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Abstract

Post-hoc calibration of pre-trained models is
critical for ensuring reliable inference, especially
in safety-critical domains such as healthcare.
Conformal Prediction (CP) offers a robust
post-hoc calibration framework, providing
distribution-free statistical coverage guarantees
for prediction sets by leveraging held-out datasets.
In this work, we address a decentralized setting
where each device has limited calibration data
and can communicate only with its neighbors
over an arbitrary graph topology. We propose two
message-passing-based approaches for achiev-
ing reliable inference via CP: quantile-based
distributed conformal prediction (Q-DCP) and
histogram-based distributed conformal prediction
(H-DCP). Q-DCP employs distributed quantile
regression enhanced with tailored smoothing
and regularization terms to accelerate conver-
gence, while H-DCP uses a consensus-based
histogram estimation approach. Through exten-
sive experiments, we investigate the trade-offs
between hyperparameter tuning requirements,
communication overhead, coverage guarantees,
and prediction set sizes across different network
topologies. The code of our work is released
on: https://github.com/HaifengWen/
Distributed-Conformal-Prediction.

1. Introduction
1.1. Context and Motivation

The post-hoc calibration of pre-trained artificial intelligence
(AI) models has become increasingly important as a means
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to ensure reliable inference and decision-making in safety-
critical domains such as healthcare (Kompa et al., 2021),
engineering (Cohen et al., 2023) and large language models
(LLMs) (Ji et al., 2023; Huang et al., 2025). Conformal
prediction (CP) is a model-agnostic post-hoc calibration
framework that provides distribution-free statistical cover-
age guarantees. This is done by augmenting an AI model’s
decisions with prediction sets evaluated on the basis of held-
out data (Vovk et al., 2005; Angelopoulos et al., 2024b).

CP uses held-out calibration data to infer statistical infor-
mation about the distribution of the errors made by the
pre-trained AI model. Based on this analysis, CP associates
to each decision of the AI model a prediction set that in-
cludes all the outputs that are consistent with the inferred
error statistics. Specifically, CP calculates a quantile of per-
formance scores attained by the pre-trained model on the
calibration data (Vovk et al., 2005; Lei et al., 2018; Barber
et al., 2021). The prediction set provably meets marginal
coverage guarantees for a user-defined target. Accordingly,
the correct output is included in the prediction set with high
probability with respect to the distribution of calibration and
test data.

In light of its simplicity and of its strong theoretical prop-
erties, CP has been recently developed in several direc-
tions, including to address more general risk functions (An-
gelopoulos et al., 2024c), to provide localized statistical
guarantees (Gibbs et al., 2025), to operate via an online
feedback-based mechanism (Gibbs & Candes, 2021), and
to incorporate Bayesian inference mechanisms (Clarté &
Zdeborová, 2024). Furthermore, it has been applied in
safety-critical areas such as medical diagnostics (Lu et al.,
2022) and LLMs (Quach et al., 2024; Mohri & Hashimoto,
2024).

As mentioned, CP requires access to a data set of calibration
data points. However, in practice, a decision maker may
not have sufficient calibration data stored locally. This is
an important issue, since the size of the prediction set de-
pends on the number of available calibration data points,
and thus a small calibration data set would yield uninfor-
mative prediction sets (Zecchin et al., 2024). However,
calibration data may be available in a decentralized fash-
ion across multiple devices (Xu et al., 2023). Examples
include diagnostic healthcare models at different hospitals,
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Figure 1. (a) This work studies a decentralized inference setting in which multiple devices share the same pre-trained model, and each
device has a local calibration data set. (b) Given a common input, the devices aim at producing a prediction set that includes the true
label with a user-defined probability 1− α. (c) We propose two message-passing schemes for conformal prediction (CP): Quantile-based
distributed CP (Q-DCP) addresses the decentralized optimization of the pinball, or quantile, loss over the calibration scores; while
histogram-based distributed CP (H-DCP) targets the consensus-based estimate of the histogram of the calibration scores.

Internet-of-Things (IoT) systems, and autonomous vehicle
networks. In many of these scenarios, the distributed de-
vices are privacy-conscious, preventing a direct exchange
of the local calibration data sets.

With this motivation, prior art has studied settings in which
multiple data-holding devices are connected to the decision-
making device via capacity-limited links in a star topology
(Humbert et al., 2023; Lu et al., 2023; Plassier et al., 2023;
Zhu et al., 2024), which is widely adopted for federated
learning (McMahan et al., 2017; Kairouz et al., 2021). In
these systems, the central device collects information from
the devices to estimate the relevant global quantile of the
calibration data distributed across the devices. In particular,
in (Humbert et al., 2023), the global quantile is estimated
via a quantile-of-quantiles approach, in which the devices
transmit their local quantiles to the central server and the
quantile of the received quantiles is calculated at the central
server side. In (Zhu et al., 2024), the central server estimates
the average of the local histograms of quantized calibration
scores and then estimates the global quantile based on the
average histogram.

1.2. Main Contributions

The star topology assumed in the prior art does not reflect
many important scenarios of interest in which communi-
cation is inherently local, being limited to the neighbors
of each device. As illustrated in Fig. 1(a), this paper stud-
ies CP in a fully decentralized architecture in which the
data-holding devices can only communicate via message
passing on a connectivity graph. In this setting, all devices
are decision-makers that have access to limited local cal-
ibration data and share a common pre-trained model. As
shown in Fig. 1(b), given a common input, the devices aim

at producing a prediction set that includes the true label with
a user-defined probability.

This paper proposes two distributed CP (DCP) approaches:
quantile-based DCP (Q-DCP) and histogram-based DCP
(H-DCP). Q-DCP employs distributed quantile regression
enhanced with tailored smoothing and regularization terms
to accelerate convergence via message passing, while H-
DCP uses a consensus-based histogram estimation approach
inspired by (Zhu et al., 2024).

Specifically, the main contributions of this work are as fol-
lows:

1. We introduce Q-DCP, a message-passing CP proto-
col based on quantile regression. Q-DCP addresses a
decentralized quantile regression problem by means
of the alternating direction method of multipliers
(ADMM) (Boyd et al., 2011) with tailored smooth-
ing and regularization to accelerate the convergence
speed. Q-DCP guarantees marginal coverage as cen-
tralized CP, as long as hyperparameters related to the
network topology and to the initialization are properly
selected.

2. We also introduce H-DCP, a decentralized CP protocol
that attains hyperparameter-free coverage guarantees.
H-DCP estimates the global histogram of quantized
local scores via a consensus algorithm.

3. Experiments explore the trade-offs between hyperpa-
rameter tuning requirements, communication overhead,
coverage guarantees, and prediction set sizes for Q-
DCP and H-DCP across different network topologies.
While H-DCP requires a larger communication load
than Q-DCP, its coverage guarantees are not tied to
hyperparameter selection.
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1.3. Notations

We use lower-case letter x to denote scalars; upper-case
letter X to denote random variables; bold lower-case letter
x to denote vectors; bold upper-case letter X to denote
matrices; script letter X to denote sets. We denote ∥x∥ as
the l2-norm of a vector x; I{·} as the indicator function;
∥x∥G =

√
xTGx as the G-norm of a vector x with a

positive semidefinite matrix G; σmax(X) and σmin(X) as
the largest singular value and the smallest non-zero singular
value of a matrix X , respectively; and λi(X) to denote the
i-th largest eigenvalue of a matrix X .

2. Problem Description
We study a network of K devices in which each device k has
access to a local calibration data setDk = {(Xi,k, Yi,k)}nk

i=1

with data points (Xi,k, Yi,k) drawn i.i.d. from a distribution
Pk. We define the global data set as the union

⋃K
k=1Dk =

D and n =
∑K

k=1 nk as the total number of data points.
Using the local data sets {Dk}Kk=1, and message-passing-
based communication, the devices aim to collaboratively
calibrate the decision of a shared pre-trained model f :
X 7→ Y .

To elaborate, assume that a test input Xtest is available at all
devices. This may represent, e.g., a common observation
in a sensor network or a user query distributed to multiple
servers. Given a target coverage level (1−α) for α ∈ [0, 1],
the goal of the system is to determine a set-valued func-
tion C(·|D) : X 7→ 2Y with marginal coverage guarantees.
Specifically, following (Lu et al., 2023), given a test data
point (Xtest, Ytest), drawn from the mixture distribution

P =

K∑
k=1

wkPk (1)

for some weight wk ≥ 0 and
∑K

k=1 wk = 1, we impose the
coverage requirement

P(Ytest ∈ C(Xtest|D)) ≥ 1− α. (2)

This condition requires that the test label Ytest belongs to
the prediction set C(Xtest|D) with probability at least 1− α.
The probability in (2) is evaluated over the calibration data
in D and the test data (Xtest, Ytest). As in (Lu et al., 2023),
we will specifically concentrate on the choice

wk ∝ nk + 1, (3)

in which the weight wk for each device k is proportional to
the size of the local data set Dk.

The average size of the output of C(·|D), referred to as
the inefficiency, is defined as the expectation E|C(Xtest|D)|,
where the average is evaluated over Xtest and on the distri-
bution of the data D. Ideally, the prediction set C(Xtest|D)

minimizes the inefficiency while satisfying the constraint
(2).

As shown in Fig. 1(a), in order to produce the prediction
set C(Xtest|D), devices can communicate over a connectiv-
ity graph. The connectivity graph G(V, E) is undirected,
with V denoting the set of devices with |V| = K and
E ⊆ {(i, j) ∈ V × V|i ̸= j} denoting the set of edges
with |E| = E. The connectivity of the graph is character-
ized by the 2E × K incidence matrix A = [AT

1 ,A
T
2 ]

T

with submatrices A1,A2 ∈ RE×K . Denoting the index
corresponding to an edge (i, j) ∈ E by q ∈ {1, . . . , |E|},
the (q, i)-th entry of matrix A1 and the (q, j)-th entry of
matrix A2 equal 1 if (i, j) is an edge in graph G(V, E), i.e.,
(i, j) ∈ E , and they equal zero otherwise. Each device k
can only communicate with its set of neighbors, denoted
as Nk = {j ∈ V|(j, k) ∈ E}, under communication con-
straints to be specified in Sec. 4.

3. Background
3.1. Split Conformal Prediction

Split CP provides a general framework for the design of
post-hoc calibration strategies satisfying the coverage re-
quirement (2) in centralized settings. CP constructs the pre-
diction set C(·|D) based on a calibration data set D. This is
done by evaluating a quantile, dependent on the largest mis-
coverage level α, of the scores assigned by the pre-trained
model f to the calibration data points in set D.

To elaborate, define as s(x, y) a negatively oriented score
derived from model f , such as the absolute error s(x, y) =
|y − f(x)| for regression or the log-loss s(x, y) =
− log fy(x) for classification. Write as Si = s(Xi, Yi)
the score assigned by the model f to the i-th calibration
data point (Xi, Yi) in the data set D. The prediction set is
evaluated by including all the labels y ∈ Y with a score no
larger than a fraction, approximately 1−α, of the calibration
scores {Si}ni=1. Specifically, CP produces the set

C(X|D) = {y ∈ Y : s(X, y) ≤
Q((1− α)(1 + 1/n); {Si}ni=1)},

(4)

where Q(γ; {Si}ni=1) is the ⌈γ⌉-th smallest value of the set
{Si}ni=1, which is set as the score threshold.

The empirical γ-quantile Q(γ; {Si}ni=1) in (4) can be ob-
tained by solving the following quantile regression problem
(Koenker & Bassett Jr, 1978)

Q(γ; {Si}ni=1) = argmin
s∈R

ργ(s |{Si}ni=1), (5)
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where ργ(· |{Si}ni=1) is the pinball loss function defined as

ργ(s |{Si}ni=1) =

γ

n∑
i=1

ReLU(Si − s) + (1− γ)

n∑
i=1

ReLU(s− Si),
(6)

with ReLU(x) = max(x, 0).

3.2. Distributed Conformal Prediction on a Star
Topology

The calculation of the empirical quantile in the prediction
set (4) requires full knowledge of the scores of all calibration
data points in set D. When the data points are distributed
across privacy-sensitive and communication-constrained de-
vices as in the setting under study in this paper, evaluating
the empirical quantile is not possible unless communica-
tion is enabled. Prior work has studied a federated setting
in which all devices are connected to a centralized server
(Humbert et al., 2023; Lu et al., 2023; Plassier et al., 2023;
Zhu et al., 2024; 2025; Kang et al., 2024). For reference,
we briefly introduce FedCP-QQ (Humbert et al., 2023),
FCP (Lu et al., 2023) and WFCP (Zhu et al., 2024) next.

FedCP-QQ: Denote as {Si,k = s(Xi,k, Yi,k)}nk
i=1 the

scores evaluated using the shared model f on the local
data set Dk for device k. In FedCP-QQ (Humbert et al.,
2023), each device k first calculates the empirical (1− α′)-
quantile of its local scores, which is transmitted to the cen-
tralized server for some probability α′. After collecting K
local quantiles, the central server calculates the empirical
(1 − β)-quantile of the received quantiles, thus obtaining
quantile-of-quantiles. By optimizing the probabilities α′

and β, the prediction set (4) is constructed using quantile-
of-quantiles as the threshold. This approach satisfies the
coverage condition (2) if the data sets Dk are i.i.d. across
devices.

FCP: While FedCP-QQ assumes i.i.d. data sets across
devices, FCP (Lu et al., 2023) adopts the model described
in Sec. 2 allowing data points from different local data sets
to be drawn from different distributions {Pk}Kk=1, while
the test data point (Xtest, Ytest) is drawn from a mixture
P =

∑K
k=1 wkPk of the local distributions. In FCP, the

central server collects the local scores from the K devices,
and then calculates the empirical (1−α)(1+K/n)-quantile.
This value is used as the threshold to construct prediction
set C(X|D) in (4). FCP satisfies coverage condition (2) by
choosing the weight wk to be proportional to nk + 1, i.e.,
wk ∝ nk + 1.

WFCP: Unlike FedCP-QQ and FCP, which communicate
quantiles between devices and server, Zhu et al. (2024) pro-
posed to exchange information about the local histograms of
the quantized scores. Specifically, the scores {Si,k}nk

i=1 are
first quantized to M levels by each device k, which then eval-

uates the histogram vector pk = [p1,k, p2,k, . . . , pM,k]
T ∈

RM of the scores. The vectors pk, with k = 1, 2, ...,K, are
synchronously transmitted to the centralized server on an
additive multi-access channel, and the server estimates the
average histogram p̄ = 1

K

∑K
k=1 pk based on the received

signal. The empirical (1 − α′)-quantile of all the scores
is then estimated from the estimated average histogram p̄
for some optimized value α′. Under the non-i.i.d. setting
described in Sec. 2, WFCP can guarantee the coverage con-
dition (2).

4. Quantile-based Distributed CP
In this section, we present the first fully decentralized proto-
col proposed in this work, which is referred to as quantile-
based distributed CP (Q-DCP).

4.1. Decentralized Quantile Regression via ADMM

Q-DCP addresses the quantile regression problem (5) in the
fully decentralized setting described in Sec. 2 using ADMM
(Boyd et al., 2011). This strategy obtains an approximation
of the empirical quantile Q((1 − α)(1 + K/n); {Si}ni=1)
with a controlled error, which requires a single scalar broad-
cast to the neighbors of each device at each optimization
iteration. As will be discussed, on the flip side, Q-DCP
requires careful hyperparameter tuning in order to satisfy
the coverage condition (2). The alternative strategy pro-
posed in the next section alleviates such requirements on
hyperparameter tuning at the cost of a larger per-iteration
communication cost.

Formally, in Q-DCP, the K devices collaboratively solve
the quantile regression problem

Minimize
s∈R

K∑
k=1

ρ(1−α)(1+K
n ) (s |{Si,k}nk

i=1) , (7)

where target coverage (1− α)(1 +K/n) follows FCP (Lu
et al., 2023) (see previous section). The objective function
(7) is convex, but it is not smooth or strongly convex. For
such an objective function, a direct application of ADMM
would exhibit a sub-linear convergence rate, causing a large
optimality gap when the number of communication rounds
is limited (He & Yuan, 2012).

To ensure a linear convergence rate, we propose to re-
place the ReLU operation in (6) with the smooth function
g̃(x) = x+ (1/κ) log(1 + e−κx), where smaller κ leads to
greater smoothness at the cost of larger approximation error.
In practice, the function g̃(x) coincides with ReLU(x) as
limκ→∞ g̃(x) = ReLU(x) (Chen & Mangasarian, 1996).
Furthermore, to guarantee strong convexity, we add a regu-
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larization term to the pinball loss function (6) as

ρ̃γ(s |{Si}ni=1) = γ

n∑
i=1

g̃(Si − s)

+ (1− γ)

n∑
i=1

g̃(s− Si) +
µ

2
(s− s0)

2,

(8)

where µ > 0 and s0 are hyperparameters. The modified
pinball loss function ρ̃γ(· |{Si}ni=1) is L-smooth and µ-
strongly convex, with L = (nκ)/4 + µ. Using the smooth
and strongly convex loss in (8), the decentralized optimiza-
tion of quantile regression in (7) is modified as

Minimize
s∈R

K∑
k=1

ρ̃(1−α)(1+K
n ) (s |{Si,k}nk

i=1) . (9)

Note that the (unique) solution of problem (9), denoted by
ŝ∗, is generally different from the optimal solution s∗ of
problem (7), unless κ tends to infinity and µ is set to zero.

Q-DCP adopts ADMM to address problem (9), obtaining
the formulation

Minimize
s∈RK ,z∈RE

f̃(s) =

K∑
k=1

ρ̃(1−α)(1+K
n ) (sk |{Si,k}nk

i=1)

Subject to As + Bz = 0,
(10)

where A ∈ R2E×K is the incidence matrix defined in Sec. 2,
B = [−IE ;−IE ] ∈ R2E×E , and z is an auxiliary variable
imposing the consensus constraint on neighboring devices,
i.e., si = zq and sj = zq if (i, j) ∈ E with q being the
corresponding index of edge (i, j).

4.2. Description of Q-DCP

Following ADMM (Boyd et al., 2011), Q-DCP solves prob-
lem (10) by considering the augmented Lagrangian

Lc(s, z,λ) = f̃(s) + ⟨λ,As+Bz⟩+ c

2
∥As+Bz∥22,

(11)
where λ ∈ R2E is the Lagrange multiplier associated with
the 2E equality constraints in (10), and c > 0 is a hyperpa-
rameter. The updates of the local estimated quantiles s, the
consensus variables z and the dual variables λ at iteration
t+ 1 are given by (Boyd et al., 2011)

s(t+1) = argmin
s∈RK

Lc(s, z
(t),λ(t)), (12a)

z(t+1) = argmin
z∈RE

Lc(s
(t+1), z,λ(t)), (12b)

λ(t+1) = λ(t) + c
(
As(t+1) +Bz(t+1)

)
. (12c)

After T iterations, ADMM produces the quantile estimate
s
(T )
k for each device k ∈ V . Then, the devices run the fast

distributed averaging algorithm (Xiao & Boyd, 2004) to
obtain the average s̄(T ) = 1/K

∑
k∈V s

(T )
k with negligible

error.

Finally, the prediction set is constructed as

CQ-DCP(X|D) =
{
y ∈ Y : s(X, y) ≤ sQ-DCP} , (13)

with
sQ-DCP = s̄(T ) + ϵQ-DCP, (14)

where ϵQ-DCP is an upper bound on the error |s̄(T )−s∗| of the
quantile estimate s̄(T ) to be derived in the next subsection.

The proposed Q-DCP is summarized in Algorithm 1.

Algorithm 1 Q-DCP
Input: ADMM parameters c > 0 and b > 1, number
of iterations T , incidence matrix A, smoothness parame-
ter L and regularization parameters (µ, s0, ϵ0), coverage
level 1− α, and score s(·, ·)
Initialize s(0) = z(0) = λ(0) = 0 and t = 0
▷ ADMM (Boyd et al., 2011):
while t < T do

Update s(t+1) by solving

∇f(s(t+1))+ATλ(t)+ cAT (As(t+1)+Bz(t)) = 0

z(t+1) = −(cBTB)−1BT (cAs(t+1) + λ(t))

λ(t+1) = λ(t) + cAs(t+1) + cBz(t+1)

t← t+ 1
end while
▷ Prediction set construction:
for device k ∈ V do

Run distributed averaging (Xiao & Boyd, 2004) to
obtain s̄(T ) = 1

K

∑K
k=1 s

(T )
k

Calculate ϵ(T ) and ϵ̃0 using (17) and (16), respectively,
and set sQ-DCP = s̄(T ) + ϵ(T ) + ϵ̃0

end for
Output: CQ-DCP(·|D) =

{
y ∈ Y : s(·, y) ≤ sQ-DCP

}
4.3. Theoretical Guarantees

In this section, we first derive the ϵQ-DCP upper bound on
the estimation error of Q-DCP used in constructing the
prediction set (13). Then we prove that Q-DCP attains the
coverage guarantee (2).

By the triangle inequality, the estimation error |s̄(T ) − s∗|
can be upper bounded as

|s̄(T ) − s∗| ≤ |s̄(T ) − ŝ∗|+ |ŝ∗ − s∗|, (15)

where the first term accounts for the convergence error for
problem (10), while the second term quantifies the bias
caused by the use of the smooth and strongly convex ap-
proximation (8).
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The bias term can be bounded as follows. We start with the
following assumption.
Assumption 4.1. The regularization parameter s0 and the
optimal solution s∗ in (5) differ by at most ϵ0 ≥ 0, i.e.,
|s0 − s∗| ≤ ϵ0.

Proposition 4.2. Under Assumption 4.1, the bias |ŝ− s∗|
is upper bounded as

|s∗ − ŝ∗| ≤

√
2n log(2)

µκ
+ ϵ20 = ϵ̃0. (16)

Proof: See supplementary material (see Appendix A.1). □

Next, the convergence error |s̄(T ) − ŝ∗| is bounded by lever-
aging on existing results on the convergence of ADMM.
Proposition 4.3 (Theorem 1, Shi et al., 2014). The conver-
gence error |s̄(T ) − ŝ∗| is upper bounded as

|s̄(T ) − ŝ∗| ≤

√
1

Kµ

(
1

1 + δ

)T−1

∥u(0) − u∗∥G

= ϵ(T ),

(17)

where the parameter δ > 0 is defined as

δ = min
{ (

(b− 1)σ2
min(M−)

)
/
(
bσ2

max(M+)
)
,

µ/
(
(c/4)σ2

max(M+) + (b/c)L2σ−2
min(M−)

) }
,

(18)

with any b > 1, M− = AT
1 − AT

2 , M+ = AT
1 + AT

2 ,

and G =

(
cIE 0E
0E (1/c)IE

)
. Moreover, u(0) =

[(z(0))T , (λ̃
(0)

)T ]T with λ̃
(0)
∈ RE containing the first

E entries of the vector λ(0), and we also write as u∗ =

[(z∗)T , (λ̃
∗
)T ]T the 2E×1 vector collecting of the optimal

primal solution z∗ and the optimal Lagrange multipliers λ̃
∗

of problem (10).

The upper bound (17) depends on the initial error, quantified
by the distance ∥u(0) − u∗∥G, and by the connectivity of
the graph. In fact, a larger connectivity is reflected by a
larger ratio σmin(M−)/σmax(M+) (Fiedler, 1973), and
thus a larger parameter δ in (17).

Using the obtained bounds (16) and (17) in (15), we obtain
the following main result on the performance for Q-DCP.
Theorem 4.4 (Coverage Guarantee for Q-DCP). The pre-
diction set CQ-DCP(·|D) in (13) produced by Q-DCP satisfies
the coverage condition (2) with weights selected as in (3).

Proof: See supplementary material (see Appendix A.2) □

5. Histogram-based Distributed CP
As demonstrated by Theorem 4.4, Q-DCP requires knowl-
edge of a parameter ϵ0 satisfying Assumption 4.1, as well

as of the parameter δ in (17), which depends on the connec-
tivity properties of the graph through the incidence matrix
A. In this section, we present an alternative fully decentral-
ized protocol, referred to as histogram-based DCP (H-DCP),
which provides rigorous coverage guarantees without the
need for hyperparameter tuning as in Q-DCP, but at the cost
of larger communication overhead.

In H-DCP, devices exchange histograms of quantized cal-
ibration scores in a manner similar to WFCP (Zhu et al.,
2024). As a result of a consensus algorithm, the devices
evaluate the average histogram in order to yield an es-
timate of the mixture distribution P in (1) with weights
(3). From this estimate, a suitable bound is derived on the
(1− α)(1 +K/n)-quantile of the distribution P to evaluate
the prediction set of the form (4).

5.1. Description of H-DCP

To start, in H-DCP, all devices apply a uniform scalar quan-
tizer, Γ(·) : [0, 1] 7→ {1/M, 2/M, . . . , 1}, with step size
1/M , to all the local calibration scores under the following
assumption.

Assumption 5.1. The score function s(·, ·) is bounded, i.e.,
without loss of generality, 0 ≤ s(·, ·) ≤ 1.

The quantizer is formally defined as

Γ(s) =


1
M s ∈ [0, 1

M ]

m
M s ∈

(
m− 1

M
,
m

M

]
, for m = 2, . . . ,M.

(19)
With this quantizer, each device k ∈ V evaluates the local
histogram pk = [p1,k, . . . , pM,k]

T associated with the lo-
cal quantized scores {Γ(Si,k)}nk

i=1, with
∑M

m=1 pm,k = 1.
Accordingly, this vector includes the entries

pm,k =
1

nk

nk∑
i=1

I
{
Γ(Si,k) =

m

M

}
(20)

with pm,k representing the fraction of the quantized scores
associated with the m-th quantization level at device k ∈ V .
The sum

pm =
1

n

K∑
k=1

nkpm,k =
1

n

K∑
k=1

nk∑
i=1

I
{
Γ(Si,k) =

m

M

}
(21)

corresponds to the fraction of quantized scores equal to
m/M in the set of quantized scores for the global data set
D, defining the global histogram vector p = [p1, . . . , pM ].

In H-DCP, the devices aim at estimating the global score
histogram p in (21) in order to obtain an estimate of the
(1 − α)(1 + K/n)-quantile of the quantized calibration
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scores, i.e.,

mα

M
= Q

(
(1− α) (1 +K/n) ;∪Kk=1 {Γ(Si,k)}nk

i=1

)
=

1

M
argmin
m=1,...,M

{
m∑
i=1

pi ≥ (1− α)

(
1 +

K

n

)}
. (22)

By the design of the quantizer (19), this quantile provides
an upper bound on the (1 − α)(1 +K/n)-quantile of the
unquantized calibration score.

To estimate the sum (21), the devices apply consensus with
a matrix W ∈ RK×K satisfying W = W T , W1 =
1TW = 1T and ∥W − 11T /K∥2 < 1 with entries
[W ]k,j = Wk,j > 0 if (k, j) ∈ E and [W ]k,j = 0 oth-
erwise. Following the fast distributed averaging algorithm
(Xiao & Boyd, 2004), each device k ∈ V updates the local
vector xk by a linear consensus step

x
(t+1)
k = x

(t)
k + η

K∑
j=1

Wkj(x
(t)
j − x

(t)
k ), (23)

where we define the initialization x
(0)
k = xk =

((Knk)/n)pk such that p = 1/K
∑K

k=1 xk, and η ∈ (0, 1]
is the update rate.

Finally, H-DCP constructs the prediction set at device k as

CH-DCP
k (X|D) =

{
y ∈ Y : Γ(s(X, y)) ≤

mH-DCP
α,k

M

}
, (24)

where

mH-DCP
α,k = argmin

m=1,...,M

{ m∑
i=1

x
(T )
i,k

≥ (1− α)

(
1 +

K

n

)
+ ϵH-DCP

}
,

(25)

and ϵH-DCP is a parameter to be determined below to give an
upper bound on the error ∥x(T )

k − p∥ for the local estimate
x
(T )
k of the global vector p at device k ∈ V after T global

communication rounds. Note that if (1 − α)(1 +K/n) +
ϵH-DCP > 1, we set mH-DCP

α,k = M .

The proposed H-DCP is summarized in Algorithm 2.

5.2. Theoretical Guarantee

In this subsection, we provide the main result on the cover-
age guarantee of H-DCP through the following theorem.
Theorem 5.2 (Coverage Guarantee for H-DCP). Setting

ϵH-DCP =
K
√
2KM(1− ηϱ)T

n

√√√√max
k∈V

{n2
k}+

1

K

K∑
j=1

n2
j , (26)

Algorithm 2 H-DCP
Input: Consensus parameters η > 0 and matrix W ,
number of iterations T , quantization level M , coverage
level 1− α, and score s(·, ·)
Each device k ∈ V calculates the local histogram pk via
(20)
Initialize x

(0)
k = ((Knk)/n)pk and t = 0

▷ Consensus:
while t < T do

for device k ∈ V do
x
(t+1)
k = x

(t)
k + η

∑K
j=1 Wkj(x

(t)
j − x

(t)
k )

end for
t← t+ 1

end while
▷ Prediction set construction:
for device k ∈ V do

Calculate ϵH-DCP via (26)
Calculate mH-DCP

α,k via (25)
end for
Output: For all k ∈ V , construct CH-DCP

k (·|D) via (24)

where ϱ = 1−|λ2(W )| is the spectral gap of the consensus
matrix W , the prediction sets CH-DCP

k (·|D) in (24) produced
by H-DCP for all k ∈ V satisfy the coverage condition (2)
by choosing weights as in (3).

Proof: See supplementary material (see Appendix A.3). □

Theorem 5.2 shows that H-DCP only requires knowledge of
the spectral gap ϱ, which can be efficiently estimated in a
fully decentralized manner (Muniraju et al., 2020). The flip
side is that, while Q-DCP requires the exchange of a single
real number at each iteration, H-DCP has a communication
overhead M times larger, requiring the exchange of an M -
dimensional real vector.

6. Experimental Results
In this section, we report experimental results on the pro-
posed decentralized CP protocols, Q-DCP and H-DCP, us-
ing the conventional centralized CP as a benchmark. We
first study Q-DCP and H-DCP separately, and then provide
a comparison between Q-DCP and H-DCP as a function
of the communication load. Throughout, we evaluate the
performance in terms of coverage and average set size, also
known as inefficiency (Vovk et al., 2005), for different net-
work topologies.

6.1. Setting

As in Lu et al. (2023), we first train a shared model f(·)
using the Cifar100 training data set to generate the score
function s(·, ·). Calibration data, obtained from the Cifar100
test data, is distributed in a non-i.i.d. manner among K =

7
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20 devices by assigning 5 unique classes to each device.
Specifically, device 1 receives n1 data points corresponding
to 0-4, device 2 receives n2 data points from classes 5-
9, and so on. We set nk = 50 for all devices k ∈ V .
Using the shared model f(·), the score function is defined
as s(x, y) = 1 − [f(x)]y, where [f(x)]y is the confidence
assigned by the model to label y (Sadinle et al., 2019).

We extract the calibration data from the Cifar100 test data
by sampling uniformly at random (without replacement),
and average results are shown over 10 random generations
of the calibration data. The set size is normalized to the
overall number of classes, i.e., 100.

6.2. Results for Q-DCP

The hyperparameters for the Q-DCP loss (8) are chosen as
follows. We set κ = 2000 for the smooth function g̃(·) as
suggested by Nkansah et al. (2021), and we choose µ =
2000. Moreover, unless noted otherwise, in (8), we set s0
to be the average of the local score quantiles, which can be
evaluated via a preliminary consensus step. Note that the
need to choose a suitable value for s0 is related to the general
problem of hyperparameter-tuning for Q-DCP discussed in
Sec. 4.3. This aspect will be further elaborated below by
studying the impact of the selection of hyperparameter ϵ0 in
(16).

The impact of the coverage level 1−α on Q-DCP is studied
in Fig. 2 for T = 1500 and ϵ0 = 0.1, while results on
convergence can be found in the supplementary material
(see Appendix B.2.). We specifically consider the chain,
cycle, star, torus, and complete graph, which are listed in
order of increasing connectivity. Validating Theorem 4.4,
the figure shows that Q-DCP provides coverage guarantees,
with more conservative prediction sets obtained over graphs
with lower connectivity. In particular, with a complete graph,
the assumed T = 1500 iterations are seen to be sufficient to
obtain the same set size as centralized CP.

As detailed in Theorem 4.4, Q-DCP requires a carefully
selected hyperparameter ϵ0, satisfying Assumption 4.1, in
order to meet coverage guarantees. To verify this point,
Fig. 3 shows coverage and set size as a function of 1 −
α for the pair (s0 = −8 − 20α, ϵ0 = 10−4), for which
Assumption 4.1 is not satisfied. The figure confirms that
Q-DCP can fail to yield coverage rates larger than 1 − α
for some topologies. This is particularly evident for graphs
with stronger connectivity, which yield a faster rate of error
compounding across the iterations.

6.3. Results for H-DCP

For H-DCP, unless noted otherwise, we set the consensus
rate to η = 1, and the number of quantization levels to
M = 1000. We choose the consensus matrix W in the

0.1 0.3 0.5 0.7 0.9
1−α

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

0.1 0.3 0.5 0.7 0.9
1−α

10 3

10 2

10 1

100

N
or

m
al

iz
ed

 s
et

 s
iz

e

CP
Q-DCP
chain
cycle
star
torus
complete

Figure 2. Coverage and normalized set size versus coverage level
1− α for CP and Q-DCP when Assumption 4.1 is satisfied (T =
1500 and ϵ0 = 0.1). The shaded error bars correspond to intervals
covering 95% of the realized values.
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Figure 3. Coverage and normalized set size versus coverage level
1 − α for CP and Q-DCP when Assumption 4.1 is not satisfied
(T = 1500, ϵ0 = 10−4, and s0 = −8− 20α).

standard form with entries Wkj = a for all edges (k, j) ∈ E ,
Wkk = 1 − |Nk|a for all devices k ∈ V , and Wkj =
0 otherwise, where a = 2/(λ1(L) + λK−1(L)) with L
being the Laplacian of the connectivity graph G (Xiao &
Boyd, 2004). As illustrated in Fig. 4, unlike Q-DCP, H-
DCP guarantees the coverage level 1− α without the need
for hyperparameter tuning. Results on the convergence of
H-DCP can be found in the supplementary material (see
Appendix B.2).
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Figure 4. Coverage and normalized set size versus coverage level
1− α for CP and H-DCP (T = 150).

6.4. Comparing Q-DCP and H-DCP

Finally, we conduct experiments to compare the two pro-
posed approaches in terms of the trade-offs among commu-
nication overhead, coverage guarantees, and prediction set
sizes. In order to enable a fair comparison, we evaluate the
performance of both Q-DCP and H-DCP under the same
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hyp. setting 1

hyp. setting 2
hyp. setting 1

hyp. setting 2

Figure 5. Coverage and normalized set size versus the total per-
device communication load (torus graph with α = 0.1, and Q-DCP
with hyperparameter setting 1 given by (ϵ0 = 0.1, s0 being the
average of the local score quantile) and hyperparameter setting 2
given by (ϵ0 = 10−4, s0 = −10)).

total communication load per device. The communication
load is evaluated in bits as T · C, where T is the number of
iterations and C denotes the number of bits communicated
by one device per iteration. The per-iteration communica-
tion load C is evaluated for the two schemes as detailed
next.

For H-DCP, we fix the number of quantization levels to
M = 1000, so that each histogram vector contains M =
1000 numbers. Each of these numbers is represented using
a floating point format with f ∈ {16, 32, 64} bits. Over-
all, the per-iteration per-device communication load of H-
DCP is C = Mf . For Q-DCP, we also represent each
estimated quantile s

(t)
k using a floating point format with

f ∈ {16, 32, 64} bits, yielding a communication load equal
to C = f .

Fig. 5 show the coverage and set size versus the total per-
device communication load, TC, for both Q-DCP and H-
DCP on the torus graph using different values of the numer-
ical precision f . The choice of the torus graph is motivated
by the fact that the spectral gap of the torus graph with
20 devices is moderate, providing an intermediate setting
between a complete graph and a cycle graph. For Q-DCP,
we consider two choices of hyperparameters, one, set as in
Fig. 2, satisfying Assumption 4.1, and one, chosen as in
Fig. 3, not satisfying this assumption.

As seen in Fig. 5, with well-selected hyperparameters, Q-
DCP provides more efficient prediction sets, while also
meeting the coverage requirement 1 − α = 0.9. An ex-
ception is given by the case f = 16, in which the reduced
numerical precision of the inputs prevents Q-DCP from ob-
taining a high-quality solution for equation (12a). However,
with poorly selected hyperparameters, Q-DCP can yield a
violation of the coverage requirements even at a high pre-
cision f . In contrast, H-DCP maintains the coverage level
1− α across all considered communication loads.

7. Conclusion
This work has addressed the post-hoc calibration of pre-
trained models in fully decentralized settings via conformal
prediction (CP). We have proposed two message-passing-
based approaches, quantile-based distributed CP (Q-DCP)
and histogram-based distributed CP (H-DCP), that achieve
reliable inference with marginal coverage guarantees. Q-
DCP leverages distributed quantile regression with smooth-
ing and regularization to enhance convergence, while H-
DCP applies consensus-based histogram estimation. Our
extensive experiments demonstrated the effectiveness of
both methods in balancing communication overhead, cov-
erage guarantees, and prediction set sizes across various
network topologies. Specifically, Q-DCP was observed to
have lower communication requirements, while being sen-
sitive to hyperparameter tuning. In contrast, H-DCP offers
robust coverage guarantees at the cost of a larger communi-
cation load.

Future work may investigate extension to asynchronous net-
work (Wei & Ozdaglar, 2013; Tian et al., 2020), to localized
risk guarantees (Gibbs et al., 2025; Zecchin & Simeone,
2024) and to online CP (Zhang et al., 2024; Angelopoulos
et al., 2024a).

Acknowledgements
The work of H. Xing was supported by the Guangdong Ba-
sic and Applied Basic Research Foundation under Grant
2025A1515010123, by the Guangdong Provincial Key
Lab of Integrated Communication, Sensing and Com-
putation for Ubiquitous Internet of Things under Grant
2023B1212010007, and by the Guangzhou Municipal Sci-
ence and Technology Project under Grants 2024A04J4527
and 2024A03J0623. The work of O. Simeone was sup-
ported by the European Union’s Horizon Europe project
CENTRIC (101096379), by an Open Fellowship of the
EPSRC (EP/W024101/1), and by the EPSRC project
(EP/X011852/1).

Impact Statement
This paper presents work whose goal is to advance the
field of conformal prediction and reliable machine learn-
ing. There are many potential societal consequences of our
work, none of which we feel must be specifically highlighted
here.

References
Angelopoulos, A. N., Barber, R., and Bates, S. Online

conformal prediction with decaying step sizes. In Pro-
ceedings of the 41st International Conference on Machine
Learning, volume 235, pp. 1616–1630, Jul. 2024a.

9



Distributed Conformal Prediction via Message Passing

Angelopoulos, A. N., Barber, R. F., and Bates, S. Theoreti-
cal foundations of conformal prediction. arXiv preprint
arXiv:2411.11824, 2024b.

Angelopoulos, A. N., Bates, S., Fisch, A., Lei, L., and
Schuster, T. Conformal risk control. In The Twelfth
International Conference on Learning Representations,
Vienna, Austria, May 2024c.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. Predictive inference with the jackknife+. The Annals
of Statistics, 49(1):486–507, 2021.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 3(1):1–122, 2011.

Chen, C. and Mangasarian, O. L. A class of smoothing
functions for nonlinear and mixed complementarity prob-
lems. Computational Optimization and Applications, 5
(2):97–138, 1996.
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A. Proofs of Main Results
A.1. Proof of Proposition 4.2

For simplicity, in this proof, we use the notations ργ(s) = ργ(s|{Si}ni=1) and ρ̃γ(s) = ρ̃γ(s|{Si}ni=1). By definition, we set
s∗ = argmins∈R ρβ(s) and ŝ∗ = argmins∈R ρ̃β(s), where β = (1−α)(1+K/n). First, by 0 ≤ g̃(x)−max(x, 0) ≤ log 2

κ ,
we have

ρ̃β(s)− ρβ(s)

= β

n∑
i=1

(g̃(Si − s)−max(Si − s, 0)) + (1− β)

n∑
i=1

(g̃(s− Si)−max(s− Si, 0)) +
µ

2
(s− s0)

2

≤ n log 2

κ
+

µ

2
(s− s0)

2,

(27)

and ρ̃β(s)− ρβ(s) ≥ µ
2 (s− s0)

2. By µ-strong convexity and ∇ρ̃β(ŝ∗) = 0, we have

ρ̃β(s
∗)− ρ̃β(ŝ

∗) ≥ µ

2
(s∗ − ŝ∗)2. (28)

We next bound the term ρ̃β(s
∗)− ρ̃β(ŝ

∗) as follows:

ρ̃β(s
∗)− ρ̃β(ŝ

∗) = ρ̃β(s
∗)− ρ̃β(ŝ

∗) + ρβ(s
∗)− ρβ(s

∗)

≤ n log 2

κ
+

µ

2
(s∗ − s0)

2 + ρβ(s
∗)− ρ̃β(ŝ

∗)

(a)

≤ n log 2

κ
+

µ

2
(s∗ − s0)

2 + ρβ(ŝ
∗)− ρ̃β(ŝ

∗)

≤ n log 2

κ
+

µ

2
(s∗ − s0)

2 − µ

2
(ŝ∗ − s0)

2

(b)

≤ n log 2

κ
+

µ

2
ϵ20,

(29)

where (a) is due to ρβ(s
∗) ≤ ρβ(ŝ

∗) by the definition s∗, and (b) is by Assumption 4.1. Finally, we have

(s∗ − ŝ∗)2 ≤ 2

µ
(ρ̃β(s

∗)− ρ̃β(ŝ
∗)) ≤ 2n log 2

µκ
+ ϵ20. (30)

This yields the desired result. □

A.2. Proof of Theorem 4.4

We have |s̄(T ) − s∗| ≤ |s̄(T ) − ŝ∗|+ |ŝ∗ − s∗| ≤ ϵ(T ) + ϵ̃0, yielding

s̄(T ) − ϵ(T ) − ϵ̃0 ≤ s∗ ≤ s̄(T ) + ϵ(T ) + ϵ̃0. (31)

Then, for a data point (X,Y ) drawn from P in (1), we have

P
(
Y ∈ CQ-DCP(X|D)

)
= P

(
s(X,Y ) ≤ s̄(T ) + ϵ(T ) + ϵ̃0

)
≥ P (s(X,Y ) ≤ s∗) . (32)

Since s∗ is the empirical (1− α)(1 +K/n)-quantile in (4) and by [Theorem 4.3, Lu et al., 2023] with wk ∝ nk + 1, we
have P (s(X,Y ) ≤ s∗) ≥ 1− α, which implies the desired result. □

A.3. Proof of Theorem 5.2

Define the spectral gap ϱ = 1− |λ2(W )|. Then, the typical result of the consensus convergence in Xiao & Boyd (2004)
yields the inequality ∑

k∈V

∥x(t)
k − p∥2 ≤ (1− ηϱ)2t

∑
k∈V

∥x(0)
k − p∥2. (33)
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In other words, the consensus error decays exponentially.

Let the histogram error as e
(T )
k = x

(T )
k − x. To simplify the notation, we denote mα,k = mH-DCP

α,k , ϵ = ϵH-DCP, Ŝi,k =

Γ(s(Xi,k, Yi,k)) as the i-th quantized score on device k, and Ŝtest = Γ(s(Xtest,Ytest)) as the quantized score of the test point.
By definition of mα,k, we have

mα,k = min

{
m ∈ [M ] :

m∑
i=1

x
(T )
i,k ≥ (1− α)(1 +

K

n
) + ϵ

}

= min

{
m ∈ [M ] :

m∑
i=1

(
pi + e

(T )
i,k

)
≥ (1− α)(1 +

K

n
) + ϵ

}

= min

{
m ∈ [M ] :

m∑
i=1

pi ≥ (1− α)(1 +
K

n
) + ϵ−

m∑
i=1

e
(T )
i,k

}
,

(34)

Following the technique in (Lu et al., 2023), let wk = nk+1
n+K and define the event E as

E =
{
∀k ∈ V,∃πk,

(
Ŝπk(1),k, Ŝπk(2),k, . . . , Ŝπk(nk+1),k

)
= (s1,k, s2,k, . . . , snk+1,k)

}
, (35)

where {si,k}i∈[nk+1],k∈V are the order statistics of the scores. For each device k, we also define bk(γ) = |{Ŝi,k ≤ γ}|. By
the definition of mα,k, mα,k

M is the ⌈(1− α)(n+K) + nϵ− n
∑mα,k

i=1 e
(T )
i,k ⌉-th smallest score in ∪Kk=1{Ŝi,k} leading to

K∑
k=1

bk

(mα,k

M

)
=

⌈
(1− α)(n+K) + nϵ− n

m∑
i=1

e
(T )
i,k

⌉
. (36)

Then, we have

P
(
Ŝtest ≤

mα,k

M

∣∣E) =

K∑
k=1

wk ·P
(
Ŝtest ≤

mα,k

M

∣∣∣{Ŝ1,k, . . . , Ŝnk,k, Stest

}
are exchangeable,E

)
≥ min

{
1,

K∑
k=1

wk

bk(
mα,k

M )

nk + 1

}

= min

1,

⌈
(1− α)(n+K) + nϵ− n

∑mα,k

i=1 e
(T )
i,k

⌉
n+K


≥ min

{
1, 1− α+

nϵ− n
∑mα,k

i=1 e
(T )
i,k

n+K

}
.

(37)

We next bound the RHS. Using min{x, y} = y + x−y−|x−y|
2 , we have

P
(
Ŝtest ≤

mα,k

M

∣∣E) ≥ 1− 1

2
α+

1

2

nϵ− n
∑mα,k

i=1 e
(T )
i,k

n+K
− 1

2

∣∣∣∣∣nϵ− n
∑mα,k

i=1 e
(T )
i,k

n+K
− α

∣∣∣∣∣
= 1− 1

2

(
α− nϵ

n+K

)
− 1

2

n
∑mα,k

i=1 e
(T )
i,k

n+K

− 1

2

√√√√(α− nϵ

n+K

)2

+ 2

(
α− nϵ

n+K

)
n

n+K

(mα,k∑
i=1

e
(T )
i,k

)
+

n2

(n+K)2

(mα,k∑
i=1

e
(T )
i,k

)2

.

(38)
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Next, we bound the term
(∑mα,k

i=1 e
(T )
i,k

)2
as(mα,k∑

i=1

e
(T )
i,k

)2

≤ mα,k

mα,k∑
i=1

(e
(T )
i,k )2 ≤M

M∑
i=1

(e
(T )
i,k )2 ≤M∥e(T )

k ∥
2, (39)

where the first inequality follows from Jensen’s inequality. This directly implies
∑mα,k

i=1 e
(T )
i,k ≤ |

∑mα,k

i=1 e
(T )
i,k | ≤√

M∥e(T )
k ∥. Furthermore, by the convergence of consensus (33), we have

∥e(T )
k ∥

2 ≤
∑
k∈V

∥e(T )
k ∥

2 ≤ (1− ηϱ)2T
∑
k∈V

∥x(0)
k − p∥2 ≤ K(1− ηϱ)2T max

k∈V
∥x(0)

k − p∥2. (40)

The last term ∥x(0)
k − p∥2 can be bounded as, for any k ∈ V ,

∥x(0)
k − p∥2 = ∥xk −

1

K

K∑
j=1

xj∥2 ≤
1

K

K∑
j=1

∥xk − xj∥2 ≤
2

K

K∑
j=1

(
∥xk∥2 + ∥xj∥2

)
. (41)

To bound ∥xk∥2, we first recall that xk = Knk

n pk, where pk = [p1,k, . . . , pM,k] with pm,k = 1/nk

∑nk

i=1 I{Γ(Si,k) =

m/M}, 0 ≤ pm,k ≤ 1 and 1Tpk = 1. Then, we have

∥xk∥2 =
K2n2

k

n2
∥pk∥2 =

K2n2
k

n2

M∑
m=1

(pm,k)
2 ≤ K2n2

k

n2

M∑
m=1

pm,k =
K2n2

k

n2
. (42)

Thus,

∥e(T )
k ∥

2 ≤ 2K3(1− ηϱ)2T

n2
max
k∈V

n2
k +

1

K

K∑
j=1

n2
j

 . (43)

To simplify the notation, we define the constant

A =
n
√
M

n+K

√√√√√2K3(1− ηϱ)2T

n2
max
k∈V

n2
k +

1

K

K∑
j=1

n2
j


=

K
√
2KM(1− ηϱ)T

n+K

√√√√√max
k∈V

n2
k +

1

K

K∑
j=1

n2
j

.

(44)

Combining the above bounds, we have

P
(
Ŝtest ≤

mα,k

M

∣∣E) ≥ 1− 1

2

(
α− nϵ

n+K

)
− 1

2
A− 1

2

√(
α− nϵ

n+K

)2

+ 2A

(
α− nϵ

n+K

)
+A2. (45)

Let the RHS of (45) equal to 1− α, yielding

ϵ =
n+K

n
A. (46)

Finally, the coverage guarantee of H-DCP follows

P
(
Ytest ∈ CH-DCP

k (Xtest|D)
)
= P

(
Ŝtest ≤

mα,k

M

)
= EE

[
P
(
Ŝtest ≤

mα,k

M

∣∣E)] ≥ 1− α. (47)

B. Additional Experimental Results
B.1. Comparing with SOTA on a star topology

In the special case of a star topology, the communication cost of Q-DCP coincides with FCP, while H-DCP reduces to
WFCP. Experimental results with α = 0.1, comparing Q-DCP and H-DCP with FCP (Lu et al., 2023), FedCP-QQ (Humbert
et al., 2023), and WFCP (Zhu et al., 2024), can be found in Table 1. These results show that the proposed protocols have
comparable performance as the state of the art in terms of coverage and set size in the special case of a star topology.
However, in contrast to existing schemes, H-DCP and Q-DCP apply to any network topology.
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Table 1. Coverage and set size for Q-DCP, H-DCP, FCP, WFCP, and FedCP-QQ under CIFAR100 in a star topology with α = 0.1.
Q-DCP H-DCP(WFCP) FCP FedCP-QQ

Coverage (±std) 0.913± 0.01 0.92± 0.014 0.918± 0.01 0.996± 0.003
Set Size (±std) 11.35± 0.89 12.16± 1.47 11.98± 0.99 45.32± 7.22

B.2. Convergence Results for Q-DCP and H-DCP

Setting ϵ0 = 0.1, Fig. 6 shows the coverage and set size versus the number of ADMM iterations T for centralized CP and
for Q-DCP on different graphs. We specifically consider the complete graph, torus, star, cycle, and chain, which are listed in
order of decreasing connectivity. While coverage is guaranteed for any number of iterations T , Q-DCP is seen to require
more rounds to achieve efficient prediction sets on graphs with weaker connectivity levels. Furthermore, Q-DCP achieves
performance comparable to CP on all graphs at convergence.
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Figure 6. Coverage and normalized set size versus the number of ADMM iterations T for CP and Q-DCP (α = 0.1 and ϵ0 = 0.1).

Fig. 7 shows coverage and set size performance versus the number of consensus iterations T for H-DCP on different graphs.
Graphs with lower connectivity are observed to require more consensus iterations to give efficient prediction sets as in the
case of Q-DCP presented in Fig. 6.
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Figure 7. Coverage and normalized set size versus iterations T for CP and H-DCP (α = 0.1).

B.3. Scalability and sensitivity of Q-DCP and H-DCP for network size

To validate the proposed method on a larger network, we considered a network with K = 100 devices, each of which
includes data from a distinct class setting T = 3000 for both H-DCP and Q-DCP (with ϵ = 0.5), experimental results can
be found in Fig. 8 and Fig. 9. These results demonstrate that the proposed schemes are scalable to larger networks.

To evaluate the sensitivity of the performance of to the choice of ϵ0, we have evaluated coverage and set size for Q-DCP
on Erdős–Rényi graphs with an increasing number of devices K, in which each edge is included in the graph with fixed
probability 0.5. The 100 classes of CIFAR100 are divided (almost) equally among the K devices (without replacement).
Other parameters are the same as Sec. 6. For α = 0.1 and T = 3000, the experimental result can be found in Fig. 10 with
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Figure 3. Coverage and normalized set size versus coverage level 1 − 𝛼 for CP and Q-DCP 

under CIFAR100 when Assumption 4.1 is satisfied (𝐾 = 100, 𝑇 = 3000 and 𝜖0 = 0.5)
Figure 8. Coverage and normalized set size versus coverage level 1− α for CP and Q-DCP under CIFAR100 when Assumption 4.1 is
satisfied (K = 100).
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Figure 9. Coverage and normalized set size versus coverage level for CP and H-DCP under CIFAR100 (K = 100).

ϵ0 = 1 and in Fig. 11 with ϵ0 = 0.1. The level of connectivity increases with K as the average spectral gap increases from
0.44 to 0.68. As a result, fixing T , the set size decrease as the level of connectivity increases. This observation is robust
with respect to the choice of hyperparameter ϵ0. However, as verified by these results, the optimal choice of ϵ0 depends on
the size of the network. In practice, for ϵ0 = 1, Assumption 4.1 is satisfied for all values of K between 20 and 80, and thus
Proposition 4.3 guarantees convergence to the target coverage probability 1− α = 0.9 when T is large enough. This is not
the case for ϵ0 = 0.1, in which case Assumption 4.1 is violated as K grows larger.

Figure 6. Coverage and normalized set size versus number of devices 𝐾 for CP and Q-DCP under CIFAR100 

on Erdős–Rényi graph with connect probability 0.5 (𝛼 = 0.1, 𝑇 = 3000, 𝜖0 = 1).
Figure 10. Coverage and normalized set size versus number of devices K for CP and Q-DCP under CIFAR100 on Erdős–Rényi graph
with connect probability 0.5 (α = 0.1, T = 3000, ϵ = 1).

B.4. Ablation studies for Q-DCP

Fig. 12 to 14 show the effects of different choices of the smoothness parameter κ and the regularization parameter µ on the
coverage guarantee and set size for the torus graph, respectively. Fig. 12 shows that a small κ will lead to an inefficient
prediction set due to the inaccurate approximation of ReLU, while a large kappa will lead to a slow convergence speed of the
ADMM yielding an inefficient prediction set as well. Fig. 13 demonstrates that a small µ causes a low ADMM convergence
rate making the prediction set conservative. Fig. 14 shows that under the poor choices of s0 and ϵ0 as in Fig. 3, in which
Assumption 4.1 does not satisfied. One can observe that small µ gives the satisfaction of the coverage condition, while large
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Figure 7. Coverage and normalized set size versus number of devices 𝐾 for CP and Q-DCP under CIFAR100 

on Erdős–Rényi graph with connect probability 0.5 (𝛼 = 0.1, 𝑇 = 3000, 𝜖0 = 0.1).
Figure 11. Coverage and normalized set size versus number of devices K for CP and Q-DCP under CIFAR100 on Erdős–Rényi graph
with connect probability 0.5 (α = 0.1, T = 3000, ϵ = 0.1).
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Figure 12. Coverage and set size versus κ for Q-DCP. (Torus graph with T = 1000, α = 0.1, s0 = s̄ and ϵ0 = 0.1)

µ leads to the solution of ADMM nearly same as s0, yielding the violation of the coverage condition.

B.5. Ablation study for H-DCP

Fig. 15 shows the coverage and set size versus quantization level M for H-DCP on different graphs. One can observe that
under limited consensus iterations, increasing the quantization level M can make the estimated quantiles more accurate thus
potentially providing more efficient prediction sets. On the flip side, it will lead to a larger error bound of the consensus and
may violate the efficiency of the prediction on graphs with poor connectivity.

B.6. Experimental results on PathMNIST

PathMNIST includes 9 classes and 107, 180 data samples in total (89, 996 for training, 10, 004 for validation, 7, 180 for
test). Medical datasets involve private and sensitive information, which are usually distributed over siloed medical centers,
making a decentralized implementation practically relevant.

To this end, we trained a small-resnet14 as the shared model, and we considered a setting with K = 8 devices. Seven of the
devices have data from only one class, while the last device stores data for the remaining two classes. For Q-DCP, the number
of ADMM communication rounds was set as T = 8000, and the number of consensus iterations and the quantization level
for H-DCP were set as T = 80 and M = 100. This way, both Q-DCP and H-DCP are subject to the same communication
costs (in bits). Other settings remain the same as in Sec. 6. Results on coverage and normalized set size versus coverage
level for Q-DCP and H-DCP, can be found in Fig. 16 and Fig. 17, respectively. These experimental results confirm the
efficiency of the proposed methods for applications of interest.
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Figure 13. Coverage and set size versus µ for Q-DCP. (Torus graph with T = 1000, α = 0.1, s0 = s̄ and ϵ0 = 0.1)
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Figure 14. Coverage and set size versus µ for Q-DCP. (Torus graph with T = 1000, α = 0.1, s0 = mink∈V Q((1 − α)(1 +
K/n); {Si,k}nk

i=1) and ϵ0 = 10−4)
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Figure 15. Coverage and set size versus quantization level M for H-DCP. (T = 150 and α = 0.1)
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Figure 16. Coverage and normalized set size versus coverage level for CP and Q-DCP under PathMNIST.
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Figure 17. Coverage and normalized set size versus coverage level for CP and H-DCP under PathMNIST.
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