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Abstract

Machine learning has the potential to provide tremendous value to the life sciences1

by providing models that aid in the discovery of new molecules and reduce the2

time for new products to come to market. Chemical reactions play a significant role3

in these fields, but there is a lack of high-quality open-source chemical reaction4

datasets for training ML models. Herein, we present ORDerly, an open-source5

Python package for customizable and reproducible preparation of reaction data6

stored in accordance with the increasingly popular Open Reaction Database (ORD)7

schema. We use ORDerly to clean US patent data stored in ORD and generate8

datasets for forward prediction, retrosynthesis, as well as the first benchmark for9

reaction condition prediction. We train neural networks on datasets generated with10

ORDerly for condition prediction and show that datasets missing key cleaning11

steps can lead to silently overinflated performance metrics. Additionally, we12

train transformers for forward and retrosynthesis prediction and demonstrate how13

non-patent data can be used to evaluate model generalisation. By providing a14

customizable open-source solution for cleaning and preparing large chemical15

reaction data, ORDerly is poised to push forward the boundaries of machine16

learning applications in chemistry.17

1 Introduction18

Advancements in chemistry and material science hinge on the availability of high-quality chemical19

reaction data, and the advent of machine learning (ML) for science has highlighted the value that data20

can bring to chemistry. One important application is in the pharmaceutical industry, where figuring21

out how to make novel molecules remains a significant bottleneck, causing delays in the "make" step22

of the "design, make, test" cycle [1]. Making a molecule (product) includes predicting the reaction23

pathway (retrosynthesis) and suitable reaction conditions (e.g. solvents and reagents), and optimising24

for one or more outcomes such as reaction yield, selectivity, and conversion. ML is well suited to25

assist with these tasks, with a range of tools being developed for forward reaction prediction [2, 3, 4],26

retrosynthesis [5, 6, 7, 8, 9], condition prediction [10, 11, 12], yield prediction [13, 14, 15], and27

closed-loop optimisation [16, 17, 18].28

Building reaction prediction tools requires access to large datasets for training. Historically, re-29

searchers have accessed proprietary in-house datasets or acquired the data through commercial30

databases such as Reaxys [19]. The advantage of commercial databases is both the scale of the31

datasets available (often millions of reactions) and the annotation already completed by the publish-32

ers. Yet, these datasets are not freely available to ML practitioners, stymieing advances in reaction33

condition prediction in both academia and industry.34
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Recently, efforts have been made to create openly-accessible databases for chemical reaction data. In35

particular, the Open Reaction Database (ORD) [20] is promising due to its exhaustive schema for36

describing chemical reaction data and breadth of data already incorporated. Yet, many of the datasets37

in ORD require further processing before they can be used in ML pipelines, preventing practical use.38

This is especially true for the largest dataset in ORD extracted from the US patent literature (the39

"USPTO dataset" [21]). In this work, we endeavor to close this gap.40

Herein, we present ORDerly, a new framework for extracting and cleaning data from ORD, accompa-41

nied by datasets for three reaction related tasks: retrosynthesis, forward, and condition prediction.42

By offering an open-source and customizable solution for cleaning chemical reaction data, ORDerly43

aims to contribute to the development of advanced ML models in chemistry and material science.44

2 Problem formulation45

As noted by Meng et al. [22], reaction related tasks operate on molecules. There are numerous46

machine readable molecular representations [23], including molecular graphs and strings, and in this47

work molecules are represented as SMILES strings. Each character mi in a SMILES string represents48

an atom or a molecular feature (bond, branch, ring closure): M := m1,m2,m3, . . . ,mL, where L is49

the total number of characters in the string. Molecules can take on one of three roles in a reaction:50

reactant, product, or agent. A reaction R transforms N reactant molecules (sometimes called educts)51

{ME
i }Ni=1 by breaking and forming bonds to form M new product molecules {MP

i }Mi=1 using K52

agent molecules {MA
i }Ki=1. Agents are helper molecules that enable the reaction to proceed (e.g.,53

solvents, catalysts).54

R : {ME
i }Ni=1, {MA

i }Ki=1 → {MP
i }Mi=1, {MA

i }Ki=1 (1)

Given this view of reactions, we define three different reaction related tasks in this work.55

Forward prediction is the task of predicting the product of a reaction MP given its reactants56

{ME
i }Ni=1 and, potentially, agents {MA

i }Ki=1. Probabilistically, the task is to predict the distribution57

p(MP |{ME
i }Ni=1). While experimental evaluation in a wet lab requires expert chemists and is a time58

intense task, reaction outcome prediction can help as a tool to evaluate the quality of a predicted59

retrosynthetic route (i.e,. the probability that the reaction predicted by the single-step retrosynthesis60

model leads to the desired product) [24].61

Retrosynthesis is the task of designing a sequence of Z reactions R1,R2,R3, . . . ,RZ that trans-62

form a set of readily available reactant molecules {ME1
i }Ni=1 to a desired product(s) {MPZ

i }MZ
i=1.63

Retrosynthesis is done in the reverse direction by starting with the desired product(s) {MPZ
i }MZ

i=164

and predicting reactants {MEZ
i }NZ

i=1 that would react to form the desired product(s). The predicted65

Figure 1: Overview of ORDerly.
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reactants {MEZ
i }NZ

i=1 then become the products of the next reaction to be predicted {MPZ−1

i }MZ−1

i=1 .66

This process is repeated until a readily available set of starting reactant molecules are predicted67

{ME1
i }Ni=1. Therefore, the key machine learning task, often called single-step retrosynthesis, is68

predicting the distribution p({MEj

i }Nj

i=1)|MPj ) or the set of reactants that could lead to a given69

product(s) {MPj

i }Mj

i=1. Single-step retrosynthesis can be seen as the inverse of forward prediction.70

Condition prediction is the task of predicting the distribution p({MA
i }Ki=1|{ME

i }Ni=1,MP) (i.e.,71

the agents for a reaction given reactants and product). In addition to agents, some models can predict72

continuous variables such as reaction temperature and concentrations of reactants and agents [10].73

3 Related work74

3.1 Chemical reaction cleaning tools75

Existing tools for cleaning reaction data are primarily targeted at retrosynthesis and forward prediction76

tasks [25, 26, 27, 28] and have somewhat limited extensibility, given that they are built to take as77

inputs CSV files or the stationary XML files of the US patent (USPTO) dataset [21] instead of78

the outputs of continuously updated databases such as ORD [20]. Furthermore, in the original79

publications, there is little to no discussion of how decisions made during cleaning (e.g. restricting80

the number of components in a reaction or the minimum frequency of occurrence) impact the datasets81

being cleaned or performance of models trained on the datasets. We believe that this is in part due to82

data cleaning historically being viewed as a "low value" task, and therefore not adequately discussed83

and published on.84

USPTO, being the largest open-source chemical reaction dataset, has been cleaned a number of times85

for different learning tasks. For example, the USPTO-50K [29, 30] and USPTO-MIT datasets [31]86

are commonly used for benchmarking single-step retrosynthesis and forward predictions models1,87

and these benchmarks are available in aggregate benchmarking sets such as the Therapeutics Data88

Commons (TDC) [32]. However, the code used to process the raw data to generate the aforementioned89

USPTO benchmarks was not published and, there is no publicly available benchmark for reaction90

condition prediction extracted from these datasets.91

4 Dataset generation92

ORDerly extracts data directly from ORD [20]. Even though the data in ORD is stored in accordance93

with a structured schema, we found that further effort is required to transform the labeled data into94

ML-ready datasets. Therefore, ORDerly is centered around a data extraction script and a data cleaning95

script, both of which take numerous arguments that customize the operations being performed.96

4.1 Extraction and cleaning methodology97

The extraction script allows the user to choose whether reaction roles should be assigned using the98

labeling in ORD or using chemically-informed logic on the atom-mapped reaction string (if available).99

It also enables specification of data source (e.g., USPTO or non-USPTO), allowing users to train100

models with data from one source and test the performance with data from another source. Creating101

test sets from different data sources is a robust way to evaluate generalization performance.102

We chose cleaning operations motivated by first-principles understanding of chemistry. Cleaning103

operations on the chemical reaction data include: (1) Restricting the number of reactants and product,104

preventing multi-step reactions being included in the datset; (2) Ensuring that all molecules can105

be sanitized by the cheminformatics package RDKit [33]; (3) Restricting the maximum number of106

unique catalysts, solvents, and reagents in a reaction based on commonly used experimental amounts;107

(4) Frequency filtering to remove outliers; (5) Sanity checking the yield (0% ≤ yield ≤ 100%),108

temperature, and pressure; (6) Removing duplicates, and finally; (7) Applying a random split to create109

1We discuss the difference between these datasets and our dataset in Appendix A.3.2

3



Figure 2: We present two different approaches for handling rare molecules. Rare → "other" is
investigated as a strategy to avoid deleting reactions with rare molecules.

training/validation/test sets, carefully ensuring that any inputs present in the train set (i.e. reactants110

and products for reaction condition prediction) are not also present in the test set.111

Computational details: All extraction/cleaning operations described in this section were performed112

using a 2022 Mac Studio with an Apple M1 Max chip and 32GB memory. In ORD there are roughly113

1.7 million reactions from US patents (USPTO) and 91k reactions that are not from US patents. For114

the USPTO dataset extraction and sanitation took roughly 35 minutes, while the cleaning steps took 8115

minutes.116

4.2 Reaction role assignment117

We experimented with two approaches to assigning roles to the molecules found in a reaction (e.g.,118

whether a molecule is a reactant or an agent): trusting the labeling of molecules in ORD (referred to119

as "labeling") or applying chemical reaction logic to identify the role of different molecules from120

the reaction string (referred to as "rxn string" or "reaction string"). Our reaction logic identified121

reactants (molecules that contribute atoms to the product(s)) and spectator molecules (molecules122

that do not contribute atoms to the product(s)) based on the atom-mapping and their position in123

the reaction SMILES string. Solvents were identified in the list of spectator molecules by cross124

checking against a list of solvents compiled from prior research (see Appendix A.1.1), while all other125

spectator molecules are marked as agents. Catalysts were not separated into their own category since126

identifying catalysts can be quite subtle (especially with organocatalysis), and few reactions in the127

reaction string datasets contained transition metals.128

4.3 Frequency filtering129

Removing rare molecules can increase the signal to noise ratio in a dataset by removing outliers.130

In this work, we investigated two different strategies for filtering spectator molecules based on131

their frequency: deleting reactions with rare spectator molecules (rare→delete rxn) or keeping the132

reactions but mapping the rare molecules to an "other" category (rare→"other") (see Figure 2). We133

conducted experiments with both the rare→delete rxn and rare→"other" strategies for the task of134

condition prediction. The frequency threshold was set at 100 in line with previous research [10],135

though the sensitivity of dataset size to frequency threshold was still investigated (see Appendix C.2).136

Deleting reactions with rare molecules may create a more cohesive dataset by removing outliers,137

while renaming rare molecules "other" allows more reactions to be kept, offering more training data138

for the model.139
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Table 1: Number of reactions left in each dataset after cleaning. A description of each dataset can be
found in section 4. Note that the actual number of reactions used for training will differ from the
dataset size shown below due to train/test splits and augmentation. Non-USPTO-retro had a final
dataset size of 20,830 and was cleaned in the same way as ORDerly-retro.

Dataset name: ORDerly- ORDerly- ORDerly- ORDerly- Non-
condition condition forward retro USPTO-
(labeling) (rxn string) forward

Full dataset 1,771,032 1,771,032 1,771,032 1,771,032 91,067
Too many reactants 1,470,060 1,631,394 1,743,585 1,631,394 43,845
Too many products 1,329,399 1,593,196 1,740,655 1,593,196 40,770
Too many solvents 1,222,381 1,388,312 1,689,445 NA 36,522
Too many agents 1,202,790 1,279,833 1,550,800 NA 31,187
No reactants/products 1,202,758 1,262,333 1,533,680 1,567,697 31,095
No solvents 870,888 950,189 NA NA NA
No agents 135,139 690,234 NA NA NA
Inconsistent yields 126,948 658,071 NA NA NA
Dropping duplicates 76,634 392,996 919,231 941,566 28,496
Frequency filtering 75,033 356,906 NA NA NA

4.4 Dataset composition140

Datasets generated with ORDerly have the following column groups: Reaction SMILES (string),141

is_mapped (bool), Reactants & products (SMILES strings), Solvents and agents (rxn string data), or142

solvents, catalysts, and reagents (labeling data) (SMILES strings), Temperature, reaction time, yield143

(floats), Procedure details (string), Grant date (datetime), date of experiment (datetime), file name144

(string).145

Three new benchmarks were created from the USPTO dataset: ORDerly-forward for forward146

prediction, ORDerly-retro for retrosynthesis prediction, and ORDerly-condition for reaction147

condition prediction. Several additional datasets were created, including datasets from non-USPTO148

data in ORD and datasets to investigate data labeling and frequency filtering. An overview of the149

datasets and benchmarks showing how each cleaning step impacted the dataset size can be found150

in Table 1. The datasets are freely available and can be downloaded immediately from FigShare or151

regenerated using the code in the ORDerly Github repository.152

5 Results and discussion153

Experimental evaluation of the ORDerly-forward and ORDerly-retro benchmarks was performed154

using the Molecular Transformer architecture built by Schwaller et al. [2]. To switch from forward155

prediction to retrosynthesis prediction no changes to the transformer architecture were necessary,156

only the data was changed. The ORDerly-condition benchmark was evaluated together with the157

impact of different approaches to reaction role assignment and frequency filtering using the neural158

network architecture built by Gao et al.[10] with only minor modifications.159

5.1 Forward and retrosynthesis prediction with transformers160

Transformers were applied to two tasks: forward prediction (predicting products given reactants,161

solvents, and agents) and retrosynthesis (predicting reactants given a product). For the task of forward162

reaction prediction two different modes were tested: mixing the reactants, solvents, and agents, or163

weakly separating the reactants from the solvents and agents with a ">" token. Forward prediction164

with mixed inputs is a more difficult task, since it is less obvious which atoms (characters) will appear165

in the product.166

For both forward and retrosynthesis prediction the order of the molecules was randomized, and the167

dataset was augmented by replacing each SMILES string in the reaction with a random equivalent168
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Table 2: Test performance with Molecular Transformer on forward prediction and retrosynthesis (%).
The first column shows the percentage of invalid SMILES strings produced by the transformer (lower
is better), while the second and third column show the top-1 accuracy with and without consideration
of stereochemistry (SC), respectively (higher is better).

Test sets: Random split from USPTO Non USPTO

Invalid Accuracy Accuracy Invalid Accuracy Accuracy
Tasks SMILES (with SC) (w/o SC) SMILES (with SC) (w/o SC)

Forward (separated) 0.46 82.18 84.31 0.31 82.61 83.62
Forward (mixed) 0.47 80.79 82.86 0.31 82.61 83.62
Retrosynthesis 0.25 49.96 50.99 0.09 42.28 42.47

SMILES string (thus doubling the dataset size), before finally being tokenized [2]. Performance169

metrics are reported in Table 2, showing that across all tasks only a small percentage of the generated170

SMILES strings are invalid.171

On the forward prediction tasks, the accuracies achieved are similar (albeit slightly lower) to the accu-172

racies reported by by Schwaller et al. [2] (88-90% top-1 accuracy when trained on the USPTO_MIT173

[31] dataset), though the accuracies are not directly comparable since different subsets of USPTO174

were used. As expected, the performance with separated agents is higher than mixed, since it is175

an easier task, and it is encouraging to see that the models get stereochemical information correct176

most of the time. Accuracy with the retrosynthesis model on the held out test set was roughly 50%,177

which is similar previous work on retrosynthesis [34]. It is interesting that prediction accuracy178

on the non-USPTO data was similar on the forward prediction tasks, but markedly worse on the179

retrosynthesis task.180

Computational details: The transformer models were trained for around 35 hours (roughly 600181

epochs) on a T4 cloud GPU instance provided by lightning.ai. Evaluation was done with the final182

model checkpoint.183

5.2 Reaction condition prediction with neural networks184

The reaction condition prediction model used in this work predicts five categorical variables: two185

solvents and three agents. These five molecules form a set (order invariant), though the loss function186

in the model used to predict the molecules considers them sequentially (with order) since this was187

found to work better in practice [10]. The metric used to evaluate the accuracy of the model should188

be order invariant, since the problem is order invariant, and for this reason the accuracy metrics used189

are top-1 (see appendix B) and top-3 (see Table 3) exact match combination accuracy for each type190

of component (i.e., solvent, agent). Beam search was used to identify the top-3 highest probability191

sets of reaction conditions. The top-3 accuracy was compared to the baseline predictive accuracy of192

simply predicting on the test set the most common molecules found in the train set.193

Additionally, we define a metric inspired by Maser et al. [12] called the average improvement over194

baseline (AIB%):195

AIB% =
Am −Ab

1−Ab
∗ 100 (2)

where Am is the exact match combination accuracy of the model and Ab is the exact match combi-196

nation accuracy of choosing the top 3 most common values of a component in the respective train197

set.198

Table 3 shows the predictive performance on the test set using four different flavours of the199

ORDerly-condition benchmark. All models show an improvement over the frequency informed200

baseline.201
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Table 3: Top-3 metrics on condition prediction with the model architecture of Gao et al. [10]:
frequency informed guess accuracy // model prediction accuracy // AIB%.

Datasets: labeling labeling reaction string reaction string
rare→"other" rare→delete rxn rare→"other" rare→delete rxn

Solvents 47 // 58 // 21% 50 // 61 // 22% 23 // 42 // 26% 24 // 45 // 28%
Agents 54 // 70 // 35% 58 // 72 // 32% 19 // 39 // 25% 21 // 42 // 27%
Solvents & Agents 31 // 44 // 19% 33 // 47 // 21% 4 // 21 // 18% 5 // 24 // 21%

The performance of the labeling datasets at first appears to be better than those that use our custom202

logic to extract reaction components from the reaction string. However, as shown in Figure 5, many203

of the reactions in datasets where we trust the labeling in ORD have more than three reactants,204

while most reactions in organic chemistry only have two reactants. Upon manual inspection, we205

found that many agents were mislabeled as reactants and, therefore, the prediction problem was206

made significantly easier. This insight is confirmed in Table 4; there are fewer unique solvents207

and agents and a higher density of null components when using the ORD labeling instead of the208

reaction string. This discrepancy demonstrates that naive creation of datasets based on ORD can209

lead to inflated performance metrics. In dealing with rare spectator molecules to avoid sparse OHE210

(see Table 1) we found that rare → delete rxn strategy performed better in practice. Therefore the211

ORDerly-condition benchmark uses the reaction string to assign reaction roles with the rare →212

delete rxn strategy.213

For the datasets that extract the components from the reaction string, overall top-3 accuracy is less214

than 25% across solvents and agents. While not directly comparable, our overall accuracy is lower215

than what Gao et al. [10] achieved with 50.1% top-3 accuracy across catalysts, solvents and agents.216

However, Gao et al. trained on approximately ten million reactions, while we train on less than four217

percent of that (∼350k). As shown in Figure 3, we see consistent increases in AIB (%) with the218

number of data points for the dataset which uses reaction strings and deletes rare reactions, and this219

scaling performance indicates that as ORD grows, better performance could be achieved, even with220

potentially fewer data points than used in the paper by Gao et al.221

Computational details: These models were trained on an A10G cloud GPU instance provided by222

lightning.ai for 100 epochs to minimize cross entropy loss for each reaction component. The best223

model by validation loss was chosen for evaluation.224

6 Technical limitations225

6.1 Component labeling226

Identifying the role of molecules in a reaction provides crucial context to machine learning models,227

and this identification could be improved with better atom-mapping [35]. However, an atom-mapping228

algorithm was not integrated into ORDerly to keep ORDerly lightweight. Even with perfect atom-229

mapping reaction role identification [29] can be challenging since the role of a molecule depends230

Table 4: Diversity in the datasets. Frequency filtering was applied for the solvents and agents to
create a more dense one-hot encoding. Columns: Number of unique molecules with a frequency
above the threshold; number of unique molecules with a frequency below the threshold; percentage
of the dataset that is None.

labeling reaction string

Reactants 40,020 0 25.7% 317,184 0 18.4%
Products 38,816 0 0.0% 382,850 0 0.0%
Solvents 29 204 40.0% 85 313 28.0%
Agents 48 447 56.2% 255 11,945 37.0%
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Figure 3: Scaling behaviour of different datasets with respect to overall top-3 AIB (%) for all solvents
and agents (third row from Table 3.)

on the context. Reaction roles can more easily be identified when only considering one reaction231

class at [12], since this allows the mechanistic details of the reaction class [36, 37, 38] to be232

considered. Handling large and diverse datasets inevitably requires generalizations that may result in233

contradictions upon a more fine-grained inspection.234

6.2 Order invariance235

Although order of addition may play a role in wet lab chemistry, reaction prediction tasks are236

often cast as order invariant, where the goal is to predict a set of molecules. However, both of the237

architectures used for experimental validation of the ORDerly datasets are not agnostic to the ordering238

of the targets, since the neural networks used predict one molecule at a time in the OHE, and the239

transformers used predict one token at a time. Incorporating order invariance (and canonicalization)240

of the molecules into the loss calculation during training may allow for better generalisability of the241

predictive models, and is an exciting area for further study. It is worth noting that the evaluation242

metrics used throughout are order invariant.243

7 Conclusions244

In this work, we presented ORDerly, an open-source framework for preparing chemical reaction245

data stored in the Open Reaction Database (ORD) for machine learning applications. ORDerly was246

used to generate benchmark datasets for forward prediction (ORDerly-forward), retrosynthesis247

(ORDerly-retro), and condition prediction (ORDerly-condition) based on US patent data. Trans-248

former models were trained on the forward prediction and retrosynthesis datasets, and they were249

found to only generate invalid SMILES strings very infrequently, while also achieving similar test250

accuracy to that found in the literature on a held-out set of US patents. To further investigate model251

generalisation ORDerly was used to generate test sets from all non-patent data from ORD, and for252

the forward prediction task the accuracy was comparable, while the accuracy was slightly lower for253

the retrosynthesis task. The condition prediction task was used to investigate different strategies for254

assigning reaction roles and frequency filtering of the spectator molecules. When building datasets for255

condition prediction using the labeling in ORD, we found contamination of the inputs (reactants) with256

the outputs (agents), resulting in a problem that was unrealistically easy. We therefore chose to use257

chemically informed logic to better assign reaction roles for the ORDerly-condition benchmark.258

All benchmarks and datasets experimented with in this work, as well as the code used to generate259

them, are freely available online, and we hope the benchmarks will make reaction prediction tasks260

more accessible. ORDerly presents a fully open-source pipeline to go from raw ORD data to a fully261

trained condition prediction model, allowing for an avenue to leverage the growing contributions to262

open source chemistry.263
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Appendix (ORDerly: Datasets and benchmarks for chemical reaction data)393

A Dataset extraction and cleaning394

In the main paper, we describe the "labeling" and "reaction string" datasets; in the code this395

is denoted by trust_labeling=True, and trust_labeling=False, respectively. We also396

presented two different strategies for dealing with rare molecules, either "rare→"other" and397

"rare→delete rxn", these are denoted in the code as map_rare_molecules_to_other=True, and398

map_rare_molecules_to_other=False, respectively. There are a number of other tuneable pa-399

rameters in the scripts, and below we explain how default values were chosen for each of these.400

A.1 Extraction script401

There are three fields in the Open Reaction Database schema to extract molecules from: the input, the402

outcome and the reaction string. Molecules in the reaction string are represented as SMILES, while403

molecules in the input and outcome field can be represented with a number of different representations,404

including SMILES, InChI, and plain text English names. When extracting molecules from the input405

or outcome field, the preferred representation was SMILES. However, how should the situation where406

only an English name exists be dealt with? It is tempting to check whether the representation is407

interpretable by RDKit (potentially implying that the molecular representation was mislabeled as408

a name rather than SMILES), however, this can lead to unexpected behaviour. As an example, the409

string, "1400C", was encountered as the name for a molecule, should this be interpreted as a graphene410

structure, a typo for carbon-14, a typo for 1400°C, or simply carbon? Another situation which was411

encountered was BOC; this is a resolvable smiles string, representing boron oxygen and carbon412

bonded together, however, in context, it was actually referring to a BOC group (tert-butyloxycarbonyl413

protecting group). Another example of unintended behaviour is the case of II, which could mean414

diiodine, but also mark the second step/item when counting. Therefore, when the user decides not to415

trust the labeling of the molecules, molecules only represented with a plain text name were ignored,416

to avoid ambiguity.417

The extraction script generates the relevant data from each ORD file, and allows for the following418

customization Note that we only mention the arguments that materially affect the science/logic of419

how cleaning is done.420

• trust_labeling: If True, maintain the labeling of the data in ORD. If False: chemical421

logic (described extensively in the paper) is applied to the reaction string to determine the422

reaction role of molecules.423

• solvents_path: If the user does not trust the labeling, all agent molecules are cross-424

checked against a set of industrially relevant solvents, and any matches are re-labeled as425

solvents. See section A.1.1 for how this set of solvents was constructed.426

• name_contains_substring: Only extract filenames from ORD that includes this string.427

If left empty will not search for anything, and if set to None it will extract data from all ORD428

files in the designated folder. For example, setting name_contains_substring="uspto"429

will grab all files that have "uspto" in the file name (i.e. the USPTO data).430

• inverse_substring: The inverse of name_contains_substring, e.g. setting431

inverse_substring="uspto" will grab everything except the USPTO data.432

A.1.1 Building a set of solvents433

The solvents set can be found in orderly/data/solvents.csv in the ORDerly GitHub repository.434

The set was created from the intersection of solvents from the following three sources:435

• Machine learning and molecular descriptors enable rational solvent selection in asymmetric436

catalysis (458 solvents) [39]437
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• ACS Green Chemistry: Solvent Selection Tool (272 solvents) [40]438

• Summit GitHub Repository (115 solvents) [41]439

After the data from these three sources were concatenated into a new CSV files, the solvents440

were filtered by: making all solvent names lower case, stripping spaces, and then removing du-441

plicate names. (Before removing duplicates: 458+272+115=845 solvents. After removing dupli-442

cates: 615 solvents.) Then Pura was run to resolve the solvent name where no SMILES string443

was available. Each solvent (with no SMILES string) was represented with up to four different444

names: three English solvent names (synonym names) and one CAS number. Pura was used with445

services=[PubChem(autocomplete=True), Opsin(), CIR() and agreement=2 on each En-446

glish name, and services=[CAS() with agreement=1 on the CAS number. This yielded up to four447

different SMILES strings for each solvent. SMILES strings with full agreement for a solvent were448

trusted, and any rows with disagreement between the SMILES strings (≈ 40 solvents) were resolved449

by hand. The final solvents set is a CSV file with seven columns: up to three different English solvent450

names (synonyms), a CAS number, a chemical formula, SMILES, and finally the source.451

An obvious drawback of identifying solvents by crosschecking against a curated set is that the set452

naturally will be incomplete; there are unfathomably many different organic molecules, and it is453

unclear how many of these could act as solvents. However, not distinguishing between solvents and454

agents may make the learning task more difficult for machine learning models, and using the labeling455

that already exists in ORD was routinely found to be inaccurate. In practice, the vast majority of456

solvents used in industry and academia are inspired by what has previously proven successful, and457

thus the solvents set curated for this work is likely going to capture a majority of solvents. Another458

difficulty is that the role of solvent molecules may depend on the context (e.g. polar protic solvents459

may contribute protons to the product, in which case the role of the molecule becomes murky (i.e.460

is it a reactant since it contributed atoms to the product, is it a solvent since it dissolved the (other)461

reactants, or is it a reagent since it acts like an acid?).462

A.2 Cleaning script463

• remove_reactions_with_no_reactants [bool]: Self-explanatory464

• remove_reactions_with_no_products [bool]: Self-explanatory465

• consistent_yield [bool]: If True, removes reactions that have yields that do not make466

sense, e.g. if any individual yields, or the sum of yields, is outside of [0%; 100%] (reactions467

with no yields are kept).468

• num_reactant, num_product, num_solv, num_agent, num_cat, num_reag [int]:469

The maximum number of components allowed of the specified type in a reaction. E.g.470

if num_solv=2 any reactions with 3 or more solvents will be dropped from the DataFrame.471

See section C for how the default values were chosen.472

• min_frequency_of_occurrence [int]: The frequency of molecules across all columns473

of the same type (e.g. solvents) are counted, and any reactions containing molecules below474

the frequency cutoff are dealt with in accordance with map_rare_molecules_to_other.475

See section C for how the default values were chosen.476

• map_rare_molecules_to_other [bool]: If False, any reactions containing molecules477

that fall below the threshold will be deleted. If True, the rare molecules will be mapped to a478

string "other", allowing us to keep the reactions in the dataset. This behaviour can be shut479

off simply by setting min_frequency_of_occurrence=0.480

• set_unresolved_names_to_none_if_mapped_rxn_str_exists_else_del_rxn,481

remove_rxn_with_unresolved_names, set_unresolved_names_to_none [bool]:482

These three bools control the handling of unresolvable names (i.e. names that are483

unresolvable by RDKit, and do not exist in our manually curated name resolution dictionary,484

and at most one of them can be True (if all are set to False, unresolvable names are kept in485

the dataset.) While the second and third bool are self-explanatory, this is the logic applied486
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Table 5: Comparison between different datasets for retrosynthesis and forward prediction.
Dataset Size Split Reference

USPTO-50K 50 016 Random [29]
USPTO-MIT 479 035 Random [31]
USPTO-full 997 4152 Random [32]

ORDerly-retro 941 566 Random This work
ORDerly-forward 919 231 Random This work

if the first bool is True: if a reaction contains a mapped reaction, the reaction is seen as487

quite trustworthy, and therefore the unresolvable names can safely be set to None, while the488

remaining data associated with that reaction is maintained; if a reaction does not have an489

associated mapped reaction, the presence of an unresolveable name is a red flag casting490

doubt on the veracity of that reaction, and thus the whole reaction (a row in the DataFrame)491

is removed).492

A.3 Further justification for cleaning thresholds493

A.3.1 Condition prediction benchmark494

• Reactant filtering: Reactions with more than two reactants were filtered out, since they are495

likely to be multi-step reactions or complex one-pot reactions (tri-molecular mechanisms496

are exceedingly rare in chemistry).497

• Product filtering: Reactions with multiple products were also filtered out since nearly498

all reactions in USPTO only report one product (see Figure A5); predicting reaction side499

products and impurities remains an active area of research [42], and thus fell beyond the500

scope of ORDerly.501

• Solvent and agent filtering: Thresholds for the number of spectator molecules was set at502

two solvents and three agents to have the same number of categorical variables as in the503

model of Gao et al. [10].504

• No conditions filtering: Reactions will not work without a solvent, and will usually require505

an agent. There are exceptions to this (e.g. the Diels-Alder reaction), however, the number506

of reactions with an erroneous recording of no agents is likely going to outnumber the507

amount of genuine exceptions. These filtering steps imply that a model trained on the508

ORDerly-condition benchmark may be ill-equipped to deal with reaction impurities or make509

predictions for reactions with no agents. It is worth noting that these drawbacks may be510

relatively inconsequential, since a skilled chemist is unlikely to query a model to predict511

agents for a class of reaction that requires no agents.512

• Not predicting temperature: Only 192k out of 323k reactions in the ORDerly-condition513

training set contain a temperature, of which over half report 25C. Filtering away reactions514

without a temperature would leave a much smaller dataset, and we do not believe that it is515

reasonable to assume that reactions without a reported temperature were performed at room516

temperature.517

A.3.2 Forward prediction and single-step retrosynthesis benchmarks518

The ORDerly-retro dataset is compared to other standard forward prediction and retrosynthesis519

datasets in Table 5. USPTO-50K was created by Schneider et al. for testing reaction role assignment520

[29]. They used NameRxn to assign reaction classes to all the reactions in the dataset. Liu et al. [30]521

then used the USPTO-50K for benchmarking their retrosynthesis model, however, they did not use522

the reaction classes to create a split, and instead opted for a random split. Coley et al. [43] is often523

cited for their train/test split of USPTO-50K. USPTO-MIT is a larger set that was introduced by Jin524

et al. [31].525
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• Forward prediction: A small number of reactions in USPTO reported two products, and for526

the forward prediction dataset we allowed up to two products and three reactants, solvents,527

and agents.528

• Retrosynthesis prediction: In retrosynthesis prediction the goal is to predict reactants529

that can be used to form a desired product. To ensure that the difficulty of the task was530

reasonable, we limit reactions to having one product and two reactants, such that the models531

only have to learn how to break one molecule into two, and not consider e.g. multi-producut532

or multi-step reactions. Only product and reactant molecules were used in the retrosynthesis533

dataset, so there were no restrictions in the number of solvents and agents.534

B Further experimental details535

B.1 Condition prediction with neural networks536

The code from Gao et al. [10] was used for training condition prediction models. The hyperparameters537

in Table 6 were used, which reflect those used in the original paper. Training on an A10G required 30538

minutes or less for a full training run.539

Table 6: Hyperparameters used for training condition prediction models
batch size 512

learning rate 0.01
hidden size 1 1024
hidden size 2 100

dropout 0.2
fingerprint size 2048

Figure 4: AIB (%) on the test sets for each training dataset. Error bars are with respect to the random
seed in splitting the training and validation data (test data stayed the same).

B.2 Forward prediction and retrosynthesis prediction with transformers540

Most of the hyperparameters used in the Molecular Transformer architecture (see Table 7) were the541

defaults suggested by Schwaller et al. [2] (GitHub). The transformer models were trained for around542

35 hours (approximately 600 epochs).543
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Table 7: Hyperparameters for Molecular Transformer.
Training

seed 42
param_init 0
param_init_glorot
max_generator_batches 32
batch_size 4096
batch_type tokens
normalization tokens
max_grad_norm 0
accum_count 4
optim adam
adam_beta1 0.9
adam_beta2 0.998
decay_method noam
warmup_steps 8000
learning_rate 2
label_smoothing 0.0
layers 4
rnn_size 256
word_vec_size 256
encoder_type transformer
decoder_type transformer
dropout 0.1
position_encoding
share_embeddings
global_attention general
global_attention_function softmax
self_attn_type scaled-dot
heads 8
transformer_ff 2048

Inference

batch_size 512
replace_unk
max_length 200
beam_size 5

C ORDerly benchmark statistics544

C.1 Number of components545

Figure 5 shows the distribution in the number of components of the unfiltered datasets, allowing us546

to compare the reaction string datasets to the labeling datasets. The distributions look quite similar547

for products and solvents. However, the distributions are different for reactants and agents/catalysts,548

which can be explained by reagents routinely being labelled as reactants in ORD.549
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(a) Reaction string dataset, reactant filtering (b) Labeling dataset, reactant filtering

(c) Reaction string dataset, product filtering (d) Labeling dataset, product filtering

(e) Reaction string dataset, solvent filtering (f) Labeling dataset, solvent filtering

(g) Reaction string dataset, agent filtering (h) Labeling dataset, catalyst filtering

Figure 5: Distribution of the number of components between the reaction string and labeling datasets.
There are no reagents in the labeling dataset, so after filtering excess catalysts were re-labelled as
reagents.
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C.2 Minimum frequency of occurrence550

Figure 6 shows how many reactions would be left in the reaction string and labeling datasets as551

a function of the minimum frequency of occurrence. The minimum frequency of occurrence is552

the threshold applied to the spectator molecules (solvents, agents, reagents, agents, catalysts) to be553

considered rare, and any reactions containing a rare molecule will be deleted if (rare→delete rxn).554

(a) Reaction string dataset (x: 10-100) (b) Labeling dataset (x: 10-100)

(c) Reaction string dataset (x: 100-1000) (d) Labeling dataset (x: 100-1000)

Figure 6: Impact on dataset size by changing the minimum frequency of occurrence.

C.3 Molecule popularity555

Figure7 shows the distribution of occurrence of the top 100 most popular molecules across the556

different categories of molecules for the labeling and rxn string datasets. Across categories, the557

reaction string dataset is more diverse and not as heavily dominated by the most popular component.558

It is also interesting that the most popular molecules between the datasets are not the same, despite559

being based on the same raw data.560

D Example reaction instances and predictions561

In this section, we give examples of reactions that are in both the trust labeling and reaction string562

datasets (Table 3) to demonstrate the differences between the different cleaning methodologies.563
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Reaction string dataset
(This work) Trust labelling dataset 

Reactants

Products

Ground truth solvents HCl

Ground truth agents Pd, HCl Pd

Predicted solvents

Predicted agents Pd Pd

Reaction string input: 
CC(C)(C)C(=O)c1ccccc1[N+](=O)[O-]>CCO.Cl.[Pd]>CC(C)(C)C(=O)c1ccccc1N

Reaction type: Reduction (of a nitro group)
Comment: Trust labelling predicted the wrong solvent, which, however, can still serve 
as a solvent due to similar properties (polar and protic). It must be noted that the agent 
prediction was incomplete - no strategy predicted HCl as an agent which is crucial to 
enable the reaction and serve as a proton source.

Correct prediction Incorrect prediction Partially correct prediction
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Reaction string dataset
(This work) Trust labelling dataset 

Reactants H-H

Products

Ground truth solvents

Ground truth agents C, Pd, H-H C, Pd

Predicted solvents

Predicted agents Pd Pd

Reaction type: Hydrogenation (of a nitro group)
Comment: Hydrogen gas can be either categorized as reactant or as agent – here the 
approaches vary depending on the dataset. In both cases ethanol is predicted which, 
however, can still serve as a solvent due to similar properties (polar and protic). It must 
be noted that the agent prediction was incomplete - no strategy predicted H2 as an 
agent which is crucial to enable the reaction and serve as a hydrogen source.

Correct prediction Incorrect prediction Partially correct prediction

Reaction string input: 
O=C(O)c1c(F)ccc([N+](=O)[O])c1F.[H][H]>CO.[C].[Pd]>Nc1ccc(F)c(C(=O)O)c1F
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Reaction string dataset
(This work) Trust labelling dataset 

Reactants

Products

Ground truth solvents

Ground truth agents C, Pd C, Pd

Predicted solvents

Predicted agents Pd Pd

Reaction string input: 
CC(=O)O.Cc1nc(N2CCN(S(=O)(=O)c3ccc(OC(F)(F)F)cc3)[C@@H](C(=O)OCc3ccccc3)C2)sc
1C(=O)OC(C)(C)C>CO.[C].[Pd]> 
Cc1nc(N2CCN(S(=O)(=O)c3ccc(OC(F)(F)F)cc3)[C@@H](C(=O)O)C2)sc1C(=O)OC(C)(C)C

Reaction type: Acidic ester cleveage
Comment: We observed differences in categorizing the acetic acid as either reactant or 
solvent. Chemically, it should be considered a reactant or agent. In both cases ethanol 
is predicted which can still serve as a solvent due to similar properties (polar and 
protic). In the case that acetic acid is not passed as reactant the model should also 
predict it as agent.

Correct prediction Incorrect prediction Partially correct prediction
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Reaction string dataset
(This work) Trust labelling dataset 

Reactants

Products

Ground truth solvents

Ground truth agents C, Pd C, Pd

Predicted solvents

Predicted agents Pd Pd

Reaction string input: 
CCOC(=O)c1ccc(-n2cc(C#N)c(-c3ccccc3OCc3ccccc3)c2)cc1OCOC.CCOC(C)=O 
>CO.[C].[Pd]>CCOC(=O)c1ccc(-n2cc(C#N)c(-c3ccccc3O)c2)cc1OCOC

Reaction type: Ether cleveage (cleaving an Obn protection group)
Comment: Acetyl acetate is categorized either as solvent or reactant. Here both roles 
makes sense chemically. For the prediction using reaction string dataset it must be
noted that while EtOH is predicted, the ground truth solvent is ethylacetate. However, 
under acidic conditions acetyl acetate can fall apart into acidic acid and EtOH.

Correct prediction Incorrect prediction Partially correct prediction
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Reaction string dataset
(This work) Trust labelling dataset 

Reactants

Products

Ground truth solvents

Ground truth agents Ni Ni

Predicted solvents

Predicted agents Pd Pd

Reaction string input: 
CCO.Cc1c(-c2ccccc2)c(CC(=S)N(C)C)c2oc(C3CC3)nc2c1C#N>C1CCOC1.[Ni]>
Cc1c(-c2ccccc2)c(CCN(C)C)c2oc(C3CC3)nc2c1C#N

Reaction type: Corey Seebach reaction
Comment: Ethanol is categorized either as solvent or reactant - both roles makes sense 
chemically. Within the prediction, trust labelling predicted ethyl acetate which is 
uncommon for this transformtation. Using the reaction string dataset, THF was 
predicted which is correct, however, the initiall data also contained EtOH. Pd has been 
predicted in both cases as agent which is incorrect.

Correct prediction Incorrect prediction Partially correct prediction
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(a) Reaction string dataset, reactants (b) Labeling dataset, reactants

(c) Reaction string dataset, products (d) Labeling dataset, products

(e) Reaction string dataset, solvents (f) Labeling dataset, solvents

(g) Reaction string dataset, agents (h) Labeling dataset, catalysts

Figure 7: Frequency of occurrence of the most popular molecules. NULL has been removed, reagents
and catalysts have been merged. 24



E Datasheet for ORDerly dataset569

E.1 Motivation570

Q1: For what purpose was the dataset created? Was there a specific task in mind? Was there571

a specific gap that needed to be filled? Please provide a description.572

– The datasets were created to facilitate building machine learning models for prediction573

of reaction products, retrosynthesis, and reaction conditions in chemical synthesis,574

particularly in the context of the pharmaceutical industry. There was a need of a575

clean, high-quality reaction condition benchmark dataset, in addition to a need for an576

open-source repository for cleaning reactions, and an investigation of how decisions577

made during cleaning impact the usefulness of the model that is trained on the datasets.578

ORDerly solves all three of these issues. The code for ORDerly, and the raw data579

used to generate the ORDerly benchmark datasets, are both open-source, making the580

benchmark generation accessible and reproducible.581

Q2: Who created the dataset (e.g., which team, research group) and on behalf of which582

entity (e.g., company, institution, organization)?583

– ORDerly was built by researchers from the group of Anon at Institution.584

Q3: Who funded the creation of the dataset? If there is an associated grant, please provide the585

name of the grantor and the grant name and number.586

– This work is co-funded by UCB Pharma and Engineering and Physical Sciences Re-587

search Council via project EP/S024220/1 EPSRC Centre for Doctoral Training in588

Automated Chemical Synthesis Enabled by Digital Molecular Technologies. This589

project was co-funded by European Regional Development Fund via the project "Inno-590

vation Centre in Digital Molecular Technologies".591

Q4: Any other comments?592

– No.593

E.2 Composition594

Q5: What do the instances that comprise the dataset represent (e.g., documents, photos,595

people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;596

people and interactions between them; nodes and edges)? Please provide a description.597

– Eight datasets were presented in this work. Each dataset was saved in Apache Parquet598

format, and has the following column groups:599

* Reaction SMILES string (string), is_mapped (bool)600

* Reactants & products (SMILES strings)601

* Solvents and agents (rxn string data), or solvents, catalysts, and reagents (labeling602

data) (SMILES strings)603

* Temperature, reaction time, yield (floats)604

* Procedure details (string)605

* Grant date (datetime), date of experiment (datetime), file name (string)606

Q6: How many instances are there in total (of each type, if appropriate)?607

– The number of reactions in each dataset is outlined in detail in Table 1.608

Q7: Does the dataset contain all possible instances or is it a sample (not necessarily random)609

of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the610

sample representative of the larger set (e.g., geographic coverage)? If so, please describe611

how this representativeness was validated/verified. If it is not representative of the larger set,612

please describe why not (e.g., to cover a more diverse range of instances, because instances613

were withheld or unavailable).614
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– All the data in ORD was used to generate the datasets presented in this paper. Datasets615

A-F were built from the subset of ORD belonging to USPTO (1.7m reactions in total),616

while datasets G-H were built on the subset of data from ORD that do not belong to617

USPTO (91k reactions in total, as of August 2023).618

Q8: What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)619

or features? In either case, please provide a description.620

– Chemical reaction data stored in ORD is structured like a json/dictionary, with strings621

and floats as the values. The values that are relevant to ORDerly were discussed in622

response to Q5. A full description of the data stored in ORD is available elsewhere623

[20].624

Q9: Is there a label or target associated with each instance? If so, please provide a description.625

– There is a label associated with molecules in ORD, and in this work we show the626

pitfalls of relying on this label, and present ORDerly to more robustly assign labels.627

The targets are the reaction conditions (solvents, agents, catalysts, reagents).628

Q10: Is any information missing from individual instances? If so, please provide a description,629

explaining why this information is missing (e.g., because it was unavailable). This does not630

include intentionally removed information, but might include, e.g., redacted text.631

– Many reactions were missing temperature, reaction time, and yield data; this is likely632

due to this information not being recorded by the experimentalist, or not extracted633

when the information was scraped from a patent/paper.634

Q11: Are relationships between individual instances made explicit (e.g., users’ movie ratings,635

social network links)? If so, please describe how these relationships are made explicit.636

– Each row contains information for a single step chemical reaction. The only explicit link637

between reactions is the year they were performed or the year that the corresponding638

patent was granted. The year a chemical reaction was performed may imply some639

degree of chemical information, since chemical reactions of a certain type obviously640

could not have been performed before they were invented. Furthermore, "hype" around641

a particular type of reaction may influence how often certain reaction classes are used642

through time. For these reasons, a time-based split can be viewed as a (somewhat poor)643

proxy for a reaction class split. There is a column in the dataset containing the year644

that the grant was awarded, and another column for time of experiment.645

Q12: Are there recommended data splits (e.g., training, development/validation, testing)? If646

so, please provide a description of these splits, explaining the rationale behind them.647

– We recommend using a random split of the ORDerly benchmarks, and provide pre-split648

data to ensure that ML researchers using the benchmark use the same train/test split.649

There are three data splits that would make sense on a chemical reactions dataset: a650

random split, a time split, and the reaction class split. A reaction class split would651

require models to generalise to unseen reaction classes (as opposed to unseen reactions652

of the same class), making the prediction task much more difficult. As explained above653

(Q16), using a time split would effectively just serve as a proxy for a reaction class split,654

and is therefore not desirable. There are a number of reasons for the random split being655

preferred over the reaction class split: 1) A reaction class split would need to either use656

an ML clustering algorithm (which usually work quite well, but cannot be viewed as a657

ground-truth split), or using proprietary software based on manually curated chemistry658

rules (which would mean that the full pipeline is no longer fully open source and659

reproducible). 2) The reaction prediction task is already difficult enough with a random660

split (e.g. considering our top-3 accuracy of sub 50%, and models trained on a random661

split are still able to provide value even if they can only make predictions on reaction662

classes that they have seen before - the reaction classes represented in the dataset will663

likely be the most popular reaction classes, and therefore also those most likely to be664

queried by the end user.665
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Q13: Are there any errors, sources of noise, or redundancies in the dataset? If so, please666

provide a description.667

– The ORDerly-condition, ORDerly-forward, and ORDerly-retro datasets are668

generated from the USPTO dataset, which is a dataset made from chemical reac-669

tions from US Patents. When a molecule is patented, it is also a requirement to publish670

the synthesis pathway to produce the molecule, and it is from these synthesis pathways671

that reactions are extracted. To avoid giving away proprietary information there is an672

incentive to use already published "industry standard" reaction conditions in the patent673

application; furthermore, the "first to file" nature of the US patent system means there674

is an incentive to apply for patents as soon as possible. These two factors may bias675

the reactions in the USPTO dataset towards being unoptimized, low-yielding reactions676

that can also be found elsewhere. In fact, we observed that ≈ 40% of reactions were677

dropped because they were duplicates (see Table 1), indicating that many reactions678

are executed at "standard conditions" for a particular class of reaction instead of being679

optimized for the specific reactants.680

– Reproducibility is known to be difficult in chemistry[44], which implies a base-level of681

noise in the dataset.682

Q14: Is the dataset self-contained, or does it link to or otherwise rely on external resources683

(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are684

there guarantees that they will exist, and remain constant, over time; b) are there official685

archival versions of the complete dataset (i.e., including the external resources as they686

existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees)687

associated with any of the external resources that might apply to a future user? Please688

provide descriptions of all external resources and any restrictions associated with them, as689

well as links or other access points, as appropriate.690

– The ORDerly datasets are self-contained. To be able to reproduce cleaning of ORD691

data, the ORD data will naturally need to continue to exist. ORD was built to be an692

open-source tool, so there should not be any restrictions on its use in the future.693

Q15: Does the dataset contain data that might be considered confidential (e.g., data that is694

protected by legal privilege or by doctor–patient confidentiality, data that includes the695

content of individuals’ non-public communications)? If so, please provide a description.696

– No.697

Q16: Does the dataset contain data that, if viewed directly, might be offensive, insulting,698

threatening, or might otherwise cause anxiety? If so, please describe why.699

– No.700

Q17: Does the dataset relate to people? If not, you may skip the remaining questions in this701

section.702

– No.703

Q18: Does the dataset identify any subpopulations (e.g., by age, gender)?704

– No.705

Q19: Is it possible to identify individuals (i.e., one or more natural persons), either directly or706

indirectly (i.e., in combination with other data) from the dataset? If so, please describe707

how.708

– No.709

Q20: Does the dataset contain data that might be considered sensitive in any way (e.g., data710

that reveals racial or ethnic origins, sexual orientations, religious beliefs, political711

opinions or union memberships, or locations; financial or health data; biometric or712

genetic data; forms of government identification, such as social security numbers;713

criminal history)? If so, please provide a description.714
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– No.715

Q21: Any other comments?716

– No.717

E.3 Collection process718

Q22: How was the data associated with each instance acquired? Was the data directly ob-719

servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or720

indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses721

for age or language)? If data was reported by subjects or indirectly inferred/derived from722

other data, was the data validated/verified? If so, please describe how.723

– The raw data of each instance (reaction) was extracted from United States Patents to724

form the "USPTO dataset" [21]. The USPTO dataset was parsed into ORD format [20],725

where we extracted it from. ORD does contain additional data, beyond the USPTO726

dataset. Other reactions in ORD are contributed by chemists in academia and industry.727

Q23: What mechanisms or procedures were used to collect the data (e.g., hardware apparatus728

or sensor, manual human curation, software program, software API)? How were these729

mechanisms or procedures validated?730

– Data in the ORD database is readily downloadable through the GitHub repository.731

Q24: If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,732

deterministic, probabilistic with specific sampling probabilities)?733

– See Q7.734

Q25: Who was involved in the data collection process (e.g., students, crowdworkers, contrac-735

tors) and how were they compensated (e.g., how much were crowdworkers paid)?736

– N/A.737

Q26: Over what timeframe was the data collected? Does this timeframe match the creation738

timeframe of the data associated with the instances (e.g., recent crawl of old news739

articles)? If not, please describe the timeframe in which the data associated with the740

instances was created.741

– The reactions in the USPTO dataset are from patents which were published between742

1976 and September 2016. The USPTO dataset was parsed into ORD in 2020. Addi-743

tional reactions not from patents have since been added to ORD. ORDerly was built in744

2023.745

Q27: Were any ethical review processes conducted (e.g., by an institutional review board)?746

If so, please provide a description of these review processes, including the outcomes, as well747

as a link or other access point to any supporting documentation.748

– No.749

Q28: Does the dataset relate to people? If not, you may skip the remaining questions in this750

section.751

– No.752

Q29: Did you collect the data from the individuals in question directly, or obtain it via third753

parties or other sources (e.g., websites)?754

– N/A.755

Q30: Were the individuals in question notified about the data collection? If so, please describe756

(or show with screenshots or other information) how notice was provided, and provide a link757

or other access point to, or otherwise reproduce, the exact language of the notification itself.758

– N/A.759
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Q31: Did the individuals in question consent to the collection and use of their data? If so,760

please describe (or show with screenshots or other information) how consent was requested761

and provided, and provide a link or other access point to, or otherwise reproduce, the exact762

language to which the individuals consented.763

– N/A.764

Q32: If consent was obtained, were the consenting individuals provided with a mechanism to765

revoke their consent in the future or for certain uses? If so, please provide a description,766

as well as a link or other access point to the mechanism (if appropriate).767

– N/A.768

Q33: Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,769

a data protection impact analysis) been conducted? If so, please provide a description770

of this analysis, including the outcomes, as well as a link or other access point to any771

supporting documentation.772

– N/A.773

Q34: Any other comments?774

– No.775

E.4 Preprocessing, cleaning, and/or labeling776

Q35: Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-777

ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,778

processing of missing values)? If so, please provide a description. If not, you may skip the779

remainder of the questions in this section.780

– Yes, this is described in detail in section 4 and A.781

Q36: Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to782

support unanticipated future uses)? If so, please provide a link or other access point to783

the “raw” data.784

– The raw structured data is stored in the ORD GitHub repository.785

Q37: Is the software used to preprocess/clean/label the instances available? If so, please786

provide a link or other access point.787

– This paper is for the software used to preprocess, clean, and label the instances.788

Q38: Any other comments?789

– No.790

E.5 Uses791

Q39: Has the dataset been used for any tasks already? If so, please provide a description.792

– Yes, in section 5 we train a previously published neural network model for reaction793

condition prediction and a previously published transformer for forward prediction and794

retrosynthesis.795

Q40: Is there a repository that links to any or all papers or systems that use the dataset? If796

so, please provide a link or other access point.797

– No.798

Q41: What (other) tasks could the dataset be used for?799

– As described in section 2, other key problems in chemical synthesis include reaction800

outcome prediction, retrosynthesis, and reaction condition prediction. An important801

task which was not described is reaction yield prediction. Successful reaction yield802

models are predominantly trained on high-throughput experimentation (HTE) datasets803

[15], and is known to be difficult (if not impossible) with patent data (e.g. USPTO)804
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[13, 14]. As long as ORD primarily consists of USPTO data, ORDerly will probably805

not be very useful for yield prediction, but it could be in the future.806

Q42: Is there anything about the composition of the dataset or the way it was collected807

and preprocessed/cleaned/labeled that might impact future uses? For example, is there808

anything that a future user might need to know to avoid uses that could result in unfair809

treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other810

undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is811

there anything a future user could do to mitigate these undesirable harms?812

– Yes, ORDerly relies on the ORD schema, and changes to the ORD schema or ORD813

database may require updates to ORDerly. ORD may change in the future, as the it814

becomes more clear how the community wishes to use ORD (e.g. which classes of815

information are stored).816

Q43: Are there tasks for which the dataset should not be used? If so, please provide a817

description.818

– The ORDerly datasets were generated to make it easier to train models that can predict819

how to make small molecules. The intended usage is to predict synthesis pathways820

for therapeutics, however, within this category of small molecules is also energetic821

materials, such as explosives.822

Q44: Any other comments?823

– No.824

E.6 Distribution825

Q45: Will the dataset be distributed to third parties outside of the entity (e.g., company,826

institution, organization) on behalf of which the dataset was created? If so, please827

provide a description.828

– Yes, the datasets will be open-source.829

Q46: How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the830

dataset have a digital object identifier (DOI)?831

– The data is available through FigShare. (https://doi.org/10.6084/m9.figshare.23298467)832

– It can also reliably be recreated using the instructions in the ORDerly GitHub repository833

(https://github.com/sustainable-processes/ORDerly).834

Q47: When will the dataset be distributed?835

– It is already publicly available.836

Q48: Will the dataset be distributed under a copyright or other intellectual property (IP)837

license, and/or under applicable terms of use (ToU)? If so, please describe this license838

and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant839

licensing terms or ToU, as well as any fees associated with these restrictions.840

– CC-BY-4.0841

Q49: Have any third parties imposed IP-based or other restrictions on the data associated842

with the instances? If so, please describe these restrictions, and provide a link or other843

access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees844

associated with these restrictions.845

– No.846

Q50: Do any export controls or other regulatory restrictions apply to the dataset or to847

individual instances? If so, please describe these restrictions, and provide a link or other848

access point to, or otherwise reproduce, any supporting documentation.849

– No,850

Q51: Any other comments?851

– No.852
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E.7 Maintenance853

Q52: Who will be supporting/hosting/maintaining the dataset?854

– The dataset is hosted on FigShare, the code to generate the dataset is hosted on GitHub.855

– The group of Anon will be maintaining ORDerly.856

Q53: How can the owner/curator/manager of the dataset be contacted (e.g., email address)?857

– Anon.858

Q54: Is there an erratum? If so, please provide a link or other access point.859

– N/A.860

Q55: Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-861

stances)? If so, please describe how often, by whom, and how updates will be communicated862

to users (e.g., mailing list, GitHub)?863

– ORDerly will be maintained by the group of Anon, updates will be tracked through864

GitHub. ORDerly is built to be extensible, such that as the ORD dataset grows, users865

can run ORDerly to create new, larger, datasets. The ORDerly benchmark datasets are866

unlikely to change (to ensure model accuracy is comparable).867

Q56: If the dataset relates to people, are there applicable limits on the retention of the data868

associated with the instances (e.g., were individuals in question told that their data869

would be retained for a fixed period of time and then deleted)? If so, please describe870

these limits and explain how they will be enforced.871

– N/A.872

Q57: Will older versions of the dataset continue to be supported/hosted/maintained? If so,873

please describe how. If not, please describe how its obsolescence will be communicated to874

users.875

– The datasets are small enough to easily be versioned and hosted on FigShare (350k-1m876

reactions, 200MB-500MB).877

Q58: If others want to extend/augment/build on/contribute to the dataset, is there a mech-878

anism for them to do so? If so, please provide a description. Will these contributions879

be validated/verified? If so, please describe how. If not, why not? Is there a process for880

communicating/distributing these contributions to other users? If so, please provide a881

description882

– All contributions to ORDerly will be managed through the ORDerly GitHub repository.883

Pull requests into main will need to be verified by a member of Anon’s group.884

Q59: Any other comments?885

– No.886
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