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ABSTRACT

Large Language Models (LLMs) exhibit exceptional proficiency in comprehend-
ing human language. Despite their significant success across a wide array of tasks,
including text generation, translation, question answering, and even code gener-
ation, understanding tabular data remains a challenging task. Especially, tabular
data lacks an intrinsic order of the different features (table fields), whereas LLMs
take only sequential inputs. Consequently, an artificial order is imposed, the im-
pact of which on the performance of LLMs has not yet been thoroughly inves-
tigated. Surprisingly, as discovered in this work, this artificially induced order
bias dramatically influences the performance of LLMs on tasks related to tabular
data. Mitigating the order bias presents a significant challenge. To address this,
we propose a simple and cost-effective method, Re-Ordering Tabular feATures
fOR LLM (ROTATOR-LLM), to conduct test-time compute without fine-tuning
the base LLM. Aiming at optimizing the feature order of tabular data and boost-
ing LLMs’ capability to better understand the data semantics, ROTATOR-LLM
re-frames the ordering problem as a feature trajectory generation task. A dy-
namic programming based meta-controller is trained to auto-regressively generate
an individualized feature trajectory for each data instance via accumulative value
estimation of the serialized feature input through the LLM’s final performance
metrics. Model performance is maximized by iteratively selecting features across
different steps. Experimental results on multiple datasets and LLMs show close
to or over 20% performance boosts via features reordered by ROTATOR-LLM
against the un-ordered counterpart. Also, it outperforms State-Of-The-Art tabular
LLM methods with significant margin. Moreover, meta-controller demonstrates
strong transferability: the tested LLMs gain performance enhancements when uti-
lizing a meta-controller trained on one of them.

1 INTRODUCTION

Tabular data is prevalent in real-world scientific, medical, biological, sociological, financial, and
retail databases, necessitating significant time and effort for humans to process and analyze Dong
& Wang| (2024); [Fang et al.| (2024). Fortunately, advancements in large language models (LLMs)
have enabled rigorous exploration of their application in various tasks related to tabular data mod-
eling [Yuan et al|(2024); Hu et al.| (2024). Recent breakthroughs have involved LLMs to handle a
wide range of tabular data tasks, such as TabLLM [Hegselmann et al.| (2023)), TableGPT |[Zha et al.
(2023b)), and TableLlama Zhang et al.|(2023).

Although tabular data can be easily converted into text format, LLMs struggle to effectively analyze
the converted data. Since LLMs are primarily pre-trained on natural language, they face challenges
in extracting meaningful insights from structured tabular data. To overcome this challenge, existing
work primarily focuses on fine-tuning LLMs on tabular dataset to inject the data prior knowledge
to the models. For example, TableLlama employs LongLLoRA to fine-tune the Llama-2-7B LLM
on the extensive TableInstruct datasets. Similarly, TableGPT introduces a table encoder and chain-
of-command mechanism, utilizing a Phoenix-7B LLM for inference. Despite these advancements,
much of the current research on tabular data analysis overlooks the critical role of feature order in
the prompt: due to the sequential nature of transformer decoder based models, an artificial order
is inevitably created when feeding the features into the LLM one by one regardless of the detailed
prompting schemes. Our extensive studies reveal that this induced ordering of features significantly
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Figure 1: (a) An example of LLM order bias. (b) Order bias generally exist in different LLMs.

impacts LLM’s behavior (Chen et al.| (2024); Xu et al.| (2024). For instance, the LLM prediction
on the same data instance can vary just by changing the order of input features, as in Figure (1| (a).
Further details are discussed in Section[3]

This problem is mainly rooted in the order bias in the pre-training data, where the collected data
follows certain sequences preferred by humans. Such order preference is captured by the LLMs
during the pre-training stage, which enables LLMs to better learn the data semantics whose feature
importance ranking aligns with the order bias [Sagawa et al.| (2019); |[Koh et al.| (2021). To tackle
this, an intuitive solution is to remove the order bias by fine-tuning the LLMs on unbiased data.
However, fine-tuning LL.Ms is not only time- and resource-consuming due to the billions of updated
parameters, but also labor-intensive, requiring collecting high-quality data |[Yang et al.| (2024)); Zha
et al. (2023a). A more practical approach is to preprocess the data to align with the LLMs’ inherent
order bias, enabling them to better grasp the data’s semantics. This alignment offers greater potential
for real-world applications due to its feasibility, scalability, and extensibility across diverse datasets.

In this work, we introduce Re-Ordering Tabular feATures fOR LLM (ROTATOR-LLM), a simple
and cost-effective method to help LLMs better comprehend data semantics via test-time compute
in the input level [Snell et al.| (2024). Specifically, ROTATOR-LLM converts the feature ordering
problem into a task of generating feature trajectories, where each trajectory represents a sequence of
features in a specific order. To avoid the high resource consumption of fine-tuing the LLM and the
corresponding expensive human labeling, ROTATOR-LLM trains a light-weight neural network as a
meta-controller to auto-regressively generates the optimized feature trajectory for each data instance,
guided by a value function designed to supervise its training process. It is challenging to define the
value function for a specific feature order such that this value aligns with the corresponding LLMs’
performance. We are motivated by dynamic programming to overcome this challenge. Specifically,
the value of a feature trajectory is defined as its potential maximal value in the next state within
the whole generation path. At the last state, the value of an integral trajectory is determined by
the LLMs’ performance. This approach allows us to estimate the value of any feature trajectory,
which, in turn, supervises the training of the meta-controller. To evaluate ROTATOR-LLM, we
conduct experiments with three LLMs across four tabular datasets. The results demonstrate that
LLMs perform significantly better on data reordered by ROTATOR-LLM compared to random or
default orders, underscoring the effectiveness of the reordering process. Moreover, ROTATOR-
LLM outperforms existing foundational tabular LLMs, further highlighting its potential in real-
world applications. In summary, our contributions in this work are as follows:

* Order Bias of LLMs. We demonstrate that the order of instance features in a prompt
significantly influences LLM predictions, identifying the presence of order bias.

* Alignment to Order Bias. We propose ROTATOR-LLM, a cost-effective solution that
requires no tuning of LLM parameters. ROTATOR-LLM aligns a data instance with the
inherent order bias of LLMs by re-ordering its features.

* Experimental Evaluation. Experimental results on four datasets with three popular LLMs
demonstrate the superior performance lift brought by ROTATOR-LLM, which improves
LLMSs’ classification accuracy by 20% in average.
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Figure 2: Comparison of the last-layer attention map under different orders of input features. Since
each feature is represented by a sentence, i.e. multiple tokens, each cell corresponds to a matrix of
attention values between tokens. The notation ‘~ ¢, 7, kK’ indicates the attention matrix is computed
based on a mixture of information from the token embeddings associated with features 7, j and k.

2 PRELIMINARIES

We introduce the notations and data format transition in this section.

2.1 NOTATIONS

We consider aligning the dataset D = (z,y) | € X,y € ) to the order bias of LLMs f(e). Each
instance © € X has M features, * = [x1, 22, - , 2, -+ ,&p), Where j € J = {1,2,--- , M}
is the feature index in the default order of a particular tabular dataset. Let 7 = [y, 72, - , Tas]
denote a specific ordering of the features of instance «, representing a feature trajectory with M
positions. For 1 <t < M, each 73 € {21, x2,- -, 2} indicates a feature ranked at position ¢; and
Tjo:¢) denotes a slice of the trajectory comprising the first ¢ positions [7y,- - -, 7¢], each containing
a feature best suited for the corresponding position. The case ¢ = 0 represents the initial state
T[0:0] = [ ] where no features have been ranked, while t = M denotes the final state To:ar that all
M positions are filled by properly ranked features. For example, if there are in total 3 features, the
full trajectory T =[x9, x3, 21] represents the features are ordered as 2, 3, and 1 at positions 0, 1, and
2, respectively. In Section[3] we demonstrate the order bias of LLMs by showing that the prediction
results § = f(7) are significantly affected by the order of input features 7. To address this issue,
we introduce ROTATOR-LLM in Section Section[d which aligns the dataset D with the order bias
of LLMs. ROTATOR-LLM aims to generate the optimal trajectory T* for each instance x, thereby
maximizing the accuracy of the LLMs’ predictions.

2.2 TEXT-BASED SERIALIZATION

Text-based Serialization refers to converting tabular data into text data to fit the input modality of
LLMs. Existing work explores several methods of text-based serialization. For example, Markdown
table [Liu et al.| (2023)); Jaitly et al.| (2023)), JSON-file format Singha et al.| (2023); Sui et al.| (2024),
and sentence serialization | Yu et al.|(2023)); Jaitly et al.| (2023). To maximally leverage the sequence-
to-sequence capacity of LLMs, we consider the sentence serialization to convert the data features
into text data. The advantage of sentence serialization is its alignment with the natural language data
where LLMs are pre-trained. In this work, we use a template given in Appendix[A]to convert tabular
data into text data. For instance, we adopt the sentence “the age of this person is 30; this person has
no house” to represent the tabular data {Age : 30, House : No }. Our method can be easily extended
to fit Markdown table and JSON-file formats of serialized data, but their performance is out of the
scope of this work.

3 ORDER B1AS OF LLMS ON TABULAR DATA

In this section, we empirically analyze the order bias of LLMs and present the experimental evidence
of LLM’s behavior change under the influence of order bias.
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3.1 WHY LLMS HAVE ORDER BIAS?

Order bias refers to the impact that the sequence of tabular data features has on the predictions
made by LLMs. While from the perspective of how human beings understand the tabular data,
the order of features/fields is not meaningful and should not affect the model output, each particular
serialization of these features/fields indeed results in a different input sequence for an auto-regressive
model and accordingly a difference in the outcome. For LLMs, this difference affects their attention
maps. We show an example in Figure [2to demonstrate the influence of different feature orders on
the last-layer attention maps. As each feature is represented by a sentence, i.e. multiple tokens,
each cell in Figure [2] corresponds to a matrix of attention values between tokens. The notation
‘~ 1,7,k indicates the attention matrix is computed based on a mixture of information from the
token embeddings associated with features ¢, j and k. In this example, the sequence of features 1,
2, 3, and 4 in Figure E] (a) mixes a different set of tokens compared to the feature sequence of 2, 3,
4, and 1 for the computation of last-layer attention map. The variations in last-layer attention maps
lead to obvious differences in the prediction results.

3.2 DEMONSTRATIONS OF ORDER BIAS

We demonstrate the presence of order bias in LLMs using real-world tabular datasets. Specifically,
we examine the variance in LLMs’ predictions caused by different permutations of data features.
The probability of LLMs’ predictions is estimated by P(5 = 1) = % = #ofl and
P(y = 0) = 1 — P(§ = 1). The variance in predictions is quantified by the entropy H(j) =
—P(y = 0)logyP(g = 0) — P(g = 1)log, P(y = 1). For instance, for data instance having
two features: age and house, if an LLM outputs § = 1 for {Age:30, House:No} and § = 0
for {House:No, Age:30}, then P(§ = 1) = P(§ = 0) = 0.5, resulting in an entropy of 1. If
the LLM’s predictions show no variance, then either P(§ = 0) = 1 or P(§ = 1) = 1, yielding a
minimal entropy of 0. Conversely, if the predictions are randomly distributed, P(§ = 0) = 0.5 and
P(y = 1) = 0.5, leading to a maximum entropy of 1. Higher entropy indicates greater variance in
prediction results, signifying a stronger presence of order bias in the LLMs.

The experiments are conducted on the Bank, Income, German Credit, and Diabete
datasets |/Asuncion et al.| (2007), using the Llama-2-8B-instruct [louvron et al.| (2023 and
Mistral-7B-Instruct [Jiang et al| (2024) LLMs as predictors. The entropy of predictions
resulting from feature reordering is shown in Figure |1{ (b). Notably, all LLMs applied to the tab-
ular datasets exhibit an entropy exceeding 0.7, approaching the maximum value of 1. This clearly
indicates the presence of order bias.

4 RE-ORDERING TABULAR FEATURES FOR LLM (ROTATOR-LLM)

In this section, we introduce Re-Ordering Tabular feATures fOR LLM (ROTATOR-LLM) in details.
Specifically, ROTATOR-LLM adopts a meta-controller to generate the reordered feature trajectory;
then converts the features to text data following the template in Appendix |A} finally inputs the data
features in text format to LLMs for inference. The overall objective is to maximize the accuracy of
the LLM predictions for tabular data classification tasks. We discuss the details as follows.

4.1 FEATURE TRAJECTORY GENERATION

ROTATOR-LLM maintains a meta-controller g(e | ) : 7 — R to estimate the ranking value of
each feature at each location. Specifically, for 0 < ¢t < M, with a slice of trajectory T(0:4] 88 input,
the value of g([7.1], z;] | #) € R represents the value of trajectory [7(o., x;], which also indicates
the ranking value of feature j at position ¢, given the feature ordering of first ¢ positions 7.y
We consider a higher value g(7 | #) as indicative of better ranking results for feature orders that
align more closely with the preferences of the LLMs. Therefore, ROTATOR-LLM can recursively
generate a trajectory of M data features by

= g 118). 1
Tt argr}lee‘l}(g([r[o,t l]ax]]| ) (1)

We define a value function v(7) to compute the classification loss of LLMs’ prediction over input
data crafted with the feature trajectory 7. We believe a feature ordering that is more aligned with
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Algorithm 1 Re-Ordering Tabular feATures fOR LLM (ROTATOR-LLM)
Input: Training dataset D and LLM f(e).
Output: Meta-controller g(e | §).
1: for (x,y) ~ D do
2 Generate trajectory T by Equation (1) based on initial value 7p.q) = [ ].
3:  Estimate the loss value of LLMs’ prediction L (f(7),y).
4:  Estimate the value function U(T[Ozt]) for 1 <t < M based on Equation @
5 Update the parameters of g(e | ¢) to minimize Equation (5).
6: end for

LLMSs’ pre-training can lead to better prediction result. Therefore, v(7) is defined as follows:

o(r) = =L (f(7),y) 2
where L ¢ denotes the cross-entropy; f(7) is the prediction output of the base LLM; trajectory value
function v(7) is opposite to the cross-entropy loss such that the optimal trajectory 7* can minimize
the classification error while maximizing the corresponding value function.

Note that Equation (2] only defines the value of a complete trajectory v(7), it is important to extend
its definition to a slice of trajectory v(7jo.¢), for the purpose of training the controller g(e | 6).
However, the value function is strictly defined on the full trajectory 7 (not on its slices) and the final
LLM output after feeding 7 into it, so that v(7jo.)) cannot be directly obtained via Equation . To
overcome this challenge, we employ dynamic programming to define v(7yo.y), where 0 < ¢ < M.
Specifically, for a slice of trajectory Tjq.,, its value function v(7yg., ) is defined as the maximal value
of v(7) such that 7o) = Tjo.4), Which is given by

v(Tj0:¢]) = Maxsz,_, Y ([ T0:— 175 Fle—1:017])5 3)

= mmaXjeg ’YU([T[O:tfl}al‘j])v 4)

where 0 < v < 1 denotes a discounting factor. The discounting factor regulates how features ranked
at different positions cumulatively contribute to the final cross entropy and full trajectory value. This

is inspired by the observation in previous studies that tokens closer to the end contribute relatively
more to the output of LLMs Jin et al.| (2024)).

According to Equation , we have an iterative property of the value function given by v (7o) =
yv(T(0:¢+1)) running backwards from positions ¢ = M to ¢t = 0 with the last state value given by
v(T) = —Ls(f(7),y) att = M. Therefore, the parameters of g(7o., | ¢) is updated to minimize
the mean-square error aligned with the value function v(7yg.;)) as follows:

M
1 2
Ly = i ; [2(T1041 | 0) — v(T0:01)] (5)
where v(7(g.4]) can be estimated based on its iterative property as follows:
_ [ymax; g([m0.), 7] | 0) ift < M, 6

4.2 ALGORITHM OF ROTATOR-LLM

Algorithm [T] shows one epoch of ROTATOR-LLM. Specifically, for each mini-batch of instances,
ROTATOR-LLM first generate an order of features following Equation (line 2); then estimate
the loss function of LLMs’ prediction, where the input data of LLMs follows the generated feature
order (line 3); then estimate the value functions based on Equation (6)) (line 4); finally updates the
parameters of meta-controller to minimize the loss function given in Equation () (line 5).

5 EXPERIMENTS

In this section, we conduct experiments to evaluate ROTATOR-LLM, aiming to answer the following
research questions: RQ1: Does ROTATOR-LLM effectively align the data with the LLMs for better
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Table 1: Balance accuracy of ROTATOR-LLM on the Bank, Income, Germen Credit, and Diabetes datasets.

Datasets Order Bank Income Germen Credit Diabetes Average
Default 0.522  0.516 0.521 0.312 0.468
Llama-3-8B  Random 0.510  0.520 0.535 0.385 0.488
ROTATOR-LLM  0.791  0.752 0.665 0.738 0.737
Default 0.599  0.540 0.493 0.699 0.585
Mistral-7B Random 0.574  0.577 0.546 0.676 0.593
ROTATOR-LLM  0.782  0.801 0.701 0.722 0.752
Default 0.504  0.510 0.405 0.634 0.513
Phi-3-mini Random 0481  0.521 0.440 0.655 0.524
ROTATOR-LLM  0.712  0.771 0.665 0.743 0.723

Table 2: F1 score of ROTATOR-LLM on the Bank, Income, Germen Credit, and Diabetes datasets.

Datasets Order Bank Income Germen Credit Diabetes Average
Default 0466  0.674 0.600 0.191 0.483
Llama-3-8B  Random 0.555  0.676 0.605 0.353 0.547
ROTATOR-LLM 0.811  0.796 0.732 0.774 0.778
Default 0.428  0.678 0.145 0.691 0.486
Mistral-7B Random 0456  0.692 0.365 0.695 0.552
ROTATOR-LLM  0.774  0.808 0.734 0.765 0.770
Default 0245  0.664 0.182 0.505 0.399
Phi-3-mini Random 0.439  0.660 0.512 0.632 0.561
ROTATOR-LLM  0.658  0.776 0.622 0.763 0.705

performance? RQ2: Can the controller be transferred between different LLMs? RQ3: How does
the reordering intrinsically impact the LLMs?

5.1 EXPERIMENT SETUP

We specify the datasets, LLMs, baseline methods, evaluation metrics, and implementation details.

Datasets. The evaluation of ROTATOR-LLM is based on the Bank, Income, German Credit, and
Diabetes datasets from the areas of social media, finance and healthcare. The datasets source from
the UC Irvine machine learning repository |/Asuncion et al.[(2007)). On each dataset, the data features
are first reordered; then converted into text data following the template in Appendix [A} and finally
being input to LLMs for classification.

LLMs. We evaluate ROTATOR-LLM using three popular model families: Llama-3-8B [Touvron
et al.[(2023), Mistral-7B [Jiang et al.|(2024)), and Phi-3-mini-4k Li et al.[(2023)). These LLMs are em-
ployed due to their leadership among open-sourced LLMs according to existing leaderboards /Chiang
et al.| (2024). We download their instruct-tuned version from the Huggingface |Wolf et al. (2019).

Baseine Methods. We consider four baseline methods compared with ROTATOR-LLM. Default
order. The features of each data instance follow the default order privided by the datasets. Random
order. The features of each data instance are randomly ordered. TableLlama. A Llama-based foun-
dational tabular LLM fine-tuned on large-scale tabular datasets Zhang et al.|(2023)). TableLLM. A
GPT-2-based foundational tabular LLM fine-tuned on large-scale tabular datasets Zha et al.|(2023b).

Evaluation Metrics. Due to the imbalance of positive and negative examples in the datasets, the
regular accuracy metric is not sufficient to truly reflect the classification performance. Therefore,
we evaluate the balance accuracy (1) and F1 score (1) of LLMs’ classification on the datasets. To
estimate the balance accuracy, the instances of the minority class are first duplicated to align with
the size of the majority class. Then the accuracy is calculated.
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Table 3: Transfer-ability of ROTATOR-LLM, where the meta controller is trained with a source
LLM and tested on a different target LLM.

Metric | Configuration Bank Income Germen Credit Diabetes Average
Default-Llama 0.522 0.516 0.521 0.312 0.468
Random-Llama  0.510 0.520 0.535 0.385 0.488
Balance accurac Mistral—Llama  0.544 0.622 0.627 0.670 0.616
Y Default-Mistral 0.599 0.540 0.500 0.699 0.585
Random-Mistral  0.574 0.577 0.546 0.676 0.593
Llama—Mistral ~ 0.581 0.756 0.581 0.756 0.669
Default-Llama 0.466 0.674 0.600 0.191 0.483
Random-Llama  0.555 0.676 0.605 0.353 0.547
F1 score Mistral—Llama  0.598 0.714 0.675 0.722 0.677
Default-Mistral 0.428 0.678 0.145 0.691 0.486
Random-Mistral ~ 0.456 0.692 0.365 0.695 0.552
Llama—Mistral ~ 0.504  0.743 0.414 0.690 0.588
1.0 1.0
N ROTATOR-Mistral-7B I ROTATOR-Mistral-7B
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Figure 3: Comparison of ROTATOR-LLM with state-of-the-art foundational Table LLMs.

Implementation Details. The meta-controller takes a three-layer MLP that is trained using Adam
optimizer with learning rate 102 for 200 epochs. An early stop is implemented on the validation
datasets. The training and evaluation processes follow the same template of text serialization given
in Appendix [A] The detailed hyper-parameter setting of ROTATOR-LLM is given in Apendix [B]

5.2 ALIGNMENT PERFORMANCE (RQ1)

We evaluate the performance of ROTATOR-LLM by examining the classification of LLMs after
the alignment. For fair comparison, ROTATOR-LLM and baseline methods adopt the same prompt
given in Appendix [A] for text serialization. The balanced accuracy and F1 score are shown in Ta-
bles[I]and 2] respectively. The comparison with baseline foundational tabular LLMs is illustrated in
Figure[3] According to the experimental results, we have the following observations:

* Effectiveness of Alignment. LL.Ms show much better performance based on ROTATOR-
LLM than the data with default and random feature orders. This indicates that ROTATOR-
LLM effectively align the data feature to LLMs, and thereafter enhances LLMs’ under-
standing on the tabular data by optimally reordering the features.

* Competitive Performance. ROTATOR-LLM outperforms foundational tabular LLMs,
e.g., TableLLM and TableLlama. Compare to these costly fine-tuning methods, ROTATOR-
LLM not only saves resources effectively but also shows performance superiority.

* Consistent Performance. ROTATOR-LLM is consistently competitive over baseline
methods across various LLMs and tabular datasets, indicating its stability and generaliz-
ability for real-world applications.
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Figure 4: (a) Entropy of last layer attention. The lower the entropy, the more focus of attention. (b)
Balanced accuracy and (c) F1 score of shrinking the duplicated features in the prompts.

Prompts: You are a data analyst. Given information of a person, you should predict whether this person
will subscribe to a term deposit. <Data Features> Will this person subscribe to a term deposit?\n\n[Your
Response Format]: “Yes / No”

Label: Yes

Default features: This person’s age is 33.0. The type of this person’s job is technician. This person’s marital
status is single. This person’s education is secondary. This person has no credit in default. This person’s
average yearly balance in euros is 2979.0. This person has no house. This person has no personal loan. This
person’s contact communication type is cellular. This person’s last contact day of the month is 5.0. This
person’s last contact month of year is aug. This person’s last contact duration is 326.0 seconds. This person
has 2.0 contacts performed during this campaign. 437.0 days have passed since this person was last contacted
from a previous campaign. This person has 1.0 contacts performed before this campaign. The outcome of this
person’s previous marketing campaign is failure.

LLM prediction: No

Reordered features: This person’s last contact month of year is aug. This person’s last contact month of
year is aug. This person’s last contact month of year is aug. 437.0 days have passed since this person was last
contacted from a previous campaign. This person has 1.0 contacts performed before this campaign. The type
of this person’s job is technician. The type of this person’s job is technician. This person has no personal loan.
This person’s average yearly balance in euros is 2979.0. This person’s last contact day of the month is 5. This
person has no personal loan. This person’s age is 33. This person has no house. This person has no house.
The outcome of this person’s previous marketing campaign is failure. This person has no personal loan.

LLM prediction: Yes

Reorder and Deduplication: This person’s last contact month of year is aug. 437.0 days have passed since
this person was last contacted from a previous campaign. This person has 1.0 contacts performed before
this campaign. The type of this person’s job is technician. This person has no personal loan. This person’s
average yearly balance in euros is 2979.0. This person’s last contact day of the month is 5.0. This person has
no personal loan. This person’s age is 33.0. This person has no house. The outcome of this person’s previous
marketing campaign is failure. This person has no personal loan.

LLM prediction: Yes

Figure 5: Examples of LLM’s predictions based on default ordered features, reordered features, and
reordered and deduplicated features.

5.3 TRANSFER-ABILITY OF CONTROLLER (RQ?2)

In this section, we evaluate the transferability of the learned controller. The meta-controller is trained
based on a source LLM and tested on a target LLM, marked as “source LLM—target LLM”. We take
Llama-2-8B, Mistral-7B for the source LLMs, and Mistral-7B, Llama-2-8B for the target LLMs, re-
spectively. The results of the controller transfer are shown in Table[3] It is observed that transferring
the controller from one LLM to another achieves better performance than inputting the data instance
following the default or random order. The results validate the transferability of our learned con-
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troller, which meets our expectations as different LLMs could have similar order bias due to the fact
that they all focus on learning the large human-generated content in pre-training.

5.4 ATTENTION CONCENTRATION BY FEATURE RE-ORDERING (RQ3)

It has been widely shown in existing work Xiao et al.| (2023)); Zhang et al.| (2024b) that the attention
of LLM-generated tokens should focus on some key input tokens. Uniform patterns of attention can
potentially lead to hallucinations. We conducted experiments to evaluate ROTATOR-LLM in terms
of attention concentration. Specifically, this experiment is with Llama-3-8B on the bank dataset us-
ing the prompts in Appendix |Al The attention is estimated by softmax(Q[:, —1]K” /v/d), where Q,
K take the last-layer activations; d takes the hidden dimension value; and the index -1 of Q indicates
the attention is estimated for the answer token. To study the concentration of attention, we show
the entropy of last layer attention in Figure 4| (a). The entropy is calculated by — ij p;logp;,

where p; ~ softmax(Q[:, —1]K” /v/d) are the attention weights obtained from the softmax opera-
tion. Lower entropy corresponds to higher concentrations of attention on a small number of input
tokens. It is observed that the last layer attention shows lower entropy after the feature re-ordering
than utilizing the default order, indicating more focused attentions on the particular input tokens,
rather than uniformly sprout to the whole prompt sequence. This contributes to a better aligned
results in Tables [ and 2

5.5 CASE STUDIES (RQ3)

In this section, we show the data features reordered by ROTATOR-LLM. The data features in natural
language sentences are shown in Figure[5] where the place holder <Data Features> takes the “Data
features”, “Reordered features”, and “Reorder and Deduplication” below. We further investigate
the affect of deduplication to LLMs’ performance in Figure ] where the deduplication removes the
duplicated features from the reordered data. Overall, we have the following insights:

* Significance of Feature Order. A good feature order benefits LLMs more than a high number of
features. The data instance has 16 features, and only 10 features left after reordering. However,
LLMs show more accurate predictions based on the reordered data features.

* Feature Order is Robust to Deduplication. The features may be duplicated after the reordering
because the features are reordered without replacement. As shown in Figure 4] LLMs maintain
the performance to high-levels after removing the redundant features from the input context. This
indicates the feature order is robust to the deduplication of redundant features.

6 RELATED WORK

We discuss related work on tabular data understanding in this section. Existing work that leverages
LLMs to process tabular data is primarily viewed from three perspectives: feature serialization,
large-scale fine-tuning, and prompt engineering. We give more details as follows.

Feature Serialization. Feature serialization is a simple way to let LLMs understand tabular data.
Specifically, a straightforward way would be to directly input a programming-language readable data
structure, such as Markdown format [Liu et al.| (2023)); Jaitly et al.| (2023, JSON-file format |Singha
et al.[(2023);|Sui et al.|(2024)), HTML format Singha et al.[(2023), and Python dictionary Wang et al.
(2023). Another way is to convert the tables into natural language sentence using templates based on
the column headers and cell values|Yu et al.| (2023); Jaitly et al.[(2023). This method can maximally
leverage the sequence-to-sequence capacity of LLMs to understand tabular data.

Large-scale Fine-tuning. Fine-tuning on tabular datasets is a straightforward way to inject the
data prior knowledge to LLMs. There are several existing work of fine-tuning. TableLlama adopts
LongLoRA to fine-tune the Llama-2-7B LLM on the extensive Tablelnstruct datasets [Zhang et al.
(2023). TableGPT introduces a table encoder and chain-of-command mechanism and performs
instruction tunings for Phoenix-7B LLMs on collections of tabular datasets|Li et al.[(2024). Different
from existing work, TabLLM considers few-shot examples for prompts during the fine-tuning, and
updates the Bigscience/T0-3B LLMs on single domain tabular datasets Zhang et al.| (2024a).
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In-context Learning. Existing work has demonstrated that LLMs are few-shot learners of tabular
data (Chen| (2022); Narayan et al.[ (2022); |Guo et al.| (2023). Leveraging few-shot examples in the
prompts, LLMs can better understand the data semantics through in-context learning. Other prompt
engineering methods include chain-of-thoughts Wei et al.|(2022), tree-of-thoughts |Yao et al.[(2024),
self-consistency Wang et al.| (2022), and others |Sui et al.| (2023)).

7 CONCLUSION

In this work, we demonstrate novelly discover and thoroughly explore the order bias of LLMs on
tabular data, where the arrangement of data features can mislead LLM predictions. To address this
issue, we propose ROTATOR-LLM, an approach designed to align tabular data with this order bias,
enabling LLMs to better comprehend the data semantics. Specifically, ROTATOR-LLM employs a
meta-controller to learn the optimal feature order. It estimates the value function for each feature
order using dynamic programming, which guides the training of the meta-controller. Our exper-
imental results on four datasets across three LLMs show that ROTATOR-LLM achieves superior
performance compared to baseline methods and state-of-the-art foundational tabular LLMs when
applied to reordered data. Additionally, ROTATOR-LLM exhibits strong transferability across mul-
tiple LLMs, indicating its adaptability to diverse tasks. Without requiring fine-tuning of LLMs,
ROTATOR-LLM proves to be a more cost-effective solution than traditional debiasing methods,
underscoring its potential for real-world applications.
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table2text_template = {

"age": "This_person’s_age_is_{}.",
"job": "The_type of _this person’s_job_is_{}.",
"marital": "This_person’s marital_status_is_{}.",
"education": "This_person’s_education_is {}.",
"default": {"no": "This_person_has_no credit_in_default.",
"yes": "This_person_has credit_in default."},
"balance": "This_person’s_average yearly balance_in_euros_is_{}.",
o . o o oing, L1S,
"housing": {"no": "This_person_has_no_house.",
"yes": "This_gperson_owns_houses."},
"loan": {"no": "This_person_has_no_personal_loan.",
"yes": "This_person_has_personal loan."},
"contact": "This person’s_contact_,communication_type is_{}.",
o o o o 1S,
"day": "This person’s_last contact day, of the month_is {}.",
o o o o O, o 1S,
"month": "This_person’s_last _contact_month_ of year is_{}.",
"duration": "This, person’s last, contact duration_is_{} seconds.",
o o o o oSty
"campaign": "This _person_has_{}_contacts_performed_during this_,
campaign.",
"pdays": "{}_days, have_passed_since_this_person was_last_contacted_
from_a, previous,  campaign.",
Laup o pailg
"previous": "This _person_has_{}_contacts_performed_before_ this_
campaign.",
"poutcome": "The_outcome_of this_person’s_previous_marketing_campaign

ulsu{}""’

Figure 6: Table to Text data template on the bank dataset.

table2text_template = {

"workclass": "The class_of _this person’s_job_is_{}.",
"marital_status": "This_person’s_marital _status_is_{}.",
"education": "This_person’s_education_is_{}.",

"occupation": "This_person’s_job_is_{}.",

"relationship": "This_person’s_relationship in_family_ is {}.",
"sex": "This_person’s_gender _is_{}.",

"race": "This_person’s_race_is_{}.",

"native_country": "The_native_country, of_this _ person_is {}.",
"age": "This_person’s _age _is_ {}.",

"fnlwgt": "The_final_analysis,_weight _of_this_person_is_{}.",
"education_num": "The education duration_of this_person_is_{}.",
"capital_gain": "The_capital _gain_of this_person_is_{}.",
"capital_loss": "The capital, loss_of _this_person_is_{}.",
"hours_per_week": "The_person_works_{} _hours_per week_in_average.",

Figure 7: Table to Text data template on the Income dataset.

APPENDIX

A TEMPLATE OF TEXT-BASED SERIALIZATION

We give the template of text-based serialization in this work. The templates for the bank, Income,
German Credit, and Diabete datasets are given in Figures|[6] [7} [8] and[9] respectively.

B HYPER-PARAMETER SETTING OF ROTATOR-LLM

The hyper-parameter setting of ROTATOR-LLM in Table 4} The discounting factor for meta-
controller training is given in Table 3]

13
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I |table2text_template = {

2 "checking_status": "The_status_of_this person’s_checking _account_is_,
{r."

3 "credit_history": "The_status_of_this person’s_historical_credits_is
iR

4 "purpose": "This_person’s purpose_to_apply, for credits_is {}.",

5 "savings_status": "The status_of this _person’s saving_account is_{}."
4

6 "employment": "The_ present employment of this person_is {}.",

7 "personal_status": "The _marital_status_of_this person_is {}.",

8 "other_parties": {"none": "This_person_does_not have_other_ debtors.",

9 "co_,applicant": "This_person_has_co-applicants.",

10 "guarantor": "This_person has_guarantors."}

11 "property_magnitude": "The_property_magnitude_of _this_person_is_{}.",

12 "other_payment_plans": {"none": "This person, does_not, have_other
installment _plans.",

13 "stores": "This_person_has_installment_plans_for stores.",

14 "bank": "This_person_has_installment plans_for banks."},

15 "housing": {"own": "This_ person_owns houses.",

16 "rent": "This_person_rents_a house.",

17 "for free": "This person lives_in_a,  free_house."},

18 "job": "The_type_of _this_person’s_job_is_{}.",

19 "own_telephone": {"none": "This_person does_not _have_a telephone.",

20 "yes": "This_person _owns_a telephone."},

21 "foreign_worker": {"yes": "This_person is_a, foreign_ worker.",

22 "no": "This_person_is_not _a _foreign worker."},

23 "duration": "The_ duration of this_person _is_{} months.",

24 "credit_amount": "The_amount _of_this person’s _credit_is {}.",

25 "installment_commitment": "This_person has_a, installment rate_of {}
of _disposible_income.",

26 "residence_since": "This person_has been_a, residence_for {}_years.",

27 "age": "This_person’s_age_is_{}.",

28 "existing_credits": "This person_already, has_{} _,credits.",

29 "num_dependents": "This_person_supports_{}_dependents.",

30 |}

Figure 8: Table to Text data template on the Germen Credit dataset.

Name | Value
Layer Number 3
Hidden Dimension | 512
Optimizer Adam
Learning Rate 0.001
Epoch 200
Mini-batch Size 128

Table 4: Hyper-parameter setting of ROTATOR-LLM.

| Bank Income German Credit Diabete

Llama-3-8B-Instruct | 0.75 0.8 0.8 0.8
Mistral-7B-Instruct 0.85 0.9 0.85 0.9
Phi-3-Mini-Instruct 0.9 0.8 0.8 0.8

Table 5: Discounting factor on meta-controller training.
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756
757 | table2text_template = {
758 2 "HighBP": {0: "This_person_has_a_normal_blood_pressure.",

3 1: "This_person_has_a high_blood pressure."},
759 "HighChol": {0: "This_person_has_normal_cholesterol.",
760 s 1: "This_person_has_high cholesterol."},
761 6 "CholCheck": {0: "This_person_has_no cholesterol _check in 5 years.",
762 7 1: "This_person_has _cholesterol_checks_in 5 years."},
763 ° "BMI": "This_person’s, Body, Mass_Index_is_{}",

9 "Smoker": {0: "This_person_smoked less than 100 _cigarettes,_in_the
764 entire_life.",
765 10 1: "This_person smoked at, least 100 _cigarettes_in_the_entire_life
766 "1y
767 U "Stroke": {0: "This_person_does, not_have_a stroke.",
768 12 1l: "This_person_has_a stroke."},

13 "HeartDiseaseorAttack"”": {0: "This_person_does, not, have coronary, heart
769 _disease_ (CHD)_or _myocardial_infarction.",
770 14 1: "This_person_has_a, coronary, heart, disease_(CHD) or myocardial,,
771 infarction."},
772 15 "PhysActivity": {0: "This_person_did_not_have_physical_activities_in_
773 theupagtu30udays.", . o

16 1: "This,_person_had _physical activities in_the past _30_days."},
7 "Fruits": {0: "This_person_does_not_consume_fruit_every day.",
775 13 1: "This,_person_consumes_fruit one_or more_times every day."},
776 19 "Veggies": {0: "This_person_does_not consume vegetables every day.",
777 20 1: "This_person_consumes, vegetables_one or more_times every day."
778 b . . .

21 "HvyAlcoholConsump": {0: "This_person is_not _a, heavy_drinker_ (adult
779 men_having_more_than_ 14 _drinks_per week_and _adult_women_having,
780 more_than 7 _drinks_per, week).",
781 22 1: "This_person_is_a_heavy_drinker  (adult_men_having more_than_ 14
782 _drinks_per_week_and_adult_women_having more_than_ 7 _drinks_,
783 per_week) ."}, ' '

23 "AnyHealthcare": {0: "This person_does_not_Have_any_ kind_of_health_
784 care_,coverage, including_health_insurance, prepaid_plans_such_as,_,
785 HMO.",
786 24 1: "This_person_has_any, kind_of _health_care_ coverage, _including_
787 health_insurance, prepaid_plans_such_as_HMO."},
788 "NoDocbcCost": {0: "This _person never misses_a doctor because_of, cost

_in_the past_12_months.",
789 4 1: "This_person once_needed_to_see_a doctor_but could not because
790 _of _cost_in_the_past 12 _months."},
791 27 "GenHlth": "This_person’s_general health_ score_is_{}_(1_represents,
792 the_best, ,and 5 represents,_the_worst).",
793 28 "MentHlth": "This person_had, stress, _depression, _or_problems_with_
emotions_in_{} _days_of_the_ past_30_days.",
794 o "PhysHlth": "This _person,_had,_a physical illness_or injury,in_{} _days_
795 of _the_past 30 _days.",
796 30 "DiffWalk": {0: "This_person_does_not_have serious_difficulty,
797 walking _or climbing_stairs.",
798 3! 1: "This_person_has_serious_difficulty walking_or climbing stairs
"1y

799 3 "Sex": {0: "This _person is_a_female.",
800 33 1l: "This_person_is_a _male."},
801 34 "Age": "This_person’s_age_is_{}.",
802 3 "Education": {

36 1: "This_person_never_attended_school_or only, kindergarten.",
fos 37 2: "This_person _has_grades_1_through 8_ (Elementary).",
804 5 3: "This_person_has, grades_9 _through_ 11, (Some_high school).",
805 39 4: "This_person_has_grade_12 _or GED_ (High_school_graduate).",
806 40 5: "This_person_has, college 1 _year to 3, years,(Some_college or,
807 technical_school).",
808 41 6: "This_person_has_college 4, years_or more  (College graduate).",
809 . b

43

Figure 9: Table to Text data template on the Diabete dataset (i).
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"Income": {

}y

1l: "This_person’s_income_is_less_than_ 10000_dollars.",

2: "This_person’s _income is more than 10000_dollars_but less_than
,15000_dollars.",

3: "This_person’s_income_is_more than_ 15000 _dollars, but, less_than
,20000_dollars.",

4: "This_person’s_income_is_more _than_20000_dollars, but _less_than
,25000_dollars.",

5: "This_person’s_income_is_more than_25000_dollars, but _less_than
., 35000_dollars.",

6: "This_person’s_income_is_more_than_ 35000 _dollars_but_less _than
.,55000_dollars.",

7: "This_person’s_income_is_more _than_55000_dollars, but _less_than
., 75000_dollars.",

8: "This_person’s_income_is_more_than_ 75000_dollars.",

Figure 10: Table to Text data template on the Diabete dataset (ii).
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