
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#5

ICCV
#5

ICCV 2021 Submission #5. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Self-supervised Visual Attribute Learning for Fashion Compatibility

Anonymous ICCV submission

Paper ID 5

Abstract

Many self-supervised learning (SSL) methods have been
successful in learning semantically meaningful visual rep-
resentations by solving pretext tasks. However, prior work
in SSL focuses on tasks like object recognition or detection,
which aim to learn object shapes and assumes that the fea-
tures should be invariant to concepts like colors and textures.
Thus, these SSL methods perform poorly on downstream
tasks where these concepts provide critical information. In
this paper, we present an SSL framework that enables us
to learn color and texture-aware features without requiring
any labels during training. Our approach consists of three
self-supervised tasks designed to capture different concepts
that are neglected in prior work that we can select from
depending on the needs of our downstream tasks. We eval-
uate our approach on fashion compatibility using Polyvore
Outfits and In-Shop Clothing Retrieval using Deepfashion,
improving upon prior SSL methods by 9.5-16%, and even
outperforming some supervised approaches on Polyvore Out-
fits despite using no labels. We also show that our approach
can be used for transfer learning, demonstrating that we can
train on one dataset while achieving high performance on a
different dataset.

1. Introduction
Colors and textures information are important features

for tasks like fine-grained classification [5, 8] and mi-
croscopy image classification [27] as well as applications
like image search, recommendation, and outfit genera-
tion [4, 11, 16, 31, 33, 34, 36]. However, collecting an-
notations to train these models can be expensive, especially
when they require domain expertise [28] or are constantly
evolving like e-commerce datasets. Self-supervised learn-
ing (SSL) would appear to be a good fit to address this
problem since they require no labels for training, but prior
work focused on tasks like object classification and detection
(e.g. [9, 26, 39, 2, 12]), where the goal is to recognize an
object (i.e., its shape) regardless of its color or texture (so
a black dog and a white dog should both be classified as a

dog). In fact, many self-supervised approaches are explicitly
designed to learn color invariant features [2, 12]. Thus, as
we illustrate in Figure 1, prior work in SSL often does not
generalize to tasks where colors and textures are important.

In this paper, we propose Self-supervised Tasks for Visual
Attribute (S-VAL) to learn visual attributes while generating
shape invariant features for fashion compatibility, where a
system recommends fashion items compatible and comple-
ment each other when worn together in an outfit. Motivated
by the observation that similar color or texture items are
likely to be compatible [29], S-VAL is designed to learn em-
bedding images with similar colors and texture patterns are
embedded nearby each other. To be specific, our approach
consists of three major components. First, we propose a new
self-supervised pretext task where a model predicts color
histograms of input images to understand dominant colors
of an image. Second, we introduce shapeless local patch
discrimination, where we perform Instance Discrimination
(ID) [39] on very small image patches of an image. This
helps ensure that little shape information is present in an
image and the model must focus on recognizing color and
texture information instead. Finally, we obtain texture fea-
tures using a Gram matrix [7, 20, 19] computed over the
whole image, and then encourage ID to learn discriminative
texture representations. Our approach uses no labels during
training (i.e., it is unsupervised), but, as our experiments
will show, we get comparable performance to some fully-
supervised methods. Figure 2 provides an overview of our
approach.

The work that is the closest in spirit to ours is Hsiao et
al. [16], which automatically identifies individual clothing
items from full-body photos of people and then uses the
parsed outfits as labels for fashion compatibility. This is rem-
iniscent of the part-based methods used in tasks like object
classification [6], where the goal is to learn how to identify
the parts (or individual clothing items) in order to recog-
nize the object (or to recognize compatible items). However,
this still requires having weak-labels and is a task-specific
application (i.e., it only is applicable to fashion compatibil-
ity). Another significant drawback is that the images used
for training were from a different domain (full-body images
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(a) Object Recognition
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(b) Fashion Compatibility (c) Non-transferability

Figure 1: Differences between the (a) object recognition and (b) fashion compatibility tasks. (a) Object recognition needs
color invariant but shape sensitive features. (b) Tasks like fashion compatibility needs color sensitive but shape invariant
features in order to match different category fashion items, in which items of the same object category can be embedded far
under different visual attributes. In (c), we show that a model trained on object category labels hurts performance on the
fashion compatibility task and vice versa, which helps motivate us to propose a new form of SSL pretext tasks.

of people) than the images they are evaluated on (images
containing a single product on a white background). Thus,
as our experiments will show, our approach significantly
outperforms the weakly-supervised approach of Hsiao et
al. [16] despite our approach lacking any supervision and
without making task-specific assumptions. Specifically, in
addition to comparing to Hsiao et al. on fashion compati-
bility, we also evaluate our approach on In-Shop Clothing
Retrieval [23], demonstrating that our approach generalizes.

Our contributions are summarized below:

• We propose Self-supervised Tasks for Visual Attribute
(S-VAL) to learn colors and textures of images while
generating shape invariant features. To the best of
our knowledge, ours is the first work to propose SSL
methods for capturing color and texture information.

• We obtain a 9.5-16% gain in fill-in-the-blank outfit com-
pletion using Polyvore Outfits [34] and on In-Shop Re-
trieval using DeepFashion [23] over prior SSL methods.
Notably, our approach outperforms some supervised
methods on Polyvore Outfits despite using no labels.

• We show our approach creates powerful features that
transfer across datasets. Specifically, we train on
Polyvore Outfits and test on Capsule Wardrobes [16],
and train on the Fashion-Gen dataset [30] and test on
Polyvore Outfits, reporting a 6-8% gain over prior work.

• We demonstrate that self-supervised learning should
consider different characteristics of downstream tasks
by highlighting the difference between object recog-
nition and tasks like fashion compatibility and image
retrieval, which we hope inspires future work in SSL.

2. Related Work
Self-supervised Learning (SSL). Self-supervised learn-
ing [9, 26, 39, 12, 2, 25] generates self-supervisory signals
for a pretext task from an input. By solving a pretext task,
a model can learn semantically meaningful features from
raw data. Handcrafted pretext tasks such as predicting ro-
tations [9] and solving jigsaw puzzles [26] provide useful
features for object recognition and detection tasks. Wu et
al. [39] proposes an Instance Discrimination (ID) pretext
task with contrastive loss [10]. ID learns visual similarity in
different images by treating an image as its own class (i.e.,
positive pair) but all other images as negative pairs. While ID
is effective at learning strong visual representations, ID can
be biased to texture or colors of an object which is harmful
to objection recognition. In later work, ID with strong data
augmentation techniques like color distortion (e.g., color
jittering and gray-scale images) [2, 3] significantly improved
the recognition or detection performance by providing color
and texture invariant features. While these perform well for
a task like object recognition or detection, they focus on
learning an object’s shape. However, many tasks require
reasoning about multiple similarity notions such as color,
texture and style these methods ignore. In addition, in tasks
like fashion compatibility, where two items are considered
compatible if they would complement each other when worn
in the same outfit, items of different categories (e.g., a shirt
and pants) can be compatible with each other. Thus, learning
object categories can be harmful to performance (Fig. 1(c)).
Instead, we propose an SSL framework that learns visual
attributes for tasks where color and texture are important.

Fashion Compatibility. Other than the weakly-supervised
approach of Hsiao et al. [16] we discussed in the In-
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Shapeless Local Patch

…

Predicting RGB Histogram

Gram Matrix

…

Feature Extractor F (·)

Feature Extractor F (·)

Texture Discrimination

Shapeless  Local Patch Discrimination

Figure 2: An overview of our Self-supervised Tasks for Visual Attribute (S-VAL), where we aim to learn discriminative
features in colors and textures without encoding shape information. To achieve this goal, we propose thee sub-tasks (1)
predicting RGB histogram, (2) shapeless local patch discrimination, and (3) texture discrimination.

troduction, much of the recent work on fashion com-
patibility has assumed labels are available during train-
ing [4, 11, 34, 40, 31, 21, 36]. Many of these approaches
aim to decompose the fashion compatibility task into similar-
ity conditions that may be learned automatically [31, 21] or
could be explicitly defined [34, 40, 35]. All of these methods
require many labels of positive pairs and arbitrarily choose
negative samples, since datasets are not annotated with in-
compatible items, which can result in poor constraints [38].
Also, as our experiments will show, we outperform some
supervised fashion compatibility methods without using any
supervision.

Visual Attribute Learning. Visual attributes such as colors
(e.g., red, blue), texture (e.g., palm, colorblock), or fabric
(e.g., leather, tweed) provide natural visual patterns of fash-
ion items. In order to learn these visual attributes in items,
some methods [37, 1] leverage visual attribute labels such
as color or style extracted from text descriptions. How-
ever, these attribute labels can be very sparse and highly
non-curated. Plummer et al. [?] introduce an attribute ex-
planation model to find salient attributes for fashion item
matching and find that colors are the one of the most salient
attributes. Our SSL learns colors of fashion items and embed
them near each other to build better representations for the
task of fashion compatibility.

3. S-VAL: Self-supervised Tasks for Visual At-
tribute Learning

We explore image similarity learning under an unsu-
pervised setting where we have only unlabeled images
D = {(xi)}Ni=1. These items include items of different

categories such as pants, tops, and shoes. Compared to prior
work in self-supervised learning (SSL), our approach aims
to learn visual attributes without encoding any shape clues
which could hurt downstream task performance (i.e., shape-
invariant features). Our SSL approach consists of three sub-
tasks: (1) predicting color histograms, (2) shapeless local
patch discrimination (SLPD), and (3) texture discrimination
(TD). We train a model with three sub-tasks jointly. Our
model consists of a CNN feature extractor F (·) ∈ Rn and
separate projection heads C(·) for each sub-tasks. Figure 2
contains an overview of our method.

3.1. Predicting Color Histogram

Colors are salient attributes in tasks fashion compati-
bility [29, 32, 40] or microscopy image classification [27].
Thus, a color histogram of an item can provide useful proper-
ties of an image including its colors, contrast, and brightness
of an item. In contrast to previous color reconstruction meth-
ods such as AutoEncoders [15], we learn to predict an RGB
color histogram, which is an orderless visual representation
and therefore does not encode shape information [22]. This
means that objects from different categories (e.g., black top
and black pants) can be embedded closely in the color em-
bedding space. Given an image x with width w and height
h, we first compute the normalized histogram of n bins for
each R,G, andB channels, for example,

hr(l) =
|{i, j} : el ≤ xr(i, j) < el+1|

w × h (1)

where hr represents the histogram of the R channel of the
image (i.e., xr) and el is the l-th bin edge. hg and hb are de-
fined similarly. In the case we are learning a presentation for
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product images commonly found in e-commerce websites,
we exclude any white background pixels.

From the image feature from a CNN (i.e., f = F (x)),
we compute predictions of histograms for the R channel
Cr(f) ∈ Rn, G channel Cg(f) ∈ Rn, and B channel
Cb(f) ∈ Rn. In order to obtain the probability distributions
of each channel (i.e. pr, pg, and, pc), we apply the softmax
function. Then, we minimize the KL divergence between
predicted distribution and the ground-truth histogram,

Lrgb = DKL [pr‖hr] +DKL [pg‖hg] +DKL [pb‖hb] (2)

3.2. Shapeless Local Patch Discrimination (SLPD)

While predicting histogram captures the dominant colors
in images, it lacks in learning detailed color patterns such
as the spatial organization of colors and textons in fashion
items. In this section, we aim to learn discriminative color or
texture representations by using shapeless local patches. In
previous SSL methods, strong augmentation techniques with
color distortion with Instance Discrimination (ID) [39, 2, 3]
can be used together to become invariant to color or texture
information so they learn to better identify shapes. While
this may be appropriate for tasks like object recognition,
as shown in Fig. 1(c), learning shape information harms
performance on tasks like fashion compatibility where image
similarity is not determined completely by an item’s shape.

To avoid focusing on shape, we perform ID on shapeless
small local patches (SLP) that contain little or no shape in-
formation. Figure 2 shows examples of the SLPs. While ran-
dom cropping has been used in prior work [2, 39], they often
use relatively large cropping ratios r (i.e., [0.2, 1.0]) to maxi-
mize the consensus between local-to-global views. However,
these will often contain shape information, whereas SLP use
very small ratio values of r (e.g., r = 0.05) to lose such
information. As such, a model must learn to discriminate
between color and texture information rather than shape,
which we found often performs better.

To perform the shapeless local patch discrimination, we
first initialize the memory bank V to store features of all
training images,

V = [v1,v2, · · · ,vN ] (3)

where vi is the feature of the shapeless local patch x′i from
the i-th original image xi (i.e., vi = CSLPD(F (x′i)) and
N is the total number of images. We randomly choose
a square SLP x′i out of the whole image (e.g., a random
region cropped with r = 0.05 of the whole area). Then,
given an image x′j in a minibatch , we compute the feature
fj = CSLPD(F (x′j) minimize the contrastive loss [39] to
discriminate the shapeless local patch,

LSLPD = − log
exp((vj)

>fj/τ)∑N
k=1 exp((vk)>fj/τ)

, (4)

where the temperature parameter τ is the concentration
level [14].

3.3. Texture Discrimination (TD)

Unlike the SLPD, texture discrimination (TD) uses the
whole image to learn global texture patterns. Inspired by [20,
7], we use a gram matrix (also called bilinear features) to
obtain a texture representation for an image. Then, similar
to the SLPD, we perform ID so items with similar textures
embed nearby each other. First, we compute the feature map
gi = CTD(F (xi)) of an input image xi and a Gram matrix
for texture representation [20, 7],

Gi(j, k) = gi(j)gi(k) (5)

where G(j, k) is the inner product between the vectorized
features of j-th and k-th channels in the feature map gi.
In order to perform texture discrimination, we initialize the
memory bank T to store texture representation of all training
images.

T = [t1, t2, · · · , tN ] (6)

where Ti is the texture representation of i-th image (i.e.,
Ti = Gi(j, k)). During training, similar to above, we com-
pute the texture representation Gj of xj in a minibatch and
minimize the contrastive loss [39] to discriminate texture
representations between images,

LTD = − log
exp((tj)

>Gj/τ)∑N
k=1 exp((tk)

>Gj/τ)
, (7)

Finally, the overall learning objective for S-VAL is,

θ̂ = λrgbLrgb + λSLPDLSLPD + λTDLTD (8)

where λrgb, λSLPD, λTD are the hyper-parameters for each
loss. SLPD takes only shapeless local patches as input and
TD takes the whole image to understand the global textures.
Predicting the RGB histogram takes both types of input.

After updating the network parameters with each mini-
batch B, we also update the memory features in the memory
banks V and T with a momentum η = 0.5 following [39]:

∀i ∈ B, vi = (1− η)vi + ηCSLPD(fi),

ti = (1− η)ti + ηCTD(fi),
(9)

4. Experiments
Following Han et al. [11], we evaluate on the fashion

compatibility and fill-in-the-blank (FITB) tasks as described
below. We denote the feature of an image xi as fi = F (xi).
Fashion Compatibility. In this task the goal is to discrim-
inate between compatible and incompatible outfits. Fol-
lowing Han et al. [11], we report the area under a re-
ceiver operating characteristic curve (AUC) from the com-
patibility scores of outfits. For the N fashion items in an
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outfit, we compute the compatibility scores by comput-
ing the average pair-wise cosine similarities in an outfit:

2
N(N−1)

∑N−1
i=0

∑N−1
j=i+1 cos sim(fi, fj).

Fill in the Black (FITB). In this task the goal is to complete
a partial outfit by selecting from a set of options. Similar
to above, we compute the average similarity between each
option and the partial outfit and select the one that gets the
highest average compatibility. Performance is measured
based on how often the choice was correct.
Fashion Retrieval. We also explore the fashion retrieval
task. In fashion retrieval, the goal is to find the same item
from a database given a query item that may be in a differ-
ent view than those in the database. Similar to the fashion
compatibility task, this task also needs some understanding
of colors and textures, but shape also plays a factor since
we are looking for exactly the same object. However, the
shape of fashion items can still be changed significantly, as
the items can appear in different poses, illumination, and
camera angles. We report recall@k as our metric.
Implementation details. We use a ResNet-50 [13] which
is pre-trained on ImageNet [18] for our feature extractor
F (·) and all baselines. For each sub-tasks in Sec. 3, we
attach the separate projection heads after the feature extractor.
Following [2], these heads consist of two fully connected
layers with ReLU activations followed by a `2 normalization
layer. All three self-supervised sub-tasks are trained jointly.
We use each validation set to tune hyper-parameters for each
sub-task and report averaged results over three runs. We
randomly sample shapeless local patches with r ∈ [0.05,
0.15] of the original image area. We use a Adam optimizer
optimizer [17] with a learning rate 5e−5. We train a model
for 150 epochs and set the number of bins for each RGB
channel as 10 and hyper-parameters λrgb = 1, λSLPD =
1e−2, λTD = 1e−5 in Eq. 8 using the validation set [34].
We set τ = 0.07 in Eqs. 4 and 7 following [39].

We also provide the following self-supervised base-
lines for comparison: AutoEncoder [15], colorization [41],
sovling jigsaw puzzles [26], predicting rotation [9], In-
stance Discrimination (ID) [39], and Local Aggregation [42].
Please note that all methods finetune the same ResNet-50 ini-
tialized with ImageNet pretrained weights as our approach.

4.1. Datasets

Polyvore Outfits [34] has 53,306 outfits from 204K images
for training, 10K outfits from 47K images for testing and 5K
outfits from 25K images for validation. We use the provided
fashion compatibility and FITB questions, where items in
ground truth outfits were replaced with random items of the
same type for fashion compatibility, or 3 random items of
the same type were selected as incorrect answers for FITB
(resulting in 4 choices). We also use the Polyvore-D split
that contains 71K images. In this split no item that appears
in the training outfits also appears in the testing outfits.

Capsule Wardrobe [16] contains 15K fashion compatibility
questions from 6K images, which are all used for testing.
We train on the Polyvore Outfits dataset when evaluating on
Capsule Wardrobe.
Fashion-Gen [30] has 260K images of luxury fashion items
with descriptions. We only train on this dataset and evaluate
on Polyvore Outfits since no outfit information is publicly
available.
In-Shop Clothing Retrieval benchmark in DeepFash-
ion [23] contains 52K images of 8K clothing items from
web data containing large poses and scale variations. This
benchmark splits its test data into a query and gallery set,
where no items in either of these sets are shared with those
seen during training.

4.2. Unsupervised Evaluation Results

Table 1 shows results on the Polyvore [34] and Capsule
Wardrobe test set [16]. In Table 1(a), we report the perfor-
mance of supervised models with trained compatibility labels
or attribute labels in Polyvore as a reference. In Table 1(b),
we report the performance of the self-supervised learning
baselines fine-tuned on Polyvore from the ImageNet pre-
trained model. We see that existing self-supervised learning
methods including reconstruction based methods [41, 15]
and handcrafted sub-tasks [9, 26] actually harm performance
compared to the ImageNet pre-trained model. We also ob-
serve that ID and Local Aggregation with color distortion
underperform the ImageNet pre-trained model. When we
remove the color distortion augmentation in their methods,
these methods outperform the ImageNet pre-trained model.
These results suggest that directly applying the existing self-
supervised learning methods does not help on the fashion
compatibility task. From now on, we remove the color dis-
tortion augmentation in ID and Local Aggregation for all
other comparisons.

We show the performance of our method in Table 1(c)
including an ablation analysis. We observe that each sub-
task predicting RGB histograms (Sec. 3.1), shapeless local
patch discrimination (Sec. 3.2), and texture discrimination
(Sec. 3.3), improves the performance over the ImageNet
pre-trained network. Combing all three components gets the
best performance, resulting in a 9.5-10 point improvement
on Polyvore Outfits over prior SSL baselines, and 4 points
better on Capsule Wardrobes. In addition to outperform-
ing the SSL baselines, our full model without any labels
outperforms simple the Simaese Network trained with com-
patibility labels, as well as Bi-LSTM [11], while also being
comparable to the fully-supervised Type-Aware Network.

4.3. Additional Analysis

Polyvore-D and Cross Dataset Evaluation. Table 2 shows
the comparison on Polyvore-D containing three times fewer
training images than Polyvore Outfits. Table 3 explores a
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Label? Polyvore Outfits Capsule
Method Comp. AUC FITB acc. Comp. AUC

(a) With
Label

Bi-LSTM [11] Comp. 0.65 39.7 18.4
SiameseNet [34] Comp. 0.81 52.9 -
Type-Aware Network [34] Comp. 0.86 55.3 -
SCE-Net [31] Comp. 0.91 61.6 -
Attribute Classifier Attributes 0.73 46.3 25.0

(b)
Self-sup.
Baselines

ImageNet pre-trained 7 0.66 39.1 21.1
Capsule Network (weakly-sup.) [16] 7 - - 19.9
AutoEncoder [15] 7 0.58 34.0 19.8
Colorization [41] 7 0.63 34.1 18.6
Jigsaw [26] 7 0.52 27.9 18.6
Rotation [9] 7 0.53 29.4 18.5
ID [39] w/ color distortion 7 0.57 30.8 18.9
ID [39] w/o color distortion 7 0.74 45.9 23.3
LA [42] w/ color distortion 7 0.56 30.4 19.1
LA [42] w/o color distortion 7 0.74 46.3 24.0

(c) S-VAL
(Ours)

Predicting RGB histogram (RGB) 7 0.77 47.2 23.3
Shapeless Local Patch Disc. (SLPD) 7 0.83 54.6 27.7
Texture Disc (TD) 7 0.77 50.3 25.2
RGB + SLPD 7 0.83 55.4 27.7
RGB + SLPD + TD 7 0.84 55.8 27.9

Table 1: Comparison of (a) supervised models with compatibility or attribute labels and (b,c) unsupervised models on the
Polyvore Outfits [34] and Capsule [16] datasets. All methods are initiailized with ImageNet pre-trained weights and finetuned
on Polyvore Outfits. We report the performance of existing self-supervised learning baselines in (b) and our proposed approach
in (c).

Polyvore-D
Method Comp. AUC FITB acc.
ID [39] 0.69 43.2
LA [42] 0.73 46.2
RGB 0.74 45.7
RGB+SLPD 0.81 53.9
RGB+SLPD+TD 0.81 54.3

Table 2: Fashion compatibility evaluation on the Polyvore-D
Split. The Polyvore-D split containg less training data than
Polyvore. Our method outperforms the baselines.

cross dataset evaluation scenario, where a model is trained
on Fashion-Gen but evaluated on Polyvore Outfits. In both
cases, our approach outperforms the best SSL baseline, Local
Aggregation, by 8-9 points on both tasks.

Ablation Study on Patch Area Ratio. In this section, we
analyze how the different area ratios affect the performance
on both fashion compatibility and object recognition (de-
noted by “Category Acc”) in Fig. 3. We measure the object
recognition accuracy with a kNN classifier [39] on image
features. In Fig. 3(a), we report the FITB accuracy using
different local patch sizes. It is clear that using a small lo-
cal patch improves performance considerably over using a

Fashion-Gen→ Polyvore
Method Comp. AUC FITB acc.
ID [39] 0.71 45.5
LA [42] 0.73 46.5
RGB 0.76 48.1
RGB+SLPD 0.80 52.9
RGB+SLPD+TD 0.81 53.3

Table 3: Cross dataset evaluation on the fashion compati-
bility task. We train a model on the Fashion-Gen dataset
and test it on the Polyvore dataset. We report the number of
self-supervised learning baselines and ours. Our method is
able to generalize across different datasets.

large local patch. Fig. 3(b) reports category recognition
accuracy, which appears to have an inverse relationship
with 3(a), demonstrating that addressing fashion compat-
ibility requires different methods than typically used in prior
work in SSL that mainly investigated methods for object
recognition. Finally in Fig. 3(c, d), we compare models
trained with ID using different area ratios r: original image
only (i.e., r = 1.0) and different random cropping ratios
of r ∈ [0.4, 1.0], [0.2, 1.0], [0.05, 0.15]. We see that using
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(a) (b) (c) (d)

Figure 3: Ablation study on the effect of local patch area ratio r on Polyvore-D. In (a,b), we report performance of the task of
fashion compatibility and object recognition according to the different area ratio of the local patch. In (c,d), we provide the
comparisons on original input size r=1 and random cropping with different ratios in the specified range during training. These
results show that using smaller patches performs better while generating shape-invariant features than using larger patches.

(a) S-VAL (ours) (b) Siamese Network (supervised)

(c) ImageNet pre-trained Network (d) ID

Figure 4: t-SNE visualizations. Similar to (b) the supervised model, (a) our unsupervised model learns a similar embedding
which embeds items with similar visual attributes (e.g., colors and texture) nearby regardless of object categories. While the
ImageNet pre-trained network and ID generate features biased to object shapes, items with different visual attribute can be
embedded nearby.

larger patches harms the performance compared to using
smaller patches only. These results also suggest that the per-

formance gain mostly comes from the small patches. Thus,
training with very small local patches losing shape clues is a
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key component in SSL for fashion compatibility.

Visualization. Figure 4 shows t-SNE visualizations [24] of
features on Polyvore from each model. We also confirm
the observation of [29] that the Siamese network trained on
compatibility labels embeds similar color or texture items
nearby ignoring fashion item categories (the third row in
Table 1(a)). By comparing the Fig. 1(a, b), our model
produces a very similar feature distribution as the Siamese
network. Both models tend to cluster similar items nearby
in terms of colors and texture regardless of object categories.
However, Fig. 4(c) and (d) cluster items based on shape, so
that items with different attributes from the same object class
are embedded nearby, which could be harmful to the fashion
compatibility task as discussed earlier.
Linear Classification Protocol. We evaluate our method
on a linear classification protocol [39, 12, 2]. In this evalua-
tion, we use fixed image features f ∈ R2048 and train only
a linear classifier W ∈ R2048×64 on compatibility labels
using triplet loss. To effectively evaluate the features learned
from SSLs, we report performance when different numbers
of training labels are available in Fig. 5. We compare ours
with the ImageNet pre-trained network and Local Aggrega-
tion, which is the best performing self-supervised baseline.
We observe that our method consistently outperforms other
baselines and the benefit of our method is more significant
when there are fewer labels.
Fashion Retrieval Evaluation. In Table 4, we report the
accuracy of recall@k of the DeepFashion Inshop retrieval
task [23]. We start with an ImageNet pre-trained model
and use self-supervised learning methods without using any
labels. As a reference, we show the accuracy of a fully su-
pervised model with 200K pair annotations in the first row
of Table 4. We use a standard triplet loss to train the super-
vised model similar to a Siamese Network in [34]. Different
from the fashion compatibility task, the ID with color dis-
tortion augmentations also helps to improve performance
compared to the ImageNet pre-trained model. By removing
the color distortion augmentations, ID further improves the
performance. As expected, this result shows that shape in-
formation is helpful to learn useful features for the fashion
retrieval task. Then we perform each of the components in
S-VAL. In this task, predicting RGB histogram does not help
much. This could be because predicting RGB histogram
does not consider item shapes and enforce a model to pro-
duce invariant features to object shapes. As learning shape
is also important to retrieve the same category item in this
task, predicting RGB histogram is not desirable. We see that
SLPD and TD outperform ID by a large margin by learning
color patterns in a local patch and global texture patterns
from TD. These results suggest that directly applying the
existing method on any downstream task is not the best op-
tion. We argue that self-supervised learning methods should
consider the characteristics of a downstream task.

Figure 5: Comparison under linear classification protocol
with fashion compatibility labels. “Ours” denotes our full
method, RGB + SLPD + TD.

DeepFashion In-shop Retrieval [23]
Method Recall@1 Recall@5 Recall@10
Triplet (supervised) 63.6 85.4 89.3
ImageNet pre-trained 16.8 36.4 42.5
ID w/ color distortion 25.5 51.5 60.1
ID w/o color distortion 30.0 56.1 67.6
RGB 25.0 48.5 55.6
SLPD 39.9 64.6 70.6
TD 29.7 54.9 64.2
SLPD+TD 46.5 74.8 81.3
SLPD+TD+RGB 46.2 75.0 81.2

Table 4: Evaluation on the in-shop fashion retrieval task [23].
The top row reports the accuracy of the supervised model
with a triplet loss for reference. We report the unsupervised
fashion retrieval accuracy using Recall@k.

5. Conclusion

While prior self-supervised learning approaches have
been successful, their downstream task is mostly related
to object recognition which focuses on learning object shape
variant and color invariant features. In this paper, we explore
self-supervised methods for the fashion compatibility and
retrieval task, where colors and texture are important. We
propose a new Self-supervised Tasks for Visual Attribute
Learning (S-VAL) which learns colors and texture patterns
while generating shape-invariant features. Our method is
built upon an observation that similar color or texture items
are more likely compatible, but it is possible that different
color items can be matched. We also show that prior work in
self-supervised learning often fails to generalize to computer
vision tasks that require a model that learns visual cues other
than object shape. On the fashion compatibility task, S-VAL
outperforms prior self-supervised learning approaches by
9.5-16% and by 16.5% in the fashion retrieval task. Notably,
our approach obtained similar performance to some fully-
supervised methods from prior work of fashion compatibility
despite the fact our approach does not use any labels. We
hope that our work will inspire research in self-supervised
learning in additional application areas, as well as provide
valuable insights to improve fashion recommendation sys-
tems in future work.
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Cesnik, Lovisa Åkesson, Hao Xu, Devin Sullivan, Shubin
Dai, Jun Lan, Park Jinmo, Shaikat Mahmood Galib, Christof
Henkel, Kevin Hwang, Dmytro Poplavskiy, Bojan Tunguz,
Russel Wolfinger, Yinzheng Gu, Chuanpeng Li, Jinbin Xie,
and Emma Lundberg. Analysis of the human protein atlas
image classification competition. Nature Methods, 16:1254–
1261, 12 2019. 1, 3

[28] Christian S Perone, Pedro Ballester, Rodrigo C Barros, and
Julien Cohen-Adad. Unsupervised domain adaptation for
medical imaging segmentation with self-ensembling. Neu-
roImage, 194:1–11, 2019. 1

[29] Bryan A. Plummer, Mariya I. Vasileva, Vitali Petsiuk, Kate
Saenko, and David Forsyth. Why do these match? explaining

9



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ICCV
#5

ICCV
#5

ICCV 2021 Submission #5. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the behavior of image similarity models. In The European
Conference on Computer Vision (ECCV), 2020. 1, 3, 8

[30] Negar Rostamzadeh, Seyedarian Hosseini, Thomas Boquet,
Wojciech Stokowiec, Ying Zhang, Christian Jauvin, and Chris
Pal. Fashion-gen: The generative fashion dataset and chal-
lenge. arXiv preprint arXiv:1806.08317, 2018. 2, 5

[31] Reuben Tan, Mariya I Vasileva, Kate Saenko, and Bryan A
Plummer. Learning similarity conditions without explicit
supervision. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 10373–10382, 2019. 1, 3,
6

[32] Pongsate Tangseng and Takayuki Okatani. Toward explain-
able fashion recommendation. In The IEEE Winter Confer-
ence on Applications of Computer Vision, pages 2153–2162,
2020. 3

[33] Ivona Tautkute, Aleksandra Możejko, Wojciech Stokowiec,
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