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Abstract001

As large language models continue to grow002
in size, parameter-efficient fine-tuning (PEFT)003
has become increasingly crucial. While low-004
rank adaptation (LoRA) offers a solution005
through low-rank updates, its static rank al-006
location may yield suboptimal results. Adap-007
tive low-rank adaptation (AdaLoRA) improves008
this with dynamic allocation but remains sen-009
sitive to initial and target rank configurations.010
We introduce AROMA, a framework that auto-011
matically constructs layer-specific updates by012
iteratively building up rank-one components013
with very few trainable parameters that grad-014
ually diminish to zero. Unlike existing meth-015
ods that employ rank reduction mechanisms,016
AROMA introduces a dual-loop architecture017
for rank growth. The inner loop extracts in-018
formation from each rank-one subspace, while019
the outer loop determines the number of rank-020
one subspaces, i.e., the optimal rank. We reset021
optimizer states to maintain subspace indepen-022
dence. AROMA significantly reduces parame-023
ters compared to LoRA and AdaLoRA while024
achieving superior performance on natural lan-025
guage understanding and commonsense reason-026
ing tasks, offering new insights into adaptive027
PEFT.028

1 Introduction029

The emergence of large language models (LLMs)030

(Devlin et al., 2019; OpenAI, 2023; Meta, 2024a;031

Liu et al., 2024a) has revolutionized the field of032

natural language processing (NLP), yet their full033

potential is often limited by the substantial compu-034

tational demands of fine-tuning. Traditional full-035

parameter tuning, while effective, becomes pro-036

hibitively expensive as model sizes escalate into037

hundreds of billions of parameters (Lester et al.,038

2021; Meng et al., 2024). For instance, LLaMA3039

series boasts models with up to 400B parameters040

(Meta, 2024b), and DeepSeek-V3 encompasses041

671B total parameters due to its mixture-of-experts042

architecture (Liu et al., 2024a). This challenge has 043

driven the development of parameter-efficient fine- 044

tuning (PEFT) methods, such as prompt-tuning 045

(Lester et al., 2021), prefix-tuning (Li and Liang, 046

2021), and adapter tuning (Pfeiffer et al., 2021; 047

Houlsby et al., 2019). Besides these, low-rank 048

adaptation (LoRA) (Hu et al., 2022) stands out as 049

a particularly promising approach for its simplicity 050

and strong theoretical foundation. 051

LoRA learns incremental low-rank update ∆W 052

to pretrained model W0, without altering the model 053

architecture or introducing additional inference la- 054

tency (Hu et al., 2022). While attaining impressive 055

parameter efficiency (typically less than 1% of full 056

fine-runing), conventional LoRA implementations 057

impose uniform rank allocation across all layers. 058

This might be suboptimal, as different components 059

of the network exhibit varying sensitivities to pa- 060

rameter perturbations (Zhang et al., 2023a). More- 061

over, determining the optimal ranks remains an 062

empirical process that often necessitates extensive 063

trial-and-error experimentation. 064

As a modified version, adaptive low-rank adap- 065

tation (AdaLoRA) (Zhang et al., 2023a) adopts 066

dynamic rank allocation through singular value 067

decomposition (SVD)-based importance scoring. 068

While it improves the flexibility upon static con- 069

figurations like LoRA, it still faces several limi- 070

tations: 1) the need to prespecify both the initial 071

and target rank budgets; 2) substantial computa- 072

tional overhead caused by relaxed SVD; and 3) 073

rank redundancy stemming from a low effective 074

rank proportion. Consequently, the fundamental 075

tension between adaptive rank adjustment and com- 076

putational efficiency remains an open question. 077

In this work, we present Autonomous Rank- 078

One Matrix Adaptation (AROMA), a novel rank- 079

growing low-rank adaptation method that recon- 080

siders the dynamics of rank allocation. Experi- 081

mental results demonstrate that AROMA signif- 082

icantly outperforms both LoRA and AdaLoRA 083
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Figure 1: Results for LoRAr=8, AdaLoRAr=8, and AROMA (ours) include the number of trainable parameters, total
rank, rank of a specific layer and evaluation accuracy versus training step for RoBERTa-base on MRPC task. For
AROMA, training of "layer.0.attention.output.dense" and "layer.9.attention.self.value" automatically terminates at
2000 and 1600 steps, respectively, while the overall training automatically stops at 2400 steps.

when applied to the RoBERTa-base (Liu et al.,084

2019) on the GLUE benchmark (Wang et al., 2018)085

and the LLaMA3-8B (Meta, 2024a) on the com-086

monsense170K dataset (Hu et al., 2023). Notably,087

AROMA achieves this enhanced performance only088

using <10% of the parameters required by LoRAr=8089

and AdaLoRAr=8 without prespecified rank. Main090

contributions are summarized as follows:091

• Adaptive Rank Growth We propose a092

structure that progressively establishes layer-093

specific ranks with minimal and decreasing094

trainable parameters. Unlike AdaLoRA’s095

pruning-based strategy, AROMA initiates096

with zero rank and incrementally incorporates097

rank-one components until convergence crite-098

ria are met. This bottom-up structure ensures099

high parameter efficiency without loss of in-100

formative subspaces.101

• Automatic Rank Convergence AROMA fea-102

tures a dual-loop architecture for automatic103

rank control. Each module operates with an104

inner loop that extracts information from indi-105

vidual rank-one subspace, and an outer loop106

determines the number of these subspaces, i.e.,107

the optimal rank. We design a convergence cri-108

terion for both loops, enabling each module to109

autonomously determine the appropriate rank110

without the need to predefine it.111

• Independent Subspace We introduce a train-112

ing strategy termed Check & Merge & Reinit113

& Reset, which includes convergence check-114

ing, merging converged rank-one updates, pe-115

riodic optimizer resets alongside learning rate116

warmup. After each inner loop, the optimizer117

states are reset while preserving the knowl-118

edge accumulated in the weights. This facili-119

tates subspace switching, leading to high ef-120

fective rank proportion and a continuous flow121

of new domain knowledge.122

2 Background and Motivation 123

LoRA (Hu et al., 2022) fine-tunes the pretrained 124

model W0 ∈ Rm×n by incorporating a low-rank 125

decomposition, namely: 126

W = W0 +
α

r
∆W , ∆W = BA (1) 127

where B ∈ Rm×r, A ∈ Rr×n with r ≪ 128

min{m,n}, and scaling factor α secures consis- 129

tent output magnitude across different rank values. 130

However, this approach requires careful selection 131

of r and imposes uniform rank across all layers, 132

potentially not optimal. 133

AdaLoRA (Zhang et al., 2023a) addresses these 134

static allocation limitations by parameterizing the 135

incremental matrix as PΛQ, mimicking SVD 136

while enforcing orthogonality: 137

∆W = PΛQ,

s.t. P TP = QQT = Ir
(2) 138

where P ∈ Rm×r and Q ∈ Rr×n represent left 139

and right singular vectors while Λ ∈ Rr×r stores 140

singular values. AdaLoRA begins with a high 141

initial total rank budget and gradually reduces it 142

at certain intervals. Specifically, singular values 143

across all layers are sorted in descending order 144

based on the importance score, with only the top 145

b(t) retained, ultimately converging to a target rank 146

budget. Since these singular values belong to differ- 147

ent module weights, this mechanism enables adap- 148

tive rank allocation across modules. Nevertheless, 149

AdaLoRA exhibits several limitations: 150

• Like LoRA, AdaLoRA’s performance remains 151

sensitive to the initial and target total rank 152

configurations. Optimal rank selection is task- 153

dependent and architecture-specific, compli- 154

cating deployment in empirical scenarios. 155
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Figure 2: Workflow of AROMA. For each module, AROMA trains rank-one matrices sequentially with a dual-loop
architecture. In the inner loop, a rank-one LoRA, ba, is updated, whose convergence is assessed by the inner
stopping criterion. Prior to heading to next outer loop step, we check outer convergence by outer stopping criterion.
If not converged, the computed rank-one components are merged and frozen, and new b and a are initialized for
training with reset learning rate and optimizer states. For simplicity, we illustrate the length of inner loop to Tin,
though in practice, it is determined by both Tin and the inner convergence criterion.

• Computing the relaxed SVD in AdaLoRA in-156

troduces substantial complexity that scales lin-157

early with layer dimensions, creating compu-158

tational bottlenecks for very large models.159

• The higher initial ranks demand substan-160

tial memory allocation during early train-161

ing phases, imposing practical limitations in162

resource-constrained environments.163

Against these backdrops, we devise an auto-164

matic and adaptive rank-growing scheme inspired165

by rank-one matching pursuit (Wang et al., 2014,166

2015). This approach leverages the principle that167

any rank-r matrix L can be decomposed into a sum168

of r rank-one matrices:169

L =

r∑
p=1

bpap (3)170

where bp ∈ Rm×1 and ap ∈ R1×n. Building on171

this idea, we develop our novel framework.172

3 Methodology173

This section outlines two crucial aspects of174

AROMA: 1) the adaptive rank-growing mechanism,175

featuring both inner and outer stopping criteria; and176

2) the training strategy known as Check & Merge177

& Reinit & Reset. Figure 2 depicts the AROMA178

framework, and Algorithm 1 in Appendix A pro-179

vides the detailed steps.180

3.1 Adaptive Rank Growth 181

Unlike AdaLoRA that truncates singular values 182

with low important scores, we propose a rank- 183

growing scheme which introduces a dual-loop train- 184

ing structure: the inner loop computes individual 185

rank-one matrix, while the outer loop determines 186

the quantity of these matrices. For the pth outer 187

loop step, ∆W is parameterized as: 188

∆W = b1a1 + b2a2 + · · ·+ bp−1ap−1 + bpap

=
[
Bp−1 bp

] [ Ap−1

ap

]
(4)

189

where B ∈ Rm×p and A ∈ Rp×n. 190

AROMA learns a series of rank-one Lo- 191

RAs. At the beginning of the pth outer it- 192

eration, a new rank-one LoRA bpap is acti- 193

vated for training, while previously calculated 194

b1a1, b2a2, · · · , bp−1ap−1 are frozen and merged 195

as a single matrix Bp−1Ap−1. 196

Next, b(0)p and a
(0)
p enter the inner loop. Here we 197

denote the update in the tth inner loop step as b(t)p 198

and a
(t)
p . They update until t reaches the maximum 199

inner steps Tin or the inner stopping criterion is 200

met: 201∥∥∥b(t)p a
(t)
p

∥∥∥
F
−
∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F

< εin

(5) 202
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where εin denotes the inner convergence tolerance,203

and ∆Tin is the inner checking interval. We eval-204

uate (5) every ∆Tin steps, and if it is satisfied, the205

inner loop terminates, and the training of bpap, viz.,206

current rank-one LoRA, is completed.207

When to stop? Once the inner loop ends, we208

check for outer loop convergence before proceed-209

ing to the next outer loop step. Here we use a rela-210

tive weight change criterion between the (p− 1)th211

and the pth outer steps defined as:212

∥(W 0 + αBpAp)− (W 0 + αBp−1Ap−1)∥F
∥W 0 + αBp−1Ap−1∥F

=
∥αbpap∥F

∥W 0 + αBp−1Ap−1∥F
< εout

(6)213

where εout denotes the outer convergence tolerance.214

If (6) is satisfied, the outer loop will terminate, viz.,215

training of ∆W is completed.216

Since we only leverage rank-one updates, each217

update can be regarded as a basis spanning a rank-218

one matrix subspace, which encompasses different219

domain knowledge. In AROMA, the inner loop220

exploits each subspace, yielding a rank-one basis221

b
(t)
p a

(t)
p , while the outer loop continuously pursues222

new subspaces and determines the appropriate num-223

ber of subspaces. This rank-growing strategy al-224

lows for continuously extraction new information225

while keeping only one rank-one matrix trainable226

at a time, securing high parameter efficiency.227

Furthermore, we implement AROMA across all228

modules, and train them in parallel (see Figure 2).229

For the inner loop, each module has its own inner230

convergence label and advances to the next outer231

step when all modules have either converged or232

reach Tin. In particular, the module that converges233

will continue training while waiting for the others234

to catch up prior to proceeding together to the next235

outer step. Apart from facilitating rank allocation,236

this approach helps prevent premature termination,237

ensuring a more comprehensive subspace explo-238

ration.239

On the other hand, each module also possesses240

an outer convergence label, and once a module241

is determined as converged according to (6), it is242

immediately frozen and the latest rank-one com-243

ponent will not be merged into it, while training244

continues for the remaining modules. The overall245

training process finishes when all modules con-246

verge or reach the maximum total training steps247

T . This design allows each module to determine248

the optimal rank independently and autonomously,249

enabling adaptive rank growth with a gradually 250

reduced trainable parameters. We list the time 251

complexity of LoRA, AdaLoRA and AROMA 252

in Table 1, where r̃ denotes the current rank 253

for AdaLoRA. Typically, we have OAdaLoRA > 254

OLoRA ≥ OAROMA. Detailed analyses and exper- 255

imental verification are presented in Appendix B 256

and Section 5.2, respectively.

Scheme LoRA AdaLoRA AROMA
Complexity O((m+ n)r) O((m+ n)r̃) O((m+ n)p)

Table 1: Per-step complexity comparison
257

3.2 Check & Merge & Reinit & Reset 258

We further design a training strategy known as 259

Check & Merge & Reinit & Reset. As its name 260

implies, there are four components. 261

Check involves the inner and outer convergence 262

criteria described in (5) and (6). The inner checks 263

occur every ∆Tin steps, while the outer checks take 264

place when the inner loop finishes. 265

Merge & Reinit where Reinit stands for reinitial- 266

ize. As mentioned before, if (6) is met, we ter- 267

minate the outer loop. Otherwise, the previously 268

computed bpap is merged into Bp−1Ap−1, and the 269

training progresses to the next outer step. At this 270

point, a new rank-one LoRA bp+1ap+1 is intro- 271

duced, with Kaiming initialization (He et al., 2015) 272

for a(0)
p+1 and zero for b(0)p+1. 273

Reset represents optimizer state reset. With 274

momentum parameters β1 = 0.9 and β2 = 275

0.999, Adam optimizer (Kingma and Ba, 2014; 276

Loshchilov and Hutter, 2019) tends to follow es- 277

tablished optimization paths, as update steps are 278

strongly influenced by previous gradients. This 279

means that after Merge & Reinit, the previous up- 280

dates still influence current learning, causing the 281

new LoRA update to continue exploring the learned 282

subspaces. To circumvent this, we randomly prune 283

99.9% of the optimizer states following each Merge 284

& Reinit. Such an idea of subspace switching is 285

adopted in LLM pretraining (Lialin et al., 2024; 286

Zhao et al., 2024) and subspace learning (Larsen 287

et al., 2022; Gur-Ari et al., 2018). 288

Additionally, a warmup phase is implemented 289

at the start of training for each LoRA update to 290

mitigate early overfitting. While the initial warmup 291

phase is set to hundreds of steps, subsequent quick 292

warmup phases are limited to tens of steps. The 293

learning rate scheduler is illustrated in Figure 2. 294
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4 Experiments295

In this section, We fine-tune two LLMs of different296

sizes and architectures on two downstream tasks to297

evaluate the efficacy of AROMA. First, for natu-298

ral language understanding (NLU) tasks, we fine-299

tune RoBERTa-base (Liu et al., 2019) on the Gen-300

eral Language Understanding Evaluation (GLUE)301

(Wang et al., 2018) benchmark. Second, for com-302

monsense reasoning tasks, we fine-tune LLaMA3-303

8B (Meta, 2024a) on the Commonsense170K (Hu304

et al., 2023) dataset. NLU experiments are con-305

ducted on a single NVIDIA Tesla V100s-PCIE306

(32GB) GPU while the commonsense reasoning307

tasks are performed on two NVIDIA A100-SXM4308

(80GB) GPUs. All the results reported in this sec-309

tion are averaged over multiple experiments with310

different random seeds.311

4.1 Baselines312

Full fine-tuning and six PEFT methods serves as313

baselines, which are categorized into three groups:314

Adapter-based Methods. 1) AdapterH (Houlsby315

et al., 2019), which inserts lightweight adapter316

modules sequentially after transformer layers; and317

2) AdapterP (Pfeiffer et al., 2021), which places318

adapters after feedforward network (FNN) and Lay-319

erNorm modules.320

LoRA-based Methods. 1) LoRA; 2) AdaLoRA;321

and 3) ReLoRA (Lialin et al., 2024), which trains322

K rank-r matrices sequentially and merges them.323

While ReLoRA is designed for pretraining, it can324

be regarded as a reduced version of our method,325

where Tin and T are fixed for all modules, and (5)326

and (6) are omitted. Therefore, we incorporate it to327

highlight the effectiveness of AriLoRA’s adaptabil-328

ity and flexibility.329

Other Methods. 1) Full fine-tuning, which updates330

all of the model’s parameters; and 2) BitFit (Zaken331

et al., 2023), which fine-tunes only the bias terms332

of a pretrained model.333

4.2 Natural Language Understanding334

We first evaluate AROMA on NLU tasks. The335

model and datasets, training details are reported,336

followed by the results and analyses.337

Model and Datasets. RoBERTa-base (125M) (Liu338

et al., 2019) enhances BERT (Devlin et al., 2019)339

by utilizing larger batches, more data, and longer340

sequences, resulting in a stronger language under-341

standing capability. Eight NLU tasks in GLUE342

(detailed in Appendix F.1) are utilized to fine-tune343

RoBERTa-base, covering sentiment analysis, tex- 344

tual entailment, and semantic similarity. 345

Training Details. To secure a fair comparison, 346

we basically follow the implementation strategy in 347

(Zhang et al., 2023a). For each task in GLUE, we 348

conduct a grid search for optimal hyperparameters, 349

including the learning rate lr ∈ [1E-4, 2E-4, 5E-4, 350

7E-4], inner tolerance εin=0.1, and outer tolerance 351

εout ∈ [1E-3, 5E-3, 6E-3]. We apply AROMA to 352

all weight matrices, i.e., Wq, Wk, Wv,Wo, Wf1 , 353

and Wf2 . 354

LoRA and AdaLoRA are conducted using the 355

standard HuggingFace PEFT library, and the hy- 356

perparameters are set as suggested in their original 357

papers. We consider the rank of LoRA and the 358

target rank of AdaLoRA across {1, 8, 16}. The 359

corresponding AdaLoRA’s initial rank is set to 360

{4, 12, 24}. For ReLoRA, rank r = 1 is assigned 361

to each LoRA to match the parameter budget. De- 362

tailed hyperparameter settings for each baseline are 363

found in Appendix G.1. 364

Results and Analyses. Table 2 presents the per- 365

formance of AROMA alongside its counterparts, 366

where "#Param" refers to the number of initial train- 367

able parameters. It is shown that both AdaLoRA 368

and LoRA are sensitive to the rank parameter, 369

whereas AROMA operates independently of it. 370

AROMA achieves the highest average performance. 371

In term of specific tasks, it surpasses other base- 372

lines on CoLA, MRPC, RTE, and SST-2, while 373

yields comparable results on the remaining tasks. 374

This is achieved with only 0.014% (approximately 375

0.17M out of 125.0M) of the trainable parame- 376

ters required for full fine-tuning. In comparison to 377

ReLoRA, a reduced version of AROMA without 378

rank adaptability, our method demonstrates supe- 379

riority on all tasks, showcasing the latter effective- 380

ness. Particularly, AROMA shows a significant 381

advantage in CoLA, MRPC, and RTE tasks. We 382

will further explore MRPC and RTE to analyze 383

the reasons behind AROMA’s outstanding perfor- 384

mance. 385

We plot the rank distributions for AdaLoRA and 386

AROMA in Figs. 3 and 5, where the rank is a 387

combination of effective rank (Roy and Vetterli, 388

2007) and non-effective rank. The former measures 389

the effective dimensionality of a matrix, while the 390

latter corresponds to dimensions with negligible 391

contribution. Detailed description of effective rank 392

are provided in Appendix C. It is observed that 393

different weight matrices exhibit distinct rank char- 394

acteristics, and AdaLoRA has a larger average rank 395
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CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
Scheme #Param

MC Acc Acc Acc Acc Acc Acc PC
Avg

Full Fine-tuning 125.0M 60.26 87.68 88.33 92.58 90.75 78.63 94.63 90.31 85.40
BitFit♯ 0.10M 61.16 85.50 89.07 90.99 88.08 79.57 94.38 90.55 84.91

AdapterH† 0.31M 61.76 86.31 88.64 92.52 90.16 78.56 93.54 90.88 85.30
AdapterP† 0.30M 62.92 86.23 88.74 92.59 89.94 79.07 93.24 90.44 85.40
LoRA r=1 0.17M 56.22 85.87 87.25 91.34 90.64 75.28 93.46 88.73 83.59
LoRA r=8 1.34M 61.69 86.82 88.34 92.31 91.33 78.34 93.69 90.88 85.43
LoRA r=16 3.27M 64.44 84.88 88.97 92.02 91.35 77.62 92.47 91.18 85.37

AdaLoRA r=1 0.67M 57.86 87.21 88.24 92.46 89.91 76.17 93.69 89.99 84.44
AdaLoRA r=8 2.01M 58.08 87.50 87.45 92.37 90.58 74.65 94.04 90.03 84.34
AdaLoRA r=16 4.02M 59.35 87.67 88.73 92.64 90.79 77.26 93.23 90.26 84.99
ReLoRA1 × 8 0.17M 59.91 85.61 86.11 89.13 87.20 82.54 93.44 89.20 84.14

AROMA 0.17M 70.51 86.96 94.17 91.30 89.49 90.48 94.68 90.34 88.49

Table 2: Comparative performance of different fine-tuning schemes for RoBERTa-base on GLUE benchmark.
We report Matthew’s correlation coefficient (MC) for CoLA, Pearson correlation coefficient (PC) for STS-B, and
accuracy for all the remaining tasks. Higher is better for all metrics and the best results on each task are shown in
bold. Results with "♯" are retrieved from (Wang et al., 2025), and results with "†" are from (Mao et al., 2024). Note
that "#Param" reflects the initial phase, and AROMA’s #Param gradually descends to zero (see Figure 1a).
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(b) Rank distribution of AROMA

Figure 3: Resultant rank and effective rank distributions for RoBERTa-base fine-tuned on MRPC task by
AdaLoRAr=8 and AROMA, respectively. The x-axis represents the hidden layer index, while the y-axis refers to the
weight matrix fine-tuned in each layer. The total rank is described by the red outer circle, whereas the effective rank
is indicated by the blue inner circle. Experiment on RTE task is provided in Appendix D.

than AROMA. Furthermore, the rank distribution396

for AROMA is concentrated in the shallower lay-397

ers, Wv and Wo for both MRPC and RTE tasks.398

In terms of effective rank, it is found that LoRA399

exhibits a low effective rank, just a quarter of the400

adapter rank (Shuttleworth et al., 2024; Biderman401

et al., 2024; He et al., 2025). For AdaLoRA, we see402

that only about half of its rank is effective (50.4%403

for MRPC, 49.2% for RTE), whereas AROMA ex-404

hibits an exceptionally high effective rank ratio405

(96.3% for MRPC and 91.7% for RTE).406

Moreover, Figure 1 depicts the number407

of trainable parameters, total rank, ranks408

of specific layers and accuracy versus train-409

ing step for RoBERTa-base on MRPC task.410

We select "layer.0.attention.output.dense" and411

"layer.9.attention.self.value" as illustration. It is412

evident that LoRAr=8, AdaLoRAr=8 and AROMA 413

exhibit consistent, decreasing and growing rank 414

behaviors, respectively. We notice that LoRA 415

maintains nearly 1.3M trainable parameters, with 416

a stable total rank and specific rank throughout, 417

as it fixes the same rank for all weight matri- 418

ces. AdaLoRA, on the other hand, progressively 419

decreases the total rank and shows a fluctuating 420

but generally declining specific rank, starting with 421

2.0M trainable parameters and averaging 1.62M. 422

In contrast, AROMA necessitates only 0.17M train- 423

able parameters initially, with an average of 0.08M. 424

Remarkably, AROMA attains the highest accuracy 425

among the three methods. 426

4.3 Commonsense Reasoning 427

In this section, we assess AROMA in handling a 428

larger model and a more complex task. 429
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Scheme #Param ARC-E OBQA SIQA ARC-C WinoG PIQA BoolQ HellaS Avg
ChatGPT♢ - 89.7 74.8 68.5 79.9 66.1 85.4 73.1 78.5 77.0
LoRA r=1 1.77M 89.04 82.80 77.33 76.71 81.93 86.40 70.40 93.06 82.21
LoRA r=8 14.16M 88.55 82.80 78.15 77.13 85.71 86.13 68.44 93.55 82.56
LoRA r=16 28.31M 88.01 83.10 79.53 75.34 83.82 85.74 72.35 93.45 82.67

AdaLoRA r=1 7.08M 87.58 71.00 71.14 71.16 70.09 83.95 62.17 67.33 73.05
AdaLoRA r=8 21.23M 88.30 76.60 71.24 71.33 72.45 83.51 65.57 82.94 76.49
AdaLoRA r=16 42.47M 88.47 75.20 71.14 72.70 71.90 84.17 62.69 84.13 76.30
AROMA r=1 1.77M 89.31 83.70 79.12 78.50 81.85 87.43 71.16 93.79 83.11
AROMA r=8 14.16M 89.48 84.79 79.62 78.76 83.98 87.22 73.74 94.36 83.85

Table 3: Comparative performance of different fine-tuning schemes for LLaMA3-8B on Commonsense170K dataset.
We report accuracy for all tasks. Results with "♢" are retrieved from (Liu et al., 2024b). Note that "#Param" reflects
the number of initial trainable parameters, and AROMA’s average #Param is even less.

Model and Datasets. Following (Wang et al.,430

2025), we fine-tune LLaMA3-8B (Meta, 2024a)431

on the Commonsense170K dataset, which is a mix-432

ture of eight commonsense reasoning benchmarks433

(details provided in Appendix F.2). LLaMA3-8B434

model, developed by Meta, is designed for vari-435

ous NLP tasks, offering improved performance and436

efficiency over its predecessors.437

Training Details. Apart from AROMA under the438

previous setting (denoted as AROMAr=1), we ad-439

ditionally increase the rank of each LoRA update440

to 8 (denoted as AROMAr=8) to accommodate this441

complex task. We apply AROMA to three weight442

matrices in the self-attention layer: Wq, Wk, Wv,443

and two in the FFN: Wup, and Wdown. After fine-444

tuning, the resultant model is evaluated on each445

of the eight benchmarks in terms of accuracy. De-446

tailed hyperparameter settings are found in Ap-447

pendix G.2.448

Results. Table 3 shows the comparative per-449

formance between AROMA and its counterparts,450

where ChatGPT (Wei et al., 2022) is also in-451

cluded for reference. Notably, AROMAr=1 and452

AROMAr=8 rank in the top two in terms of aver-453

age accuracy. Specifically, AROMAr=1 achieves454

this with approximately 0.02% of the original455

model’s parameters, 6% of LoRAr=8’s and 3% of456

AdaLoRAr=8’s. AROMAr=8 outpaces other base-457

lines on three benchmarks and achieves second-458

best results on the remaining ones. These results459

validates the efficacy of our method.460

5 Further Discussions461

5.1 Ablation Study462

We carry out ablation study on a crucial component463

of AROMA: Reset, i.e., randomly pruning 99.9%464

of the optimizer states after training a rank-one up-465

date, to validate its effectiveness on performance. 466

We fine-tune RoBERTa-base on MRPC task using 467

AROMA with and without Reset, respectively, with 468

all other conditions remain unchanged. We aver- 469

age the results over 5 experiments with different 470

seeds, and report the average rank and effective 471

rank across all layers as well as accuracy.

MRPC RTE
Scheme

Avg r Eff r Acc Avg r Eff r Acc
AROMAw/o Reset 1.43 1.39 83.33 1.42 1.30 70.48
AROMAw/ Reset 2.78 2.68 94.17 3.42 3.14 90.48

Table 4: Comparison of AROMA with and without opti-
mizer Reset for RoBERTa-base on MRPC task. "Avg r"
and "Eff r" denote average rank and average effective
rank, respectively.

472
As seen in Table 4, AROMA with the Re- 473

set mechanism demonstrates a larger rank than 474

AROMAw/o Reset and achieves substantially higher 475

accuracy. This suggests that Reset is beneficial. 476

We interpret this as the optimizer reset allowing the 477

new rank-one matrix to be computed from scratch, 478

rather than relying on the previously computed 479

rank-one matrix. This approach gives the new 480

rank-one matrix a greater chance to explore new 481

subspaces and learn more information. Supplemen- 482

tary experiment on cosine similarity in Appendix 483

E further underscores the importance of the Reset 484

mechanism. 485

5.2 Time Efficiency 486

In this subsection, we compare the efficiency of 487

AROMA with LoRA and AdaLoRA. We unify the 488

three methods by configuring their batch size of 64 489

and maximum sequence length of 256, and com- 490

pute the average training time per epoch across 491

six tasks in the GLUE benchmark on a single 492
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NVIDIA Tesla V100s-PCIE (32GB) GPU. The493

results are reported in Table 5 and we see that494

AROMA demonstrates significant efficiency ad-495

vantages in five tasks, while being comparable to496

LoRA in the remaining task, RTE. Particularly, its497

average time per epoch is 76.1% of LoRA’s and498

28.5% of AdaLoRA’s. This superiority can be at-499

tributed to the rank-one training and unnecessity of500

SVD computation.501

Task LoRA AdaLoRA AROMA
CoLA 44.37 107.74 12.43
MRPC 17.84 45.57 13.21
QNLI 557.98 1547.82 542.72
RTE 15.13 31.46 20.14

SST-2 339.58 873.30 153.47
STS-B 30.04 73.13 22.42

Avg 167.50 446.50 127.40

Table 5: Per-epoch time comparison for RoBERTa-base
on GLUE.

6 Related Work502

PEFT emerges as a crucial approach for adapting503

LLMs to downstream tasks while minimizing com-504

putational and storage requirements. We categorize505

existing PEFT methods into three key paradigms506

(Han et al., 2024) as follows:507

Additive PEFT Methods incorporate auxiliary508

trainable modules within transformer architec-509

tures. Serial adapter (Houlsby et al., 2019) intro-510

duces dual adapter modules positioned after self-511

attention and FFN layers, while (Pfeiffer et al.,512

2021) optimizes computational efficiency by insert-513

ing adapters exclusively after "Add & Norm" layers.514

Prompt-based techniques constitute another signifi-515

cant branch of additive PEFT. Approaches such as516

prefix-tuning (Li and Liang, 2021; Li et al., 2023;517

Zhang et al., 2023b), p-tuning (Liu et al., 2024c),518

and prompt-tuning (Lester et al., 2021) augment519

inputs or intermediate representations with train-520

able vectors, demonstrating particular efficacy for521

generative tasks and few-shot learning scenarios.522

Selective PEFT Methods strategically identify523

and modify only the most critical subset of model524

parameters. BitFit (Zaken et al., 2023) achieves525

remarkable efficiency by exclusively fine-tuning526

bias terms while maintaining all other param-527

eters frozen. Diff pruning (Guo et al., 2021)528

learns sparse parameter differences from pretrained529

weights, focusing on task-specific components.530

FishMask (Sung et al., 2021) leverages Fisher infor-531

mation to identify and update the most influential 532

parameters for specific tasks. 533

Reparameterized PEFT Methods transform the 534

parameter space to facilitate efficient updates with- 535

out direct modification of original weights. (IA)3 536

(Liu et al., 2022) and SSF (Lian et al., 2022) in- 537

troduce learnable vectors that modulate activations 538

in self-attention and FFN with low parameter over- 539

head. LoRA (Hu et al., 2022) decomposes weight 540

updates into low-rank matrix products, significantly 541

reducing trainable parameters while preserving per- 542

formance. AdaLoRA (Zhang et al., 2023a) en- 543

hances flexibility through SVD-like decomposition 544

for dynamic rank allocation. DoRA (Liu et al., 545

2024b) decomposes the weight into magnitude and 546

directional components. NOLA (Koohpayegani 547

et al., 2024) and VeRA (Kopiczko et al., 2024) rep- 548

resent weight matrices as linear combinations of 549

fixed random bases, optimizing only the mixture 550

coefficients. HydraLoRA (Tian et al., 2024) main- 551

tains fixed LoRA A matrix while training multiple 552

B matrices to accommodate multi-domain tasks. 553

LoRA and its variants achieve state-of-the-art pa- 554

rameter efficiency, making them the most widely 555

used PEFT approaches. 556

7 Conclusion 557

In this work, we propose Autonomous Rank- 558

One Matrix Adaptation (AROMA) for parameter- 559

efficient fine-tuning. Unlike the existing adaptive 560

rank adjustment method, AdaLoRA, which trun- 561

cates singular values with low importance scores 562

and requires both initial and target rank budgets, 563

AROMA employs a rank-growing approach that au- 564

tonomously constructs layer-specific updates with 565

very few trainable parameters that gradually dimin- 566

ish to zero. We design a dual-loop architecture, 567

featuring an inner loop that exploits each rank-one 568

subspace to learn a LoRA update with the corre- 569

sponding stopping criterion, while the outer loop 570

determines the number of subspaces, namely, the 571

optimal rank, guided by another stopping criterion. 572

The learned rank-one components are merged and 573

frozen, allowing only one rank-one LoRA to be 574

trained at a time, thereby ensuring high parameter 575

efficiency. Additionally, optimizer states are peri- 576

odically reset to maintain subspace independence. 577

Experimental results for NLU and commonsense 578

reasoning tasks highlight AROMA’s superiority in 579

terms of accuracy and efficiency. 580
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Limitations581

Despite achieving promising results on NLU582

and commonsense reasoning benchmarks, our ap-583

proach has several challenges to be tackled. It has584

yet to be tested in multimodal applications, a cru-585

cial area as multimodal models continue to gain586

prominence. Furthermore, we have not validated587

its scalability for extremely LLMs exceeding 100588

billion parameters, where the dynamics of rank allo-589

cation may differ significantly. Future work should590

address these issues and explore the method’s ap-591

plicability across a broader range of tasks.592
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A Algorithm of AROMA909

We present the details of AROMA in Algorithm 1.910

B Time Complexity911

We first analyze the per-step complexity to cal-912

culate ∆W of dimensions m × n. In the for-913

ward pass, considering B ∈ Rm×r, A ∈ Rr×n,914

and x ∈ Rn. LoRA costs O((m + n)r) time.915

AdaLoRA calculates PΛQx, hence its complex-916

ity is O((m + n + r̃)r̃) = O((m + n)r̃), where917

r̃ is the current rank. AROMA computes BpApx918

with p being the current outer step, which requires919

O ((m+ n) p) time. Since LoRA has a consistent920

rank, AdaLoRA decreases rank, while AROMA in-921

creases rank, typically we have r̃ ≥ r ≥ p, which922

leads to OAdaLoRA
per-step > OLoRA

per-step ≥ OAROMA
per-step .923

Based on this, we discuss the overall complex-924

ity. Given T as the total training steps, LoRA925

consumes O ((m+ n)rT ) time. For AdaLoRA,926

we roughly denote its average rank as ri+rf
2927

with ri and rf being the initial average rank928

and the target average rank, respectively, then its929

overall complexity is O
(
(m+ n)

ri+rf
2 T

)
. For930

AROMA, supposing that each inner loop has Tin931

steps for simplicity, and there are P outer steps,932

i.e., T = P · Tin, the overall complexity is933

O
(
(m+ n)Tin

∑P
p=1 p

)
= O

(
(m+ n)1+P

2 T
)
.934

Typically, we have OAdaLoRA
overall > OLoRA

overall ≥935

OAROMA
overall . The above claims are listed in Table936

6 and are experimentally validated in Section 5.2.

Scheme LoRA AdaLoRA AROMA
Per-step

Complexity O((m+ n)r) O((m+ n)r̃) O((m+ n)p)

Overall
Complexity O((m + n)rT ) O(

ri + rf

2
(m + n)T ) O

(
(m + n)T 1+P

2

)

Table 6: Complexity comparison

937

C Effective Rank938

In data representation, effective rank (Roy and Vet-939

terli, 2007) reflects the number of truly meaningful940

independent feature dimensions in a matrix, whose941

definition is given as follows. Consider a m × n942

matrix W with singular values:943

σ1 ≥ σ2 ≥ · · · ≥ σK ≥ 0 (7)944

where K = min {m,n}. Given pk = σk∑K
k=1 |σk|

,945

the effective rank is defined as:946

erank = exp {H(p1, p2, · · · , pK)} (8)947

where H(p1, p2, · · · , pK) is the Shannon entropy: 948

H(p1, p2, · · · , pK) = −
K∑
k=1

pk log pk (9) 949

Effective rank is smaller than full rank as it ignores 950

dimensions with minimal contributions. 951

In neural network weight matrices, effective rank 952

indicates the number of effective feature transfor- 953

mations learned by that layer. Low effective rank 954

proportion suggests redundancy or underutilized 955

parameters (Shuttleworth et al., 2024). 956

D Rank Distribution for RTE Task 957

Figure 5 shows the rank distributions for AdaLoRA 958

and AROMA on RTE task, and we observe a simi- 959

lar phenomenon to that of Figure 3. 960

E Cosine Similarity 961

1 2 3 4 5 6 7
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Figure 4: Cosine similarity between AROMAw/o Reset

and AROMAw/ Reset for layer.10.attention.output.sense
layer results for RoBERTa-base on MRPC task.

Figure 4 shows the cosine similarity between 962

AROMAw/o Reset and AROMAw/ Reset, which we 963

only focus on values on the diagonal. It reveals that 964

their solutions are identical initially, but increas- 965

ingly diverge with each subsequent Reset. This 966

finding further underscores the important role of 967

the Reset mechanism. 968

F Dataset Details 969

F.1 GLUE 970

GLUE (Wang et al., 2018) is a collection of nine 971

NLU benchmarks designed to evaluate the perfor- 972

mance of LLMs across multiple dimensions of 973

linguistic competence. This work involves eight 974

commonly used GLUE tasks: CoLA (Warstadt 975

et al., 2019), MNLI (Williams et al., 2018), MRPC 976

(Dolan and Brockett, 2005), QNLI (Rajpurkar et al., 977

2016), QQP (Wang et al., 2018), RTE (Dagan et al., 978

2005; Haim et al., 2006; Giampiccolo et al., 2007; 979
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Bentivogli et al., 2009), SST-2 (Socher et al., 2013),980

STS-B (Wang et al., 2018). Their details are listed981

in Table 7.

Dataset #Train #Valid #Test #Label Metric
Single-Sentence Classification

CoLA 8.5k 1k 1k 2 MC
SST-2 67k 872 1.8k 2 Acc

Pairwise Text Classification
MNLI 393k 20k 20k 3 Acc
RTE 2.5k 277 3k 2 Acc
QQP 364k 40k 391k 2 Acc
MRPC 3.7k 408 1.7k 2 Acc
QNLI 105k 5.5k 5.5k 2 Acc

Text Similarity
STS-B 5.7k 1.5k 1.4k 1 PC

Table 7: Details of GLUE benchmark. "MC", "PC", and
"Acc" represent Matthews correlation coefficient, Pear-
son correlation coefficient, and accuracy, respectively.
"#Train", "#Valid", and "#Test" refer to the number of
training, validation, and testing examples, respectively.
"#Label" denotes the number of labels.

982

F.2 Commonsense170K983

Commonsense170K (Hu et al., 2023) is a com-984

prehensive benchmark collection comprising ap-985

proximately 170,000 training examples and 400986

validation examples across eight diverse common-987

sense reasoning datasets: ARC-Easy and ARC-988

Challenge (Clark et al., 2018), OBQA (Mihaylov989

et al., 2018), SIQA (Sap et al., 2019), WinoGrande990

(Sakaguchi et al., 2021), PIQA (Bisk et al., 2020),991

BoolQ (Clark et al., 2019); and HellaSwag (Zellers992

et al., 2019). This consolidated benchmark evalu-993

ates LLMs’ capabilities across multiple dimensions994

of commonsense knowledge, including conceptual995

reasoning, physical understanding, social intelli-996

gence, causal reasoning, coreference resolution,997

and scientific knowledge.998

G Hyperparameter Settings999

G.1 NLU Task1000

Hyperparameter setup for NLU task can be found1001

in Table 9, where we follow the suggested set-1002

ting for LoRA and AdaLoRA, and meticulously1003

tune for AROMA, including the learning rate lr ∈1004

[1E-4, 2E-4, 5E-4, 7E-4], inner tolerance εin ∈1005

[0.05, 0.1], and outer tolerance εout ∈ [1E-3, 5E-1006

3, 6E-3]. Initial warmup is 100 and subsequent1007

warmup is 50 for all tasks, except CoLA which uses1008

500 and 100 respectively. We use publicly avail- 1009

able implementation (https://github.com/ 1010

Guitaricet/relora) to run ReLoRA. 1011

G.2 Commonsense Reasoning Task 1012

Hyperparameter setup for commonsense reasoning 1013

task can be found in Table 8.

Scheme Hyperparameter Value

AROMAr=1

r 1
α 2

Max Seq. Len. 256
Batch Size 32

Epoch 20
Learning Rate 1E-4

T 100,000
Tin 1000
∆Tin 10
εin 0.1
εout 1E-3

Eval Batch Size 8

AROMAr=8

r 8
α 16

Max Seq. Len. 256
Batch Size 32

Epoch 15
Learning Rate 1E-4

T 80,000
Tin 2000
∆Tin 10
εin 0.1
εout 1E-2

Eval Batch Size 8

Table 8: Hyperparameter setup for LLaMA3-8B on
Commonsense170k

1014
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Algorithm 1: AROMA
Input: Inner and outer tolerances εin and εout, maximum inner training steps Tin, inner checking

interval ∆Tin, maximum total training steps T .
1 for each module in parallel
2 Initialize: b(0)1 ← 0; a(0)

1 ← Kaiming_init.
3 Freeze W0.
4 for p = 1, 2, · · · do // OUTER LOOP
5 for t = 1, 2, · · · , Tin do // INNER LOOP

6 Update b
(t)
p , a(t)

p .
7 if MOD(t,∆Tin) = 0 then

8 inner_converged = True, if

∥∥∥b(t)p a
(t)
p

∥∥∥
F
−
∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F

< εin. // CHECK

9 Break the inner loop, if all modules are inner_converged.

10 outer_converged = True, if ∥αbpap∥F
∥W 0+αBp−1Ap−1∥F

< εout. // CHECK

11 Break the outer loop, if outer_converged.

12 ∆W = ∆W + b
(t)
p a

(t)
p . // MERGE

13 b
(0)
p+1 ← 0; a(0)

p+1 ← Kaiming_init. // REINIT

14 Reset optimizer states & learning rate warmup. // RESET

15 Finish, if all modules are outer_converged or reach T .
Output: ∆W .
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(a) Rank distribution of AdaLoRA
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Figure 5: Resultant rank and effective rank distributions for RoBERTa-base fine-tuned on RTE task by AdaLoRAr=8
and AROMA, respectively. The x-axis represents the hidden layer index, while the y-axis refers to the weight
matrix fine-tuned in each layer. The total rank is described by the red outer circle, whereas the effective rank is
indicated by the blue inner circle.
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Scheme Hyperparameter CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

LoRA

Max Seq. Len. 128
Batch Size 64

Epoch 30 30 30 25 25 50 60 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4

r 8
α 16

AdaLoRA

Max Seq. Len. 128
Batch Size 32

Epoch 25 7 30 5 5 52 24 26
Learning Rate 5E-4 5E-4 1E-3 1.2E-3 5E-4 1.2E-3 8E-4 2.2E-3

ri 12
rf 8
γ 0.5 0.1 0.1 0.1 0.1 0.3 0.1 0.1
T 6500 85000 3000 15000 55000 4000 50000 4500
ti 800 8000 600 2000 8000 600 6000 800
∆T 10 100 1 100 100 1 100 10
tf 3500 50000 1800 8000 25000 1800 22000 2000
α 32

Max Seq. Len. 256
Batch Size 32 32 64 32 64 64 64 32

Epoch 130 10 52 10 10 62 40 50
Learning Rate 2E-4 7E-4 1E-4 2E-4 4E-4 1E-4 5E-4 5E-4

T 35000 85000 3000 30000 55000 2400 40000 10000
Tin 5000 5000 200 2000 55000 200 2500 1000
∆Tin 10
εin 0.1
εout 2E-2 5E-3 5E-3 5E-3 1E-3 6E-3 5E-3 5E-3

AROMA

α 4

Table 9: Hyperparameter setup for RoBERTa-base on GLUE
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