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Abstract
Training reinforcement learning policies using
environment interaction data collected from vary-
ing policies or dynamics presents a fundamental
challenge. Existing works often overlook the dis-
tribution discrepancies induced by policy or dy-
namics shifts, or rely on specialized algorithms
with task priors, thus often resulting in suboptimal
policy performances and high learning variances.
In this paper, we identify a unified strategy for
online RL policy learning under diverse settings
of policy and dynamics shifts: transition occu-
pancy matching. In light of this, we introduce
a surrogate policy learning objective by consid-
ering the transition occupancy discrepancies and
then cast it into a tractable min-max optimization
problem through dual reformulation. Our method,
dubbed Occupancy-Matching Policy Optimiza-
tion (OMPO), features a specialized actor-critic
structure equipped with a distribution discrimi-
nator and a small-size local buffer. We conduct
extensive experiments based on the OpenAI Gym,
Meta-World, and Panda Robots environments, en-
compassing policy shifts under stationary and non-
stationary dynamics, as well as domain adaption.
The results demonstrate that OMPO outperforms
the specialized baselines from different categories
in all settings. We also find that OMPO exhibits
particularly strong performance when combined
with domain randomization, highlighting its po-
tential in RL-based robotics applications1.
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1. Introduction
Online Reinforcement Learning (RL) aims to learn policies
to maximize long-term returns through interactions with
the environments, which has achieved significant advances
in recent years (Gu et al., 2017; Bing et al., 2022b; Mnih
et al., 2013; Perolat et al., 2022; Cao et al., 2023). Many of
these advances rely on on-policy data collection, wherein
agents gather fresh experiences in stationary environments
to update their policies (Schulman et al., 2015; 2017; Zhang
& Ross, 2021). However, this on-policy approach can be
expensive or even impractical in some real-world scenar-
ios, limiting its practical applications. To overcome this
limitation, a natural cure is to enable policy learning with
data collected under varying policies or dynamics (Haarnoja
et al., 2018; Rakelly et al., 2019; Raileanu et al., 2020; Duan
et al., 2021; Zanette, 2023; Xue et al., 2023).

Challenges arise when dealing with such collected data
with policy or dynamics shifts, which often diverge from
the distribution induced by the current policy under the de-
sired target dynamics. Naı̈vely incorporating such shifted
data during training without careful identification and treat-
ment, could lead to erroneous policy evaluation (Thomas
& Brunskill, 2016; Irpan et al., 2019), eventually result-
ing in biased policy optimization (Imani et al., 2018; Nota
& Thomas, 2020; Chan et al., 2022). Previous methods
often only focus on specific types of policy or dynamics
shifts, lacking a unified understanding and solution to ad-
dress the underlying problem. For example, in stationary
environments, off-policy methods such as those employing
importance weights or off-policy evaluation have been used
to address policy shifts (Jiang & Li, 2016; Fujimoto et al.,
2018; Zanette & Wainwright, 2022). Beyond policy shifts,
dynamics shifts can occur in settings involving environment
or task variations, which are common in task settings such
as domain randomization (Tobin et al., 2017; Chen et al.,
2021; Kadokawa et al., 2023), domain adaptation (Eysen-
bach et al., 2021; Liu et al., 2021), and policy learning under
non-stationary environments with local consistency assump-
tion (Rakelly et al., 2019; Lee et al., 2020; Wei & Luo, 2021;
Bing et al., 2022a). According to different combinations of
dynamics and policy shifts, we categorize these different
scenarios into three types: 1) policy shifts with stationary
dynamics, 2) policy shifts with domain adaption, and 3)
policy shifts with non-stationary dynamics (see Figure 1 for
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Figure 1. Diverse settings of online reinforcement learning under policy or dynamics shifts.

an intuitive illustration2).

Our work stems from a realization that, from a distribution
perspective, under the same state s, policy shifts lead to dif-
ferent choices of actions a, while dynamics shifts primarily
introduce discrepancies over the next states s′ given state-
action pair (s, a). Regardless of the combination of policy
and dynamics shifts, the discrepancies inherently boil down
to the transition occupancy distribution involving (s, a, s′).
This means that if we can correct the transition occupancy
discrepancies among data from various sources during the
RL training process, i.e., implementing transition occupancy
matching, we can elegantly model all policy & dynamics
shift scenarios within a unified framework.

Inspired by this insight, we introduce a novel and uni-
fied framework, Occupancy-Matching Policy Optimization
(OMPO), designed to facilitate policy learning with data af-
fected by policy and dynamic shifts. We start by presenting
a surrogate policy objective capable of explicitly modelling
the impacts of transition occupancy discrepancies. We then
show that this policy objective can be transformed into a
tractable min-max optimization problem through dual re-
formulation (Nachum et al., 2019b), which naturally leads
to an instantiation with a special actor-critic structure, ad-
ditionally equipped with a distribution discriminator and a
small-size local buffer.

We conduct extensive experiments on diverse benchmark
environments to demonstrate the superiority of OMPO, in-
cluding locomotion tasks from OpenAI Gym (Brockman
et al., 2016) and manipulation tasks in Meta-World (Yu et al.,
2019) and Panda Robots (Gallouédec et al., 2021) environ-
ments. Our results show that OMPO can achieve consis-
tently superior performance using a single unified frame-
work as compared to prior specialized baselines from diverse
settings. Since OMPO can explicitly capture and address
the discrepancies in various RL training settings, as well as
reliable components referring to previous works (Goodfel-
low et al., 2014; Nachum et al., 2019b), it achieves better

2The walking and running pictograms are from https://
olympics.com/en/sports/

stability with lower variance. Notably, when combined with
domain randomization, OMPO exhibits remarkable perfor-
mance gains and sample efficiency improvement, which
makes it an ideal choice for many RL applications facing
sim-to-real adaptation challenges, e.g., robotics tasks.

2. Related Works
We first briefly summarize relevant methods that handle
diverse types of policy and dynamics shifts.

Policy learning under policy shifts with stationary dy-
namics. In scenarios involving policy shifts, several off-
policy RL methods have emerged that leverage off-policy
experiences stored in the replay buffer for policy evaluation
and improvement (Jiang & Li, 2016; Fujimoto et al., 2018;
Zanette & Wainwright, 2022; Ji et al., 2023). However,
these approaches either ignore the impact of policy shifts
or attempt to reconcile policy gradients through importance
sampling (Precup, 2000; Munos et al., 2016). Unfortunately,
due to off-policy distribution mismatch and function approx-
imation error, these methods often suffer from high learning
variance and training instability, potentially hindering policy
optimization and convergence (Nachum et al., 2019b).

Policy learning under policy shifts with domain adap-
tion. Domain adaptation scenarios involve multiple time-
invariant dynamics, where policy training is varied in the
source domain to ensure the resulting policy is adaptable
to the target domain. Methods in this category typically
involve modifying the reward function to incorporate target
domain knowledge (Arndt et al., 2020; Eysenbach et al.,
2021; Liu et al., 2021). However, these methods often
require the source domain dynamics can cover the target
domain dynamics, and potentially involve extensive human
design to achieve optimal performance. Another setting
is domain randomization, where the source domains are
randomized to match the target domain (Tobin et al., 2017;
Chen et al., 2021; Kadokawa et al., 2023). Nonetheless,
these techniques heavily rely on model expressiveness and
generalization, which do not directly address shifts in policy
and time-invariant dynamics.
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Policy learning under policy shifts with non-stationary
dynamics. Non-stationary dynamics encompass a broader
class of environments where dynamics can change at any
timestep, such as encountering unknown disturbances or
structural changes. Previous works considered the local con-
sistency assumption, i.e., the current dynamics would keep
a period before varying, then often adopted additional latent
variables to infer possible successor dynamics (Lee et al.,
2020; Wei & Luo, 2021; Bing et al., 2022a), learned the sta-
tionary state distribution from data with various dynamics
shift (Xue et al., 2023), or improved dynamics model for do-
main generalization (Cang et al., 2021). In this work, we fol-
low this assumption and design a small-size local buffer to
collect the local stationary dynamics. However, these meth-
ods either rely on additional conditions about the nature of
dynamics shifts, such as hidden Markov models (Bouguila
et al., 2022) and Lipschitz continuity (Domingues et al.,
2021), or neglect the potential policy shifts issues, limiting
their flexibility across non-stationary dynamics and policy
shifts settings.

3. Preliminaries
We consider the typical Markov Decision Process (MDP)
setting (Sutton & Barto, 2018) denoted by a tuple
M = ⟨S,A, r, T, µ0, γ⟩. Here, S and A represent the state
and action spaces, while r : S×A → (0, rmax] is the reward
function. The transition dynamics T : S × A → ∆(S)
captures the probability of transitioning from state st and
action at to state st+1 at timestep t, which can be stationary
or non-stationary but satisfied the local consistency
assumption. The initial state distribution is represented by
µ0, and γ ∈ (0, 1] is the discount factor. Given an MDP,
the objective of RL is to find a policy π : S → ∆(A)
that maximizes the cumulative reward obtained from the
environment, which can be formally expressed as π∗ =
argmaxπ Es0∼µ0,at∼π(·|st),st+1∼T (·|st,at)[

∑∞
t=0 γ

tr(st, at)].

In this paper, we employ the dual form of the RL objec-
tive (Puterman, 2014; Wang et al., 2007; Nachum et al.,
2019b), which can be represented as follows:

π∗ = argmax
π
J (π) = argmax

π
E(s,a)∼ρπ [r(s, a)] . (1)

where ρπ(s, a) represents a normalized discounted state-
action occupancy distribution (henceforth, we omit “normal-
ized discounted” for brevity), characterizing the distribution
of state-action pairs (s, a) induced by policy π under the
dynamics T . It can be defined as:

ρπ(s, a) = (1− γ)
∞∑
t=0

γtPr
[
st = s, at = a

∣∣s0 ∼ µ0,

at ∼ π(·|st), st+1 ∼ T (·|st, at)
]
.

To tackle the dual optimization problem (1), a class of meth-
ods known as the DIstribution Correction Estimation (DICE)
has been developed (Nachum et al., 2019b; Lee et al., 2021;
Kim et al., 2021; Ma et al., 2022; 2023; Li et al., 2022).
These methods leverage offline data or off-policy experience
to estimate the on-policy distribution ρπ(s, a), and subse-
quently learn the policy. In this paper, we extend DICE-
family methods from state-action occupancy distribution
ρπ(s, a) to the transition occupancy ρπT (s, a, s

′) matching
context (see more discussion in Appendix D), addressing
the challenges posed by policy shifts, dynamics shifts and
their combination in a unified framework.

4. Policy Optimization under Policy and
Dynamics Shifts

We consider the online off-policy RL setting, where the
agent interacts with environments, collects new experiences
{(s, a, s′, r)} and stores them in a replay buffer D. At each
training step, the agent samples a random batch from D to
update the policy. Concretely, we use π̂ and T̂ to denote the
empirically historical/source policies and dynamics in the
replay buffer (Hazan et al., 2019; Zhang et al., 2021), while
π and T to denote the current policy and desired/current dy-
namics. For the aforementioned three policy and dynamics
shifted types, we discuss the difference of π̂, T̂ and π, T as

• Policy shifts with stationary dynamics: Only policy
shifts occur (π̂ ̸= π), while the dynamics remain station-
ary3 (T̂ ≃ T ).

• Policy shifts with domain adaption: Both policy shifts
(π̂ ̸= π) and gaps between the source and target dynam-
ics (T̂ ̸= T ) can be observed.

• Policy shifts with non-stationary dynamics: Policy
shifts (π̂ ̸= π) occur alongside dynamics variation
(T̂1, T̂2, · · · , T̂h ̸= Th+1). For simplicity, we consider
a mixture of historical dynamics in the replay buffer,
representing this as (T̂ ̸= T ). Note that, according to
the local consistency assumption, at each training stage,
the current dynamics T can be captured in recent envi-
ronmental interaction data, similar to the consideration
in Xie et al. (2021); Bing et al. (2022a).

Through estimating the discrepancies between different
state-action distributions, the mismatch between ρπ(s, a)
and ρπ̂(s, a) can be effectively corrected for policy shifts.
However, when both policy and dynamics shifts occur, using
state-action occupancy alone, without capturing the next
state s′ for dynamics shifts, is insufficient. To address this,
we introduce the concept of transition occupancy distribu-
tion (Viano et al., 2021; Ma et al., 2023). This distribution

3We use “≃” to represent that the empirical dynamics derived
from sampling data can be approximately equal to the true dynam-
ics.
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considers the normalized discounted marginal distributions
of state-actions pair (s, a) as well as the next states s′:

ρπT (s, a, s
′)=(1− γ)

∞∑
t=0

γtPr
[
st = s, at = a, st+1 = s′

∣∣
s0 ∼ µ0, at ∼ π(·|st), st+1 ∼ T (·|st, at)

]
. (2)

Hence, the policy & dynamics shifts in the previous three
types can be generalized as transition occupancy discrep-
ancies, i.e., ρπT (s, a, s

′) ̸= ρπ̂
T̂
(s, a, s′). This offers a new

opportunity for developing a unified modelling framework
to handle diverse policy and dynamics shifts.

In this section, we first propose a surrogate policy learning
objective that models the effects of the transition occupancy
discrepancies, which can be further cast into a tractable
min-max optimization problem through dual reformulation.

4.1. A Surrogate Policy Learning Objective

To address the various shifts in policy learning, we first
model them into the policy objective. By employing the fact
x > log(x) for x > 0 and Jensen’s inequality, we have

J (π) > logJ (π) = logE(s,a,s′)∼ρπT [r(s, a)]

= logE(s,a,s′)∼ρπ
T̂

[(
ρπT /ρ

π
T̂

)
· r(s, a)

]
≥ E(s,a,s′)∼ρπ

T̂

[
log
(
ρπT /ρ

π
T̂

)
+ log r(s, a)

]
= E(s,a,s′)∼ρπ

T̂
[log r(s, a)]−DKL

(
ρπ
T̂
∥ρπT

)
. (3)

Here, DKL(·) represents the KL-divergence that measures
the distribution discrepancy introduced by the dynamics T̂ .
Previous works (Ma et al., 2022; 2023) also use log J(π)
as policy optimization objective, since log(·) is a monotoni-
cally increasing function which provides the same optimiza-
tion direction. In cases encountering substantial dynamics
shifts, the term DKL(·) can be large, subordinating the re-
ward and causing training instability. Drawing inspiration
from prior methods (Haarnoja et al., 2018; Nachum et al.,
2019b; Xu et al., 2023), we introduce a weighted factor α to
balance the scale and consider the more practical objective:

J̄ (π) = E(s,a,s′)∼ρπ
T̂
[log r(s, a)]−αDKL

(
ρπ
T̂
∥ρπT

)
. (4)

We can further incorporate the policy π̂ into this objective
to account for policy shifts. The following proposition
provides an upper bound for the KL-divergence discrepancy:
Proposition 4.1. Let ρπ̂

T̂
(s, a, s′) denote the transition oc-

cupancy distribution specified by the replay buffer. The
following inequality holds for any f -divergence that upper
bounds the KL divergence:

DKL

(
ρπ
T̂
∥ρπT

)
≤E(s,a,s′)∼ρπ

T̂

[
log

(
ρπT
ρπ̂
T̂

)]
+Df

(
ρπ
T̂
∥ρπ̂
T̂

)
.

The proof is provided in Appendix A.1. By substituting this
bound into objective (4), we can establish a surrogate policy
learning objective under policy and dynamics shifts:

Ĵ (π) = E(s,a,s′)∼ρπ
T̂

[
log r(s, a)− α log

(
ρπT /ρ

π̂
T̂

)
︸ ︷︷ ︸

policy & dynamics shifts

]

− αDf

(
ρπ
T̂
∥ρπ̂
T̂

)
︸ ︷︷ ︸

policy shifts

. (5)

The final surrogate objective (5) involves ρπ̂
T̂
(s, a, s′), mak-

ing it theoretically possible to utilize data from the replay
buffer for policy learning, and also allowing us to explicitly
investigate the impacts of policy shifts in Df

(
ρπ
T̂
∥ρπ̂
T̂

)
and

policy & dynamics shifts in log
(
ρπT /ρ

π̂
T̂

)
. More discus-

sions on the benefits of applying this surrogate objective are
provided in Appendix B.

4.2. Dual Reformulation of the Surrogate Objective

Directly solving the surrogate objective has some difficul-
ties, primarily due to the presence of the unknown distribu-
tion ρπ

T̂
. Estimating this distribution necessitates sampling

from the current policy π samples in historical dynamics T̂ .
While some model-based RL methods (Janner et al., 2019;
Ji et al., 2022) in principle can approximate such samples
through model learning and policy rollout, these approaches
can be costly and lack feasibility in scenarios with rapidly
changing dynamics. Instead of dynamics approximation,
we can rewrite the definition of transition occupancy distri-
bution as the following Bellman flow constraint (Puterman,
2014) in our optimization problem,

ρπ
T̂
(s, a, s′) =(1− γ)µ0(s)T̂ (s

′|s, a)π(a|s)

+ γT̂ (s′|s, a)π(a|s)
∑

ŝ,â
ρπ
T̂
(ŝ, â, s).

Let T π⋆ ρπ(s, a) = π(a|s)
∑
ŝ,â ρ

π
T̂
(ŝ, â, s) denote the

transpose (or adjoint) transition operator. Note that∑
s′ ρ

π
T (s, a, s

′) = ρπ(s, a) and
∑
s′ T (s

′|s, a) = 1, we
can integrate over s′ to remove T̂ , i.e., ∀(s, a) ∈ S ×A,

ρπ(s, a) = (1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a), (6)

Thus, to enable policy learning with the surrogate objec-
tive, we seek to solve the following equivalent constrained
optimization problem based on Equations (5) and (6):

argmax
π

Eρπ
T̂

[
log r − α log

ρπT
ρπ̂
T̂

]
− αDf

(
ρπ
T̂
∥ρπ̂
T̂

)
, (7)

s.t. ρπ(s, a) = (1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a). (8)

The challenge of solving it is threefold, 1) how to com-
pute the distribution discrepancy log

(
ρπT /ρ

π̂
T̂

)
, 2) how to
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handle the constraint tractably; 3) how to deal with the
unknown distribution ρπ

T̂
(s, a, s′). To address these, our

solution involves three steps (for more details, please refer
to Appendix A).

Step 1: Computing the distribution discrepancy term.
We denoteR(s, a, s′) = log

(
ρπT /ρ

π̂
T̂

)
for simplicity. Given

a tuple (s, a, s′), R(s, a, s′) characterizes whether it stems
from on-policy sampling ρπT (s, a, s

′) or the replay buffer
data ρπ̂

T̂
(s, a, s′). In view of this, we adopt DL as a local

buffer to collect a small amount of on-policy samples, while
DG as a global buffer for historical data involving policy
and dynamics shifts. Using the notion of GAN (Goodfel-
low et al., 2014), we can train a discriminator h(s, a, s′) to
distinguish the tuple (s, a, s′) sampled from DL or DG,

h∗(s, a, s′) = argmin
h

1

|DG|
∑

(s,a,s′)∼DG

[log h(s, a, s′)]

+
1

|DL|
∑

(s,a,s′)∼DL

[log(1− h(s, a, s′))], (9)

then the optimal discriminator is solved as h∗(s, a, s′) =
ρπ̂
T̂
(s,a,s′)

ρπ̂
T̂
(s,a,s′)+ρπT (s,a,s′)

. Thus, based on the optimal discrimina-

tor, we can recover the distribution discrepancies R(s, a, s′)

R(s, a, s′) = log
(
ρπT (s, a, s

′)/ρπ̂
T̂
(s, a, s′)

)
= − log [1/h∗(s, a, s′)− 1] . (10)

Step 2: Handling the Bellman flow constraint. In this
step, we make a mild assumption that there exists at least
one pair of (s, a) to satisfy the constraint (6), ensuring that
the constrained optimization problem is feasible. Note that
the primal problem (7) is convex, under the feasible assump-
tion, we have that Slater’s condition (Boyd & Vandenberghe,
2004) holds. That means, by strong duality, we can intro-
duce Q(s, a) as the Lagrangian multipliers, and the primal
problem can be converted to the following equivalent un-
constrained problem.

Proposition 4.2. The constraint optimization problem can
be transformed into the following unconstrained min-max
optimization problem,

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
∥ρπ̂
T̂

)
+ E(s,a,s′)∼ρπ

T̂
[Ψ(s, a, s′)] . (11)

where Ψ(s, a, s′) is defined as

Ψ(s,a,s′)=log r(s,a)−αR(s,a,s′)+γT πQ(s,a)−Q(s,a).

The proof is provided in Appendix A.2.

Step 3: Optimizing with the data from replay buffer. To
address the issue of the unknown distribution ρπ

T̂
(s, a, s′) in

the expectation term, we follow a similar treatment used in
the DICE-based methods (Nachum et al., 2019a;b; Nachum
& Dai, 2020) and adopt Fenchel conjugate (Fenchel, 2014)
to transform the problem (11) into a tractable form, as shown
in the following proposition.
Proposition 4.3. Given the accessible distribution
ρπ̂
T̂
(s, a, s′) specified in the global replay buffer, the min-

max problem (11) can be transformed as

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[f⋆ (Ψ(s, a, s′)/α)] , (12)

where f⋆(x) := maxy⟨x, y⟩−f(y) is the Fenchel conjugate
of f(·).

See the proof in Appendix A.3. Such a min-max optimiza-
tion problem allows us to train the policy by randomly sam-
pling in the global replay buffer. Importantly, our method
doesn’t assume any specific conditions regarding the policy
or dynamics shifts in the replay buffer, making it applicable
to diverse types of shifts.

4.3. Practical Implementation

Building upon the derived framework, we now introduce
a practical learning algorithm called Occupancy-Matching
Policy Optimization (OMPO). Apart from the discriminator
training, implementing OMPO mainly involves two key
designs. More implementation details are in Appendix C.

Policy learning via bi-level optimization. For the min-
max problem (12), we utilize a stochastic first-order two-
timescale optimization technique (Borkar, 1997) to itera-
tively solve the inner objective w.r.t. Q(s, a) and the outer
one w.r.t. π(a|s), as a special actor-critic structure.

Instantiations in three settings. OMPO can be seam-
lessly instantiated for various settings, one only needs to
specify the corresponding interaction data collection scheme.
The small-size local bufferDL is used to store the fresh data
sampled by the current policy under the target/local con-
sistent dynamics; while the global buffer DG stores the
historical data involving policy and dynamics shifts.

5. Experiment
Our experimental evaluation aims to investigate the fol-
lowing questions: 1) Is OMPO effective in handling the
aforementioned three settings with various shifts types? 2)
Is the performance consistent with our theoretical analyses?

5.1. Experimental Results in Three Shifted Types

Our experiments encompass three distinct scenarios involv-
ing policy and dynamics shifts. For each scenario, we
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Figure 2. Comparison of learning performance on stationary environments. The solid lines represent the median performance with 10
different random seeds, while the shaded regions indicate the 95% percentiles.
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Figure 3. Target dynamics visualizations for the four tasks are on the top. A comparison of learning performance on domain adaption is
below. The x coordinate indicates the interaction steps on the target dynamics.

employ four popular OpenAI gym benchmarks (Brock-
man et al., 2016) and their variants, including Hopper-v3,
Walker2d-v3, Ant-v3, and Humanoid-v3. Detailed settings
are provided in Appendix E. Note that, all experiments in-
volve policy shifts. Since OMPO as well as most baselines
are off-policy algorithms, the training data sampled from
the replay buffer showcase gaps with on-policy distribution.

Stationary environments. We conduct a comparison
of OMPO with several off-policy model-free baselines
by stationary environments. These baselines include: 1)
SAC (Haarnoja et al., 2018), the most popular off-policy
actor-critic method; 2) TD3 (Fujimoto et al., 2018), which
introduces the Double Q-learning technique to mitigate train-
ing instability; and 3) AlgaeDICE (Nachum et al., 2019b),

utilizing off-policy evaluation methods to reconcile policy
gradients to deal with behavior-agnostic and off-policy data.
We evaluate all methods using standard benchmarks with
stationary dynamics, and train them in off-policy paradigm.

Figure 2 displays the learning curves of the three baselines,
along with their asymptotic performance. These results
demonstrate OMPO’s superior performance in terms of ex-
ploration efficiency and training stability, indicating its ef-
fectiveness in handling the policy-shifted scenarios.

Domain adaption. In this scenario, akin to Eysenbach
et al. (2021), the policy trains on both source dynamics (T̂ )
and target dynamics (T ). Its objective is to maximize returns
efficiently within the target dynamics while collecting am-
ple data from the diverse source dynamics. Across the four
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Figure 4. Non-stationarity in structure. Figure 5. Non-stationarity in mechanics.
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Figure 6. Comparison of learning performance on non-stationary environments.

tasks, source dynamics align with standard benchmarks,
while the target dynamics feature substantial differences.
Specifically, in the Hopper and Walker2d tasks, the torso
and foot sizes double, and in the Ant and Humanoid tasks,
gravity doubles while introducing a headwind with a veloc-
ity of 1m/s. Refer to the top part of Figure 3 for details.

We benchmark OMPO in this scenario against several base-
lines, including 1) DARC (Eysenbach et al., 2021), which
adjusts rewards for estimating dynamics gaps; 2) Domain
Randomization (DR) (Tobin et al., 2017), a technique that
randomizes source dynamics parameters to enhance policy
adaptability under target dynamics; 3) SAC (Haarnoja et al.,
2018), which is directly trained using mixed data from both
dynamics. Furthermore, since the DR approach is to ran-
domize the source parameters, DR can be combined with
OMPO, DARC and SAC, leading to variants OMPO-DR,
DARC-DR and SAC-DR, which provide a comprehensive
validation and comparison.

Figure 3 presents the learning curves for all the compared
methods, illustrating that OMPO outperforms all baselines
with superior eventual performance and high sample effi-
ciency. Notably, when OMPO is combined with DR technol-
ogy, diverse samplings from randomized source dynamics
further harness OMPO’s strengths, enabling OMPO-DR to
achieve exceptional performance and highlighting its po-
tential for real-world applications. For instance, within the
target dynamics of the Walker2d task, OMPO nearly reaches

convergence with about 60 trajectories, equivalent to 60,000
steps of target environmental interaction. More trajectory
visualizations are provided in Figure 12, Appendix E.

Non-stationary environments. In non-stationary envi-
ronments, the dynamics vary throughout the training pro-
cess, setting this scenario apart from domain adaptation
scenarios with fixed target dynamics. For the Hopper and
Walker2d tasks, the lengths of the torso and foot vary be-
tween 0.5 ∼ 2 times the original length. While the Ant
and Humanoid tasks feature stochastic variations in gravity
(0.5 ∼ 2 times) and headwinds (0 ∼ 1.5m/s) at each time
step. The non-stationarities of four tasks are depicted in
Figures 4 and 5 and the environment details are provided in
Appendix E.

The baselines employed in this scenario include: 1)
CEMRL (Bing et al., 2022a), which leverages Gaus-
sian mixture models to infer dynamics change; and 2)
CaDM (Lee et al., 2020), which learns a global dynam-
ics model to generalize across different dynamics.

The results in Figure 6 demonstrate OMPO’s ability to ef-
fectively handle both policy and dynamics shifts, showing
its superiority compared to the baselines. The rapid conver-
gence and automatic data identification of OMPO enable it
to adapt seamlessly to diverse shifts, showcasing impressive
convergence performance. Besides, even under various non-
stationary conditions, OMPO keeps the same parameters,
a notable advantage when compared to the baselines (see

7
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Figure 7. Different stages of ρπT by Hopper tasks. Left: 10k, 20k
and 50k (π1, π2 and π3). Right: 20k (π1, T and π1, T̂ ) and 50k
(π2, T and π2, T̂ ).
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OMPO without discriminator by Hopper tasks.
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hyperparameters and baseline settings in Appendix C). Be-
sides, we provide more results with severe dynamics shifts
(up to 0.5 ∼ 3 times changes) in Appendix F.6, showing
the robustness and reliability of OMPO.

In Summary. Through 12 tasks spanning 3 settings, we
show that OMPO can outperform all specialized baselines,
and even in severe shifts, such as Figures 3 and 6, OMPO has
smaller variance and better stability, achieved by explicitly
modelling and handling various shifts for policy learning.

5.2. Analysis of OMPO under policy & dynamics shifts

The necessity of handling shifts. We visualize the transi-
tion occupancy distribution ρπT (s, a, s

′) at different training
stages using the training data from the Hopper task within
OMPO. As shown in the left part of Figure 7, even under
stationary dynamics, policy shifts resulting from constantly
updated policies lead to variations of action distributions,
thus, ρπ1

T ̸= ρπ2

T ̸= ρπ3

T . When encountering dynamics shifts
caused by domain adaptation, as depicted in the right part
of Figure 7, these distribution inconsistencies are exacer-
bated by the dynamics gaps, as evidenced by the differences
between ρπ1

T and ρπ1

T̂
, or ρπ2

T and ρπ2

T̂
. Furthermore, visu-

alizations of non-stationary environments are provided in
Figure 13 of Appendix F, which represent a more complex
combination of policy and dynamic shifts.

To further understand the necessity of addressing these
shifts, we introduce a variant of OMPO where the distri-
bution discriminator h(s, a, s′) is eliminated, disabling the
treatment of shifts by setting R(s, a, s′) ≡ 0. Performance

comparisons are shown in Figure 8 using the Hopper task.
The results illustrate that in stationary environments, the
variant performs comparably to SAC, both of which ig-
nore policy shifts and are weaker than OMPO. Furthermore,
when applied in domain adaptation with significant dynam-
ics gaps, the variant suffers from high learning variance and
becomes trapped in a local landscape. Similar results appear
for non-stationary environments in Figure 14 of Appendix F.
These results highlight the effectiveness of our design, as
well as the necessity of handling the shifts.

Ablations on different hyperparameters. We conducted
investigations on two key hyperparameters by Hopper task
under non-stationary environments: the size of the local
buffer |DL| and the weighted factor α. As shown in Figure 9,
results reveal that choosing a smaller |DL| can better capture
policy and dynamics shifts, but it causes training instabil-
ity of the discriminator, leading to unstable performance.
Conversely, selecting a larger |DL| disrupts the freshness of
on-policy sampling, resulting in local landscapes.

Regarding the weighted factor α, as shown in Figure 10, we
find that excessively large αmakes theR(s, a, s′) term over-
weighted and subordinates the environmental reward during
policy optimization. Conversely, excessively small α weak-
ens the discriminator’s effectiveness, similar to the issues
observed in the OMPO variant without handling shifts.

Robustness in stochastic robot manipulations. To fur-
ther verify OMPO’s performance in stochastic robot manip-
ulations, we employ 2 stochastic Panda robot tasks (Gal-
louédec et al., 2021) with both dense and sparse rewards,
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Table 1. Success rates of stochastic tasks.
Tasks SAC TD3 OMPO

Panda-Reach-Den 92.6% 94.2% 97.5%

Panda-Reach-Spr 94.5% 88.6% 93.1%

Coffer-Push 15.8% 3.3% 68.5%

Drawer-Open 57.7% 64.3% 93.4%

Door-Unlock 93.5% 95.7% 98.9%

Door-Open 97.5% 47.9% 99.5%

Hammer 15.4% 12.2% 84.2%

where random noise is introduced into the actions, and 8
manipulation tasks from Meta-World (Yu et al., 2019) with
different objectives (please refer to Appendix E for detailed
settings). Table 1 demonstrates that OMPO shows compara-
ble success rates in stochastic environments and outperforms
baselines in terms of manipulation tasks. More performance
comparisons are provided in Appendix F.3.

6. Conclusion
In this paper, we conduct a holistic investigation of on-
line policy optimization under policy & dynamics shifts.
We develop a unified framework to tackle diverse shift set-
tings by introducing a surrogate policy learning objective
from the view of transition occupancy matching. Through
dual reformulation, we obtain a tractable min-max opti-
mization problem, inspiring the practical algorithm. Our
experiments demonstrate that OMPO exhibits superior per-
formance across diverse policy & dynamics shift settings,
and shows robustness in various challenging locomotion and
manipulation tasks. OMPO offers an appealing paradigm in
many practical RL applications. For example, OMPO can
greatly enhance policy adaptation performance when com-
bined with domain randomization, particularly useful for
many sim-to-real transfer problems. Nonetheless, several
challenges, such as determining a proper local buffer size to
capture the varying on-policy distribution and relaxing the
assumption of strictly positive rewards, warrant further in-
vestigation. Future work could also extend our work to areas
like offline-to-online RL (Li et al., 2023), leveraging simu-
lators with dynamics gaps to enhance policy learning (Niu
et al., 2022), or hierarchical RL with non-stationarity in
high-level policy optimization (Nachum et al., 2018).
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A. Proofs in the Main Text
Here, we first present a sketch of theoretical analyses in Figure 11. We first propose a surrogate objective to handle policy and
dynamics shifts (Equation 5). Then, to make this objective tractable, we consider the Bellman flow constraint (Equation 6)
thus constructing a constraint optimization problem (Equations 7 and 8). To solve this problem, we divide it into three steps.
(1) We deal with the distribution discrepancy R(s, a, s′) by the discriminator h∗(s, a, s′) (Equation 10); (2) We handle the
Bellman flow constraint by Lagrangian relaxation (Equation 11); (3) To get rid of the unknown distribution ρπ

T̂
, we utilize

Fenchel conjugate to obtain the final tractable optimization problem (Equation 12).

+𝔼 𝑠,𝑎,𝑠′ ∼𝜌෡𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝒯𝜋𝑄 𝑠, 𝑎 − 𝑄(𝑠, 𝑎)

The Bellman flow constraint

Step 2: handle the Bellman flow constraint

Step 3: optimize with replay buffer

×

Using a discriminator Using Lagrangian Relaxation

Using Fenchel Conjugate

Make the objective tractable

The surrogate objective

መ𝒥 𝜋 = 𝔼 𝑠,𝑎,𝑠′ ∼𝜌෡𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼log

𝜌𝑇
𝜋(𝑠, 𝑎, 𝑠′)

𝜌 ෠𝑇
ෝ𝜋(𝑠, 𝑎, 𝑠′)

− 𝛼𝐷𝑓 𝜌 ෠𝑇
𝜋 𝑠, 𝑎, 𝑠′ ‖𝜌 ෠𝑇

ෝ𝜋(𝑠, 𝑎, 𝑠′)

𝜌𝜋 𝑠, 𝑎 = 1 − 𝛾 𝜇0 𝑠 𝜋 𝑎 𝑠 + 𝛾𝒯⋆
𝜋𝜌𝜋 𝑠, 𝑎 , ∀ 𝑠, 𝑎 ∈ 𝒮 ×𝒜

𝑠. 𝑡. 𝜌𝜋 𝑠, 𝑎 = 1 − 𝛾 𝜇0 𝑠 𝜋 𝑎 𝑠 + 𝛾𝒯⋆
𝜋𝜌𝜋 𝑠, 𝑎 , ∀ 𝑠, 𝑎 ∈ 𝒮 ×𝒜

𝜋∗ = argmax
𝜋

መ𝒥 𝜋 = argmax
𝜋

𝔼 𝑠,𝑎,𝑠′ ∼𝜌෡𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼log

𝜌𝑇
𝜋

𝜌෡𝑇
ෝ𝜋 − 𝛼𝐷𝑓 𝜌 ෠𝑇

𝜋‖𝜌 ෠𝑇
ෝ𝜋

The constraint optimization problem of OMPO

Step 1: compute the distribution discrepancy term

log 𝜌𝑇
𝜋 𝑠, 𝑎, 𝑠′ /𝜌 ෠𝑇

ෝ𝜋(𝑠, 𝑎, 𝑠′) = −log
1

ℎ∗ 𝑠, 𝑎, 𝑠′
− 1

max
𝜋

min
𝑄 𝑠,𝑎

1 − 𝛾 𝔼𝑠∼𝜇0,𝑎∼𝜋 𝑄(𝑠, 𝑎) − 𝛼𝐷𝑓 𝜌 ෠𝑇
𝜋 𝑠, 𝑎, 𝑠′ ‖𝜌 ෠𝑇

ෝ𝜋(𝑠, 𝑎, 𝑠′)

max
𝜋

min
𝑄 𝑠,𝑎

1 − 𝛾 𝔼𝑠∼𝜇0,𝑎∼𝜋 𝑄(𝑠, 𝑎)

+𝛼𝔼
𝑠,𝑎,𝑠′ ∼𝜌෡𝑇

ෝ𝜋 𝑓⋆
log 𝑟 𝑠, 𝑎 − 𝛼𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝒯𝜋𝑄 𝑠, 𝑎 − 𝑄(𝑠, 𝑎)

𝛼

The general RL objective

𝒥 𝜋 = 𝔼 𝑠,𝑎 ∼𝜌𝜋 𝑟 𝑠, 𝑎

Considering dynamics shifts

𝒥 𝜋 > 𝔼 𝑠,𝑎,𝑠′ ∼𝜌෡𝑇
𝜋 log 𝑟 𝑠, 𝑎 − 𝛼𝐷𝐾𝐿 𝜌 ෠𝑇

𝜋 𝑠, 𝑎, 𝑠′ ‖𝜌𝑇
𝜋(𝑠, 𝑎, 𝑠′)

By 𝑥 > log 𝑥 and Jensen Inequality

Accounting for policy shifts

𝐷𝐾𝐿 𝜌 ෠𝑇
𝜋‖𝜌𝑇

𝜋 ≤ 𝔼 𝑠,𝑎,𝑠′ ∼𝜌෡𝑇
𝜋 log 𝜌𝑇

𝜋/𝜌 ෠𝑇
ෝ𝜋 + 𝐷𝑓 𝜌 ෠𝑇

𝜋‖𝜌 ෠𝑇
ෝ𝜋

Figure 11. Theoretical sketch of OMPO.
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A.1. Proof of Proposition 4.1

Proposition A.1. Let ρπ̂
T̂
(s, a, s′) denote the transition occupancy distribution specified by the replay buffer. The following

inequality holds for any f -divergence that upper bounds the KL divergence:

DKL

(
ρπ
T̂
∥ρπT

)
≤ E(s,a,s′)∼ρπ

T̂

[
log
(
ρπT /ρ

π̂
T̂

)]
+Df

(
ρπ
T̂
∥ρπ̂
T̂

)
. (13)

Proof. Based on the definition of KL-divergence, we have

DKL

(
ρπ
T̂
(s, a, s′)∥ρπT (s, a, s′)

)
= E(s,a,s′)∼ρπ

T̂

[
log

ρπT (s, a, s
′)

ρπ
T̂
(s, a, s′)

]

= E(s,a,s′)∼ρπ
T̂

[
log

(
ρπT (s, a, s

′)

ρπ
T̂
(s, a, s′)

·
ρπ̂
T̂
(s, a, s′)

ρπ̂
T̂
(s, a, s′)

)]

= E(s,a,s′)∼ρπ
T̂

[
log

(
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

)]
+ E(s,a,s′)∼ρπ

T̂

[
log

(
ρπ̂
T̂
(s, a, s′)

ρπ
T̂
(s, a, s′)

)]

= E(s,a,s′)∼ρπ
T̂

[
log

(
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

)]
+DKL

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
≤ E(s,a,s′)∼ρπ

T̂

[
log

(
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

)]
+Df

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
. by any Df ≥ DKL (14)

The proof is completed.

A.2. Proof of Proposition 4.2

Proposition A.2. The constraint optimization problem can be transformed into an unconstrained min-max problem,

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ Es,a,s′∼ρπ

T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)] . (15)

Proof. With the primal optimization,

π∗=argmax
π
Ĵ (π)=argmax

π
E(s,a,s′)∼ρπ

T̂

[
log r(s, a)−α log

(
ρπT /ρ

π̂
T̂

)]
−αDf

(
ρπ
T̂
∥ρπ̂
T̂

)
,

s.t. ρπ(s, a) = (1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a), ∀(s, a) ∈ S ×A,
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Let Q(s, a) denote the Lagrangian multipliers, then we have

E(s,a,s′)∼ρπ
T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+
∑
s,a

Q(s, a)
[
(1− γ)µ0(s)π(a|s) + γT π⋆ ρπ(s, a)− ρπ(s, a)

]
= E(s,a,s′)∼ρπ

T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+
∑
s,a

Q(s, a)
[
(1− γ)µ0(s)π(a|s) + γπ(a|s)

∑
ŝ,â

ρπ
T̂
(ŝ, â, s)−

∑
s′

ρπ
T̂
(s, a, s′)

]
= E(s,a,s′)∼ρπ

T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)

∑
s,a

Q(s, a)π(a|s)µ0(s) + γ
∑
s,a

Q(s, a)π(a|s)
∑
ŝ,â

ρπ
T̂
(ŝ, â, s)

−
∑
s,a,s′

ρπ
T̂
(s, a, s′)Q(s, a)

= E(s,a,s′)∼ρπ
T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)

∑
s,a

Q(s, a)π(a|s)µ0(s) + γ
∑
s′,a′

Q(s′, a′)π(a′|s′)
∑
s,a

ρπ
T̂
(s, a, s′)

−
∑
s,a,s′

ρπ
T̂
(s, a, s′)Q(s, a)

= E(s,a,s′)∼ρπ
T̂
[log r(s, a)− αR(s, a, s′)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ

T̂
(s, a, s′)

)
+ (1− γ)Es∼µ0,a∼πQ(s, a) +

∑
s,a,s′

ρπ
T̂
(s, a, s′)

[
γ
∑
a′

Q(s′, a′)π(a′|s′)−Q(s, a)

]

= (1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
(s, a, s,′ )∥ρπ̂

T̂
(s, a, s,′ )

)
+ E(s,a,s′)∼ρπ

T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)] . (16)

The proof is completed.

A.3. Proof of Proposition 4.3

We first briefly introduce the Fenchel conjugate, which is a crutical technology in the proof of Proposition 4.3.

Definition A.3 (Fenchel conjugate). In a real Hilbert space X , if a function f(x) is proper, then the Fenchel conjugate f⋆ of
f is defined as

f⋆(x) = sup
y∈X
⟨x, y⟩ − f(y), (17)

where the domain of the f⋆(x) is given by:

dom f⋆ =

{
x : sup

y∈dom f
(⟨x, y⟩ − f(y)) <∞

}
. (18)

Based on this definition, we have f⋆⋆(x) = f(x) = miny∈X f⋆(y) − ⟨x, y⟩. For the f -divergence function, we let
Df (x∥p) = Ez∼pf(x/p), thus its Fenchel conjugate is Ez∼p [f⋆(y(z))] (Fenchel, 2014). Further, we apply this property

into the f -divergence term Df

(
ρπ
T̂
∥ρπ̂
T̂

)
, and we have

Df

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
= min
y(s,a,s′)

E(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))]− E(s,a,s′)∼ρπ

T̂
[y(s, a, s′)] . (19)

With the help of the derivation , we start the proof of Proposition 4.3.
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Proposition A.4. Given the accessible distribution ρπ̂
T̂
(s, a, s′) specified in the global replay buffer, the min-max problem (11)

can be transformed as

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)] + αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
,

(20)

where f⋆(x) := maxy⟨x, y⟩ − f(y) is the Fenchel conjugate of f .

Proof. For the proposed min-max problem (11), we have

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ Es,a,s′∼ρπ

T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)]

= max
π

min
Q(s,a)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)]

− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)Es∼µ0,a∼π[Q(s, a)]. (21)

Then, for the f -divergence term Df

(
ρπ
T̂
∥ρπ̂
T̂

)
, we apply its Fenchel Conjugate (19) into (21),

max
π

min
Q(s,a)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)]

− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
+ (1− γ)Es∼µ0,a∼π[Q(s, a)]

= max
π

min
Q(s,a)

min
y(s,a,s′)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)] By (19)

+ αE(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))]− αE(s,a,s′)∼ρπ

T̂
[y(s, a, s′)] + (1− γ)Es∼µ0,a∼π[Q(s, a)]

= max
π

min
Q(s,a)

min
y(s,a,s′)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)− αy(s, a, s′)]

+ αE(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))] + (1− γ)Es∼µ0,a∼π[Q(s, a)]. (22)

To eliminate the expectation over ρπ
T̂
(s, a, s′), we follow prior works (Nachum et al., 2019b;a) and make a change of

variables by

y(s, a, s′) =
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α
. (23)

Note that in this variable changing, min y(s, a, s′) can be equivalent to min T πQ(s, a)−Q(s, a) (we suppose α > 0 and
r(s, a), R(s, a, s′) are both irrelevant variables). Based on the definition of T π, we find that in the inner optimization
problem of (22) with the fixed variable π, min y(s, a, s′) can be replaced by minQ(s, a). Thus, we can further yield

max
π

min
Q(s,a)

min
y(s,a,s′)

Es,a,s′∼ρπ
T̂
[log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)− αy(s, a, s′)]

+ αE(s,a,s′)∼ρπ̂
T̂

[f⋆(y(s, a, s
′))] + (1− γ)Es∼µ0,a∼π[Q(s, a)]

= max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
. (24)

The proof is completed.
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B. More Discussion of Performance Improvemeng for OMPO
Here, we discuss the performance improvement of OMPO from an optimization objective perspective, compared to the
general RL objective (1). To recap, our proposed surrogate objective to handle policy and dynamics shifts is formulated as

Ĵ (π) = E(s,a,s′)∼ρπ
T̂

[
log r(s, a)− α log

ρπT (s, a, s
′)

ρπ̂
T̂
(s, a, s′)

]
− αDf

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
.

Ideal Condition without Policy and Dynamics Shifts. When there is no policy and dynamics shifts, we have T̂ = T and
π̂ = π. Thus, the negative terms in the surrogate objective satisfy

log
ρπT (s, a, s

′)

ρπ̂
T̂
(s, a, s′)

= log
ρπT (s, a, s

′)

ρπT (s, a, s
′)

= 0,

Df

(
ρπ
T̂
(s, a, s′)∥ρπ̂

T̂
(s, a, s′)

)
= Df (ρ

π
T (s, a, s

′)∥ρπT (s, a, s′)) = 0.

At this case, the surrogate objective reduced to

Ĵ (π) = E(s,a,s′)∼ρπ
T̂
[log r(s, a)] . (25)

This actually corresponds to solving an MDP with reward shaping using the logarithmic function. Since the logarithmic
function is monotonically increasing, it does not largely change the nature of the original task.

Only Policy shifts without Dynamics shifts. In stationary environments where T̂ = T , the training data exhibit policy
shifts since they are collected by various policy in the training. The general RL objective (1),

π∗ = argmax
π

E(s,a)∼ρπ [r(s, a)],

assumes the distribution from on-policy samplings (s, a) ∼ ρπ. Under policy shifts, the training data (s, a) ∼ ρπ̂ have
a mismatch to on-policy samplings (s, a) ∼ ρπ, resulting in suboptimal performance. While, for OMPO, the surrogate
objective (5) reduces to

Ĵ (π) = E(s,a,s′)∼ρπT

[
log r(s, a)− α log(ρπT /ρ

π̂
T )
]
− αDf

(
ρπT ∥ρπ̂T

)
= E(s,a)∼ρπ

[
log r(s, a)− α log

(
ρπ/ρπ̂

)]
− αDf

(
ρπ∥ρπ̂

)
= E(s,a)∼ρπ [log r(s, a)]− α

[
DKL

(
ρπ∥ρπ̂

)
+Df

(
ρπ∥ρπ̂

)]
, (26)

which essentially regularizes the discrepancy between on-policy occupancy ρπ and the occupancy induced by off-policy
samples ρπ̂from the replay buffer, which helps to alleviate potential instability caused by off-policy learning (Liu et al.,
2019; Xue et al., 2023).

Policy shifts with Dynamics Shifts. For the most general setting, Section 4.2 has discussed the solution. By carefully
handling the impact of polic and dynamics shifts, OMPO can achieve better performance than the general RL objective in
practice.
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C. Implementation Details
In this section, we delve into the specific implementation details of OMPO. To do so, we employ deep neural networks
parameterized by ϕ, θ, and ψ to represent the discriminatorh(s, a, s′), critic Q(s, a), and policy π(a|s), respectively. Here
are the key aspects of the implementation:

Discriminator training. To address practical considerations during online training, it’s essential to manage the discrepancy
in data volume between the local buffer DL and the global buffer DG. To tackle this challenge, we adopt the following
strategy: At each gradient step, we randomly draw several batches, each with a size of |DL|, and employ them to train the
discriminator. This process ensures a balanced use of data from both DL and DG during training.

Specialized actor-critic architecture. For the f -divergence, we specifically choose f(x) = 1
p (x− 1)p, with its Fenchel

conjugate denoted as f⋆(x) = 1
qx

q + x, where 1
p + 1

q = 1. To practically address the tractable min-max optimization
problem (12), we initially solve the inner problem concerning Q(s, a) using a gradient-based approach:

Q(s, a)← argmin
Q

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
. (27)

Subsequently, employing the policy gradient method (Sutton et al., 1999; Nachum et al., 2019b), where:

∂

∂π
min
Q

J(π,Q) = E(s,a)∼ρπ

[
Q̃(s, a)∇ log π(a|s)

]
, (28)

with Q̃(s, a) representing the Q-value function of π based on rewards r̃(s, a) = r(s, a) − αf ′(ρπT /ρπ̂T̂ ), updated using
Q̃(s, a) from the inner problem, we update the policy π as follows:

π(a|s)← argmin
π

(1− γ)Es∼µ0,a∼π[Q̃(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f ′⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ̃(s, a)− Q̃(s, a)

α

)]
. (29)

Here, f ′⋆(x) = xq−1 + 1 represents the derivative of f⋆(x).

In the actor-critic architecture, we follow a two-step process: first, we update the critic network, and then we update the actor
network. To ensure training stability, we implement a stochastic first-order two-time scale optimization technique (Borkar,
1997), where the gradient update step size for the inner problem is significantly larger than that for the outer layer. This
setup ensures rapid convergence of the inner problem to suit the outer problem.

Especially, to deal with s0 ∼ µ0 in Equation (27) and Equation (29), we refer to the implementation of previous DICE
works (Nachum et al., 2019b; Ma et al., 2022), and adopt an initial-state buffer to store initial state s0. When optimizing
Equation (27) and Equation (29), we can sample s0 from the initial-state buffer.

Application in different scenarios. With the proposed actor-critic architecture, OMPO seamlessly accommodates various
scenarios involving diverse shifts. By employing the local replay buffer DL to collect fresh data and the global replay buffer
DG to store all historical data, OMPO effectively addresses different shift scenarios:

• Policy shifts with stationary dynamics: In this scenario, only the fresh data is retained in DL. When DL reaches its
capacity, we initiate training of the discriminator. Subsequently, we sample random batches from DG to update both the
critic and the actor, with the updated discriminator. Following this update, we merge the data in DL into DG and reset
DL for further data collection.

• Policy shifts with domain adaption: When policy shifts involve domain adaptation, fresh data sampled under the target
dynamics is stored in DL, while data from the source dynamics resides in DG. Then, the training process mirrors that of
the scenario with stationary dynamics.
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Algorithm 1 Occupancy-Matching Policy Optimization (OMPO)

1: Input: Global buffer DG, local buffer DL, initial-state buffer D0, critic Qθ, policy πψ , discriminator h
2: repeat
3: for each environment step do
4: if Initialisation then
5: Store the initial state s0 ∼ µ0 into D0

6: end if
7: \∗ Case 1: Interact with stationary environment
8: Collect (s, a, s′, r) with πψ from environment; add to DL
9: \∗ Case 2: Interact with multiple domains for adaption

10: Collect (s, a, s′, r) with πψ from source domains; add to DG
11: Collect (s, a, s′, r) with πψ from target domain; add to DL
12: \∗ Case 3: Interact with non-stationary environment
13: Collect (s, a, s′, r) with πψ from current environment; add to DL
14: if DL is full then
15: for each gradient step do
16: Update discriminator h(s, a, s′) by Eq.(9) from both DG and DL
17: Computing R(s, a, s′) with discriminator h(s, a, s′) by Eq.(10)
18: Update critic Qθ by Eqs.(27) and actor πψ by Eqs.(29) from DG and D0

19: end for
20: Merge global buffer by DG ← DG ∪ DL and reset local buffer DL ← ∅
21: end if
22: end for
23: until the policy performs well in the environment

• Policy shifts with non-stationary dynamics: The training process aligns with the first scenario regardless of policy and
dynamics shifts.

Therefore, in various scenarios, adjusting data collection in distinct replay buffers suffices, eliminating the need for any
modifications to the policy optimization process. These approaches are succinctly summarized in Algorithm 1.

C.1. Hyperparameters and Network Architecture

We use the same hyperparameters for all OMPO experiments in this paper. In terms of architecture, we use a simple
2-layer ELU network with a hidden size of 256 to parameterize the cirtic network. For the policy network, we use the same
architecture to parameterize a Gaussian distribution, where the mean and the log standard deviation are outputs of two
separate heads, referring to SAC (Haarnoja et al., 2018). For the discriminator network, we also a simple 2-layer network.
Table 2 summarizes the hyperparameters as well as the architecture.

C.2. Baselines

In our experiments across the three different scenarios, we have implemented all the baseline algorithms using their original
code bases to ensure a fair and consistent comparison.

For the stationary environments,

• For SAC (Haarnoja et al., 2018), we utilized the open-source PyTorch implementation, available at https://github.
com/pranz24/pytorch-soft-actor-critic.

• TD3 (Fujimoto et al., 2018) was integrated into our experiments through its official codebase, accessible at https:
//github.com/sfujim/TD3.

• AlgaeDICE (Nachum et al., 2019b) was employed with its official implementation from https://github.com/
google-research/google-research/tree/master/algae_dice.
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Table 2. The hyperparameters of OMPO

OMPO Hyperparameters

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 1e-4
Discount factor 0.99
Mini-batch 256
Actor Log Std. Clipping (−20, 2)
Local buffer size 1000
Global buffer size 1e6
Order q of Conjugate function 1.5
Weighted factor 0.001

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function elu
Actor hidden dim 256
Actor hidden layers 2
Actor activation function elu
Discriminator hidden dim 256
Discriminator hidden layers 2
Discriminator activation function tanh

For the domain adaption,

• DARC (Eysenbach et al., 2021) was harnessed via its official implementation, found at https://github.com/
google-research/google-research/tree/master/darc.

• We meticulously detailed the implementation of Domain Randomization (Tobin et al., 2017) in Appendix E.

For the non-stationary environments,

• CaDM (Lee et al., 2020) was implemented using its official codebase accessible at https://github.com/
younggyoseo/CaDM.

• CEMRL (Bing et al., 2022a) was utilized with its official implementation found at https://github.com/
zhenshan-bing/cemrl.
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D. Comparison with Prior DICE Works
In comparison to prior works within the DICE family, OMPO distinguishes itself as primarily tailored for Online, Shifted
scenarios. This distinction is notable in terms of both theoretical underpinnings and generalizability.

• Generalizability

– Not only policy shifts, but also dynamics shifts: While numerous DICE works concentrate on discrepancies in
state or state-action occupancy distributions, such as DualDICE (Nachum et al., 2019a) and AlgaeDICE (Nachum
et al., 2019b), their primary concern is variations in data distributions due to differing policies (i.e., behavior-agnostic
and off-policy data distribution in their paper). Consequently, these approaches may struggle when policy shifts and
dynamic shifts co-occur, as they do not account for the transition dynamics for the next state when given the current
states and actions.

– Model-Based Distinctions: TOM (Ma et al., 2023), as a model-based RL method, also employs transition oc-
cupancy distributions. However, a fundamental difference exists between TOM and OMPO. TOM encourages
the learned model to consider policy exploration while optimizing the transition occupancy distribution, i.e.,
minT̂ Df (d

π
T̂
(s, a, s′)∥dπT (s, a, s′)), but it does not incorporate the environmental reward into its objective. In

OMPO, our objective seeks to identify similar experiences collected from the global buffer, with a focus on enhancing
environmental returns, see the log r(s, a) term in the surrogate objective (5). Furthermore, TOM can only apply to
stationary environments and does not address policy shifts and dynamic shifts explicitly.

– Experimental Effectiveness: Through our experimental results, OMPO demonstrates its efficacy across diverse
scenarios encompassing policy shifts, dynamic shifts, or a combination of both, which can not be unified in previous
works.

• Theory

– Comparison between Reward and Distribution Discrepancy: Our derivation of the surrogate policy learning objec-
tive highlights that the use of logarithmic rewards log r(s, a) is comparable to distribution discrepancies log(ρπT /ρ

π̂
T̂
),

as opposed to the heuristic objectives found in prior online DICE methods. For instance, AlgaeDICE (Nachum et al.,
2019b) employs the objective J(π) = E(s,a)∼dπ [r(s, a)− αDf (d

π∥dD)].
– Variable Substitution with Bellman Flow Constraint: Although OMPO, AlgaeDICE and DualDICE all use

variable substitution to eliminate the unknown distribution, We begin our optimisation problem by considering the
Bellman flow constraint that the distribution needs to satisfy, which allows us to do variable substitutions in such a
way that

log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)− αy(s, a, s′) = 0

⇒ y(s, a, s′) =
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

explaining the motivation for variable substitutions. However, previous work has simply used variable substitutions
without additional specification.

– Offline RL with DICE Methods: Offline RL methods like SMODICE (Ma et al., 2022) and DEMODICE (Kim et al.,
2021) predominantly focus on constraining the exploration distribution of the policy to match a given distribution
of offline data, aimed at avoiding out-of-distribution (OOD) issues. Consequently, even with the consideration of
Bellman flow constraint, their optimization variable is dπ. In contrast, OMPO, designed for online training, uses
π as the optimization variable, with the aim of maximizing environmental rewards. The introduction of Df in
our derivation naturally arises from our considerations of shifts, differentiating OMPO from these offline DICE
approaches.
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E. Experiment Settings
Below, we provide the environmental details for the three proposed scenarios.

Stationary environments. In this scenario, we used the standard task settings from OpenAI Gym as benchmarks, including
Hopper-v3, Walker2d-v3, Ant-v3, and Humanoid-v3. All methods were trained using the off-policy paradigm. Specifically,
we set up a global replay buffer with a size of 1e6 for each baseline to store all historical data for policy training.

Domain Adaption. For each of the four tasks, we established both source dynamics and target dynamics. In the target
dynamics, we introduced significant changes, including structural modifications such as doubling the torso and foot sizes in
the Hopper and Walker2d tasks, and altering mechanics such as doubling gravity and introducing a wind with a velocity of
1m/s in the Ant and Humanoid tasks. We divided the source dynamics into two categories, with and without the adoption
of domain randomization technology.

• Without domain randomization: We use the standard task settings from OpenAI Gym as source dynamics, without any
modification. See Table 3 for parameters comparison.

Table 3. The parameters of source dynamics without domain randomization technology

Source Dynamics (Without Domain Randomization) Target Dynamics

Torso Length Foot Length Gravity Wind speed Torso Length Foot Length Gravity Wind speed
Hopper 0.2 0.195 - - 0.4 0.39 - -
Walker2d 0.2 0.1 - - 0.4 0.2 - -
Ant - - 9.81 0.0 - - 19.62 1.0
Humanoid - - 9.81 0.0 - - 19.62 1.0

• With domain randomization: Since the principle of domain randomization is to randomise certain dynamic parameters,
we apply it to the source dynamics when training the variant OMPO-DR and SAC-DR. See table 4 for the parameter
settings.

Table 4. The parameters of source dynamics with domain randomization technology

Source Dynamics (With Domain Randomization) Target Dynamics

Torso Length Foot Length Gravity Wind speed Torso Length Foot Length Gravity Wind speed
Hopper (0.3, 0.5) (0.29, 0.49) - - 0.4 0.39 - -
Walker2d (0.1, 0.3) (0.05, 0.15) - - 0.4 0.2 - -
Ant - - (16.62, 22.62) (0.5, 1.2) - - 19.62 1.0
Humanoid - - (16.62, 22.62) (0.5, 1.2) - - 19.62 1.0

Non-stationary environments. In this non-stationary dynamics scenario, dynamic variations were introduced throughout
the entire training process. It’s worth noting that while both non-stationary environments and domain adaptation involve dy-
namic shifts, the evaluation in domain adaptation is based on fixed target dynamics, whereas in non-stationary environments,
the evaluation is conducted on varying dynamics. This makes the non-stationary environment evaluation more challenging.
Here is a detailed description of the dynamic shifts for each task:

• Hopper task: In this task, we change the torso length Ltorso and the foot length Lfoot of each episode. At episode i, the
lengths satisfy the following equations:

Ltorso(i) = 0.4 + 0.1× sin(0.2× i), Lfoot(i) = 0.39 + 0.1× sin(0.2× i). (30)

• Walker2d task: Similar to the Hopper task, the torso length Ltorso and the foot length Lfoot of each episode i satisfy:

Ltorso(i) = 0.2 + 0.1× sin(0.3× i), Lfoot(i) = 0.1 + 0.05× sin(0.3× i). (31)

22



Occupancy-Matching Policy Optimization

• Ant task: In the Ant task, dynamic changes occur at each time step rather than at the episode level, making it as a
stochastic task. Let i denote the number of episodes and 0 ≤ j ≤ 1000 represent the time step in an episode. The values
of gravity g and wind speed W are calculated as follows4:

g(i, j) = 14.715 + 4.905× sin(0.5× i) + rand(−3, 3), (32)

W (i, j) = 1 + 0.2× sin(0.5× i) + rand(−0.1, 0.1). (33)

• Humanoid task: Similar to the Ant task, gravity g and wind speed W in the Humanoid task are calculated as follows:

g(i, j) = 14.715 + 4.905× sin(0.5× i) + rand(−3, 3), (34)

W (i, j) = 1 + 0.5× sin(0.5× i) + rand(−0.1, 0.1). (35)

It’s worth noting that when wind is introduced to the Ant and Humanoid tasks (with default density 1.2 and viscosity 2e− 5),
the Ant has a larger windward area relative to the Humanoid, thus suffering the bigger drag. Therefore, this sets a smaller
upper bound on the wind speed for the Ant task. This consideration helps maintain task feasibility and realism in the
presence of wind dynamics.

Stochastic manipulation tasks. Here, we adopt two Panda Robot tasks and four robot manipulation tasks from Meta-
World to evaluate OMPO. For the Panda Robot tasks, we introduce a fixed bias with a minor noise to the actions for each
interaction, which is

ã = aOMPO + 0.05 + uniform(0, 0.01). (36)

For the tasks from Meta-World suite, we use the original environmental settings.

4We choose 14.715 and 4.905 as the different magnifications of the original gravity g = 9.81, not a special design.
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F. More Experimental Results
F.1. Trajectories Visualization

We visualize the trajectories generated by OMPO on four tasks with target dynamics from domain adaption scenarios. For
each trajectory, we display seven keyframes.
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Figure 12. Domain adaption trajectory visualizations. Visualizations of the learned policy of OMPO on four tasks with target dynamics.

F.2. Transition Occupancy Distribution Visualization

We visualize the transition occupancy distribution ρπT (s, a, s
′) of the Hopper task under Non-stationary environments.

Figure 13. Different stages of ρπT by Hopper tasks under non-
stationary environment. Training stages: 100k (ρπ1

T1
), 200k (ρπ2

T2
),

300k (ρπ3
T3

), 500k (ρπ4
T4
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Figure 14. Performance comparison of OMPO and the variant of
OMPO without discriminator by Hopper tasks.
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F.3. Performance Learning Curves of Stochastic Robot Tasks
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Figure 15. Individual Meta-World tasks. Success rate and average return of OMPO, SAC, TD3 on twelve manipulation tasks from
Meta-World suite.
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Figure 16. Individual Panda Robot tasks. Success rate and average return of OMPO, SAC, TD3 on two manipulation tasks from
Meta-World suite.

F.4. Ablations on Reward Function

Based on our derivation, when considering distribution discrepancies in the objective, using logarithmic rewards log r(s, a)
instead of the original rewards r(s, a) may be a more aligned and comparable approach. Thus, we conduct an investigation
of the reward function in the surrogate objective.

• OMPO: the tractable problem to be solved is formulated as

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
log r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
, (37)

• OMPO-r: the tractable problem to be solved is formulated as

max
π

min
Q(s,a)

(1− γ)Es∼µ0,a∼π[Q(s, a)]

+ αE(s,a,s′)∼ρπ̂
T̂

[
f⋆

(
r(s, a)− αR(s, a, s′) + γT πQ(s, a)−Q(s, a)

α

)]
, (38)

Through the Hopper tasks under three settings, as depicted in Figure 17, we find that directly using environmental rewards in
our framework, rather than in the form of logarithmic rewards, leads to performance degradation, illustrating the soundness
of our theory.
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Figure 17. Performance comparison between OMPO and OMPO-r through Hopper tasks.

F.5. Long Training Steps of Stationary Environments

We provide the performance comparison under 2.5M environmental steps in Figure 18. The results demonstrate that, OMPO
exhibits significantly better sample efficiency and competitive convergence performance.
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Figure 18. Performance comparison of OMPO, SAC and TD3 through 2.5M environment steps in stationary environments.

F.6. More Severe Dynamics Shifts Experiments

To verify the robustness of OMPO in extreme cases, we conduct additional experiments in Non-stationary environments
where the gravity ranges from 0.5 ∼ 3 times the original parameters. Specifically, through Ant task and Humanoid tasks,
gravity g is calculated as follows:

g(i, j) = 17.1675 + 12.2625× sin(0.5× i) + rand(−3, 3), (39)

where i represent the i-th training episode.

The results are shown in Figures 19 and 20. We find that, under much greater variations in gravity, OMPO can maintain
satisfactory performance in both Ant and Humanoid tasks, while the baseline CEMRL suffers from the changes of gravity
greatly, demonstrating performance degradation.
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Figure 19. More Severe gravity changes in Ant tasks.
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Figure 20. More Severe gravity changes in Humanoid tasks.

F.7. Ablation on Order q of Fenchel Conjugate

Regarding the order q of Fenchel Conjugate function, we test four sets of parameters by Hopper and Walker2d tasks under
non-stationary dynamics. As dispected in Figure 21, q ∈ [1.2, 2] can yield satisfactory performance, with q = 1.5 showing
superior results in our experiments.
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Figure 21. Ablation on the order q by Hopper and Walker2d tasks under Non-stationary dynamics.

27



Occupancy-Matching Policy Optimization

F.8. Ablation on update-to-data (UTD)

We note that improving the update-to-data (UTD) ratio can achieve good sample efficiency. For instance, DroQ (Hiraoka
et al., 2021) uses an ensemble of Q-functions with dropout connection and layer normalization to improve the UTD ratio
from 1 to 20. Motivated by this, we improve the UTD ratio of OMPO from 1 to 5 for the sake of training stability. We
report the performance comparison by Hopper and Ant tasks in stationary environments. Surprisingly, OMPO can achieve
comparable performance and sample efficiency without any design modification, while DroQ requires 10x more parameters
for ensemble Q networks than OMPO.
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Figure 22. Ablation on the UTD ration by Hopper and Ant tasks under Stationary dynamics.

F.9. Ablation on vision input

To explore the potential of incorporating vision inputs, we conduct experiments with vision-input Hopper and Walker2d
tasks. Since vision inputs can capture the length changes in Hopper and Walker2d tasks, we find that both OMPO and SAC
can perform well in principle; however, when the non-stationary factors are various wind and gravity which are implicit in
vision inputs, OMPO can hardly work in these cases.
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Figure 23. Ablation on vision input by Hopper (Stationary) and Walker2d (Non-stationary) tasks.

G. Computing Infrastructure and Training Time
We list the computing infrastructure and benchmark training times of OMPO in Table 5.

Table 5. Computing infrastructure and training time on stationary dynamics tasks (in hours).

Hopper Walker2d Ant Humanoid

CPU Intel® CoreTM i9-9900

GPU NVIDIA GeForce RTX 2060

Training steps 0.5M 1.0M 1.5M 1.0M

Training time 3.15 6.58 9.37 8.78
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