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ABSTRACT

In a restricted computing environment like satellite on-board systems, running
DL models has limitation on high-speed processing due to the problems such as
restriction of available power to consume compared to the relatively high com-
putational complexity. In particular, the latest GPU resources shows high com-
puting performance but also shows relatively high power consumption, whereas
in restricted environments such as satellite systems, reconfigurable resources like
FPGA or low power embedded GPU are generally adopted due to their relatively
low power consumption compared to computing capability. In such a constrained
computing environment, in order to overcome the problem of too huge model size
to fit in reconfigurable resources or limitation on high-speed processing, we pro-
pose a reconfigurable DL accelerating system where the computing complexity
and size of DL model are compressed by pruning and can be adapted to the FPGA
or low power GPU resources. Therefore, in this paper, we mainly address an am-
biguity adaptive inference model that can enhance overall accuracy in inference
step directly for mission critical task, a new method for single-shot based channel
pruning that can accelerate inference of DL model through compressing the model
as much as possible with maintaining accuracy performance under constrained
accelerator resources. From the experimental evaluation, for the satellite image
analysis model as an example application, our method can achieve up to ×8.53
compression while keeping the accuracy, and verified that our method can deploy
and accelerate the DL model with high computational complexity on FPGA/GPU
resources.

1 INTRODUCTION

Recent advances in deep learning (DL) are largely come from the availability of massive amount
of training data (Krizhevsky et al., 2012; Xia et al., 2018) and efficient parallel computation sup-
ported by modern GPUs. Accordingly, the state-of-the-art deep neural networks have continuously
grown in depth and complexity, in pursue of higher performance (e.g., accuracy) and targeting more
complex tasks (Devlin et al., 2018; Ren et al., 2016). In response to the increasing complexity of
neural network models, advances have been made in various areas such as hardware, network com-
puting infrastructure (Hazelwood et al., 2018), etc. to provide smooth service support in terms of
inference serving. As one of these attempts to enable conducting inference for providing services
in computation-constrained environments such as satellite on-board system, pruning the neural net-
work itself by removing unnecessary parameters is introduced. Pruning the neural network can re-
duce the size of whole parameters in neural networks by removing the some redundant parameters,
therefore, can alleviate the constraints of the memory and storage space (Hassibi et al., 1993; Han
et al., 2016b; Mostafa & Wang, 2019), and accelerate computation of inference process.

However, pruning the neural network by weight-wise removing makes kernel matrices in layers
sparse which can not generally shorten the inferencing time without designing a new hardware op-
timized for the target sparse matrix operations (Han et al., 2016a). Unlike pruning in weight-wise,
channel pruning (Li et al., 2017a) removes the whole parameters that is linked to the certain output
channel in each layer. As removing a output channel in a layer can be substituted with a smaller layer
directly, it can achieve effect of acceleration on processing inference computation. However, remov-
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ing a output channel suffers much more accuracy degradation comparing to the weight pruning,
therefore, Molchanov et al. (2017) attempts to minimize the performance degradation by conduct-
ing iterative training and then pruning cycle to search the output channels to prune.

In the other way, lottery ticket hypothesis (Frankle & Carbin, 2019) introduce a new possibility
of pruning that can outperform the original network model. Recent works introduce global weight
pruning scheme in the framework of lottery ticket hypothesis that can prune by single-shot manner
where pretraining the original model with full iterations is not required (Lee et al., 2019). However,
as these single-shot pruning is mainly addressed in weight pruning scheme that can not achieve
spectacular reduction on model size and computing acceleration, single-shot based channel pruning
criterion is required to accelerate computation and conduct pruning more simply than conventional
channel pruning schemes that pretrain the full model with full iterations and then conduct pruning.

In order to overcome the limitations, in this paper, we propose a new method of single-shot based
channel pruning that can accelerate DL computations by enhancing robustness over accuracy degra-
dation and deploy huge models into constrained accelerators. We also propose an ambiguity adaptive
inference model that can enhance the accuracy in the inference step directly for the mission critical
task. We evaluated our method by constructing the reconfigurable DL accelerating system, and ver-
ified that our proposed pruning method can largely compress the full model while maintaining the
accuracy, and the reconfigured model achieves acceleration on DL computations under FPGA and
GPU resources.

2 RELATED WORK

DL Processing on Constrained Computing Environments. Deploying or running DL based ap-
plications in constrained computing environments like satellite on-board system (Kim et al., 2021),
edge server (Kim & Youn, 2020; Liu et al., 2020a), and IoT device (Zhu et al., 2020) encounters
problem of too huge model size to deploy on accelerator or limitation on high-speed computing.
Cloudscout (Giuffrida et al., 2020) designed very small CNN model and deployed on nanosatellite
to select eligible data by cloud detection. As the available hardware resources and power budget are
limited in such environment, light-weight DL model is required by constructing short and thin CNN,
but the light-weight DL model inevitably results in lower performance than the deeper and wider
CNNs in general (Sandler et al., 2018). Moreover, as the input size of the service requests grows up
on recent practical applications, required memory occupation size for intermediate feature maps of
CNN is prone to exceed the given hardware memory size (Zhao et al., 2018; Akin et al., 2019). For
example, deploying Faster-RCNN (Ren et al., 2016) model with 1k x 1k input requires about 9GB
resource memory occupation and about 3TFLOP of computational overhead, however, the hardware
accelerators for constrained computing environments like NVIDIA TX-1 (Otterness et al., 2017) or
Xilinx VC707 (Shawahna et al., 2018) can only accommodate up to 4GB memory and can only
perform about 60∼500GFLOPS for DL inference processing which is quite insufficient to process
within seconds level.

Single-shot Weight Pruning. The pruning schemes (Molchanov et al., 2017; Han et al., 2016b)
that conduct pruning from the pretrained neural network and then fine tunes the pruned network in-
evitably suffer performance (e.g., accuracy) degradation from the original pretrained network even
though further fine tuning is conducted. However, a recent study observes the lottery ticket hypothe-
sis (Frankle & Carbin, 2019) that a randomly initialized dense neural network contains a subnetwork
that has same initialization state can match the test accuracy of the original full network after training
with at most the same number of iterations. The identification of lottery ticket hypothesis implies
that if the original network itself is too large, it can be easier to fall into local optima, and rather
pruning into a smaller network can present the possibility of performance improvement.

Developed from the lottery ticket hypothesis, single-shot weight pruning schemes attempt to find the
wining ticket effectively by observing dataset only once (not pretraining with full iterations). As one
of the study, SNIP (Lee et al., 2019) quantify the effect of the loss on each masking at parameters, and
introduce single-shot weight pruning scheme without training the original network model. Others
(Tanaka et al., 2020) propose a weight pruning scheme that can find which channels to prune even
without any training data by quantifying synaptic strength on total flow on the whole network. All
of these works attempts to globally search which links between neurons to prune in a whole network
model at once. In terms of first motivation on pruning, pruning weight-wise in a whole network has
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advantage of reducing memory and storage size. However, due to the characteristics of the neural
network operations, unless a special hardware optimized for the sparsity of each pruned network is
designed to be applied (Han et al., 2016a), the computational acceleration can not be achieved on
accelerator resources.

Channel pruning. To cope with the computational constrained environments such as satellite on-
board system, channel pruning (Li et al., 2017a; He et al., 2017) can be one of the solutions by
removing whole operations related to the target output channel in a layer which results in reduction
on both the amount of required computation and occupying parameter size. However, as it removes
whole links related to the target output channel at once, performance degradation of the network
model can be more vulnerable to be affected compared to the weight pruning. Due to this issue,
previous studies (Han et al., 2016b; Molchanov et al., 2017) try to suppress performance degradation
mainly through conducting training and pruning alternatively with iterative cycles, which burdens
the additional computation overhead for training compared to the single-shot based weight pruning
method.

To overcome these limitations, in this paper, we aim to address accurate inference model and efficient
channel pruning scheme for restricted computational environments, therefore, we analyze how to
adapt the single-shot based weight pruning criterion to the channel pruning scheme, and finally
propose a single-shot based channel pruning scheme that can identifies wining ticket with largely
compressed size. Based on the proposed pruning scheme, in order to realize the acceleration for DL
computation, we also developed resource adaptation middleware that practically reconfigure the full
model into deployable form for target accelerators as shown in Figure 1.

3 AMBIGUITY ADAPTIVE INFERENCE AND DL ACCELERATING SYSTEM
FOR RESTRICTED COMPUTING ENVIRONMENTS

In this section, we firstly introduce an ambiguity adaptive inference model that attempt to improve
overall accuracy at inference step directly. In order to deploy and accelerate the DL model, we pro-
pose a new single-shot based channel pruning method that is robust to accuracy degradation and
therefore can further compress the model. In particular, we mainly address how to adapt single-
shot based weight pruning criterion to channel pruning scheme with theoretical analysis and how to
overcome the vulnerability of removing a certain whole layer in single-shot based channel pruning
scheme to enhance robustness of accuracy degradation. On the basis of the proposed single-shot
channel pruning scheme, we developed resource adaptation layer that practically reconfigures the
DL models to heterogeneous accelerators (FPGA, GPU) and integrated as a reconfigurable DL ac-
celerating system.
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Figure 1: Illustration of ambiguity adaptive inference and single-shot based channel pruning for
satellite processing environments
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3.1 AMBIGUITY ADAPTIVE INFERENCE MODEL

As the task under noisy or low resolution data makes the DL model hard to achieve the high task
performance (i.e., accuracy), the recent studies (Zhang et al., 2019; Mo et al., 2021) attempt to
overcome it by mitigating on efficient training process. However, unless the model can not guarantee
the 100% accuracy, the model still can invoke false alarm which is critical to certain environments
such as remote sensing (Li et al., 2020). Therefore, as an attempt to enhance the performance in
the inference step directly, we propose a hypothesis that ambiguity on inference result of DL model
can represent the error. From the hypothesis, we can attempt to improve the performance of the
DL model in inference step by adaptively revising the inference results with high ambiguity from
external knowledge.

In this paper, we focus on the classification task, and we try to discriminate the ambiguity by
the maximum class probability (maxc∈C P (y = c|x), where C denotes a set of classes, and x de-
notes input) of inference result which is a general indicator to make decision in classification task
(Krizhevsky et al., 2012). Evolved from the work of Corbière et al. (2019), we derive the property
that discriminating the ambiguity by maximum class probability can approximately discriminate the
error of inference result as follows.

Lemma 1. If maxc∈C P (y = c|x) > σl, 1/2 ≤ σl < 1, then the estimation result is probably
approximately correct. Otherwise, if maxc∈C P (y = c|x) ≤ σh, 0 < σh ≤ 1/2, then the estimation
result can be probably approximately wrong.

The proof of the lemma is presented in detail at Appendix. From the fundamentals of the property, we
can try to revise the inference result with high ambiguity (maxc∈C P (y = c|x) ≤ σh) that is likely
to be wrong to improve the overall performance of DL model directly in inference step adaptively
as shown in Figure 2.

For example, we introduce a knowledge graph based revising step to revise ambiguous results (sus-
pected to be wrong prediction) in ship classification from satellite imagery data. The several studies
(Fang et al., 2017; Liu et al., 2020b) try to use knowledge graph of co-occurrence between objects
to improve the task performance. However, for the object identification on satellite imagery, not the
co-occurrence between objects but the existence of distinct subordinate attribute (e.g., container,
tank dome, crane, etc. for ship classification) can represent the certain object class. Accordingly, in
order to extract the existence information of subordinate attributes, we introduce a multi-attribute
classifier which is more light-weight and have smaller training complexity than the detector which
is generally used in similar studies of scene graph generation (Yang et al., 2018; Li et al., 2017b).
For the knowledge graph, as an example, we apply the term frequency-inverse document frequency
(TF-IDF) as an edge value (e(c, a)) to quantify the co-occurrence between attribute (a ∈ A, where
A denotes a set of attributes) and object classes (c ∈ C), which is widely used for image classifi-
cation tasks (Chanti & Caplier, 2018). Therefore, on the inference results with high ambiguity (i.e.,
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Figure 2: An example illustration of ambiguity adaptive inference model
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samples with maxc∈C P (y = c|x) ≤ σ, where σ denotes the certain ambiguity threshold value), the
prediction (Prev) is revised by multiplying the inference result with prediction from the knowledge
graph as:

Prev(y = c|x) = P (y = c|x, θtask) ·
exp(

∑
a∈A Pa,θmac · e(c, a))∑

c∈C exp(
∑
a∈A Pa,θmac · e(c, a))

, (1)

where θtask denotes parameters of original model for task, θmac denotes parameters of multi-
attribute classifier, Pa,θmac denotes derived probability of a attribute occurrence on input x from
multi-attribute classifier θmac, and P (y = c|x, θtask) is the probability of class c for input
x derived from task model with θtask. Otherwise, on low ambiguity cases (i.e., samples with
maxc∈C P (y = c|x) > σ), just the derived inference result from the task model is used to make
the final decision for the task. As observed in Lemma 1, if we can set the appropriate threshold
for discriminating high ambiguity case that can screen out the wrong inference results with high
confidence, overall task accuracy can be improved by trying to correct wrong predictions in further
adaptive revision step.

However, as discussed in the previous section, the recent DL model itself contain high computation
complexity, and the model compression is required to deploy onto restricted computing environ-
ments. Accordingly, we propose a new single-shot base channel pruning scheme that is robust to
performance degradation in the following subsection.

3.2 SINGLE-SHOT BASED CHANNEL PRUNING

Let ni, hi, and wi denote the number of output channels, height and width of output feature map
in ith layer, respectively. From the input xi−1 ∈ Rni−1×hi−1×wi−1 , a convolution layer conducts
ni · ni−1 convolution operations by 2D kernel to output feature map xi ∈ Rni×hi×wi . Each kernel
parameter θip,q ∈ Rk×k for linking pth output channel and qth input channel in ith layer constructs
a filter matrix Ki ∈ Rni×ni−1×k×k for ith layer (Let K denote a set of whole filter parameters in
the network). Pruning the jth output channel in ith layer can be represented as conduct masking
to the filter matrix denoted byMi � Ki, where � denotes Hadamard product (element-wise prod-
uct),Mi ∈ {0, 1}ni×ni−1×k×k is a masking matrix for ith layer where each element in the matrix
represents the connectivity of parameters. We denoteM as a set of whole masking matrices in the
network, and denoteM�K as masking in each layer byMi�Ki. For convenience, letmi

j ∈ {0, 1}
denotes controllable masking indicator for the parameters that are related to jth output channel in
ith layer where mi

j = 0 corresponds to making all elements inMi,Mi+1 with jth index at first,
second dimension respectively as zero. When jth output channel in ith layer is pruned, 3D filter
Ki,j ∈ Rni−1×k×k in jth index at first dimension on the (4-dimensional) filter matrix Ki is masked
by Mi|mij=0, and also the filters (θi+1

j,q ,∀q) in jth index at second dimension on the filter matrix
Ki+1 in next layer is masked byMi+1.

Problems of applying single-shot weight pruning criterion to channel pruning directly. When
applying the criterion of single-shot weight pruning (Lee et al., 2019) directly to channel prun-
ing as like in (Li et al., 2017a), we observe that pruning by the sum of each weight masking
effect can not guarantee equal to empirical risk minimization problem. From the pruning crite-

rion in SNIP (Lee et al., 2019), sip,q =
|gip,q(K;D)|∑

i′

∑
p′

∑
q′
|gi′
p′,q′ (K;D)| where gip,q = ∂L(M�K;D)

∂mip,q
|M=1 ≈

L(K;D) − L(K; θip,q = 0,D), and i, p, q denote index of layer, output channel, input chan-
nel respectively. Pruning a channel by conducting element-wise product on filters with masking
matrix (Mi � Ki) can be considered as equal to finding Ki with which channel to be pruned
(θij,q = 0,∀q) in the finite hypothesis space Hi where the space consists of all possible chan-
nel pruning cases. Therefore, the problem that choose a channel to prune by using sum of sen-
sitivity score can be written as arg minj∈[0,ni)

∑
q
sij,q = arg minK|

θi
j,q

=0,∀q∈Hi
∑
q s

i
j,q . From∑

q s
i
j,q =

∑
q |L(K;D)−L(K;θip,q=0,D)|∑
i′

∑
p′

∑
q′ |gi

′
p′,q′ (K;D)| , the denominator term and L(K;D) term in numerator are

constant with regard controlling variable j (wrapped as Ki|θij,q=0,∀q). As the cross entropy is usu-
ally used as loss function, when assume that L(·) > 0, the problem in the equation becomes
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arg minK|
θi
j,q

=0,∀q∈Hi

∑
q |α−L(K;θ

i
p,q=0,D)|

β , where α and β are positive constants. The derived

problem equation does not guarantee equivalent problem form of empirical risk minimization on
the network (6= arg minK′∈H′ L(K′;D)). Therefore, applying single-shot weight pruning criterion
to the channel pruning by summing all related weight-wise scores (Li et al., 2017a) can not show its
efficiency in terms of minimizing empirical loss on the network.

Global channel sensitivity. Alternatively, we transformed the single-shot based weight pruning
criterion in SNIP (Lee et al., 2019) for channel pruning by defining global channel sensitivity as:

CSij =
|gij(M�K;D)|∑

i′

∑
j′
|gi′j′(M�K;D)|

, (2)

where gij(M�K;D) = ∂L(M�K;D)
∂mij

|M=1 ≈ L(M�K;D)−L(M|mij=0�K;D). By observing the
output channel masking-wise sensitivity, not the sum of weight-wise sensitivity, pruning a channel
with this criterion (CSij) can be stated as an equivalent problem of optimizing the performance
(minimizing the empirical loss) of the network, as shown in the following theorem and its corollary.

Theorem 1. If L(M�K;mi
j = 0,D) ≥ L(M�K;D) ≥ 0,∀(i, j) ∈ {(i, j)|mi

j = 1,∀mi
j ∈M},

pruning a channel by CSij is equal to solving empirical risk minimization (ERM) problem of the
neural network in the finite hypothesis space of pruning.

Corollary 1. As solving ERM guarantees probably approximately correct (PAC) bound, under the
same condition in Theorem 1., pruning a channel by CSij also guarantees PAC bound and its esti-
mation error is upper bounded.

Detailed proofs for the theorem and its corollary are presented in Appendix A.1. The above theorem
and its corollary represent that channel pruning based on CSij explores in the direction of reducing
error and show its validity. For the exception case, 0 < L(M�K;mi

j = 0,D) < L(M�K;D) is
the case where pruning reduces the loss than when pruning is not conducted, in which case pruning
can be interpreted as a direct solution of ERM problem.

However, when conducting channel pruning by CSij , the summed score of eliminating i-th layer
equals

∑
j CS

i
j . The effect of layer deletion in score (

∑
j CS

i
j) just occupy a fraction of the overall

score (
∑
i

∑
j CS

i
j) of the original network. In other words, when exploring which channels to

prune on the basis of CSij , there exist a risk that can be dropped into a local optimal where pruning
criterion deletes a whole particular layer. This vulnerability of removing a layer on channel pruning
scheme can be observed in Figure 5, and the detail will be discussed in Section 4.

Layer-wise sensitivity. To address the vulnerability of removing a certain layer, in the methods
of pruning from pretrained state, layer-wise accuracy degradation curves with regard to the pruning
ratio can be obtained by profiling, and it can be used to regulate pruning a particular layer excessively
(Li et al., 2017a). However, the layer-wise performance degradation curves can not be practically
obtained in single-shot pruning scheme as it requires training with full iterations. Instead, when
exploring j-th output channel to be pruned in i-th layer (M;mi

j = 0), we define a new layer-wise
sensitivity for single-shot pruning scheme in the inverse form of a total score sum on the remaining
channels (at the point after pruning the candidate channel) of that layer as follows:

LSi(M;mi
j = 0) =

1
ni−1∑
j′=0

CSij′ −
∑

j′∈{j′|CSi
j′=0,∀ci

j′∈Mi}
CSij′

. (3)

By the arithmetical property of the layer-wise sensitivity, it regulates to remove a particular layer at
all by computing numerator term as 0 to make layer-wise sensitivity as infinity when try to prune
the last remaining output channel in any layer.

Therefore, based on the aforementioned properties, we propose a single-shot based channel pruning
scheme with layer-wise sensitivity as described in Algorithm 1. The proposed scheme searches
channels to prune in a whole network globally by selecting a channel that shows minimum CSij ·
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LSi(M;mi
j = 0) score, iteratively updating layer-wise sensitivity, where layer-wise sensitivity term

on score suppresses to choose a channel in excessively pruned layer on remaining searching space.

Algorithm 1 Single-shot channel pruning scheme with layer-wise sensitivity
Input: Target overall pruning ratio pr

1: mi
j ← 1 for ∀i, j . InitializeM

2: calculate CSij for ∀i, j . Obtain channel sensitivity score in single-shot manner
3: while (

∑
i

∑
jm

i
j >

∑
i ni · (1− pr)) do . Check target overall pruning ratio

4: update LSi(M) for ∀i or i∗ of previous step
5: s∗min ←∞
6: (i∗, j∗)← ∅
7: for i in range(K) do . Search a best channel to prune in current iteration
8: j ← arg minj∈{j|mij=1} CS

i
j · LSi(M;mi

j = 0)

9: smin ← CSij · LSi(M;mi
j = 0)

10: if (s∗min > smin) then
11: s∗min ← smin
12: (i∗, j∗)← (i, j)
13: end if
14: end for
15: M←M|ci∗

j∗=0 . Apply the new searched channel to prune, updateM
16: end while
17: returnM . Return the searched pruning channels

4 EVALUATION

Feasibility of ambiguity adaptive inference model. First, we evaluate the feasibility of our ambigu-
ity adaptive inference model. We evaluate on ship classification from xView satellite imagery dataset
(Lam et al., 2018) with ResNet-18 network. From the trained model, we measure correct detecting
accuracy (the detected correct ratio from the total correct inference results) for the samples discrim-
inated as low ambiguity (samples with maxi∈C P (y = i|x) > σ on test set) and wrong detecting
accuracy for the samples discriminated as high ambiguity (samples with maxi∈C P (y = i|x) ≤ σ
on test set) with regard to various threshold (σ) levels. As shown in Figure 3, high ambiguity case
can detect more wrong samples with higher threshold, whereas the low ambiguity case can detect
more correct samples with lower threshold. Therefore, there exist the optimal threshold according
to the revising performance that can improve overall accuracy performance by applying the further
revision step on high ambiguity cases. In order to observe the practical feasibility of our ambiguity
adaptive inference model, as an example, we test on applying knowledge graph of co-occurrence
between object class and subordinate attribute as revising step for high ambiguity cases. For the
revision step, we multiply the prediction result from the knowledge graph with the prediction re-
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sult from the DL model as like Liu et al. (2020b). The prediction from the knowledge graph only
just achieved about 30% accuracy. Figure 4 shows the top-1 test accuracy of the ambiguity adaptive
inference model with regard to the ambiguity threshold (σ). The result shows that our ambiguity
adaptive inference model can achieve accuracy enhancement at certain threshold values (0.4 or 0.5)
although the accuracy of the revision step only is lower than the original inference step. For the high
threshold values, as more correct samples are detected as the high ambiguity cases and the accuracy
of revision step only is lower than the original step, the overall accuracy fall down by wrong revision
on correct samples.

Performance of the proposed pruning scheme. In addition, we evaluate the effectiveness of the
proposed pruning algorithm and its accelerating effect on computing system empirically. For the
network model, as an example application of satellite on-board processing, we mainly evaluate on
ResNet-101 (He et al., 2016) with UC Merced land use satellite imagery dataset (Yang & Newsam,
2010). The further evaluations on various models that show similar tendency are also presented in
Appendix A.2. The proposed pruning method is evaluated by comparing two conventional methods
as follows:

• SNIP-sum: Adapting single-shot weight pruning method of SNIP (Lee et al., 2019) to
channel pruning scheme by summing up weight-wise scores linked to target channel (Li
et al., 2017a).

• lottery-ch: Adapting weight pruning method on evaluation of lottery ticket hypothesis
(Frankle & Carbin, 2019) to channel pruning scheme by scoring sum on magnitude of
weight parameters linked to output channel.

First, we evaluated robustness of accuracy degradation among the proposed pruning scheme and
the other comparing methods (SNIP-sum, lottery-ch). For all comparing methods, after re-
initializing the pruned model, we train the pruned model with 160 epoch and observe the best top-1
test accuracy as the performance of the model. We test on 20 pruning ratios, and observe the accuracy
results with regard to the percentage of overall remaining channels. As shown in Figure 5, in the case
of SNIP-sum or lottery-ch, as we discussed in the previous section, by the scale difference
on criterion score over layers, layer removing occur from near 10%∼20% pruning, which shows
that global searching scheme in channel pruning is vulnerable to removing a whole certain layer.
As we prune the channels in layers linked to the residual link together, this vulnerability appear
more remarkably. Unlike the other comparing methods, the proposed scheme shows improvement
on robustness of the accuracy degradation by regulating any layer to be excessively pruned via layer-
wise sensitivity term, and can achieve up to x8.53 compression while maintaining the accuracy of
the original network model.

As a brief ablation study, we also observe accuracy result of pruning with only the proposed channel
sensitivity (denoted as s-only in the result graph). Likewise to SNIP-sum and lottery-ch,
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Table 1: Effect of acceleration for inference serving on each accelerator (FPGA/GPU)

Proposed SNIP-sum lottery-ch Original
Accuracy (%) 81.43 83.81 80.48 80.00

Mem. occ. (MiB) 2,911 5,681 4,983 5,767
Latency on GPU (ms) 81.38 374.63 379.12 523.43

Speed up on GPU ×6.43 ×1.40 ×1.38 ×1.00
Latency on FPGA (ms) 5.20 15.55 16.96 23.75

Speed up on FPGA ×4.56 ×1.53 ×1.40 ×1.00

Table 2: Effect of throughput improvement on GPU deployed with maximum available batch size

Proposed SNIP-sum lottery-ch Original
Max. batch size 87 32 38 31

Throughput (Req/s) 198.2 42.66 42.08 30.7
Improvement ×6.45 ×1.39 ×1.37 ×1.00

pruning with the proposed channel sensitivity only also shows vulnerability of removing a certain
layer, and this problem is alleviated by additionally considering layer-wise sensitivity.

In addition, in order to observe whether the proposed scheme can find wining ticket or not, we also
examine the test accuracy convergence trend with regard to training epochs. As shown in Figure 6,
the proposed scheme is able to find the wining ticket that can achieve the accuracy of the original
network below the certain sparsity level (that will not excessively pruning over the capacity of the
network model). In the results, until about sparsity with 0.88, proposed scheme can maintain to find
wining ticket.

Accelerating effect on the system. Finally, we evaluate accelerating effect on the practical comput-
ing system where the full model is reconfigured to the deployable form for target accelerators. We
developed and test the system under the computing environment with FPGA and GPU accelerators
where hardware consists of Intel(R) Xeon(R) Silver 4214R CPU @2.40GHz, NVIDIA RTX 3080
GPU, and Xilinx Alveo U200 FPGA. Inference serving latency and throughput are measured over
applied pruning methods where the model with pruned as much as possible to maintain accuracy of
original network is deployed to each accelerator. We measure in 100 trials, and observe the averaged
value for each test case.

Table 1 shows accelerating effect on inference serving by setting same batch size (i.e., 16 for GPU
and 1 for FPGA) over applied pruning methods. The model reconfigured by the proposed pruning
scheme can achieve smaller GPU memory occupation than comparing pruning methods and original
full model, and also achieve the highest accelerating enhancement (×6.43 on GPU and ×4.56 on
FPGA) on latency at each accelerators while maintaining the accuracy of original model.

In particular, for the GPU resource, the pruned model can also enlarge the available maximum batch
size to deploy, which can improve the throughput of inference serving accordingly. As shown in
Table 2, the model reconfigured from the proposed pruning method can achieve the highest through-
put improvement (×6.45) among the other pruning methods and original network by enlarging the
maximum available batch size to 87.

5 CONCLUSION

In this paper, we propose an ambiguity adaptive inference model that can improve the accuracy for
mission critical task at inference step directly and a new single-shot channel pruning scheme that
can provide feasibility of accelerating DL computations. We see the validity of fundamentals on
our methods theoretically and develop the practical accelerating system for empirical evaluation.
From the empirical evaluation, our ambiguity adaptive inference model shows feasibility to improve
accuracy, and our pruning method shows higher accelerating effect than the conventional pruning
methods under the developed system.
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failure prediction by learning model confidence. NeurIPS, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yuan Fang, Kingsley Kuan, Jie Lin, Cheston Tan, and Vijay Chandrasekhar. Object detection meets
knowledge graphs.(2017). In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence: Melbourne, Australia, August 19, volume 25, pp. 1661–1667, 2017.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions
on pattern analysis and machine intelligence, 28(4):594–611, 2006.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. ICLR, 2019.

Gianluca Giuffrida, Lorenzo Diana, Francesco de Gioia, Gionata Benelli, Gabriele Meoni, Massim-
iliano Donati, and Luca Fanucci. Cloudscout: a deep neural network for on-board cloud detection
on hyperspectral images. Remote Sensing, 12(14):2205, 2020.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243–254, 2016a.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016b.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov,
Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Applied machine learning at face-
book: A datacenter infrastructure perspective. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 620–629. IEEE, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397,
2017.

Heejae Kim, Kyungchae Lee, Changha Lee, Sanghyun Hwang, and Chan-Hyun Youn. An alternat-
ing training method of attention-based adapters for visual explanation of multi-domain satellite
images. IEEE Access, 9:62332–62346, 2021.

Woo-Joong Kim and Chan-Hyun Youn. Lightweight online profiling-based configuration adaptation
for video analytics system in edge computing. IEEE Access, 8:116881–116899, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

10



Under review as a conference paper at ICLR 2022

Darius Lam, Richard Kuzma, Kevin McGee, Samuel Dooley, Michael Laielli, Matthew Klaric,
Yaroslav Bulatov, and Brendan McCord. xview: Objects in context in overhead imagery. arXiv
preprint arXiv:1802.07856, 2018.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. ICLR, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. ICLR, 2017a.

Ke Li, Gang Wan, Gong Cheng, Liqiu Meng, and Junwei Han. Object detection in optical remote
sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote
Sensing, 159:296–307, 2020.

Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xiaogang Wang. Scene graph generation
from objects, phrases and region captions. In Proceedings of the IEEE international conference
on computer vision, pp. 1261–1270, 2017b.

Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa. Flame: Differen-
tially private federated learning in the shuffle model. In AAAI, 2020a.

Zheng Liu, Zidong Jiang, Wei Feng, and Hui Feng. Od-gcn: Object detection boosted by knowledge
gcn. In 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp.
1–6. IEEE, 2020b.

Sangwoo Mo, Hyunwoo Kang, Kihyuk Sohn, Chun-Liang Li, and Jinwoo Shin. Object-aware con-
trastive learning for debiased scene representation. arXiv preprint arXiv:2108.00049, 2021.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. ICLR, 2017.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H Anderson, F Donelson Smith,
Alex Berg, and Shige Wang. An evaluation of the nvidia tx1 for supporting real-time computer-
vision workloads. In 2017 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pp. 353–364. IEEE, 2017.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis and machine
intelligence, 39(6):1137–1149, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Ahmad Shawahna, Sadiq M Sait, and Aiman El-Maleh. Fpga-based accelerators of deep learning
networks for learning and classification: A review. IEEE Access, 7:7823–7859, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. NeurIPS, 2020.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural infor-
mation processing systems, pp. 831–838, 1992.

11



Under review as a conference paper at ICLR 2022

Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai Datcu, Marcello
Pelillo, and Liangpei Zhang. Dota: A large-scale dataset for object detection in aerial images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–
3983, 2018.

Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene graph
generation. In Proceedings of the European conference on computer vision (ECCV), pp. 670–685,
2018.

Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use classification.
In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic
information systems, pp. 270–279, 2010.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Shuo Zhang, Guanghui He, Hai-Bao Chen, Naifeng Jing, and Qin Wang. Scale adaptive proposal
network for object detection in remote sensing images. IEEE Geoscience and Remote Sensing
Letters, 16(6):864–868, 2019.

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. Deepthings: Distributed adap-
tive deep learning inference on resource-constrained iot edge clusters. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2348–2359, 2018.

Dixian Zhu, Dongjin Song, Yuncong Chen, Cristian Lumezanu, Wei Cheng, Bo Zong, Jingchao Ni,
Takehiko Mizoguchi, Tianbao Yang, and Haifeng Chen. Deep unsupervised binary coding net-
works for multivariate time series retrieval. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 1403–1411, 2020.

12


	Introduction
	Related work
	Ambiguity Adaptive Inference and DL Accelerating System for Restricted Computing Environments
	Ambiguity Adaptive Inference Model
	Single-shot based Channel Pruning

	Evaluation
	Conclusion
	Appendix
	Proofs
	Further Experiments




