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Abstract

Deforestation is a major threat to global environmental wellness, with illegal logging as
one of the major causes. Recently, there has been increased effort to model
environmental crime, with the goal of assisting law enforcement agencies in deterring
these activities. We present a continuous model for illegal logging applicable to
arbitrary domains. We model the practice of criminals under influence of law
enforcement agencies using tools from multiobjective optimal control theory and
consider non-instantaneous logging events and load-dependent travel velocity. We
calibrate our model using real deforestation data from the Brazilian rainforest and
demonstrate the importance of geographically targeted patrol strategies.

Keywords: Illegal logging, Optimal path planning, Hamilton–Jacobi–Bellman
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1 Introduction
Deforestation, and in particular, illegal logging causes some of the most damaging effects
to the world’s forests. Modeling and quantifying deforestation has become a recent area
of study for ecologists, political scientists, and applied mathematicians. Pfaff [29] has val-
idated the correlation between certain parameters and deforestation in tropical regions
such as Brazil. The three dominant categories of parameters are identified by Pfaff and
other authors [3,21], as accessibility, population and climate. An effort to control defor-
estation in Brazil, while exploiting timber in a sustainable way, is through allowing legal
concessions for industrial timber harvest in public forests [4]. Companies operating in
Brazil, under such concessions, fell an average of only one tree per acre instead of clear-
cutting to allow tree regrowing [37]. However, as is reported in [37], legal timber compa-
nies pull out of concession as uncontrolled wildcat loggers invaded the company’s land,
illegally toppling and stealing trees. The government’s failure to detect and punish illegal
loggers leads to even more rampant organized crime and more severe deforestation. It is
an essential and urgent task to work out effective tactics to combat illegal loggers. Slough
and Urpelainen [36] have studied the influence of geographically targeted deterrence on
deforestation. Efficient and effective deployment of law enforcement to threatened areas
is the best deterrent for these crimes and has been modeled in the continuum setting
[1,2,7]. Effective deterrence also can lead to spatial spillovers, as loggers move away from
areas with heavy monitoring. Assessing loggers’ responses to policies is important when
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Fig. 1 An overview of the data. a Shows the deforestation events between year 2001 and 2015 in Roraima
on top of the transportation system. Dark blue are rivers, white are major highways and red dots correspond
to deforestation events. b Exhibits the binary tree coverage for year 2015 data where yellow represents
regions covered by trees and blue represents uncovered land

designing an effective system that minimizes deforestation across forested areas. In this
work, we build a game theoretic model to predict interactions between the illegal loggers
and law enforcement agencies.

1.1 Deforestation in the State of Roraima

In this paper, we focus on the PRODES (Amazon Deforestation Monitoring Program)
[24] dataset, which is the official dataset the Brazilian Government uses to make annual
statistics relating to deforestation. PRODESuses amixture of computer and human expert
analysis to delineate deforestation regions in Brazilian Amazon annually with a minimum
patch size of 6.25 hectares (ha) . In particular, we focus on the state of Roraima, the north-
ernmost state in Brazil. We extract annual deforestation events data and tree coverage
data from PRODES. In Fig. 1a, we plot the deforestation events from year 2001 to 2015 as
well as the transportation system (including highways and waterways) for Roraima, with
the observation that many of the deforestation events occur in the vicinity of roads and
rivers. The tree coverage data for year 2015 is shown in Fig. 1b where yellow indicates
land covered by trees and blue refers to cleared land. There are fifteen municipalities in
this state. In this paper, we assume that loggers originate from and return to these fifteen
municipalities.

1.2 Previous work

The first continuous game theoretic model of deforestation is attributed to Albers [1],
who modeled deforestation events in a circular area with radially symmetric benefit and
patrol functions. Criminals enter from the boundary of the area and want to maximize
their profit

P(d) = (1 − Φ(d))B(d) − C(d),

where B is the benefit to the attacker, C is the cost of traveling to depth d, Φ is the
cumulative patrol function and (1−Φ(d)) represents the probability of not being captured.
Johnson et al. [17] worked on optimal patrol strategies in the framework of Albers’

model [1]. Kamra et al. [18] extended themodel by removing the assumption that trees are
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Fig. 2 Illustration of previous work. a Albers’ [1] model assumes a circular region and radial symmetric
functions so that attackers will only move along the radius. b Arnold et al. [2] generalize the model to arbitrary
terrain and applied to the Yosemite national park. In both figures, the white area is pristine while the grey area
is affected by criminals

homogeneously distributed but maintained the circular area. They considered the game
between law enforcement and extractors and appliedmachine learning techniques to find
the optimal or near-optimal patrol strategies. All of these works considered a circular
region with the assumptions that extractors come from the boundary of the region and
move toward the center. The radial symmetry of the region and the functions is a major
restriction.
Arnold et al. [2] generalized Albers’ model [1] to any closed, simple region in R

2. The
primary tool employed in the model is the level set method [26]. In their model, the
cost represents the effort expended by extracting at any point in the protected area,
evaluated by the optimal travel time, where the velocity is allowed to depend on terrain
data. They model the impact of patrol by including capture probability in the formulation
of a heuristic modified velocity. The validity of this model has not been tested against
real-world data, but has been modified and improved by Cartee and Vladimirsky [7]. The
authors constructed two models based on whether the authorities use ground patrol,
where confiscation takes place as perpetrators are detected, or aerial patrol, so that illegal
goods are not confiscated until perpetrators exit the protected area.
Meanwhile, models for illegal extraction by discrete methods have been developed by

Fang et al. [11,12] and Kar et al. [19,20]. Both Fang et al. [12] and Kar et al. [20] deployed
theirmodels inQueenElizabethNational Park (QENP),Uganda. Fang et al. [12] developed
the PAWS algorithm and described the protected region as nodes connected by edges
which are natural pathways such as rivers or roads. Kar et al. [20] used machine learning
techniques to predict attacks from extractors. One advantage of such discrete methods
is that they can easily incorporate realistic concerns such as detailed terrain information,
different types of environmental crime (including animal poaching), or different types of
patrol teams [22]. However, they have the disadvantage that they do not track the actual
movement of the environmental criminals, and results can be difficult to interpret due to
the “black box” nature of parameter estimation methods.
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1.3 Our contribution

Our work builds upon earlier works by Arnold et al. [2] and Cartee et al. [7] where we
use optimal-control theory to model and solve the path planning problem faced by illegal
loggers as they balance benefit, travel cost and capture risk. We assume the authorities
deploy remote patrols, related to model A in [7], where confiscation of illegal goods
is delayed. We introduce several significant improvements to arrive at a more realistic
model. We consider non-instantaneous logging activities and positive capture risk while
logging on site so that loggers can decide the optimal logging time to maximize profit.
We also incorporate load-dependent velocity as loggers return from the forest with illegal
goods. We work directly with real-world data from Brazil to calibrate the model. As we
provide a more transparent interpretation of “pristine area” and evaluation metrics for
patrol efficiency, we simulate and conduct a side-by-side comparison of the predicted
outcomes of several geographically targeted and data-driven patrol strategies.
The remainder of the paper is organized as follows. Section 2 describes the model

formulation, optimization problem solver and numerical method. Section 3 covers exper-
imental results following a detailed description of the experiment setup. We summarize
our conclusions in Sect. 4.

2 Illegal loggingmodel
Our model, based on the work of Albers [1] and Arnold et al. [2], is a more realistic repre-
sentation of loggers’ decision-making process. The model can be applied to an arbitrary
domain as in [2], but balances travel time and capture risk in a more judicious manner by
appealing to optimal control theory.We also account for logging time, which was ignored
by previous models but makes a great difference to loggers’ profit as is shown in Sect. 3. In
the remaining part of this section, we will first construct the model. The optimal control
problem is posed as a static Hamilton–Jacobi equation and solved using a fast-sweeping
method [6,27,38,40,42].

2.1 Model construction

Given an arbitrary domain Ω ⊂ R
2, our goal is to construct an expected profit function

P(x) : Ω → R from loggers’ perspective. We adopt the basic idea from Albers [1], where
P = (1−Φ)B−C. Here,B is the benefit that describes the value of the timber that loggers
will obtain if they are not captured throughout the entire trip. The variable C represents
the cost and is measured by the travel cost of both going in and out of the forest. The
term 1− Φ describes the probability of not being captured, which depends on patrollers’
detection ability and loggers’ trajectories. We present details of these three components
in the following paragraphs. We follow the Stackelberg game model and assume loggers
have perfect information about patrol.
The benefit B depends on the value and amount of trees that perpetrators decide to

log. We assume each location x in the domain Ω has a fixed amount of timber, but with
different total valueB(x), depending on the category and quality of timber. Departing from
previous models where extracting happens instantaneously, we introduce the notion of
logging time tlog, which is comparable with travel time. We assume that loggers have a
constant production rate 1/T , where T is a global constant representing the time to clear
all the trees in one location. The actual benefit ignoring existence of patrollers, is then
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given by tlog
T B(x). We always assume that tlog ≤ T , so the loggers only extract from one

spot x in one trip and will return from the forest when the chosen region is cleared.
We assume loggers can be detected when they are logging or on their path back while

returning with their illegal goods. We define the capture intensity as ψ : Ω → R, which
we assume to be known to loggers and dependent on patrol resources and strategies. In
particular, it satisfies a budget constraint modeled as∫

Ω

ψ(x)(1 + μd(x))2dx ≤ E. (1)

Here, E represents the budget, d(x) is the Euclidean distance from location x to the major
highways and μ is an adjustable weight parameter. The term (1 + μd(x))2 models a sce-
nario wherein it is more expensive to patrol deeper into the forest. We tested different
capture intensity functions in the experiments in Sect. 3, which exhibit interesting pat-
terns. Following the derivation in [7], the probability of not being captured while logging
at x after time tlog is e−ψ(x)tlog . Longer logging time means larger benefit, but also a larger
risk of being detected. The probability of not being captured when they are walking back
following path X(s) is then given by e−

∫ τ
0 ψ(X(s))ds where τ is the travel time. Here we

assume the loggers are only detected when they actually have timber in their possession.
In this case, they lose all of the benefit but without extra penalty (see discussion at the
end of this subsection). The expected benefit by logging at location x for time tlog and
returning with path X(s) is then

B(x)
tlog
T

e−ψ(x)tloge−
∫ τ
0 ψ(X(s))ds. (2)

The cost—represented by the travel time—is easy to calculate given a path and the
associated velocity. We assume that loggers will embark from and return to one of the
fifteen municipalities, and use Xin and Xout to represent the paths to and from the logging
location, respectively. We assume that loggers may return to any municipality—not nec-
essarily the one they embarked from—which leads to a different initial value as is discussed
further in Sect. 2.2. In our model, we first define the inward velocity field v : Ω → R

2

following the transportation system, so that loggers travel with highest velocity when they
are on major highways and more slowly when they are on water or secondary highways.
When loggers are off highways or waterways, their velocity is scaled according to ter-
rain slope following Arnold et al. [2]. When they are returning, we assume their velocity
is slower because of the loaded cars or boats. In this case, we set the returning velocity
vout = v(x)/(1+c(tlog/T )γ ). Here, tlog/T measures the amount of trees loggers carry back.
The parameters c and γ model the effect of carrying the trees on the speed of motion.
The increased travel cost may be another reason that loggers decide to spend less than
the maximal logging time.
The previous analysis leads to a more realistic way of calculating profit for logging at

position x for time tlog and following paths Xin, Xout. The profit function is

P(x, tlog, Xin, Xout) = B(x)
tlog
T

e−ψ(x)tloge−
∫ τout
0 ψ(Xout(s))ds

−
∫ τout

0
α(Xout(s))ds −

∫ τin

0
α(Xin(s))ds, (3)

where τin and τout are the travel times, and α is a dimensional function that converts
time to monetary value. As in [7], α may be constant or may change based on location.
This can model loggers’ preference for certain areas or represent the variance of unit time
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travel cost. For example, one may expect the unit time cost of traveling on waterways to
be smaller than that of traveling on highways. Rational loggers will then try to solve the
optimization problem

Popt(x) = max
tlog,Xin ,Xout

P(x, tlog, Xin, Xout) (4)

and may go to the spots with positive profit. It is worth mentioning that the optimal path
going in vs. out of the forest can be different because of patrols. In reality, a mixture of
different patrol methods are deployed in Brazil, including the ground patrol, using boats
and motor vehicles, and the remote patrol, using helicopters, planes and drones. As is
pointed out in [7], the ground patrol leads to immediate confiscation, and it would be
more reasonable for loggers to switch to the minimal-time path thereafter. In this paper,
we always assume that the government deploys remote patrols. Since loggers are unaware
of being detected, they will choose optimal return paths that balance capture risk and
travel time.

2.2 Multiobjective approach and Eikonal equations

We adapt the multiobjective optimal control approach of Cartee and Vladimirsky [7] to
our model, and describe its use in solving the optimization problem (4). We consider a
trajectory X(s) following the dynamics

Ẋ(t) = a(t)v(X(t)), t ∈ [0, S],

X(0) = x,

X(S) ∈ X0.

(5)

Here, X0 denotes the set of possible destinations (the fifteen municipalities). The map a

is the control plan, taken from the set of valid control functions

A = {a : [0, T ] → R
2 | ameasurable, |a(t)| = 1, ∀t ∈ [0, T ]}.

Define J1(x, a, v) = ∫ τ

0 ψ(X(s))ds and J2(x, a, v) = ∫ τ

0 α(X(s))ds. According to (3), the profit

P(x, tlog, Xin, Xout) =B(x)
tlog
T

e−ψ(x)tloge−J1(x,a,vout) − J2(x, a, vout) − R(x), (6)

whereR(x) is theminimal cost traveling fromX0 to x. In fact, since our velocity is isotropic,
R(x) is the unique viscosity solution of the Eikonal equation

v(x)|∇R(x)| = α(x), x ∈ Ω \ X0,

R(x) = 0, x ∈ X0.
(7)

Recall that along the inward path, loggers do not need to worry about the patrol and
travel with velocity v(x). Along the outward paths, their velocity will be decreased if they
are carrying more timber, and the amount of timber they are carrying is proportional
to the logging time. In our model, we set vout = v/(1 + c(tlog/T )γ ). Plugging this into
equation (6) yields

P(x, tlog, Xin, Xout) =B(x)
tlog
T

e−ψ(x)tloge−J1(x,a,v)(1+c(tlog/T )γ )

− J2(x, a, v)(1 + c(tlog/T )γ ) − R(x).
(8)

We can resolve the optimal profit value using a multiobjective control formulation as
in [7]. For any λ ∈ [0, 1], let K λ(x) = λψ(x) + (1 − λ)α(x). Then, the value function uλ(x)
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defined by

uλ(x) = inf
a∈A

{
λJ1(x, a, v) + (1 − λ)J2(x, a, v)

}
(9)

is the unique viscosity solution [5,9] of the Eikonal equation

v(x)|∇uλ(x)| = K λ(x), x ∈ Ω \ X0,

uλ(x) = 0, x ∈ X0.
(10)

While we do not expect uλ to be smooth, under mild conditions on v and K , it will
be Lipschitz continuous, hence differentiable almost everywhere, and thus the λ-optimal
control

Aλ
x = arg min

a∈A
{
λJ1(x, a, v) + (1 − λ)J2(x, a, v)

}

is uniquely determined for almost every starting point x ∈ Ω \ X0. The value functions
corresponding to λ-optimal controls are defined by

uλ
1(x) = inf

a∈Aλ
x
{J1(x, a, v)},

uλ
2(x) = inf

a∈Aλ
x
{J2(x, a, v)},

(11)

and given uλ, we can resolve uλ
1 and uλ

2 by solving

∇uλ(x)∇uλ
1(x) = ψ(x)K λ(x)

v2(x)
, x ∈ Ω \ X0,

∇uλ(x)∇uλ
2(x) = α(x)K λ(x)

v2(x)
, x ∈ Ω \ X0.

(12)

with boundary conditions u1(x) = u2(x) = 0, for x ∈ X0 [7,23].
The optimal profit can be calculated by

Popt(x) = max
tlog,Xin ,Xout

P(x, tlog, Xin, Xout)

= max
tlog∈[0,T ]

⎧⎨
⎩sup

a∈A

⎡
⎣B(x)

tlog
T

e−ψ(x)tloge
−J1(x,a,v)

(
1+c

(
tlog
T

)γ )

−J2(x, a, v)
(
1 + c

( tlog
T

)γ )]}
− R(x)

= max
tlog∈[0,T ]

⎧⎨
⎩ max

λ∈[0,1]

⎡
⎣B(x)

tlog
T

e−ψ(x)tloge
−uλ

1(x)
(
1+c

(
tlog
T

)γ )

−uλ
2(x)

(
1 + c

( tlog
T

)γ )]}
− R(x)

= max
λ∈[0,1]

⎧⎨
⎩ max

tlog∈[0,T ]

⎡
⎣B(x)

tlog
T

e−ψ(x)tloge
−uλ

1(x)
(
1+c

(
tlog
T

)γ )

−uλ
2(x)

(
1 + c

( tlog
T

)γ )]}
− R(x).

(13)

For the inner maximum,

B(x)
tlog
T

e−ψ(x)tloge
−uλ

1(x)
(
1+c

(
tlog
T

)γ )
− uλ

2(x)
(
1 + c

( tlog
T

)γ )
(14)



29 Page 8 of 21 B. Chen et al. ResMath Sci (2021) 8:29

is a functionof tlog, and it is not easy to find the explicitmaximum. Inpractice,wediscretize
[0, T ] × [0, 1] into finitely many points (ti, λj) and simply choose the maximum among
these points.
We conclude the discussion of our model with a pair of remarks regarding implemen-

tation.
Remark 1: Choice of X0. In our model, we need to solve the Eikonal equation (7) for
the minimal travel time, where X0 is chosen to be the set of municipalities from which
the loggers depart. We also need to solve (10) for the λ-optimal value function uλ, where
X0 represents the set of municipalities that loggers transport timber to. As is briefly
mentioned in Sect. 2.1, we do not require loggers to return to the same municipality from
which they start. From the patrol perspective, it may not be clear which municipality the
loggers will choose. Accordingly, we let X0 be the set of all fifteen municipalities in both
(7) and (10). The resulting optimal profit for loggers reflects their freedom to choose their
starting and terminal municipalities. In the case that the loggers are required to return to
their starting point, one could perform 15 rounds of calculation, each of which takes X0
to be a singleton corresponding to one municipality in both Eqs. (7) and (10). In all our
simulations, we use the former setup, which always gives profit no less than the latter one,
and therefore helps the government to prepare for the worst case scenario.
Remark 2: Optimal paths. We find the optimal paths from x ∈ Ω to the set X0 by
following the negative gradient directions for the different value functions. That is, to find
the minimum cost path (optimal inward path) from x to X0 in the absence of patrols, we
integrate ẋ = −v(x) ∇R(x)

|∇R(x)| . To find the optimal path (optimal outward path) when loggers

carry timbers and go outwards, we integrate ẋ = −v(x) ∇uλ(x)
|∇uλ(x)| , where λ is the optimal

value for the extraction point x.
In our model, the optimal logging time is different at different locations. However, we

note that the optimal path is the same regardless of the logging time, because the logging
time (and the amount of timbers carried) influences the velocity uniformly. Thus, the path
will be traversed more slowly when a larger logging time is used, but the spatial location
of the path is the same.
Finally, one of the basic assumptions of the model is that velocity is isotropic, meaning

that it depends only on position, not on the direction of motion. Because of this, the
optimal path between two points can be determined regardless of which is the starting
point and which is the ending point. If we chose an anisotropic velocity—for example,
if the downstream and upstream velocities on the river were different—this would no
longer be true, and we would need to compute in-coming and out-going paths separately,
which would require additional PDEs similar to (7) and (10), but formulated with reversed
orientation.

2.3 Numerical methods

We need to solve two kinds of PDE in our model, namely the standard Eikonal equation
(7), (10) and auxiliary PDEs (12). In this paper, the regionΩ is the state of Roraima, which
is irregularly shaped.We use a uniformCartesian grid to discretize a rectangular region in
R
2 containing Ω . As mentioned in 2.2, we choose X0 to be the set of all 15 municipalities

in the state of Roraima. This applies to all three equations (7), (10) and (12). To mark the



B. Chen et al. Res Math Sci (2021) 8:29 Page 9 of 21 29

boundary of Ω , we set the velocity to zero outside of Ω , which makes it impossible for
paths to leave the region.
To approximate the equations, one can apply standard numerical methods for static

Hamilton–Jacobi equations [10]. Two of the most popular methods are fast-marching
and fast-sweeping schemes. Fast-marching methods are based on the idea of following
characteristic flow and updating values at grid nodes monotonically based on the values
at neighboring nodes [33–35,39]. With the proper choice for the order of node updates,
the fast-marching method can approximate the value function at N grid points with the
computational cost of O(N logN ). By contrast, the philosophy of fast-sweeping methods
is to account for all possible directions of characteristic flow, and sweep through the grid
nodes in alternating directions updating values at nodes in a Gauss–Seidel manner. Each
sweep captures the correct characteristic flow for some subset of the nodes, and this
process is iterated until convergence [6,27,38,40,42].
We opted for the basic fast-sweepingmethod presented in [27].While the fast-marching

method may be more efficient, the standard fast-sweeping scheme is sufficient for our
purposes and is very easy to implement. If efficiency is a concern, and one still prefers
fast-sweeping methods, one may be able to parallelize the computation as in [41], though
we did not do this. Alternatively, there are some novel fast methods to solve Eikonal
equations such as [8], which uses a hybrid fast-marching and fast-sweeping approach.

3 Implementation and results
In this section, we apply the optimization solver to ourmodel as described in Sect. 2.2.We
start with a detailed description of the benefit function, velocity function and evaluation
metrics in Sect. 3.1 and follow with an analysis of the numerical results in Sect. 3.2.

3.1 Experimental setup

High fidelity inference of the benefit requires domain knowledge of Brazilian forest, and
in this paper, we simply construct the benefit function based on the PRODES dataset [24].
We make the assumption that deforestation for agricultural land clearance only takes
place within 50 kilometers of the major highways and treat all the other deforestation
events as the result of logging, which are marked using red circles in Fig. 3a. We then
design the benefit based on a further assumption that high benefit gives rise to high
event frequency within the region. Specifically, we use the same technique as in kernel
density estimation [28] by assigning a two-dimensional Gaussian to each event. From
the PRODES data, we also construct a binary indicator function of tree coverage of the
region. We then generate the logging benefit by linearly combining the generated density
function and the binary indicator function as is shown in Fig. 3c. Our approach may give
a reasonable but not fully accurate evaluation of the true benefit, as features like distance
to municipalities and patrols are not incorporated. However, the simpler benefit model
allows us to focus on exploring loggers’ behavior under the influence of other factors. The
inverse problem of recovering the benefit function based on the deforestation event data,
travel distance and capture risk may be of interest by itself. Moreover, as is shown in Fig.
3a,many logging events are in the periphery area of the state of Roraima, providing further
evidence that these regions have high benefit worthy of long distance travel. In practice,
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Fig. 3 Panels show a red circles marking logging events (years 2001–2015) and yellow dots marking the 15
municipalities; b the binary indicator function of tree coverage (yellow) from 2015 PRODES data and c the
constructed benefit. The benefit is constructed by combining a density function and a binary indicator
function, normalized to have maximum benefit 10. The density function is constructed using kernel density
estimation with a two-dimensional Gaussian with standard deviation 20 for the logging events in panel (a)

local governmentsmay be able to design amore realistic benefit function by incorporating
more granular data involving types of trees and other vegetation in specific areas.
Next, since the loggingmodel is quite sensitive to the transportation system, we design a

velocity field, as shown in Fig. 4, to accurately capture themovement of loggers throughout
the region. Using the highway andwaterwaymap fromOpenStreetMap [25], we assign the
velocity 1, 0.7, 0.4 to major highways, secondary highways and waterways, respectively.
This reflects the assumption that loggers use trucks and cargo ships to transport timber.
Outside of these regions, we use a velocity model based on local slope of the terrain.
Specifically, we use elevation data from the Shuttle Radar Topography Mission [13], and
set the slope S(x, y) = |∇E(x, y)| where E(x, y) is the elevation map of the region. The
velocity is then given as 0.2 times a function of local slope as described by Arnold et al.
[2], who based their velocity function on that of Irmischer and Clarke [15]. Note that
in reality, the velocity on waterways may be anisotropic, diverging from the isotropic
assumption used in our model. One may generalize the model to incorporate the more
realistic scenario and arrive at anisotropic Hamilton–Jacobi equations similar to Eqs. (7)
and (10), which can be solved similarly.
The model may be helpful to aid in the design or evaluation of geographically targeted

patrol strategies. Many governments, including the Brazilian government, endeavor to
combat deforestation by designating geographic areas as protected areas or priority areas
for monitoring and enforcement. However, identifying where protection should be tar-
geted presents challenges for policymakers. Ourmodel evaluates the efficiencywithwhich
targeted patrol strategies can reduce deforestation using three metrics:

1. Pristine area ratio PA: we define the regions with non-positive profit as pristine area.
PA calculates the ratio of the area of pristine region over the area of the state as∫

Ω 1{P(x)≤0}dx∫
Ω 1dx .

2. Pristine benefit ratio PB: this metric weighs pristine area by benefit as PB =∫
Ω B(x)1{P(x)≤0}dx∫

Ω B(x)dx and represents the ratio of benefit within the pristine area over the
total benefit.

3. Weighted profit WP: we interpret the positive part of the profit as the probability
density for loggers to choose the logging location.We then defineWP as the expected
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Fig. 4 Velocity field in Roraima. Velocity on major highways, secondary highways and waterways is assigned
to be 1, 0.7 and 0.4 respectively. Velocity in off highway and off water areas depends on change of elevation

profit byWP =
∫
Ω P+(x)2dx∫
Ω P+(x)dx , where P+(x) is the non-negative profit and is defined as

P(x)1{P(x)≥0}.

We run the model on a 600 × 600 grid. We discretize λ and tlog into 101 levels and set
μ = 2

(5maxx∈Ω d(x)) ≈ 7.33 × 107, T = 2,000,000, and set α to be μ on the highways and
0.7μ otherwise.

3.2 Results

We test our model with different patrol budgets and patrol strategies.We also explore the
influence of logging time and changing the velocity when traveling with goods.

3.2.1 Example 1: No patrol

We first impose no patrol. Recall that the returning velocity is modified to be v(x)/(1 +
c(tlog/T )γ ) to account for the influence of carrying timber. When there is no patrol, i.e.,
ψ(x) = 0, the optimal paths traveling in and traveling out are the same.When additionally
the amount of timber has no influence, i.e., c = 0, the loggers will always use the maximal
logging time T . These statements are generally not true when patrol is present or c 
= 0
for the latter case. The resulting nonnegative profit P+ is shown in Fig. 5a. We then test
c = 0.5, γ = 1 and c = 1, γ = 1.5. As is shown in Fig. 5, larger c gives a harsher penalty
to velocity and thus leads to smaller profit. In all of the following experiments, we fix
c = 0.5, γ = 1.

3.2.2 Example 2: Comparison of different budgets

Recall that we impose a budget constraint for patrol following Eq. (1). We assume that
patrol uses up all of the resources available and hence we impose equality in Eq. (1) for all
our simulations. In this example, we set

ψ(x) = E
(1 + μd(x))5

∫
Ω
(1 + μd(x))3dx

. (15)
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Fig. 5 Expected nonnegative profit P+ when no patrol is imposed. Returning velocity depends on trees
obtained and is defined to be v(x)/(1 + c(tlog/T )γ ). The weighted profit is a 2.4091, b 2.3499, c 2.2622

Fig. 6 Expected nonnegative profit P+ with different budget E while fixing the other parameters

Recall that d(x) is the Euclidean distance to major highways and the above patrol simply
puts more effort on regions closer to major highways. The capture intensity is plotted in
Fig. 9c, which will be further discussed in Sect. 3.2.4. We then consider values of E set
to be 0.001, 0.003 and 0.005. The resulting nonnegative profit is plotted in Fig. 6. As is
expected, the higher budget gives lower profit. In all of the following experiments, we fix
E to be 0.003.

3.2.3 Example 3: Influence of patrol on logging time

We use the same experimental setup as in the previous example, and we fix E = 0.003.
Recall that we discretize the logging time and search for the best logging time by a param-
eter sweep. In all of the experiments, we use 101 different levels. We plot the optimal
logging time in Fig. 7a, where the numerics represent the proportion of the maximal time
T used.We then sample four points in this region that achieve optimal logging time when
logging for 50%, 60%, 70% and 80% of T , respectively, and are marked as red points in
Fig. 7a. Figure 7b shows the profit as a function of logging time at each point and we see
that there are different optimal logging times for each point. Note that when c = 0, i.e.,
when the timber carried has no influence on the travel velocity, the optimal time is only
dependent on the capture intensity and is equal to min{1/ψ(x), T }. When c is nonzero,
the solution of the optimal logging time is more complicated, as both benefit and travel
time now play a role in addition to patrol.
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Fig. 7 a Optimal logging time for regions with positive benefit. Red points mark sampled points with
optimal logging time of 80%, 70%, 60%, 50%, shown via false color. b Profit vs. logging time at each of the
sampled points from panel (a)

3.2.4 Example 4: Comparison of different patrol strategies

The enforcement strategy in Brazil during 2003–2012 involved combination of satellite
and ground patrols. A reduction in deforestation was achieved. Patrols were active in
areas with significant deforestation, the so called “priority” municipalities. Patrols were
also sent where the satellite system revealed suspiciously high deforestation [16]. In this
example, we compare the patrolling efficiency for different capture intensity functions
ψ(x), all of which require budget E (fixed as 0.003), calculated based on Eq. (1). We
plot the corresponding capture intensity function, profit P+ and optimal time for each
experiment and summarize the evaluation based on aforementioned metrics in Table 1.
First, we consider a patrol only based on distance to roads by setting

ψ(x) = E
(1 + μd(x))r

∫
Ω
(1 + μd(x))2−rdx

, (16)

where r is chosen from the values 1, 5, 15. We focus on regions that are close to roads as
logging and patrol costs are low in these regions. Larger r means the patrol is more con-
centrated near the highways, while smaller r leads to more uniformly distributed patrol.
Figures 8, 9 and 10 exhibit the corresponding capture intensity, profit P+ and optimal
time.When r = 1, the optimal logging time is more uniformly distributed compared with
that of larger values of r. In high benefit regions (away frommajor highways), the optimal
logging time and the profit markedly increase with increasing r, as loggers are less likely
to be captured away from major roads. As all three profit plots in Figs. 8, 9 and 10 have
the pattern that high benefit regions are high profit regions, we are inspired to include
benefit in the model.
Next, we set

ψ(x) = B(x)wE∫
Ω
(1 + μd(x))2B(x)wdx

, (17)

where w is chosen to be either 1, 0.5, or 0.2 so that the high benefit regions are targeted.
Similar to the previous example, largerw representsmore concentrated patrol. The results
are shown in Figs. 11, 12 and 13. Clearly, the intense patrol in high profit regions makes
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Fig. 8 a Capture intensity is based on distance only, with r = 1 in Eq. (16). b Expected nonnegative profit P+
over the entire region. c Optimal logging time plotted on regions with positive benefit

Fig. 9 a Capture intensity is based on distance only, with r = 5 in Eq. (16). b Expected nonnegative profit P+
over the entire region. c Optimal logging time plotted on regions with positive benefit

Fig. 10 a Capture intensity is based on distance only, with r = 15 in Eq. (16). b Expected non-negative profit
P+ over the entire region. c Optimal logging time plotted on regions with positive benefit

those regions less vulnerable. Meanwhile, profitable regions now cluster around highways
where both the initial benefit and the travel cost is relatively low.
Previous experiments inform us that we need to balance benefit and distance when

designing a patrol strategy. Here, we set the patrol to be

ψ(x) = B(x)wE
(1 + μd(x))r

∫
Ω
(1 + μd(x))2−rB(x)wdx

. (18)

We test this patrolwithw = 0.2, r = 1, 5, 15, plotted in Figs. 14, 15 and16.The statistics in
Table 1 confirm that forests are better protected when patrol strategies take both distance
and benefit into account (see (7)–(9) compared with (1)–(6) in Table 1). Compare the
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Fig. 11 a Capture intensity is based on benefit only, following equation (17), where w = 1. b Expected
nonnegative profit P+ over the entire region. c Optimal logging time plotted on regions with positive benefit

Fig. 12 a Capture intensity is based on benefit only, following equation (17), where w = 0.5. b Expected
non-negative profit P+ over the entire region. cOptimal logging time plotted on regions with positive benefit

Fig. 13 a Capture intensity is based on benefit only, following equation (17), where w = 0.2. b Expected
non-negative profit P+ over the entire region. cOptimal logging time plotted on regions with positive benefit

patrol results based on distance only (results (1)–(3)) to the results based on strategy (18)
(results (7)–(9)) in Table 1; it is clear that the “optimal” attention we should give to small-
distance regions, reflected by r, may vary based onw, i.e., the attention high benefit regions
get.Whenwe ignore the benefit, theweighted profit (WP)metric and the protected benefit
(PB) metric indicate that smaller r is better. When benefit is taken into consideration and
w = 0.2, the statistics suggest that moderately large concentration along highways is
more appropriate. Moreover, the three metrics are not necessarily positively or negatively
correlated. For example, both protected area (PA) and weighted profit (WP) of Fig. 16 are
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Fig. 14 a Capture intensity is based on benefit and distance, with w = 0.2, r = 1 in Eq. (18). b Expected
non-negative profit P+ over the entire region. cOptimal logging time plotted on regions with positive benefit

Fig. 15 a Capture intensity is based on benefit and distance, with w = 0.2, r = 5 in Eq. (18). b Expected
non-negative profit P+ over the entire region. cOptimal logging time plotted on regions with positive benefit

Fig. 16 a Capture intensity is based on benefit and distance, with w = 0.2, r = 15 in Eq. (18). b Expected
nonnegative profit P+ over the entire region. c Optimal logging time plotted on regions with positive benefit

larger then those of Figs. 14 and 15 though these two metrics move in opposite directions
inmany cases. This feature adds to the complexity of finding the “optimal” patrol strategy.
Finally, we consider the patrol strategy that putsmore effort along one specificwaterway

compared with all previous strategies, in addition to targeting highways and high benefit
regions. The selected waterways are marked in Fig. 17a with blue curves, and are shown
to be popular trails included in many optimal paths in the next experiment. We define a
new distance function d̂(x) which calculates the minimum Euclidean distance to major
highways and the selected waterways. We modify the patrol defined in Eq. (18) to obtain
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Fig. 17 a Capture intensity is based on benefit and distance to both highways and waterways, with
w = 0.2, r = 15 in Eq. (19). b Expected nonnegative profit P+ over the entire region. c Optimal logging time
plotted on regions with positive benefit

Table 1 Experimental results with different patrol strategies. Evaluationmetrics WP, PA, PB are defined
in Sect. 3.1

Patrol based on Parameters WP PA PB Index

Distance only r = 1 0.1321 0.7667 0.6912 (1)

r = 5 0.3419 0.7702 0.6231 (2)

r = 15 1.6289 0.7632 0.5311 (3)

Benefit only w = 1 0.1774 0.7493 0.7827 (4)

w = 0.5 0.1130 0.8108 0.8376 (5)

w = 0.2 0.0917 0.8384 0.8600 (6)

Benefit and distance to highways w = 0.2, r = 1 0.0773 0.8611 0.8791 (7)

w = 0.2, r = 5 0.0683 0.8863 0.9059 (8)

w = 0.2, r = 15 0.6714 0.9056 0.7695 (9)

Benefit and distance to highways and waterways w = 0.2, r = 15 0.0582 0.8944 0.9101 (10)

the following strategy:

ψ(x) = B(x)wE
(1 + μd̂(x))r

∫
Ω
B(x)w(1 + μd(x))2(1 + μd̂(x))−rdx

. (19)

In Fig. 17, we plot the results when w = 0.2, r = 15. As loggers have to reroute to avoid
heavy patrol (see Fig. 18d), the profit is less than that of the previous strategies.
All numerical experiments show that both distance and potential benefit are important

factors for patrol allocation. For now, we do not have a method to find optimal patrol
strategies, but our model can be applied to evaluate and compare different strategies.

3.2.5 Example 5: Optimal paths

Finally, we calculate and compare optimal paths for illegal loggers in the state of Roraima.
We randomly sample 500 target locations with probability proportional to the expected
profit shown in Fig. 8b and plot the optimal path going to each of these points (Fig.
18a). We also plot the optimal paths returning from those points under different patrol
strategies (Fig. 18b–d). As previously discussed, the optimal paths going to the targets are
the same regardless of the patrol. To manifest the differences, we plot the paths leaving
the target points (blue curves) on top of those going to the target points (red curves), as
shown in panels (b–d). Figure 18b shows that most of the optimal paths going in and
returning are quite similar under the patrol plotted in Fig. 13. As we increase the variance
of capture intensity by focusing more on the northwest corner as is shown in Fig. 11,
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Fig. 18 We sample 500 target points in the region and plot the optimal paths going into the forest (in a) and
going out of the forest (in (b)–(d)), with the deployed patrol marked in the sub-title. We plot the leaving paths
(blue) on top of the entering paths (red) in (b)–(d). Yellow dots mark the 15 municipalities

a major change is observed in Fig. 18c where loggers choose a different route to avoid
patrollers and return to a different municipality than the one from which they start. Still,
we see that many optimal paths that go deeper into the forest in the northwest corner
cluster into one trajectory; one reason why this happens is that the capture intensity is
much more uniform than the velocity field due to the presence of rivers. The fast travel
speed along the river outweighs the risk of being captured. With this in mind, we design
the patrol exhibited in Fig. 17, where the waterways that attract loggers are targeted.
The corresponding optimal paths plotted in Fig. 18d unsurprisingly demonstrate huge
differences, which leads to the decrease of WP and the increase of PB in Table 1 and
indicates the importance of a spatially targeted patrol.

4 Conclusion
We have presented a control theoretic model to predict the practice of illegal loggers,
including their travel paths and target locations. We consider logging events that are
sufficiently lucrative for the criminals that they are willing to incur some risk of being
caught. The criminals balance the risk against the benefit in order to find an optimal
logging time. Our model quantifies the intensity of a logging event, as opposed to a
binary model where deforestation events clear all the trees from an area. We believe this
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better approximates reality, since the PRODES dataset [24] indicates the occurrence of
past deforestation events in many locations where trees are still present. We detailed the
underlying mathematical formalism, including numerical schemes which can be used to
simulate the model. Finally, we tested the model with different values for the parameters
and made observations comparing different patrol strategies.
We discuss a few directions for future work on this model. First, one of the basic

assumptions is that the patrol strategy is known precisely by the loggers. This is a stan-
dard game-theoretic simplification, but is likely false in reality. Allowing for imperfect
knowledge (perhaps using stochastic effects) may more accurately describe the differen-
tial game between the criminals and patrol. Some work of relevance exists on surveillance
uncertainty in reach-avoid games [14]. Second, while the model can evaluate a suggested
patrol strategy, in its current form it does not resolve the optimal patrol strategy.Designing
a model that can resolve the optimal strategy, or even suggest a constructive method for
improving a given suboptimal strategy would be a large step forward. Finally, the model
described here is static. One could envision a time-series model wherein this is one stage
in an on-going game, and the patrol strategy could change at discrete times. Describing
this scenario in a realistic manner would likely require some qualitative changes to the
model. Studying the long-time behavior could provide additional insight to the expected
amount of deforestation over long stretches of time.
Our model is premised on the idea that efficient patrols against deforestation should

be spatially targeted, rather than uniformly applied across a territory. This assumption
comports with the targeted nature of deforestation enforcement policies used by many
countries. However, the most efficient patrols we recover in our experiments suggest
more precise spatial targeting of enforcement than those specified bymost existing public
policies. Such policies typically target administrative units (e.g., municipalities in Brazil)
or other large swaths of the forest. There are clear trade-offs between the precise and
blunt targeting, including challenges in patrol strategy implementation; communication
of control strategies such that logging can be deterred; and political costs of targeting. The
tools developed in this article may be used to help researchers and policymakers to study
these tradeoffs in order improve the efficacy of deforestation control policy.
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