure 8: An example showing the human annotation process,
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Metric Geography History Politics Psychology Medicine Law Avg.

Traditional Metrics

ROUGE 0.541 0.513 0.454 0.547 0.747 0.638 0.573
BLEU 0.350 0.372 0.411 0.520 0.627 0.617 0.483
BERTScore 0.474 0.421 0.379 0.413 0.542 0.383 0.435
BLEURT 0.574 0.474 0.540 0.520 0.518 0.489 0.519
BARTScore 0.562 0.508 0.563 0.613 0.723 0.585 0.592
UniEval 0.612 0.503 0.431 0.373 0.675 0.543 0.523
GPT2♠ 0.494 0.490 0.532 0.547 0.735 0.596 0.566

Prompt-only Metrics

ChatGPT (0613) 0.588 0.533 0.563 0.680 0.711 0.543 0.603
ChatGPT-CoT 0.574 0.518 0.601 0.653 0.735 0.553 0.606
G-Eval (ChatGPT) 0.582 0.526 0.592 0.667 0.711 0.638 0.619
GPT-4o 0.541 0.513 0.586 0.653 0.687 0.628 0.601
GPT-4o-CoT 0.553 0.561 0.589 0.693 0.699 0.638 0.622
G-Eval (GPT-4o) 0.526 0.548 0.592 0.680 0.735 0.511 0.599

Trained Metrics

Critique-6B 0.459 0.528 0.483 0.427 0.410 0.351 0.443
AutoJ-13B 0.494 0.508 0.546 0.627 0.699 0.628 0.584
TIGERScore-13B♠ 0.415 0.268 0.115 0.120 0.265 0.160 0.224

Table 15: Evaluation Metrics Across Different Domains. The baselines denoted by ♠ are reference-
free evaluation metrics. The matching rate of model preference and human preference in the triple-
choice settings measures all the results. The largest accuracy rate is denoted using bold.

Metric Geography History Politics Psychology Medicine Law Avg.

Traditional Metrics

ROUGE 0.500 0.466 0.551 0.392 0.333 0.541 0.464
BLEU 0.538 0.427 0.482 0.307 0.333 0.500 0.431
BERTScore 0.423 0.437 0.517 0.331 0.389 0.375 0.412
BLEURT 0.307 0.427 0.276 0.484 0.489 0.416 0.400
BARTScore 0.615 0.475 0.482 0.380 0.500 0.583 0.506
UniEval 0.461 0.475 0.586 0.503 0.400 0.291 0.453
GPT2♠ 0.384 0.407 0.551 0.423 0.533 0.500 0.466

Prompt-only Metrics

ChatGPT 0.500 0.475 0.517 0.466 0.489 0.750 0.533
ChatGPT-CoT 0.500 0.427 0.517 0.460 0.544 0.708 0.526
G-Eval (ChatGPT) 0.613 0.446 0.482 0.429 0.544 0.708 0.537
G-Eval (ChatGPT) 0.613 0.446 0.482 0.429 0.544 0.708 0.537
GPT-4o 0.538 0.446 0.482 0.398 0.500 0.791 0.526
GPT-4o-CoT 0.500 0.466 0.655 0.466 0.500 0.666 0.542
G-Eval (GPT-4o) 0.500 0.466 0.586 0.435 0.489 0.666 0.524

Trained Metrics

Critique-6B 0.230 0.475 0.276 0.582 0.366 0.375 0.384
AutoJ-13B 0.384 0.437 0.448 0.392 0.500 0.666 0.471
TIGERScore-13B♠ 0.192 0.395 0.241 0.233 0.189 0.041 0.215

Table 16: The agreement rate of the situation where there is a disagreement between annotators but
the metrics make the same decision as the meta-reviewer. The baselines denoted by ♠ are reference-
free evaluation metrics. ChatGPT used here is the GPT-3.5-turbo-1106-preview version. The largest
agreement rate is denoted using bold.

.
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Figure 9: Overall correlation between automatic evaluation baselines on Huamn vs. Human. The
lighter color indicates a little correlation while the darker color indicates a larger correlation. The
annotation on each block is calculated by the ratio of the intersection between BaselineA and
BaselineB and the total number of records tested by both BaselineA and BaselineB.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 10: Overall correlation between automatic evaluation baselines on Human vs. Model. The
lighter color indicates a little correlation while the darker color indicates a larger correlation. The
annotation on each block is calculated by the ratio of the intersection between BaselineA and
BaselineB and the total number of records tested by both BaselineA and BaselineB.
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Figure 11: Overall correlation between automatic evaluation baselines on Model vs. Model. The
lighter color indicates a little correlation while the darker color indicates a larger correlation. The
annotation on each block is calculated by the ratio of the intersection between BaselineA and
BaselineB and the total number of records tested by both BaselineA and BaselineB.
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Metric Geography History Politics Psychology Medicine Law Avg.

Traditional Metrics

ROUGE 0.457 0.598 0.441 0.417 0.657 0.635 0.534
BLEU 0.370 0.419 0.402 0.472 0.557 0.622 0.474
BERTScore 0.426 0.485 0.376 0.458 0.514 0.378 0.440
BLEURT 0.495 0.467 0.477 0.431 0.500 0.514 0.481
BARTScore 0.495 0.598 0.506 0.444 0.657 0.527 0.538
UniEval 0.481 0.502 0.376 0.333 0.557 0.527 0.463
GPT2♠ 0.436 0.537 0.448 0.403 0.629 0.622 0.512

Prompt-only Metrics

ChatGPT 0.484 0.581 0.497 0.458 0.629 0.527 0.529
ChatGPT-CoT 0.505 0.559 0.526 0.458 0.643 0.527 0.536
G-Eval (ChatGPT) 0.502 0.594 0.513 0.458 0.657 0.608 0.555
GPT-4o 0.495 0.594 0.520 0.417 0.614 0.608 0.541
GPT-4o-CoT 0.498 0.629 0.529 0.528 0.600 0.662 0.574
G-Eval (GPT-4o) 0.481 0.629 0.533 0.486 0.643 0.473 0.541

Trained Metrics

Critique-6B 0.453 0.489 0.441 0.319 0.371 0.365 0.407
AutoJ-13B 0.457 0.590 0.474 0.444 0.643 0.662 0.545
TIGERScore-13B♠ 0.374 0.293 0.219 0.361 0.357 0.176 0.297

Table 17: The agreement rate of the situation where both annotators prefer one answer and the met-
rics make the correct decision. The baselines denoted by ♠ are reference-free evaluation metrics.
ChatGPT used here is the GPT-3.5-turbo-1106-preview version. The largest agreement rate is de-
noted using bold.

Instruction:
You will be provided with a text that is concise, unpolished, and heavily focused on knowledge
content. Your task is to transform this text into fluent and natural language without adding any new
information.
To achieve this, you can utilize the following strategies:
Expand with Relevant Examples: Use examples where appropriate to clarify or elaborate on the
content, making it more engaging and accessible.
Include Auxiliary Information: Add supportive information, such as a brief summary, a self-
introduction, or other relevant context, to enhance readability and coherence.
Incorporate Transitional Sentences: Use organizational phrases like ”After that...” or ”Following
this...” to improve the flow and structure of the text.
Text to Transform:
[Your Text Here]

Table 18: Instruction for transformation of references
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                                                                       Analysis:
The reason ROUGE scores tend to favor answer A lies mainly in its reliance on word overlap. Answer A 
uses terms like "mountains," "water vapor," and "precipitation," which closely match the keywords in the 
reference information, leading to a higher surface similarity score. For example, A mentions "water vapor 
being replaced by local hot air," which has some lexical connection to the reference information's "water 
vapor does not disperse easily," even though the meanings may differ. On the other hand, answer B 
includes descriptions like "large day-night temperature differences" and "strong plant transpiration," 
which are more accurate but have a lower direct word match with the reference. As a result, ROUGE 
struggles to accurately assess the quality of content in B. This highlights ROUGE's limitations in 
capturing deeper semantic and logical relationships, causing it to favor the answer with higher surface 
word overlap, such as A.

Model perference  Human perference

I perfer a I perfer b

                             Context: 
The Guizhou Plateau is a karst plateau with a 
very fragile ecological environment. The 
diurnal thermal conditions and their impact on 
vegetation changes can provide theoretical 
support for ecological protection and disaster 
prevention and reduction in the region.

                             Question: 
Analyze the reasons for the frequent nighttime 
rainfall in Guizhou.
                        

                                                                       Reference:
The terrain is uneven with many valleys; at night, there are prevailing upward air currents in the valleys, 
where water vapor condenses easily, leading to precipitation. The area has abundant vegetation, strong 
evapotranspiration, and the mountainous water vapor does not disperse easily, ensuring sufficient moisture.
                                                                       Answer_a:
The Karst landscape in Guizhou is characterized by mountains formed by water erosion, strong mountain 
winds at night, hot regions, and numerous winding rivers. Due to the replacement of water vapor by local 
hot air, there is less rainfall during the day, resulting in more precipitation at night in the region.
                                                                       Answer_b: 
Large changes in temperature throughout the day, warm air cooling and turning into rain when it meets 
cold air, affected by almost-stationary fronts, lots of plants and strong evaporation and transpiration.
        

Figure 12: Example and explanation of ROUGE for why ROUGE fails at LFQA evaluation.
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                                                                       Analysis:
ChatGPT-4o and 3.5 prefer Answer B because it accurately covers all the key points from the reference 
text, such as the convergence of cold and warm currents, light absorption in shallow waters, and the 
nutrient-rich estuarine area. Additionally, Answer B presents the information in a clear and structured 
manner, which aligns with the model's scoring criteria. In contrast, human reviewers are more inclined to 
prefer Answer A. Although Answer A includes elements like “ample living space” and “minimal 
human impact and pollution,” which are not directly mentioned in the reference, these reasonable 
inferences and expansions demonstrate deeper thinking. Human evaluators might find Answer A to be 
concise and reflective of critical reasoning, even though its content diverges somewhat from the core 
information in the reference text.

ChatGPT perference  Human perference

I perfer b I perfer a

                                                                           Context: 
"context": "Sardines thrive in water temperatures ranging from 14 to 20°C. The sardine migration from 
May to September at the Agulhas Bank fishing grounds attracts many tourists.",
                        

                                                                       Reference:
The convergence of cold and warm currents causes sea water disturbances, leading to the upwelling of 
nutrients from the bottom, which promotes the growth of plankton and provides abundant fish food; the 
convergence of currents creates a water barrier that facilitates fish aggregation; located in the nearshore 
continental shelf area with freshwater input from land, it is rich in nutrients and plankton; the shallow 
water allows good light penetration, supporting photosynthesis in plankton.
 
                                                                     Student_answer_a:
Ocean currents bring abundant food and create upwellings, contributing to favorable conditions for fish 
survival in lower latitudes. Additionally, there is ample living space with minimal human impact and 
pollution.
                       
                                                                    Student_answer_b: 
1. The blend of cold and warm currents helps maintain a stable water temperature. 2. Situated on the 
continental shelf with shallow waters, allowing for better absorption of light. 3. This area possesses fertile 
soils and supports prolific plankton growth. 4. The estuarine region is rich in nutrients, providing fish with 
ample food.",
                

        

                                        Question:
Question: Explain the formation of the Agulhas Bank fishing grounds.
        

Chat- 4o perference

I perfer b

Figure 13: Example and explanation of LLMs for why LLMs fail at LFQA evaluation.
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General Public

                         Scientist
You are Scientist, one of the referees in this task. You are a 
professional engaged in systematic study who possesses a 
strong backGeneral Publicground in the scientific method, 
critical thinking, and problem-solving abilities. Please help 
other people to determine which response is the better one.

             General Public
You are now General Public, one of the referees in this task. 
You are interested in the story and looking for updates on 
the investigation. Please think critically by yourself and 
note that it’s your responsibility to choose one of which is 
the better first.

                 Critic
You are now Critic, one of the referees in this task. You will 
check fluent writing, clear sentences, and good wording in 
summary writing. Your job is to question others judgment to 
make sure their judgment is well-considered and offer an 
alternative solution if two responses are at the same level.

Figure 14: Role Descriptions in CHATEVAL.

Instruction:
Assume you are a teacher. Next, I will provide a paragraph of text containing Reference, Answer A,
and Answer B.
You should decide which answer is better based on the Reference.
If you think Answer A is better, please type a. If you think Answer B is better, please type b.
Otherwise, please type ”tie”. You should think step by step before making a decision. Return with
“My choice is a“ or “My choice is b“ or “My choice is tie“.”
Reference:
[Your Reference Here]
Answer A:
[Your Answer A Here]
Answer B:
[Your Answer B Here]

Table 19: Instruction for ChatGPT to evaluate LFQA
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Instruction:
Task Instruction:
You will be provided with two student responses and a reference answer. Your task is to evaluate
and compare the two responses based on the criteria below, and then determine which response is
better.
Evaluation Criteria:
Accuracy:
Compare how closely each response aligns with the content of the reference answer. Consider
whether each student correctly identified and conveyed the key points and facts presented in the
reference. Identify which response better captures the essential details. Clarity and Structure:
Assess the organization, logical flow, and readability of each response. Evaluate the grammar, word
choice, punctuation, and sentence structure. Determine which response is clearer and more effec-
tively communicated.
Completeness:
Examine whether each response addresses all aspects of the question or key points from the reference
answer. Consider the thoroughness of each response, and identify if either response misses or omits
important components. Decide which response is more comprehensive.
Evaluation Process:
Understand the Reference: Begin by reading the reference answer carefully to grasp the main con-
tent, key points, and details.
Analyze Each Response: Read both student responses attentively, ensuring you fully understand
what each student is expressing.
Compare Accuracy: Evaluate which response more accurately captures the key points and facts from
the reference answer.
Compare Clarity and Structure: Assess which response is better organized, clearer, and more gram-
matically sound.
Compare Completeness: Determine which response more thoroughly covers all key points and as-
pects of the reference answer.
Final Decision:
After completing your comparison, select the response that best meets the criteria of accuracy, clar-
ity, structure, and completeness. Make your decision by clearly stating which response is better, and
provide a brief rationale for your choice.
Reference:
[Your Reference Here]
Answer A:
[Your Answer A Here]
Answer B:
[Your Answer B Here]

Table 20: Instruction for G-Eval
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Instruction:
Context:
[Your Context Here]
Question:
[Your Question Here]
Reference:
[Your Reference Here]
Answer A:
[Your Answer A Here]
Answer B:
[Your Answer B Here]
Role Description:
[Your Role Description Here]
System Message:
We would like to request your feedback on the performance of two assistants in response to the user
question displayed above based on the reference provided. You should decide which one is better
based on the reference. You should be critical and your opinion can not be exactly the same as oth-
ers.
You have received feedback from other referees who have analyzed the responses. Your task is to
review this feedback critically and either support or challenge the previous judgments.
Consider if the previous decisions were made correctly. Reflect on whether the initial judgments
align with the reference provided. If you disagree with the previous analysis, provide a new perspec-
tive and rationale.
Remember, your goal is to ensure the most accurate and fair judgment. You should first analyze the
previous feedback and then provide your own feedback.
Here is your discussion history:
[History]
Now it’s your time to talk, please make your talk short and clear! You should return with “My deci-
sion is a“ or “My decision is b“ or “My decision is tie“ with short and clear explanations.

Table 21: Instruction for Agents in CHATEVAL
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Instruction:
Task Instruction:
You will be provided with an answer and a reference for a specific question, based on its context.
Your task is to rate the answer according to the reference provided.
Evaluation Criteria:
Factuality (1 - 5): Assess the accuracy and relevance of the answer based on how well it aligns with
the reference. A high score indicates that the answer is factually correct and closely corresponds to
the reference.
Evaluation Steps:
1. Understand the Reference: Carefully read the reference to identify its main topic and key points.
2. Compare the Answer: Review the provided answer and compare it against the reference. Evaluate
whether the answer addresses the main topic and key points effectively, and whether it is presented
in a clear and logical manner. 3. Assign a Score: Based on your comparison, rate the answer’s
factuality on a scale of 1 to 5, with 1 being the lowest and 5 being the highest, according to the
guidelines below:
Scoring Guidelines:
- Score = 5: The answer fully captures all key points of the reference with accurate and logical flow,
without significant omissions or irrelevant information.
- Score = 4 - 4.9: Most key points are included with a generally logical sequence, though there may
be minor omissions or slight inclusions of less relevant information.
- Score = 3 - 3.9: Some key points are present, but others are missing, with noticeable gaps or jumps
in the flow, and some irrelevant details.
- Score = 2 - 2.9: Several key points are missed, with a disjointed flow, significant omissions, inac-
curacies, and noticeable irrelevant content.
- Score = 1 - 1.9: The answer fails to represent the reference accurately, lacks coherence and logical
flow, with major elements missing or misrepresented, and significant irrelevant details.
Context:
[Your Context Here]
Question:
[Your Question Here]
Reference:
[Your Reference Here]
Answer:
[Your Answer Here]
Evaluation Form:
Begin your evaluation with ”Analysis:” where you will concisely analyze the given answer according
to the evaluation criteria. Then, provide your numeric rating on the next line starting with ”Rating:
[your rating here]. For example, ”Rating: 4.2” without any other symbols or words.

Table 22: Instruction for reviewers in REFER
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Instruction:
Task Instruction:
You will be given an answer, a reference, and three evaluations from large language models for a
specific question based on its context. Your task is to assess the accuracy of the answer by rating it
according to the reference provided.
Evaluation Criteria:
Factuality (1 - 5): Assess the accuracy and relevance of the answer based on how well it aligns with
the reference. A high score indicates that the answer is factually correct and closely corresponds to
the reference.
Evaluation Steps:
1. Understand the Reference: Carefully read the reference to identify its main topic and key points.
2. Compare the Answer: Review the provided answer and compare it against the reference. Evaluate
whether the answer addresses the main topic and key points effectively, and whether it is presented
in a clear and logical manner. 3. Assign a Score: Based on your comparison, rate the answer’s
factuality on a scale of 1 to 5, with 1 being the lowest and 5 being the highest, according to the
guidelines below:
Scoring Guidelines:
- Score = 5: The answer fully captures all key points of the reference with accurate and logical flow,
without significant omissions or irrelevant information.
- Score = 4 - 4.9: Most key points are included with a generally logical sequence, though there may
be minor omissions or slight inclusions of less relevant information.
- Score = 3 - 3.9: Some key points are present, but others are missing, with noticeable gaps or jumps
in the flow, and some irrelevant details.
- Score = 2 - 2.9: Several key points are missed, with a disjointed flow, significant omissions, inac-
curacies, and noticeable irrelevant content.
- Score = 1 - 1.9: The answer fails to represent the reference accurately, lacks coherence and logical
flow, with major elements missing or misrepresented, and significant irrelevant details.
Context:
[Your Context Here]
Question:
[Your Question Here]
Reference:
[Your Reference Here]
Answer:
[Your Answer Here]
First Assistant’s Evaluation:
[Peer response1]
Second Assistant’s Evaluation:
[Peer response2]
Third Assistant’s Evaluation:
[Peer response3]
Evaluation Form:
Begin your evaluation with ”Analysis:” where you will concisely analyze the given answer according
to the evaluation criteria. Then, provide your numeric rating on the next line starting with ”Rating:
[your rating here]. For example, ”Rating: 4.2” without any other symbols or words.

Table 23: Instruction for area chair in REFER
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