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ABSTRACT
Feature selection (FS) methods often are used to develop data-driven descriptors (i.e., features) for rapidly predicting the functional properties
of a physical or chemical system based on its composition and structure. FS algorithms identify descriptors from a candidate pool (i.e.,
feature space) built by feature engineering (FE) steps that construct complex features from the system’s fundamental physical properties.
Recursive FE, which involves repeated FE operations on the feature space, is necessary to build features with sufficient complexity to capture
the physical behavior of a system. However, this approach creates a highly correlated feature space that contains millions or billions of
candidate features. Such feature spaces are computationally demanding to process using traditional FS approaches that often struggle with
strong collinearity. Herein, we address this shortcoming by developing a new method that interleaves the FE and FS steps to progressively build
and select powerful descriptors with reduced computational demand. We call this method iterative Bayesian additive regression trees (iBART),
as it iterates between FE with unary/binary operators and FS with Bayesian additive regression trees (BART). The capabilities of iBART
are illustrated by extracting descriptors for predicting metal–support interactions in catalysis, which we compare to those predicted in our
previous work using other state-of-the-art FS methods (i.e., least absolute shrinkage and selection operator + l0, sure independence screening
and sparsifying operator, and Bayesian FS). iBART matches the performance of these methods yet uses a fraction of the computational
resources because it generates a maximum feature space of size O(102), as opposed to O(106) generated by one-shot FE/FS methods.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090055

I. INTRODUCTION

Statistical learning (SL) and machine learning (ML) have risen
in the chemistry and materials science communities as popular tools
to for constructing predictive models from physical descriptors.1–5

Application examples are far-ranging, such as studies that use ML
to navigate complex reaction networks6,7 or to design materials by
high throughput screening.8–11 Beyond prediction, another power-
ful aspect of SL and ML is the potential for deriving new scientific
knowledge by building interpretable models from complex datasets.
Our group has focused on applying feature selection (FS) tech-
niques to better understand and predict metal–support interactions
in catalysis. We demonstrated that SL methods can derive robust
descriptors to quantify the binding energy of single metal atoms on
various oxide supports, where the SL descriptors were constructed

from primary features that quantify charge transfer between the
supported metal atom and the oxide surface.12,13 In this work, we
develop an improved FS technique, called iterative Bayesian additive
regression trees (iBART), that is more robust and less computa-
tionally demanding than the methods employed in our previous
studies.

FS techniques differ from nonparametric methods, such as
decision tree methods,14–16 Gaussian process (GP) methods,10,17–19

and neural networks,20–22 which construct predictive models that
are powerful but are difficult to interpret.12,13,23–28 In general, FS
approaches begin with the collection of fundamental properties
that the user—based on physical intuition—believes are relevant
to the property of interest.23 In the single-metal-atom catalyst
example,12 we collected properties of the supported metals (e.g., ion-
ization energy and electron affinity) and the oxide surfaces (e.g.,
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work function and oxygen vacancy formation energy) to build a
pool of primary features that would be engineered to construct a
feature space of complex descriptors. These properties were chosen
because they quantify the ability of the metal or surface to donate
or accept charge, which, in turn, influences the metal–oxide binding
strength.29 Although related, the binding energy does not correlate
linearly with these simple primary features, and, thus, more complex
features are needed to build a physically accurate model. As such,
the primary features serve as the basis for feature engineering (FE),
whereby a series of unary and binary mathematical operators (i.e.,
square, inverse, and multiplication) act on the primary features to
produce a secondary feature space containing complex functional
forms involving non-linear combinations of the primary features.
The FE process can be repeated an arbitrary number of times to
generate tertiary features, quaternary features, and so on until the
feature space contains features with sufficient complexity to pre-
dict the property of interest in a linear model. The resulting feature
space may include millions or billions of candidate features, and it
is the task of the FS algorithm, such as principle component anal-
ysis (PCA),30 recursive feature elimination (RFE),31 least absolute
shrinkage and selection operator (LASSO),12,23,28 sure independence
screening and sparsifying operator (SISSO),25,27,32 or Bayesian FS
methods (e.g., Horseshoe prior and Dirichlet–Laplace prior13), to
identify the handful of features that best predict the property of
interest. In this way, the sequential one-shot FE→ FS approach gen-
erates models that relate basic properties of a system’s individual
components to complex properties of the aggregate system in an
interpretable functional form.

The one-shot FE → FS approach is generally robust and
has been demonstrated in many studies, such as those building
models that predict whether a material composition will form a zinc
blende or a rock salt structure,23 predict adsorbate binding ener-
gies on various morphologies of bimetallic metal alloys,27 or con-
nect single-atom metal–support binding energies to metal sintering
rates.28 However, there are several drawbacks and limitations inher-
ent to the one-shot FE → FS method. Recursive FE is necessary to
generate features with sufficient complexity but inevitably leads to
a high number of candidate descriptors (i.e., p ∼ 106). In chemistry
and materials science, the number of candidate descriptors typically
is orders of magnitude higher than the size of the available training
dataset (i.e., n ∼ 102). Furthermore, candidate descriptors are created
from the same basis of primary features and, as such, they are highly
correlated with each other. The one-shot FE approach creates a
significant challenge for the FS procedure, which is tasked with iden-
tifying descriptors from a large pool of correlated candidates with
limited training data (i.e., the left path in Fig. 1). As such, one-shot
approaches suffer from a high rate of false positives, and signifi-
cant computational resources are required to handle the enormous
feature space they generate. In addition, available memory
becomes a bottleneck that limits the number of FE steps that
can be applied, thus limiting the complexity of the candidate
features.

We address these problems by developing an iterative
FE → FS → FE → FS → ⋅ ⋅ ⋅ approach, which we call iBART.
The mathematical development of iBART is reported in another
publication;33 here, we will focus on the application of iBART in
the context of understanding metal–support interactions in catal-
ysis. iBART eliminates the bottleneck created by the one-shot

FIG. 1. Illustration of a one-shot FE→ FS strategy (left path) and an iterative FE
→ FS → FE → FS →. . . strategy (right path). The boxes represent the fea-
ture space, and the number of spheres inside the boxes indicates the quantity
of features in the space.

FE→ FS approach by interleaving multiple FE steps with the FS steps
(i.e., the right-hand path in Fig. 1). This allows the method to
curate the feature space as it is built, which limits the maximum
size of the feature space to O(102)–O(103) candidates, instead of
∼O(106) generated by the one-shot methods. iBART maintains high
representation power and selection accuracy by utilizing flexible
statistical FS modules to select features that are nonlinearly corre-
lated with the property of interest, followed by linear FS to form
an interpretable model. In particular, the FS steps are executed by
a combination of Bayesian additive regression trees (BART)34,35

and LASSO36 regression, as described fully in our separate
publication.33

In this work, we test iBART by applying it to derive models
based on our existing datasets describing metal–support interactions
in catalysis, which we then compare to models derived using exist-
ing FS methods (i.e., LASSO+ l0,12,23 SISSO,25 and Dirichlet–Laplace
prior13). Metal–support interactions, which we quantify here as the
binding strength between supported metal atoms and oxide surfaces,
are an important metric for designing sinter-resistant single-atom
catalysts.12,29,37,38 If we can estimate the binding energy of the metal
atom, the metal cluster size distributions can then be predicted with
kinetic sintering models that derive cluster morphology as a func-
tion of temperature.28 We show that iBART matches the accuracy of
the other methods while requiring a fraction of the computational
resources. In addition, we find that iBART can derive a rich menu
of functional forms in the final physical models, which can be a
useful aid when interpreting the underlying physics described by the
models.
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II. METHODS
The objective of iBART in this work is to derive a model for pre-

dicting metal/oxide binding energies by using FE and FS to construct
a predictive equation that takes the following form:

ŷ = β0 + β1x1 + β2x2 + ⋅ ⋅ ⋅ + βDxD, (1)

where ŷ is the predicted metal binding energy, x1, x2, . . . , xD are the
selected features composed of properties of the system’s compo-
nents [e.g., electron affinity of the adsorbed metal (EAm) and oxygen
vacancy formation energy of the oxide support (Ovac)], β0 is a con-
stant intercept, β1, . . . ,βD are weighting coefficients for each selected
feature, and D is the number of features used in the predictive model
(i.e., the dimension of the model). The choice of primary features,
mathematical operators in the FE step, algorithm in the FS step, and
evaluation methods for assessing model performance are defined in
Secs. II A–II D.

A. Datasets
In this work, we focus primarily on evaluating the ability

of iBART to predict physical descriptors in the context of cata-
lyst design. As such, we use iBART to construct predictive models
on two real datasets containing metal–support binding energies
from our previously published work, which here we refer to as the
metal/support (M–S) dataset12 and the metal/doped-support (M–D)
dataset.13 The dependent variable [i.e., ŷ in Eq. (1)] is the binding
energy of single metal atoms (e.g., Au, Cu, and Ir) on various oxide
supports [e.g., MgO(100), CeO2(111), and TiO2(011)] for the M–S
dataset and is the change in binding energy of single metal atoms
on MgO(100) surfaces after they are modified with a dopant [e.g.,
Al-doped or Na-doped MgO(100) surfaces] for the M–D dataset.
The primary features are electronic properties of the system’s com-
ponents (i.e., adsorbed metal, oxide support, and surface dopant),
such as ionization energy, atomic radius, and atomic number. The
datasets and their complete descriptions are available in our previous
work.12,13

B. Feature engineering
FE is applied to introduce non-linear correlations between the

primary features and the property of interest. Unary and binary FE
steps are applied to introduce non-linear dependencies and com-
plexity in the candidate features. The set of unary FE operators is
O1 = {I, −1, 2,

√
, log, exp, ∣ ⋅ ∣, sin(π ⋅), cos(π ⋅)}, which are chosen to

build non-linear correlations in the feature space, such as periodic-
ity with sine and cosine operators or quadratic correlations with the
square operator. The set of binary operators isO2 = {+,−,×,÷, ∣ ÷ ∣}.
The binary operators capture complex interactions between the
primary features arising from the interplay of different physical phe-
nomena. Physical consistency is maintained by applying addition
and subtraction operators only to properties that have the same
physical dimension (e.g., feature A with units of eV cannot be added
to feature Bwith units of Å). At each FE step, we remove features that
are redundant [e.g., (x1 + x2) and (x2 + x1)], constant, or diverged
to infinity. The identification of repeated features [e.g., (x1 + x2) and
(x2 + x1)] and the detection of divergence was done by comparing
the values of the features numerically instead of comparing their
symbolic composition. The exact sequence in which the FE steps are

applied is explained in detail below for each FS method. Standard
data normalization is enforced by shifting the mean and variance of
input features to zero and one, respectively, for the training set alone
before FS, which avoids weighting issues caused by the variable mag-
nitude of features with differing units.12,13 After FS, the training data
of selected features is un-normalized to its original magnitude for FE
steps.

C. Feature selection algorithms
In a one-shot FE → FS framework, the primary features are

engineered in one recursive step and then are passed to the FS algo-
rithm to arrive at the final predictive model in the form of Eq. (1).
Complex functional forms of the features can be achieved with suf-
ficient FE steps, and arbitrary accuracy of the predictive model can
also be achieved. Thus, one-shot methods can also achieve high mul-
tiplicity in terms of the selected features. However, in practice, the
size of the feature space after the FE step is limited by available com-
putational resources, and a key challenge associated with one-shot
FE is the fact that the number of features grows double exponen-
tially with the number of FE steps. If we apply m binary operators on
p features h times recursively, the resulting feature space will contain
p2hm2h−1 candidates. For instance, applying five binary operators
on 15 features recursively three times generates ∼2 × 1014 features.
Given this limitation, iBART instead follows an iterative framework
that interleaves the FE and FS steps. Here, we will compare the
performance of iBART to various one-shot FS methods, including
SISSO for both the M–S and M–D datasets, LASSO + l0 for the M–S
dataset,12 and Dirichlet–Laplace prior for the M–D dataset,13 with
the optimal settings under available computational resources in this
work (one Intel Xeon Gold 6230 CPU @ 2.10 GHz node with 40
cores and 960 GB of memory).

SISSO. SISSO is a method, developed by Ouyang et al.,25 that
can efficiently search for meaningful features from over billions of
candidates. The robust nature of SISSO is demonstrated in numer-
ous studies.25,27,32 The algorithm is composed of two parts: (1) sure
independence screening (SIS)39 and (2) sparsifying operator (SO).
In a one-shot framework, FE is applied on the primary features with
O1 ∪O2 operators in a recursive manner to obtain a massive fea-
ture space. Then, each candidate in the feature space is evaluated
by SIS to determine its correlation with the property of interest (y).
Then, a set number of features with the highest ranked SIS scores
are retained. This screening process is computationally efficient, and
thus, the input feature space can include as many as 1010 features.25

After the first SIS step, the set of screened features (i.e., S1D) con-
taining 101–102 features serves as the input feature set for the SO
step. SO represents any sparse regression method, i.e., l1 norm or l0
norm regression. The purpose of SO is to determine the optimal nD
descriptors from SnD. For instance, the best one feature (1D) that
predicts the property of interest with the lowest prediction error
[e.g., as measured by the root mean square error (RMSE)] can be
selected by SO from S1D with simple regression. The SIS–SO process
can be repeated multiple times until the prediction error is lower
than a user-defined threshold, and the nth set of SIS-selected fea-
tures is denoted as SnD. Two aspects of the algorithm can be modified
as the SIS–SO process is repeated. First, while the first SIS pro-
cess computes the correlation between the features and y, the nth
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SIS evaluates the correlation between the features and the predic-
tion error from the previous run [i.e., y − ŷ(n−1)D, where ŷ(n−1)D is
the predicted value from the model of the (n − 1)-th SIS–SO step].
Second, the input space for SO is the union of all previous
SIS-selected features (i.e., S1D ∪ S2D ∪ ⋅ ⋅ ⋅ ∪ SnD). In this strategy,
the first iteration of SISSO identifies the dominant feature from
the S1D set, and the following SnD (n ≥ 2) sets reduce the gap
between y and the current model prediction. We refer to the read-
ers to Ouyang et al.25 for a comprehensive overview of the SISSO
algorithm.

Here, multiple parameters are specified when implementing
SISSO for the M–S and M–D datasets. The O1 ∪O2 operator set
was applied to the primary features twice to generate ∼5.5 × 107

features. The upper bound and lower bound of the absolute value
of the descriptors were 1 × 106 and 1 × 10−6, respectively. The size of
the SIS-selected subspace was 40, l0 norm regression was applied in
the SO step, and the maximum dimension for the l0 norm regression
step was D = 5. These parameters settings were chosen because they
generate the most candidate features that could be managed with
computational resources available to us.

LASSO + l0 and Dirichlet–Laplace prior. In addition to SISSO,
we also compare iBART to the methods we originally employed
on the M–S and M–D datasets, which are LASSO + l012 and
Dirichlet–Laplace prior,13 respectively. To ensure a fair compar-
ison with the published results, we apply the same datasets, FE
procedures, and FS algorithms as those applied in the original
literature since significant effort was put into optimizing set-
tings in LASSO + l0 and Dirichlet–Laplace prior in our previous
works; the only difference here is that we now assess average
model performance over multiple trials with different random data
separations into training and validation data. The LASSO + l0
method, which was introduced by Scheffler et al.,23 is implemented
in MATLAB,12 where the shrinkage coefficient of LASSO, λ, is
chosen to identify the top 75 features from ∼300 000 candidate
features, and l0 norm regression is used to refine the model to
the desired final dimension. Dirichlet–Laplace prior is a Bayesian
sparse regression algorithm,40 which uses the Dirichlet–Laplace dis-
tribution on each coefficient, updates the distribution with a Gibbs
sampler, and then selects meaningful features from the posterior
distribution. The entire feature space is pre-screened by the Pearson
coefficient of correlation to reduce the amount of candidate features
to one thousand. Dirichlet–Laplace prior is then used to conduct
feature selection on the candidates. Once the relevant features are
identified in this manner, l0 norm regression again is used to refine
the model to a user-specified final dimension. We refer to the
reader to our previous work13 and the statistics literature40,41 for
more details regarding the Dirichlet–Laplace prior method.

iBART. iBART is an algorithm that iteratively applies FE
and FS on the feature space.33 Simple linear regression can select
useful features from a pool of candidates if they are linearly
correlated with the property of interest (i.e., y). However, in physical
systems the property of interest often is not linearly dependent
on the features. Therefore, a FS method designed to identify
non-linear correlations is advantageous, which is why we selected
BART34,35 as the principal FS method in the iBART routine.

BART is a sum-of-trees model (see the section titled Method
in the supplementary material for a basic introduction to decision
tree-based models), which can be expressed as

y =∑m
k=1g(x;Tk,Mk) + ε, (2)

where g(⋅) denotes the regression tree function, Tk denotes the
structure of a binary tree, Mk = {μk1, μk2, . . . , μkb} represents the
parameter set in Tk having b terminal nodes (i.e., leaves), μkl repre-
sents the parameter on each leaf in Tk, m represents the total number
of trees, and ε is the error term assuming a normal distribution with
zero mean and variance σ2. The first step when building a BART
model is to determine the structure of each tree (Tk). With the ini-
tial root node (depth, d = 0), the probability of the node becoming
a branch is α(1 + d)−β, where α is a number between zero and one
and β is a positive number. Values of α = 0.95 and β = 2 typically are
applied in the literature to regularize the size of each tree.34 Thus,
as d increases, the node is more likely to become a leaf instead of
a branch because α(1 + d)−β → 0, which terminates the growth of
the tree. Once the trees are built, each branch node is assigned a
feature and a splitting value, and the leaf nodes are assigned a value,
μkl. A uniform distribution is used for each feature to determine
which feature is used in each node, where the splitting values are
chosen from the “available” values from another uniform distribu-
tion. We note that a splitting value is “available” if the value can split
the samples into two categories.34,42 For μkl, a normal distribution
with zero mean and 1

16m variance generally is used as the prior dis-
tribution, since the normal distribution is computationally efficient
and the variance yields 95% prior probability for y in [−0.5, 0.5] on
the normalized scale.34 Finally, the variance of the error term, σ2,
has an inverse chi-square distribution as the prior distribution, with
the hyperparameters for the inverse chi-square distribution chosen
from the standard deviation of the prediction error using a linear
regression of all features on y. The choice of prior distribution for
each parameter is discussed in the original BART literature34 with
comprehensive mathematical derivations found therein.

After the BART model is established from the prior distri-
butions on Tk, Mk, μkl, and ε, BART implements Bayesian back-
fitting Markov chain Monte Carlo (MCMC) with the input data
(i.e., the input features and y) to obtain the posterior distribution.
The number of MCMC steps is critical for obtaining a stable pos-
terior distribution, and this metric dominates the performance of
BART models: too few MCMC steps lead to an inaccurate and unsta-
ble model, while too many steps waste computational resources. In
this work, we use 15 000 MCMC iterations, where the first 10 000
iterations are removed and the last 5000 samples are analyzed for
the posterior distribution to determine the final values of each para-
meter in the tree model. The number of MCMC steps was tested to
confirm that the FS results are converged.

BART can be adapted readily as a powerful FS algorithm.34,35

The BART FS algorithm permutes the prediction target, y, into y′

by switching labels and deriving a BART model for each set of y′.
Subsequently, the usage frequency of each feature in all BART mod-
els is collected. A higher usage frequency implies that the feature
is more important statistically for predicting y and, thus, should
be selected. Two key factors controlling the effectiveness of FS via
BART are the number of MCMC steps and the number of trees, m,
which were investigated to determine the proper value while the set-
ting of other parameters follows previous literature.34,35 If m is large,
the total number of nodes is large and irrelevant features can be
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selected as false positives. As m decreases, the number of vacancies
becomes rare and the model is restricted to only the most mean-
ingful features. Here, we tested m = 20, 50, 100 and did not find a
significant difference in FS results. Thus, we assign m = 20 in the
BART models, which is in line with heuristic values recommended
in the literature.34,35 For more information, we refer to the readers to
Ref. 34 for BART model construction and Ref. 35 for FS with BART.
In addition, Bleich et al.35 demonstrated both that BART can rapidly
identify true features in linearly dependent datasets and that BART
surpasses random forests and dynamic tree methods when handling
non-linearly dependent datasets. Thus, we incorporate BART as the
FS method to screen through the non-linearly correlated features
that are present in our system.

In the iBART framework (Fig. 2), BART34 (implemented
in R35) first is applied to identify the meaningful features from the
primary feature set. Subsequently, the O2 FE operation is employed
on the selected features to generate the next batch of candidates.
The engineered feature space then is reduced by another BART
selection step and then expanded by the O1 FE operation. The
procedure of BART → O2 → BART → O1 → BART → O2 → BART
→ O1 → . . . can be repeated until a user-defined convergence crite-
rion is achieved. As the FE–FS steps iterate, the dependence between
the features and y becomes more linear due to the presence of com-
plex functional forms in the engineered features. Given the increased
linear correlation with y after the FE–FS iterations, we implement
LASSO36 (also in R45) to conduct the final refining FS step in iBART,
where λ is tuned via a tenfold cross validation. For determining λ, we
separate the entire dataset into ten subsets, use nine subsets to train
the coefficients, and evaluate the prediction error with the remaining
one. Each subset is treated as a test set once, and λ with the low-
est average prediction error is selected (detailed information can be
found in the supplementary material of Ref. 13).

Since we aim to have a fair comparison between iBART and
the one-shot approaches, we fix the number of FE steps in iBART
to the following sequence: BART → O2 → BART → O1 → BART
→ O2 → LASSO→ l0. This yields final features that have a similar
level of complexity compared to those derived by the one-shot FE
step used for the other FS methods. For SISSO, the O1 ∪O2 operator
set is applied to the primary features twice as mentioned above. For
LASSO + l0 and Dirichlet–Laplace, we use the same FE steps stated

FIG. 2. Flowchart of the iBART algorithm.

in the original literature.12,13 We note that the order of the FE steps
is flexible in iBART; however, we suggest applying O2 first because
it increases feature complexity by introducing interactions between
the features. In contrast, O1 usually derives features that are highly
correlated with previous features (i.e., x3

1 derived from x1) and does
not introduce complexity as quickly.

D. Evaluation of feature selection methods
For the M-S dataset, we randomly separate the data into a train-

ing set (90%) and validation set (10%) for 50 independent trials,
while for the M–D dataset, the training-to-validation ratio is 80% to
20% for 50 independent trials. Training sets are used to select the fea-
tures and to construct the predictive models. Since each FS method
will select a different number of features, we use l0 norm regression
to identify the best set of features with a specified model dimension
(nD), where n is the number of features used in the final model. We
assess the performance of the FS methods using models derived to
have the same dimension, which ensures that each model has the
same number of free fitting parameters. The root mean squared
error (RMSE) of the validation sets is computed to evaluate the
final performance. The summary of validation RMSE in 50 random
data separations was used as the metric to compare the effective-
ness of the FS methods regardless of the training data. The mean
of validation RMSE represents the average performance, while the
distribution shows the sensitivity of the FS algorithm toward the
training data. We note that the results presented herein for LASSO
+ l0 on the M–S dataset and Dirichlet–Laplace prior on the M–D
dataset are re-derived in this work because here we repeated 50 inde-
pendent trials with different random separations of training and
validation data. The FS methods are compared using the same data
in each trial.

III. RESULTS AND DISCUSSION
A. Predicting metal–support binding energies

Datasets from our previous work12,13 studying metal–support
interactions were used to assess the performance of iBART. Metal
particles attached on oxide supports are ubiquitous as heteroge-
neous catalysts in chemical industries. The interaction strength
between metals and oxides, measured by the metal binding energy
to the support, largely determines the migration barrier of metal
adatoms along the surface.28 Weak binding strength tends to lead to
aggregation of metal clusters and deactivation of the catalysts. The
key to synthesizing stable cluster morphologies is finding ways to
strengthen the metal–support interaction, such as adding dopants
that modulate charge transfer [Fig. 3(a)]. In addition to influenc-
ing metal particle size distribution, metal–support interactions also
alter the reactivity of the metal by changing the metal’s oxidation
state.12,29 As such, physical models that can predict metal–support
interactions are valuable for designing catalysts with optimal activity
and stability.

The M–S dataset from Ref. 12 contains binding energies of
13 single transition metal atoms adsorbed on seven oxide supports,
ranging from irreducible MgO to highly reducible TbO2. The M–D
dataset from Ref. 13 contains binding energies of 19 single transition
metals on the MgO(100) surface with Al, B, Li, or Na substitution-
ally doped on a surface Mg lattice site. Here, we apply the same
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FIG. 3. (a) Isostructural charge density difference plot of Au supported on MgO(100). Blue represents electron density depletion and green represents accumulation. The
isosurface level is ±0.0035 e Bohr−3. (b) Box plots of validation RMSE for FS-derived models trained on 50 random separations of the M–S dataset under a user-specified
model dimension (nD). The cross, upper whisker, upper bound, center line, lower bound, and lower whisker represent mean, maximum, 75th percentile, median, 25th
percentile, and minimum, respectively. The outliers for box plots are marked as circles, and we note that some outliers for LASSO + l0 and SISSO are not visible in the plot
range. Data in (b) is from Ref. 33.

primary features as in the original studies, which were taken from
several available databases. In the M–S set, we have n = 91 binding
energies and p = 59 primary features consisting of atomic proper-
ties and oxide properties. This dataset is used herein to evaluate the
performance of SISSO and iBART, which we compare against the
LASSO + l0 method used in the original paper. Here, we imple-
ment LASSO + l0 using the original MATLAB code published
in Ref. 12. Identical datasets are used to compare LASSO + l0 with
SISSO and iBART. We note that this comparison between LASSO
+ l0, SISSO, and iBART using the M–S dataset also is reported in
our separate work33 as a demonstration of a real data application for
iBART. A deeper physical interpretation of the results is provided
in Sec. III B. We refer to the readers to the original papers12,13 for
further details regarding the full computational details and primary
feature data.

We evaluate the SL methods by comparing their average train-
ing and validation RMSE over 50 trials, as shown in Fig. 3(b)
and in the supplementary material [Fig. 1(a)]. The training error
decreases as the dimension of the model increases, as expected.
However, at higher model dimensionality, LASSO + l0 and SISSO
both yield models with increasing RMSE. The distribution of RMSE
values over the 50 trials also becomes very wide for high model
dimensions (i.e., 4D and 5D). These results suggest that there is an
early onset of overfitting as the number of features in the model
is increased. In contrast, the validation error of iBART reaches a
plateau after 3D. At 4D and 5D, the distribution of iBART’s vali-
dation error becomes slightly wider, which also indicates overfitting
in higher dimensional models. Nevertheless, the range in valida-
tion error of iBART is narrower at both 4D and 5D compared to
LASSO + l0 and SISSO.

Given the robust performance of iBART on the M–S dataset,
we next tested the performance of iBART on the M–D dataset. In
these data, a dopant [Fig. 4(a)] is introduced in the oxide surface
to tune the metal–support interaction.46,47 MgO(100) was chosen
as the oxide support because it binds to metals weakly, and, thus,

the change in metal binding energy induced by the dopants can
be observed more apparently. The predicted property from the
SL-derived model is now the change in metal binding energy
induced by surface dopants, as opposed to the absolute binding
energies contained in the M–S dataset. Here, we compare SISSO
and iBART with Dirichlet–Laplace prior, which was demon-
strated to be more effective than LASSO in the original study.13

For all FS methods applied on the M–D dataset, the training and
validation errors decrease with higher model dimension, as shown
in Fig. 4(b) and in the supplementary material [Fig. 1(a)].
SISSO and iBART yield more accurate models than the
Dirichlet–Laplace prior method. We found that iBART can
derive models with validation error comparable to SISSO with
a narrower distribution of error over 50 trials of random train-
ing/validation separations. This demonstrates that iBART performs
more consistently and is more proficient at creating generalized
models.

In addition to predictive power, we aim to demonstrate the
interpretability of selected features from iBART and other FS tools
in Sec. III B. Here, we describe how we chose representative
features for further interpretation. For the M–S dataset, the metal
binding energy correlates well with the 1D feature (>0.9 correla-
tion; see Figs. 2 and 3 and Tables I and II of the supplementary
material). Therefore, we will further investigate the functional
forms and the primary features in the 1D features for all FS
methods and the best 2D feature derived from iBART. However,
for the M–D dataset, the 1D feature does not correlate with
the change in metal binding energy (see Figs. 4–6 and Tables
III–V of the supplementary material), which suggests that 2D and
3D features (see Figs. 7–8 of the supplementary material) are
required to describe the charge transfer between the doped-
surface and the adsorbed metal. We further decompose iBART’s
2D and 3D features in Sec. III B 3 to understand which fea-
tures can describe the bi-directional charge transfer in M–D
dataset.
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FIG. 4. (a) Isostructural charge density difference plot of Au on Al-doped MgO(100) and Au on Na-doped MgO(100). Blue represents electron density depletion and green
represents accumulation. The isosurface level is ±0.0035e Bohr−3. (b) Box plots of validation RMSE for Dirichlet–Laplace prior, SISSO, and iBART models trained on 50
random separations of the M–D dataset with user-specified dimension (nD). The cross, upper whisker, upper bound, center line, lower bound, and lower whisker represent
mean, maximum, 75th percentile, median, 25th percentile, and minimum, respectively. The outliers for box plots are marked as circles, and we note that some outliers for
Dirichlet–Laplace and SISSO are not visible in the plot range.

B. Interpreting physical descriptors derived
with iBART
1. Variation in derived features for metal–oxide
interactions

The advantage of FS approaches over nonparametric regres-
sion is the interpretability of the predictive model. Here, we take
interpretability to mean the ability to apply domain knowledge,
post-hoc, to understand the physical rules that are embedded in the
functional forms of the selected features. For example, in our original

study,12 LASSO + l0 built a model containing the descriptor
ΔHm

ox, f
Ovac

,
where ΔHm

ox, f is the oxide formation enthalpy of the adsorbed metal
and Ovac is the oxygen vacancy formation energy of the oxide sur-
face. This functional form is an intuitive measure of charge transfer
from the metal to the support. ΔHm

ox, f has been proposed previously
by Campbell and Sellers48 as a descriptor for predicting metal adhe-
sion on oxides, as it captures the ability of the metal to form bonds
with oxygen atoms.29,37 More generally, as shown by the SL-derived
models, ΔHm

ox, f quantifies the ability of the metal to donate elec-
trons when bonding to an electrophilic element (such as oxygen).
Ovac describes the ability of the surface to receive electrons, which
occurs when an oxygen vacancy is formed. In this work, the 1D
features identified from the M–S dataset by each FS method (i.e.,
LASSO+ l0, SISSO, and iBART) are correlated with the metal’s bind-
ing energy (i.e., >0.9 Pearson coefficient). Particularly, SISSO derives
the same feature each time over 50 random training set separations:
ΔHm

ox, f × Zs × IEs
3, where Zs is the atomic number of the parent metal

in the oxide and IEs
3 is the third ionization energy of the parent

metal in oxide. In contrast, LASSO + l0 and iBART selected 4 and 22
different features, respectively (supplementary material, Figs. 2 and

3). All 1D features from LASSO + l0 include
ΔHm

ox, f
Ovac

(supplementary
material, Table I), and the correlation between each feature is >0.98,
indicating that they have similar explanatory power for predicting
the metal binding energy (supplementary material, Fig. 2). The 1D
features from iBART mix ΔHm

ox, f with various other features
(supplementary material Table II), which implies that iBART is

sensitive to the training data when constructing functional forms
from parent features. However, as we analyzed the selected features
from iBART (supplementary material, Fig. 3), we found that they
are highly correlated with each other (i.e., the absolute value of cor-
relation between each feature is >0.90), demonstrating that they are
describing the same physical phenomenon in different functional
forms.

The variation in selected features from iBART is attributed
to the nature of BART and the iterative framework applied here.
Compared to iBART, one-shot methods, such as LASSO + l0 and
SISSO, generate the entire feature space for FS at the onset. In the-
ory, if computational storage space is unlimited, the functional form
of the features can be as complex as desired, and the selected fea-
tures can form a rich menu of descriptors in various mathematical
functions with different primary features. However, the availability
of computational resources is a bottleneck in practice, thus limit-
ing the complexity attainable in the one-shot methods. Therefore,
one-shot methods are more likely to select the same features, as
they are less sensitive to the specific sampling in the training data.
In contrast, iBART is sensitive to the training data, as we observe
that differences in the training data sampling significantly impact
the path taken during FE. As a result, iBART derives a richer menu
of features than one-shot approaches. We note that the difference
in variation of selected features is observed from our two datasets,
and in principle, if computational resources are unlimited, one-shot
approaches can also derive a diverse set of descriptors. In addition
to deriving diverse features, another key advantage of iBART is its
computational efficiency, which will be discussed in Sec. III C.

There is an inevitable trade-off between model accuracy and
interpretability. Descriptors with simple functional forms will cap-
ture the general physics and can be interpreted easily, but they
usually suffer reduced accuracy. In contrast, descriptors with com-
plex functional forms usually yield more accurate predictions, but
the user may not be able to understand the underlying physics in the
selected descriptors. iBART still suffers from this trade-off, but an
advantage of iBART is its ability to produce a rich menu of derived
features that take unique functional forms but describe the same
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physics. This attribute raises the possibility that iBART can generate
apparent contradictions, as different descriptors can be selected to
describe the same physics. However, for a given training set, iBART
will always build features that linearly correlate with the property
of interest. Thus, if two unique descriptors are both correlated with
the property of interest, they must also be correlated with each other.
This can allow the user to identify physical relationships between the
descriptors that were not known previously.49 iBART builds com-
plexity as the algorithm progress, and thus, it is more flexible and
can explore more possible functional forms.

An example of this attribute of iBART is provided here, where
we develop a connection between oxygen vacancy formation energy
(Ovac) and ionization energies of parent metals in the oxide sur-
face. As shown in Table II of the supplementary material, we can
derive multiple replacements for the Ovac feature that provide the
same information. For example, we find high correlations if we com-

pare ∣ΔH
m
ox, f

Ovac
∣ (feature x.7 in Table II of the supplementary material)

with ΔHm
ox, f × EAs × IEs

4, ΔHm
ox, f × (IEs

4 + EAs) × IEs
4, and ΔHm

ox, f

× Zs × (IEs
3)2 (features x.8, x.9, and x.10 in Table II of the supple-

mentary material, respectively), where EAs is the electron affinity
of the parent metal in the oxide and IEs

4 is the fourth ionization
energy of the parent metal in the oxide. Although Ovac is an effective
descriptor for the metal binding energy, this property is obtained
from a density functional theory (DFT) calculation. If the goal is
to reduce the number of required DFT calculations, then it would
be advantageous to use equivalent properties available in experi-
mental databases. Thus, the flexibility of iBART allows us to select
primary features that are preferable based on availability or accuracy
(i.e., selecting more exact experimental descriptors over computed
descriptors).

2. Decomposing metal–oxide interactions
between single metal atoms and oxide supports

The model for the M–S dataset can be further improved by
increasing the dimension, i.e., including more features in the pre-
dictive model. The best 2D model derived from iBART includes
∣ΔH

m
ox, f

Ovac
∣ × 1

ϕs and
Hm

f ×EA
s

NValm , where ϕs is the Miedema parameter repre-

senting the chemical potential of the electrons in the parent metal in
the oxide, Hm

f is the oxide formation enthalpy in its most stable state
of the adsorbed metal, and NValm is the number of valence electrons
of the adsorbed metal. The first feature (∣ΔH

m
ox, f

Ovac
∣ × 1

ϕs ) correlates with

∣ΔH
m
ox, f

Ovac
∣ (i.e., cor(∣ΔH

m
ox, f

Ovac
∣, ∣ΔH

m
ox, f

Ovac
∣ × 1

ϕs ) = 0.99), which captures the

metal–oxygen interactions and correlates well with the metal bind-
ing energy [Fig. 5(a)] for all oxides, as expected from our previous
discussion. Data for most oxides, except MgO(100) and ZnO(100),
cluster on a trend line (see slopes for each oxide in Table VI of

the supplementary material). This implies that ∣ΔH
m
ox, f

Ovac
∣ × 1

ϕs is a suit-

able descriptor, in general, but does not describe the irreducible
oxides and reducible oxides in the same way. The second descriptor

(
Hm

f ×EA
s

NValm ) has a negative correlation for MgO(100) and ZnO(100) but
a positive correlation for the other surfaces [Fig. 5(b)]. The sign of

this correlation is controlled by the EAs term in
Hm

f ×EA
s

NValm . For Mg

and Zn, EAs is negative, while for other parent metals, EAs is pos-
itive. From a chemical point of view, this implies that for irreducible
oxides, the parent metals do not favorably accept additional elec-
trons from the adsorbed metal and, therefore, will be inert in the
charge transfer process. In contrast, for reducible oxides, electrons
from adsorbed metals will interact with not only the surface oxy-
gen but adjacent parent metal atoms, which enhances charge transfer
and strengthens the binding energy.

Analysis of the 2D model derived from iBART provides
important information for metal–oxide interactions. Metal binding
strength is determined by the charge transfer between the adsorbed
metal, surface oxygens, and parent metals in the oxide. Here, we
deconstruct the metal–oxide interactions into (1) redox interactions
between the adsorbed metal and surface oxygens (i.e., explicit elec-
tron transfers), (2) bonding interactions between the adsorbed metal
and surface oxygens (i.e., atomic orbital rehybridizations), (3) redox
interactions between the adsorbed metal and the surface parent met-
als, and (4) bonding interactions between the adsorbed metal and

the surface parent metals. ∣ΔH
m
ox, f

Ovac
∣ is generally the descriptor that

correlates most with the binding energy because it captures the
metal–oxygen interactions for both redox and bonding interactions.
To further improve the model, descriptors for the charge trans-
fer between the adsorbed metal and parent metal, i.e., metal–metal
redox interactions and metal–metal bonding interactions, are crit-

ical. Such interactions are captured by the term
Hm

f ×EA
s

NValm using Hm
f

and EAs to describe the charge transfer ability of the adsorbed metal
and the surface parent metal, respectively. We conducted Bader
analysis, crystal orbital Hamilton populations (COHP) analysis, and
generated charge density different plots using DFT to illustrate the
charge transfer between the adsorbed metal and the oxide surfaces
(see the section titled Method in the supplementary material for
computational settings). In particular, Bader analysis reveals the
charge in each atom and their redox interactions, while COHP
analysis determines whether direct bonds are formed between
two atoms. Ag and V were chosen to represent low- and high-
oxyphilic metals, respectively, while MgO(100) and CeO2(111) were
chosen to represent irreducible and reducible oxides, respectively
(supplementary material, Fig. 9).

On MgO(100), Ag and V form an anti-bonding interaction with
attached oxygens [supplementary material, Figs. 10(a) and 10(c)],
and no obvious redox interactions are present (supplementary mate-
rial, Table VII). In addition, both redox and bonding interactions
between Ag or V and adjacent Mg atoms are negligible, indicat-
ing weak metal–metal interactions due to the negative EA of Mg.
Figure 5(d) demonstrates the charge transfer between the adsorbed
V and MgO(100) surface, where no V–Mg bond is observed in
the COHP analysis. On CeO2(111), stronger Ag–O interactions are
evident in the charge density difference plot [Fig. 5(e)]. COHP anal-
ysis indicates the formation of Ag–O bonds with surface oxygens
[supplementary material, Figs. 11(a)–11(d)]. Additionally, redox
interactions between Ag and Ce atoms are visible in the Bader anal-
ysis, where Ag atoms are clearly oxidized and Ce atoms are reduced
(supplementary material, Table VII). This is due to the higher EA
of Ce, illustrating how the

Hm
f ×EA

s

NValm feature derived by iBART cap-
tures redox interactions. However, no Ag–Ce bonds are evident
in the COHP analyses [supplementary material, Figs. 11(e)–11(h)].
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FIG. 5. Correlation between metal binding energy from the M–S dataset with (a) and (b) individual features and (c) a 2D model (ΔEads = −3.29 × ∣ ΔH
m
ox,f

Ovac
∣ × 1

ϕs + 2.43

× Hm
f ×EA

s

NValm − 0.47) derived from iBART. The lower panels show charge density difference plots for (d) V/MgO(100), (e) Ag/CeO2(111), and (f) V/CeO2(111). Blue represents

electron density depletion and green represents accumulation. The isosurface level is ±0.005e Bohr−3. The red, dark red, orange, green, and gray spheres represent O, V,
Mg, Ce, and Ag, respectively.

Thus, strong Ag–O interactions and the redox interactions between
Ag and Ce result in stronger binding on the CeO2(111) surface
(−1.73 eV) compared to the MgO(100) surface (−0.44 eV). For
V adsorbed on CeO2(111), similar to Ag/CeO2(111), V–O bonds
were observed in the COHP analysis [supplementary material,
Figs. 12(a)–12(d)] and charge density difference plots [Fig. 5(f)].
Strong redox interactions between V and Ce atoms are evident in
the Bader analysis (supplementary material, Table VII). Compared
with Ag, V is more oxyphilic, resulting in stronger V–O bonds and
enhanced redox interactions between V and Ce. Moreover, direct
V–Ce bonds are demonstrated in the COHP analysis [supplemen-
tary material, Fig. 12(e)–12(h)] and charge different density plots
[Fig. 5(f)]. Therefore, V exhibits a strong interaction with surface
oxygens, as well as strong redox and bonding interactions with sur-
face Ce atoms, leading to much stronger binding energy with the
CeO2(111) surface (−8.30 eV).

These electronic analyses show that several distinct interactions
between adsorbed transition metals and oxide surfaces dominate the
overall metal binding energy. In terms of iBART derived models, the
1D model captures the general trend [Fig. 5(a)] with a descriptor

predicting the strength of metal–oxygen interactions. An additional

descriptor added in the 2D model (
Hm

f ×EA
s

NValm ) measures the strength
of direct metal–metal interactions, i.e., through both redox and
bonding interactions, which differentiate irreducible oxides from the
reducible oxides. We note that our previous work also discovered
descriptors responsible for metal–metal interactions with LASSO +
l0, but this feature showed up only in 3D or higher dimensional
models.12

3. Bi-directional charge transfer between metal
atoms and doped-oxides

The flexibility of models derived by iBART also is advanta-
geous when deriving models on datasets that contain several cat-
egorical distinctions, which is the case for the M–D dataset. In
M–D dataset, dopants were introduced to the surface that pro-
moted electron transfer either to the metal from the surface or vice
versa. The descriptors derived for the M–S dataset, e.g., ΔHm

ox, f ,
fail to describe the M–D data because they only describe electron
transfer from the metal to the surface. A more complex model is
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FIG. 6. Correlation between change in metal binding energy difference from the M–D dataset with (a) electron affinity and (b) ionization energy of the adsorbed metal and
(c)–(e) 1D–3D features derived from iBART, listed in Table I. Data in (a) and (b) are from Ref. 13.

TABLE I. Predicting equations composed of features constructed with iBART and their prediction error on the full M–D dataset.

Predicting equation RMSE (eV)

1D 1.66 × log(∣log(NValm ×NVald) × log( ENm
P

NVald )∣) − 1.64 0.45

2D −7.88 × ∣IEm
1 ×NVald × log(NValdENm

P
)∣
−1

0.31

−0.69 × exp( EAm

exp( EAm

NVald
)

) + 1.15

3D
0.17 ×Hm

f × log( ENm
P

NVald )
0.27−29.85 × (IEm

1 )−1

−0.22 × EAm

log(
ENm

P
NVald

)

+ 3.16

NValm: number of valence electrons of adsorbed metal

NVald: number of valence electrons of surface dopant
ENm

P : Pauling’s electronegativity of adsorbed metal
IEm

1 : first ionization energy of adsorbed metal
EAm: electron affinity of adsorbed metal
Hm

f : oxide formation enthalpy of the adsorbed metal’s most stable oxide
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needed to capture the bi-directional nature of charge transfer in
the M–D dataset. In previous work,13 we found that both EAm

and IEm
1 were needed to separately describe the electron-rich and

electron-poor surfaces, respectively, as demonstrated in Figs. 6(a)
and 6(b) (IEm

1 is the first ionization energy of the adsorbed metal).
In Table I, we found that log( ENm

P
NVald ) is repeatedly selected through-

out the 1D to 3D predictive models from iBART. As illustrated
in Fig. 13(a) of the supplementary material, this feature distin-
guishes electron-rich surfaces from electron-poor surfaces by using
NVald as a categorical tag. Since NVald = 3 for electron-rich sur-
faces and NVald = 1 for electron-poor surfaces, the magnitude of
log( ENm

P
NVald ) dominates for electron-poor surfaces and diminishes for

electron-rich surfaces, leading to two clusters shown in Fig. 13(a)
of the supplementary material. When log( ENm

P
NVald ) is multiplied by

log(NValm ×NVald), we see that the clusters merge and a linear cor-
relation emerges [supplementary material, Fig. 13(b)]. Including an
additional log(⋅) operator [supplementary material, Fig. 13(c)] and
fitting coefficients leads to the final predictive model in Fig. 6(c).
However, scatter can be observed in the parity plot of the 1D
model, which implies that a higher dimensional model is neces-
sary for a complete description of bi-directional charge transfer.

For 2D features, ∣IEm
1 ×NVald × log(NValdENm

P
)∣
−1

and exp( EAm

exp( EAm

NVald
)

)

were selected, and we found a significant decrease in prediction
error [Fig. 6(d)]. Interestingly, one feature includes IEm

1 , while the
other is composed with EAm, matching our prior knowledge that
IEm

1 and EAm are essential for electron-poor and electron-rich sur-
faces, respectively. For the electron-rich surface, the charge will be
transferred from the support to the adsorbed metal, and thus, a

FIG. 7. Box plots of runtime for each
method across 50 random partitions in
using 1, 20, and 40 CPU cores for the
(a) M–S and (b) M–D dataset. The cross,
upper whisker, upper bound, center line,
lower bound, and lower whisker repre-
sent mean, maximum, 75th percentile,
median, 25th percentile, and minimum,
respectively. Data in (a) are from Ref. 33.
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descriptor predicting ability of the adsorbed metal to accept charge,

i.e., exp( EAm

exp( EAm

NVald
)

), dominates the predictive model (supplemen-

tary material, Table VIII). For electron-poor surfaces, the other

feature, ∣IEm
1 ×NVald × log(NValdENm

P
)∣
−1

, dominates the prediction by
describing the charge donation ability of the adsorbed metal. For the
3D features [Fig. 6(e)], we found similar functional forms that use
variants of log( ENm

P
NVald ) as a categorical tag to make classifications in

the final model.
The bi-directional charge transfer in the M–D dataset was

investigated using electronic analysis in our previous work.13 Here,
no assumption and physical information, except training data,
were provided in FE–FS procedures, and iBART was able to
obtain the data-driven 2D model for describing the bi-directional
charge transfer. EAm and IEm

1 were used to describe the extent
and direction of charge transfer, and NVald was applied to
distinguish electron-rich from electron-poor surfaces. In this
work, we use M–S and M–D datasets as the testbed for iBART
to not only measure its prediction accuracy but verify if it
can recover physical insights from the given training data.
The results indicate that physical models can be established
by iBART.

C. Computational cost advantage of iBART
In Secs. III A and III B, we demonstrated the capability of

iBART to derive meaningful and predictive features. Here, we
demonstrate another advantage of iBART, which is its computa-
tional efficiency. In Fig. 7, we compare the computational time for
LASSO + l0, SISSO, and iBART to build a model using the M–S
dataset as well as the time for Dirichlet–Laplace, SISSO, and iBART
to build a model using the M–D dataset. We compare the required
wall-clock times using 1, 20, and 40 cores on an Intel Xeon Gold
6230 CPU @ 2.10 GHz node with 40 cores and 960 GB of mem-
ory. When 40 cores were not fully utilized, the remaining cores
were excluded from other computational tasks. The LASSO + l0
run did not finish using one core because of its high computa-
tional demand in the l0 norm regression step, and thus, no data for
this run are reported in Fig. 7(a). Among the three FS methods in
Fig. 7(a), iBART yields the shortest runtime because it reduces the
size of the candidate feature space to a maximum of ∼102 entries,
compared to >105 entries for LASSO + l0 and SISSO. SISSO can
be efficiently parallelized, but it is still slower using 40 cores than
iBART using one core. A similar trend can be found when applying
the FS methods on the M–D dataset [Fig. 7(b)]. Dirichlet–Laplace
prior has a comparable speed to iBART, since we pre-screen the
feature space with the Pearson coefficient of correlation, and as
a result, it only needs to conduct FS on 1000 features. However,
the latter introduces greater complexity into the feature space and,
thus, can derive more meaningful features [Fig. 4(b)]. We note
that the parallelization of iBART has not yet been developed in
the current version; however, the runtime can be further reduced
if parallel computation is implemented. These results show that
iBART is computationally efficient, as it can be implemented over
the course of minutes using resources available on a typical personal
computer.

IV. CONCLUSIONS
In this paper, we demonstrated that a new FS method, iBART,

can derive robust physical descriptors for predicting the behavior
of complex catalytic materials with reduced computational cost. On
the M–S data, iBART recovers the meaningful descriptors found
in our previous work using LASSO + l0 set while only requiring a
fraction of the computational resources. On the M–D dataset, we
found that the flexibility of iBART allows it to construct complex
features that can describe categorical splits in the training data (i.e.,
electron-rich vs electron-poor surfaces). iBART constructs mod-
els that achieve similar accuracy to those derived with SISSO, yet
iBART exhibits less variation in validation error over repeated trials
with random separations of training and testing data. This demon-
strates that iBART can provide consistent and generalized models.
Finally, iBART significantly reduces the size of the candidate feature
space and, achieves high computational efficiency, thus allowing it
to be implemented on a personal computer using only minutes of
runtime.

SUPPLEMENTAL MATERIAL

The supplementary material includes additional descriptions of
the computational settings for all DFT calculations, supplemental
figures, and supplemental tables that are referenced in the main text.
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