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Abstract

Graph Contrastive Learning (GCL) has emerged as a powerful approach for gener-
ating graph representations without the need for manual annotation. Most advanced
GCL methods fall into three main frameworks: node discrimination, group discrim-
ination, and bootstrapping schemes, all of which achieve comparable performance.
However, the underlying mechanisms and factors that contribute to their effec-
tiveness are not yet fully understood. In this paper, we revisit these frameworks
and reveal a common mechanism—representation scattering—that significantly
enhances their performance. Our discovery highlights an essential feature of GCL
and unifies these seemingly disparate methods under the concept of representation
scattering. To leverage this insight, we introduce Scattering Graph Representation
Learning (SGRL), a novel framework that incorporates a new representation scatter-
ing mechanism designed to enhance representation diversity through a center-away
strategy. Additionally, consider the interconnected nature of graphs, we develop a
topology-based constraint mechanism that integrates graph structural properties
with representation scattering to prevent excessive scattering. We extensively eval-
uate SGRL across various downstream tasks on benchmark datasets, demonstrating
its efficacy and superiority over existing GCL methods. Our findings underscore
the significance of representation scattering in GCL and provide a structured frame-
work for harnessing this mechanism to advance graph representation learning. The
code of SGRL is at https://github.com/hedongxiao-tju/SGRL.

1 Introduction

Graph Neural Networks (GNNs) have shown impressive performance across various fields, including
social networks [1, 2], bioinformatics [3, 4], and fraud detection [5]. However, training GNNs
typically requires large datasets with manually annotated labels, which can be both costly and labor-
intensive [6]. This limitation restricts their broader application. To address this challenge, Graph
Contrastive Learning (GCL) has attracted significant attention [7, 8, 9, 10], focusing on creating proxy
tasks from the data itself to enable self-supervised training of GNN encoders [11]. Currently, most
GCL research [6, 12, 13] is concentrated on enhancing one of the three main frameworks: InfoNCE-
based (i.e., node discrimination) [14], DGI-like (i.e., group discrimination) [7], and BGRL-like (i.e.,
bootstrapping schemes) [10].
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The three mainstream graph contrastive learning frameworks differ significantly, particularly in their
approach to node-level tasks. InfoNCE-based methods prioritize node-level discrimination [8, 9, 12],
treating an anchor node as a reference while considering all other nodes as negative samples to
enhance the distinctiveness of each node’s representation. In contrast, DGI-like methods adopt
a group discrimination paradigm [6, 7, 15], viewing all nodes as positive samples from the same
distribution and differentiating them from a noise distribution. BGRL-like methods [10, 13, 16]
employ a bootstrapping scheme that eliminates the need for negative samples during training, focusing
instead on aligning positive samples. Despite these differences, all three frameworks demonstrate
comparable performance, leading us to conjecture that they may share a common mechanism.
This idea is partially inspired by previous research in visual contrastive learning, which identified
uniformity as a key factor in many contrastive learning methods [17]. However, uniformity, which
focuses solely on the discriminative properties of node instances, cannot explain the shared underlying
factors across these GCL frameworks, as further discussed in Appendix A.

We carried out a detailed analysis of the three GCL frameworks and discovered that representation
scattering is a crucial common factor in their success (in Section 3). In Section 3, we provide a formal
definition of representation scattering and examine how each framework achieves it. For the DGI
framework, we analyze the distributions of original and noise data, proving that after GNN message
passing [18, 19], the noise data distribution aligns with the mean distribution of the original data.
This indicates that DGI’s objective can be interpreted as distinguishing between the local semantics of
nodes within the original graph and its mean, which correlates with representation scattering (Section
3.1). In the InfoNCE framework, existing work has demonstrated that the mechanism of negative
sampling facilitates a process of achieving uniformity [17]. We extend this further by theoretically
proving that the InfoNCE loss serves as an upper bound for representation scattering loss (Section
3.2). Regarding the BGRL framework, we explore the role of Batch Normalization [20] and its
connection to representation scattering, showing that it acts as a specific instance of this concept.
Notably, removing Batch Normalization significantly degrades BGRL’s performance (Figure 2). Our
findings confirm that representation scattering is a key mechanism present across all three mainstream
GCL frameworks.

However, the existing GCL frameworks have not fully leveraged the latent mechanisms inherent in
their designs and neglected the interconnected nature of graphs when implementing representation
scattering. This oversight results in inefficiencies and reduced robustness. Firstly, generating
augmented views or computing similarities between node pairs for representation scattering [7, 8, 9]
incurs significant computational and memory overhead. Secondly, manually defined negative samples
may result in the generation of numerous false negative samples, introducing noise [12] that can
hinder model training. Lastly, those frameworks that rely solely on positive samples [10] implement
representation scattering indirectly through Batch Normalization, which lacks explicit guidance
for scattering and can lead to suboptimal performance. Addressing these challenges is crucial for
enhancing the effectiveness of GCL methods.

To fully and effectively utilize representation scattering, we propose Scattering Graph Representation
Learning (SGRL). Our approach introduces a Representation Scattering Mechanism (RSM) that
embeds node representations into a designated hypersphere, positioning them away from the mean
center. This method offers a direct algorithm for representation scattering compared to the existing
GCL frameworks, eliminating biases introduced by manually defined negative samples. Additionally,
we introduce a Topology-based Constraint Mechanism (TCM) that considers the interconnected
nature of graphs. TCM aligns representations derived from structural information with scattered
representations, thereby preserving topology information while facilitating scattering. Through
these innovations, we aim to enhance the efficiency and robustness of GCL methods. We made the
following contributions in this paper:

• We discovered a common representation scattering mechanism in GCLs and showed that
the three mainstream GCL frameworks implicitly utilize this mechanism, and importantly
can be unified under the concept to representation scattering.

• We showed that the existing methods do not fully exploit the inherent mechanism of
representation scattering. We introduced the novel SGRL framework to integrate RSM and
TCM, producing an adaptive scattering approach for model training.

• We experimented with various downstream tasks on benchmark datasets and demonstrated
the effectiveness and efficiency of SGRL.
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2 Preliminary

Graph Data. We define a graph as G = (V, E), where V = {v1, v2, . . . , vN} denotes the set of
nodes, and E ⊆ V×V represents the set of edges. The node feature matrix is denoted by X ∈ RN×D,
where N is the number of nodes and D is the feature dimension. In addition, the adjacency matrix is
indicated by A ∈ RN×N , formulated such that Aij = 1 when an edge (vi, vj) exists within the set
E , or Aij = 0, otherwise. The degree matrix is denoted as D = diag(d1, d2, . . . , dN ), where each
element di =

∑
j∈V Aij . The degree-normalized adjacency matrix with self-loops is represented as

Asym = D−1/2(A+ I)D−1/2.

Graph Contrastive Learning. Given a graph’s attributes X and adjacency matrix A, the objective
of GCL is to train an encoder f(·) in a self-supervised fashion. The learned encoder f(·) can generate
representations H = f(X,A),H ∈ RN×K , which are both topologies decoupled and dense. These
representations can be applied to many downstream tasks.

3 Representation Scattering in GCL

We now examine the shared elements that contribute to the effectiveness of popular Graph Contrastive
Learning (GCL) frameworks. Upon revisiting three widely used baseline GCL frameworks, we find
that they all inherently utilize the mechanism of representation scattering, which plays a crucial role
in their success. Here, we formally define Representation Scattering:

Definition 1. (Representation Scattering) In a d-dimensional embedding space Rd comprising n
vectors organized into a matrix V ∈ Rn×d, consider a subspace Sk (1 ≤ k ≤ d) of Rd and a
scatter center c. Representation scattering is a process satisfying two constraints, (i) Center-Away
Constraint: Node representations are encouraged to be distant from the scattered center c, and (ii)
Uniformity Constraint: Node representations are uniformly distributed over the subspace Sk.

According to Definition 1, achieving representation scattering requires identifying a scattered center
c within the subspace Sk, and simultaneously satisfying the Center-Away and Uniformity Constraints.
We will study its relationship with the popular GCL frameworks in the following section.

3.1 DGI-like methods

DGI-like methods generate negative samples through random permutation of nodes. They employ a
mutual information discriminator D(·), which maximizes the mutual information between nodes and
their source graphs to train the model [6, 7, 15]. Here, we show that the objective function of DGI is a
special case of representation scattering. To facilitate the proof, we present the following assumption:

Assumption 1. (a) The normalized propagation matrix Ã is defined as Ã = D−1Â, where Â =
A+ I. (b) DGI generates the corrupted graph by randomly shuffling the entities in the feature matrix
X, while keeping the adjacency matrix A unchanged. (c) The original data are class-balanced, i.e.,
for any classes k and j, num(k) = num(j).

The following results do not strictly require Assumption 1 to be satisfied. Assumption 1 represents a
common scenario and serves to simplify the proof. A discussion on the validity of Assumption 1, and
proofs of the subsequent results without Assumption 1, can be found in Appendix C.

Theorem 1. At the node level, minimizing the DGI loss is equivalent to maximizing the Jensen-
Shannon (JS) divergence between the local semantic distribution in the original graph and its average
distribution.

Proof. Let pdata denote the distribution of all nodes in the original graph, characterized by a mean
µ and variance σ2. To analyze the local distribution of node vi after its embedding aggregation by
GNN encoders, we define pi as the distribution of node vi and its first-order neighbors with mean µi

and variance σ2
i . We make use of a conclusion in [6] and introduce the following lemma:

Lemma 2. Minimizing the DGI loss, denoted as LDGI, equals to maximizing the Jensen-Shannon
(JS) divergence between the distribution of the original graph G and the corrupted graph G̃, i.e.,
Min(LDGI)⇔ Max(JS(G ∥ G̃)).
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We discuss Lemma 2 in Appendix D.1. Lemma 2 establishes the relationship between the DGI
loss and the distributions of the original and corrupted graphs. To investigate the distribution of
representations in original and corrupted graphs, we focus on the case of a single-layer GNN [21]
and have the following formulation:

H = GNN(A,X) = ÃXW′,hi =
∑
j∈Ni

αijxj ·W′ =
∑
j∈Ni

1

di
xj ·W′, (1)

where W′ = ξ(W),W ∈ RD×K with ξ being an activation function like ReLU [22] for ease of
understanding, Ni denotes the set of first-order neighbors of node vi, inclusive of vi itself. In Eq. 1,
∀j ∈ Ni,xj ∼ pi(µi, σ

2
i ). For node vi, subsequent to GNN message passing, we compute the mean

and variance of the aggregated representation hi as follows:

E[hi] = E

 ∑
j∈N (i)

αijxj ·W′

 =
∑

j∈N (i)

αijE[xj ] ·W′ =
∑

j∈N (i)

αijµi ·W′,

Var(hi) = Var

 ∑
j∈N (i)

αijxj ·W′

 =
∑

j∈N (i)

αijVar(xj) ·W′2 = σ2
i

∑
j∈N (i)

α2
ij ·W′2.

(2)

Given that Ã is a normalized propagation matrix with
∑

j∈N (i)αij = 1 for the aggregated repre-
sentation hi in the original graph, the mean of representation hi’s distribution equals µi ·W′. We
then analyze the distribution of the aggregated representation ĥi in the corrupted graph. Based on
Assumption 1, the adjacency matrix A is unaltered and the feature vector x̃i is selected randomly
from the feature matrix X of the original graph, following the distribution pdata(µ, σ

2). According
to Eq.2, the mean of the distribution of ĥi is µ ·W′, and the variance is σ2

∑
j∈N (i) α

2
ij ·W′2.

Consequently, we have hi ∼ p′i(µi ·W′, σ2
i ·W′2) and ĥi ∼ p′data(µ ·W′, σ2 ·W′2), which directly

prove that maximizing the JS divergence between the original and corrupted graph distributions at
the node level maximizes, in effect, the JS divergence between the local semantic distribution of node
vi and the mean distribution of the nodes in the original graph.

Corollary 3. Taking the mean of the original graph as the center c, and the original representation
space as a subspace Sk, the objective of DGI can be described as follows: within the subspace Sk,
DGI increases the distance between the nodes of the original graph and its center c, achieving the
objective of representation scattering.

(a) Random Init (b) GNN-Layer #1 (c) GNN-Layer #2

Figure 1: t-SNE embedding of DGI on Co.CS dataset. The blue
points represent the embeddings of the perturbed negative samples,
and the red points denote that of positive nodes. As can be seen in
Figures (a) and (b) of model random initialization and the layer of
the trained encoder, the DGI-like methods essentially maximize the
JS divergence between node embedding and embedding mean.

Corollary 3 reveals, for the first time,
that the primary goal of DGI-like
methods is to position node represen-
tations away from a central point to
encourage a uniform distribution of
the nodes. To illustrate these theo-
retical insights, we performed a vi-
sualization experiment. As shown in
Figure 1 (a) and (b), both a randomly
initialized GNN and a trained single-
layer GNN demonstrated that their
representations are distanced from the
mean of the original graph nodes. Ad-
ditionally, Figure 1 (b) and (c) provide clearer evidence that minimizing the LDGI is equivalent to
maximizing the Jensen-Shannon (JS) divergence between the positive and negative samples, i.e.,
maximizing the JS divergence between the local semantic distribution in the original graph and its
mean distribution. However, the row-wise shuffling mechanism may introduce potential disturbances.
In a graph with n nodes, each node v retains its local semantic distribution with a probability of
1/k during the shuffling process, where k denotes the number of distinct node types, assuming class
balance. Despite this, the non-discriminatory nature of the perturbation means that these unchanged
nodes could still be mistakenly classified as negative samples. Consequently, genuine node rep-
resentations may be incorrectly labeled as negatives, leading to bias in the learning process. The
overlapping nodes depicted in Figure 1 intuitively support this perspective.
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3.2 InfoNCE-based methods

We now show that the mechanism of negative sampling in the InfoNCE-based methods is equivalent
to representation scattering.

Theorem 4. Let h̄ = 1/n
∑n

i=1 hi, and sim(·) be the cosine similarity function (here, hi represents
the encoded representation of node vi). For node vi, the lower bound of the InfoNCE loss LInfoNCE(hi)
exists: LInfoNCE(hi) ≥ sim(hi, h̄) + ln(2n).

A detailed proof is given in Appendix D.3. Theorem 4 indicates that when minimizing LInfoNCE(hi),
the similarity between node vi and mean node v̄, i.e., sim(hi, h̄) is also minimized. Taking the mean
of all nodes as the scattered center c, and the hypersphere as the subspace Sk, the mechanism of
negative sampling is equivalent to representation scattering. However, the InfoNCE loss function
is inefficient for representation scattering as it needs to compute and reduce the similarity of each
negative pair. Moreover, it indiscriminately treats all negative samples, ignoring the distinctions
among them, which leads to inappropriate scattering of negative samples and potential bias from false
negatives. Consequently, many recent methods have incurred additional computational overhead by
manually and intuitively defining positive and negative samples [12, 23].

3.3 BGRL-like methods

All BGRL-like methods incorporate a key component: Batch Normalization (BN). For a feature
vector xi and its corresponding batch statistics, mean µ and variance σ2, the BN is applied as follows:
BN(xi) = γ(xi − µ)/

√
σ2 + ϵ+ β, where γ and β are learnable parameters that scale and shift the

normalized value, and ϵ is a small constant added for numerical stability.

Theorem 5. The process of data normalization by batch normalization can be seen as a special case
of representation scattering.
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Figure 2: The impact of Batch Normal-
ization in BGRL.

A detailed proof can be found in Appendix D.2. To empirically
assess the impact of batch normalization on BGRL, we con-
ducted experiments comparing both BGRL and BGRL w/o BN
across four benchmark datasets. The results, shown in Figure
2, reveal a significant drop in accuracy for BGRL across all
datasets without batch normalization, highlighting its critical
role in the bootstrapping framework. While BGRL incorpo-
rates representation scattering through batch normalization, its
training process lacks explicit guidance or a dedicated mech-
anism to efficiently manage this scattering. The absence of
direct supervision during the representation scattering phase
can lead to an unoptimized distribution of representation within
the embedding space, resulting in suboptimal performance.

In summary, our analysis of the three mainstream GCL frameworks theoretically proved that they all
inherently utilize representation scattering but also fail to fully utilize this effective mechanism. This
analytic result has motivated us to design a more effective representation scattering method tailored
for learning on graphs.

4 Methodology

The proceeding sections have revealed the importance of representation scattering in GCLs. Based on
the findings, we have designed a novel method, namely Scattering Graph Representation Learning,
short-handed as SGRL (Figure 3). We introduce the components of SGRL and provide discussion in
the following sub-sections.

4.1 Representation Scattering Mechanism (RSM)

To address the shortcomings in the application of representation scattering within the three mainstream
graph contrastive learning frameworks, we design RSM to explicitly guide the target encoder in
learning scattered representations. Following Definition 1, we introduce a subspace Sk and a scattered
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Representation Scattering Mechanism

Node Representation Hypersphere Center Representation Center

Topology-Based Constraint Mechanism

Scattering Loss Function

Alignment Loss Function

One-Hop based
Constraint

Multi-Hop based
Constraint

Stop Gradient

Align

Figure 3: The overview of SGRL. Consider a graph G processed using two distinct encoders (online encoder
and target encoder): fθ(·) with parameters θ and fϕ(·) with ϕ, aimed at generating node representations Honline
and Htarget, respectively. For Htarget, the mean representation of all nodes is calculated to serve as the scattered
center c. The parameters of fϕ(·) are updated via RSM that encourages node representations to diverge from
c. Honline is processed through TCM to incorporate topology information, resulting in Htopology

online . Subsequently,
Htopology

online is embedded through a predictor qθ to predict Htarget, and the parameters in fθ(·) is updated through
back-propagation while stopping the gradient of fϕ(·). Both channels are trained simultaneously. At the
end of each epoch, we employ an Exponential Moving Average (EMA) to update parameters ϕ. Finally, the
representations generated by fθ(·) are employed across various downstream tasks.

center c to effectively perform representation scattering. For the subspace Sk, a transformation
function Trans(·) is introduced to transform representations from the original space Rd into Sk.
Specifically, we apply ℓ2 normalization to each row vector hi in the matrix Htarget:

h̃i = TransRd→Sk(hi) =
hi

Max(∥hi∥2, ε)
, Sk = {h̃i : ∥h̃i∥2 = 1}, (3)

where hi is representation for node vi ∈ V , generated by the target encoder, ∥h̃i∥2 = (
∑k

j=1 h̃
2
ij)

1
2 ,

and ϵ is a small value to avoid division by zero. As defined by Eq. 3, the representations of all nodes
are distributed on a hypersphere Sk. This mapping prevents arbitrary scattering of representations in
the space, avoiding instability and optimization difficulties during training.

Next, we define the scattered center c and introduce a representation scattering loss function Lscattering

in Sk to push node representations away from the center c, as formulated as follows:

Lscattering = − 1

n

∑n

i=1
∥h̃i − c∥22, c =

1

n

∑n

i=1
h̃i. (4)

Through Eq. 4, SGRL achieves uniformity of representations globally across the entire dataset, with-
out emphasizing local uniformity. Specifically, RSM enables representations of different semantics
to be globally scattered across the hypersphere while accommodating representations of the same
semantics to aggregate locally.

Discussion of RSM. We now provide a theoretical analysis demonstrating that the proposed repre-
sentation scattering mechanism outperforms the three graph contrastive learning frameworks. RSM
achieves representation scattering more effectively by encouraging distances between node represen-
tations and the scattered center, eliminating the dependence on manually designed negative samples.
Most traditional methods [7, 8, 9, 15] rely on negative samples to indirectly promote representation
scattering, which is inefficient and introduces biases. DGI-like methods, as discussed in Section 3.1,
aim to maximize the Jensen-Shannon (JS) divergence between the distribution of the original graph
and its mean distribution. Based on this, generating additional noise graph is inefficient. Moreover,
some negative samples generated through random shuffling may align with the distribution of positive
samples, resulting in false negative samples that hinder model training. InfoNCE-based methods
consider all nodes as negative samples, except the matching ones in two augmented views. While
pushing nodes away from each other ensures the discriminability of each node, it also results in
significant computational overhead. Moreover, due to the potential conflict between the encoder’s
message-passing mechanism and the InfoNCE loss function, many negative samples can not effec-
tively distance themselves from each other [24]. Therefore, by employing a center-away strategy,
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RSM effectively reduces the additional computational overhead and mitigates the biases caused by
manually designed negative samples.

4.2 Topology-based Constraint Mechanism(TCM)

After obtaining the scattered representations Htarget = fϕ(A,X) through the target encoder, it is
necessary to consider the differences in the degree of scattering of different node representations.

Consider the interconnected nature of graphs, the representations of two nodes connected topologically
should be closer in space Sk. Specifically, ∀vi, vj ∈ V , hi,hj ∈ Sk, given a threshold d: ∥hi −
hj∥22 < d, if (i, j) ∈ V and ∥hi − hj∥22 > d, if (i, j) /∈ V . Intuitively, to this end, a simple way is
to replace the individually scattered representations with the aggregated representations Htopology

target

from first-order neighbors: Htopology
target = AHtarget. However, attempting to consider the topology

information and achieve representation scattering through the same encoder may lead to conflicts.

To address this issue, we propose a Topology-based Constraint Mechanism (TCM). Specifically,
we separate the process of constraint from the process of scattering by letting the online encoder
generate topologically aggregated representations instead of the target. The online encoder enhances
its representations by summing the original representations Honline with the topologically aggregated
representations of its k-order neighbors ÂkHonline, which can be described as:

Htopology
online = ÂkHonline +Honline, (5)

where k represents the order of neighbors and Â = A + I is the adjacency matrix with self-
loops. By separating scattering and constraints, SGRL can effectively achieve a balance between
representation scattering and topology aggregation adaptively, rather than setting the scattering
distance empirically. Next, the topology representations Htopology

online are fed into a predictor qθ(·) to
generate the predicted representations Zonline = qθ(H

topology
online ). Our objective is to align the predicted

topology representations Zonline closely to the scattered representations Htarget, enhancing the model’s
effectiveness in capturing the essential semantic details of the graph. Based on this, the alignment
loss Lalignment is defined as follows:

Lalignment = −
1

N

N∑
i=1

Z⊤
(online,i)H(target,i)

∥Z(online,i)∥∥H(target,i)∥
, (6)

where Zonline and Htarget represent the predicted and scattered representations, respectively. During
this process, the online encoder’s parameters θ are updated and the target encoder’s parameters ϕ
stop gradient propagation. Compared to directly aligning constrained and scattered representations,
this predictive objective can act as a buffer, allowing the online encoder to adaptively learn scattered
representations and topology information. Furthermore, to make the target encoder consider topologi-
cal semantic information into the process of representation scattering, instead of solely focusing on
scattering, we employ an Exponential Moving Average at the end of each training epoch:

ϕ← τϕ+ (1− τ)θ, (7)

where τ is a target decay rate and τ ∈ [0, 1]. Eq. 7 effectively mitigates the adversarial interactions
between RSM and TCM, while also facilitating the integration of topology information into the
representation scattering process. Moreover, RSM enhances the discriminability of representations,
while TCM incorporates topology information into the representations. The interaction between these
two mechanisms effectively mimics the role of data augmentation, i.e., train encoders to learn the
invariance of data to perturbations. Consequently, SGRL obviates the need for explicitly designing
data augmentation strategies, which leads to additional computational overhead and heavy reliance
on the choice of augmentation techniques.

5 Experiment

We evaluated SGRL on the five of the most widely used benchmark datasets, including Amazon-
Photo (Photo) and Amazon-Computers (Computers) [25], WikiCS [26], Coauthor-CS (Co.CS) and
Coauthor-Physics (Co.Physics) [27]. Detailed information of these datasets is in Appendix B.2.
We compared SGRL with four types of methods: (1) Three mainstream baselines: GRACE [8],
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DGI [7], and BGRL [10]. (2)Six recently advanced algorithms: GCA [9], ProGCL [12], AFGRL
[13], iGCL [28], GBT[29], MVGRL [15]. (3)Two classic graph representation learning methods:
Node2vec [30] and Deepwalk [31]. (4)The semi-supervised training baseline GCN [18]. We utilized
the representations generated by the online encoder for downstream tasks. For node classification,
we followed the evaluate scheme from [10]. We trained a simple linear model using only the
representations from a logistic regression loss with an ℓ2 regularization and no backpropagation
of any gradient to the graph encoder network. Specifically, we trained the downstream classifier
using 10% of the data and tested the classifier on the remaining 90%. We ran SGRL 20 times and
report here the average and standard deviation of the F1-score. For node clustering, we adopted
the evaluation method from [13]. The testing was conducted on the learned representations at each
epoch, and the best performance is reported below. More details of the experiments can be found in
Appendix B.

Table 1: Performance on node classification. OOM signifies out-of-memory on 24GB RTX 3090. X,A, Y
denote the node attributes, adjacency matrix, and labels in the datasets. Optimal results are shown in bold.

Method Available Data WikiCS Computers Photo Co.CS Co.Physics
Raw Features X 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
Node2vec A 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04
DeepWalk A 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15

GRACE X,A 77.97 ± 0.63 86.50 ± 0.33 92.46 ± 0.18 92.17 ± 0.04 OOM
DGI X,A 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
BGRL X,A 76.86 ± 0.74 89.69 ± 0.37 93.07 ± 0.38 92.59 ± 0.14 95.48 ± 0.08

GBT X,A 76.65 ± 0.62 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17
MVGRL X,A 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GCA X,A 77.94 ± 0.67 87.32 ± 0.50 92.39 ± 0.33 92.84 ± 0.15 OOM
ProGCL X,A 78.45 ± 0.04 89.55 ± 0.16 93.64 ± 0.13 93.67 ± 0.12 OOM
AFGRL X,A 77.62 ± 0.49 89.88 ± 0.33 93.22 ± 0.28 93.27 ± 0.17 95.69 ± 0.10
iGCL X,A 78.83 ± 0.08 89.41 ± 0.06 93.02 ± 0.06 93.52 ± 0.04 94.77 ± 0.20
SGRL(Ours) X,A 79.40 ± 0.10 90.23 ± 0.03 93.95 ± 0.03 94.15 ± 0.04 96.23 ± 0.01
Supervised GCN X,A, Y 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

5.1 Performance Analysis

Table 2: Performance on Clustering in terms of NMI
and homogeneity. Optimal results are shown in bold and
suboptimal results are underlined.

GRACE DGI BGRL SGRL

WikiCS NMI 0.4282 0.4312 0.3969 0.4188
Hom. 0.4423 0.4498 0.4156 0.4369

Amazon-Computers NMI 0.4793 0.4630 0.5364 0.5380
Hom. 0.5222 0.4836 0.5869 0.5705

Amazon-Photo NMI 0.6513 0.5487 0.6841 0.6788
Hom. 0.6657 0.5557 0.7004 0.6786

Co-CS NMI 0.7562 0.7162 0.7732 0.7961
Hom. 0.7909 0.7428 0.8041 0.8216

Co-Physics NMI OOM 0.6540 0.5568 0.7232
Hom. OOM 0.6868 0.6018 0.7366

Overall evaluation. Table 1 presents the aver-
ages and standard deviations of the F1-scores
for all methods on the node classification task.
Some statistics for the existing methods are
reported from either their original papers or
[13]. As shown in the table, the proposed
SGRL exhibits superior performance across all
five datasets tested, achieving the highest accu-
racy. Compared to the three baselines, BGRL,
GRACE, and DGI, our new method outperforms
them by 1.23%, 2.14%, and 3.26%, respec-
tively, showing SGRL’s effectiveness in more
effectively exploiting representation scattering.
Moreover, we observe that SGRL outperforms
methods like GCA, AFGRL and iGCL, which
focus on improving upon data augmentation.
This demonstrates the validity of employing a graph contrastive framework based on representation
scattering and topology aggregation, instead of using data augmentation. SGRL also outperforms the
advanced negative sampling method, ProGCL. We attribute this to SGRL’s representation scattering,
which does not explicitly define negative samples, achieving better performance than manually
defined negative samples. When evaluated on node clustering tasks using the scheme in [13], it can
be observed that SGRL achieves the best or second-best accuracy on most datasets. Although SGRL
attempts to make node representations scattered, which seems unsuitable for clustering tasks, it still
manages to deliver competitive performance. This demonstrates that TCM can preserve the topology
information of the original graph in the process of representation scattering, ensuring that while
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(a) GRACE (b) DGI (c) BGRL (d) SGRL

Figure 4: t-SNE embeddings of nodes in CS dataset.

performing representation scattering, it maintains the local structure and global semantic consistency
of the nodes.

Visualization. To more intuitively show the advantages of the representations learned by SGRL, we
employ t-SNE [32] for visualizing the learned representations from the Co-CS dataset. Each point
represents a node, with the color indicating the node’s label. As shown in Figure 4, SGRL shows
clearer inter-class boundaries compared to the other three methods, indicating that RSM achieves
superior scattering. Moreover, we observe better intra-class clustering in SGRL. This highlights
that SGRL, which does not require manually defined negative samples, prevents the inappropriate
distancing of intra-class nodes. It achieves both global scattering and local semantic aggregation,
demonstrating the effectiveness of adaptive scattering methods based on topology constraints.

Table 3: Ablation study on node classification. Optimal results are shown in bold.

Variant WikiCS Amazon-Computers Amazon-Photo Co-CS Co-Physics

SGRL w/o RSM and TCM 76.86 ± 0.74 89.69 ± 0.37 93.07 ± 0.38 92.59 ± 0.14 95.48 ± 0.08
SGRL w/o TCM 78.55 ± 0.08 89.54 ± 0.10 93.58 ± 0.05 94.08 ± 0.03 96.19 ± 0.04
SGRL w/o EMA 79.36 ± 0.08 90.03 ± 0.07 93.92 ± 0.02 93.89 ± 0.07 96.16 ± 0.07

SGRL (Ours) 79.40 ± 0.13 90.23 ± 0.03 93.95 ± 0.03 94.15 ± 0.04 96.23 ± 0.01

5.2 Model Analysis

Figure 5: Hyperparameter Analysis on k

Hyperparamter Analysis. In this subsection, we
investigate the sensitivity of the hyperparameter k in
SGRL, as shown in Eq. 5. The parameter k repre-
sents the order of neighbors aggregated, which di-
rectly influences the strength of the topology con-
straints. In our experiments, we adjust k in the range
0, 1, 2, · · · , 7 to evaluate the impact of different con-
straint strengths on SGRL. The results are shown in
in Figure 5: when k = 0, i.e., "SGRL w/o TCM",
the lack of topology constraints leads to a decrease
in model performance. As k increases, the constraint
ability of TCM gradually strengthens, and the model
performance exhibits a unimodal shape with respect
to changes in k. This highlights that weak topology
cannot preserve adequate topological information for
adaptive representation scattering, whereas strong
topology may excessively restrict the scattering of representations, which aligns with the perspectives
proposed in Sections 3 and 4.

Ablation Studies. To verify the effectiveness of each component of SGRL, we conducted ablation
studies on five datasets. As shown in Table 3, "SGRL w/o TCM and TCM" demonstrates significant
performance improvements on four datasets with the addition of RSM alone, i.e., "SGRL w/o TCM",
confirming its effectiveness. We observe that there is a slight performance decrease on the Computers
dataset, which we attribute to over-scattering resulting from the absence of constraints during
representation scattering. Additionally, a comparison between SGRL and "SGRL w/o TCM" reveals
that SGRL achieves improved accuracy across all five datasets, particularly on the Computers dataset.
This indicates that the TCM effectively constrain scattering, achieving an adaptive representation

9



scattering, verifying our view in Section 4.2. Finally, we performed an ablation study on EMA. Given
the potential adversarial relationship between RSM and TCM, we employed EMA to balance this
effect. The experimental results in Table 3 highlight the necessity of incorporating EMA to mitigate
the adversarial interaction between RSM and TCM.

6 Conclusion

In this paper, we made two significant contributions to Graph Contrastive Learning (GCL), an
actively researched subject with numerous applications across diverse domains. First, through a
comprehensive analysis of the three popular GCL frameworks, we discovered a common latent
mechanism – representation scattering – that underlies these distinct contrastive methods. This
discovery highlights an essential feature of GCL and unifies these seemingly disparate frameworks
under the concept of representation scattering. Despite their popularity, the existing methods have
not fully leveraged this mechanism, leaving the potential of representation scattering largely untaped.
However, applying representation scattering directly to GCL poses technical challenges. Our second
contribution addressed this issue by introducing the Representation Scattering Mechanism (RSM) and
the Topology-based Constraint Mechanism (TCM), which we integrate into a novel GCL approach
named Scattering Graph Representation Learning (SGRL). In SGRL, we effectively balance the
adversarial relationship between RSM and TCM using an Exponential Moving Average (EMA)
strategy. Extensive experimental results on benchmark datasets validate the effectiveness of our
proposed method. Future work will further explore the broader implications of representation
scattering beyond GCL, discussed in Appendices F and G.
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A Discussion of Uniformity

In visual contrastive learning, uniformity is recognized as a critical factor contributing to the effec-
tiveness of contrastive methods. In [17], uniformity is defined as the condition where feature vectors
should be roughly uniformly distributed on the unit hypersphere, preserving as much information of
the data as possible. This concept is based on the InfoNCE loss. Due to the similarities in implemen-
tation mechanisms between the SimCLR framework and the Deep InfoMax (DIM) framework, DIM
can be considered a special case of SimCLR when the number of negative samples within a batch is
limited to one. Consequently, this concept can be seen as a key factor contributing to the success of
most visual contrastive learning methods.

However, this concept fails to adequately unify the frameworks within graph contrastive learning,
particularly for DGI framework. In DGI, all nodes of the original graph are treated as a single
distribution, whereas the distribution generated from a randomly shuffling noise graph is treated
as another. The encoder is trained by maximizing the Jensen-Shannon (JS) divergence between
these two distributions. First, the representations in DGI do not conform to a distribution on the
unit hypersphere. Moreover, considering all nodes of the original graph as one distribution more
closely aligns with a process of aggregation rather than facilitating a uniform distribution of nodes
throughout the space.

Furthermore, while the negative sampling mechanism of InfoNCE-based methods implements
uniformity, the interconnected nature of graphs can lead to conflicts during message passing within
the encoder, which hinders the effective distancing of negative samples [24]. Therefore, we conducted
a comprehensive theoretical analysis of three mainstream graph contrastive frameworks (Section
3) and introduced the concept of representation scattering. Specifically, the center-away constraint
within representation scattering provides a more detailed elucidation of the operational mechanisms
underlying the DGI framework than uniformity. Moreover, this constraint effectively mitigates the
previously discussed conflicts, thereby facilitating the integration of representations and topological
information and enabling adaptive representation scattering.

B Experiment Details

B.1 Hyperparameters Settings

Table 4: Detailed hyperparameters of SGRL.

Dataset Hidden dim online learning rate target learning rate Training epochs Activation momentum
WikiCS 1024 0.00001 0.00001 500 PReLU 0.99
Amazon-Computers 1024 0.001 0.001 700 PReLU 0.99
Amazon-Photo 1024 0.001 0.001 700 PReLU 0.99
Coauthor-CS 1024 0.001 0.001 700 PReLU 0.99
Coauthor-Physics 1024 0.0001 0.00001 1000 PReLU 0.99

B.2 Datasets

We use Wiki-CS, Amazon-Computers (Computers), Amazon-Photo (Photo), Coauthor-CS and
Coauthor-Physics to evaluate the performance of SGRL. The detailed statistics of all the used datasets
are in Table 5

Table 5: Statistics of datasets used in this paper.
Dataset Type Nodes Edges Attributes Classes
Wiki-CS reference 11,701 216,123 300 10
Amazon-Computers co-purchase 13,381 245,778 767 10
Amazon-Photo co-purchase 7,487 119,043 745 8
Coauthor-CS co-author 18,333 81,894 6,805 15
Coauthor-Physics co-author 34,493 247,962 8,415 5

Wiki-CS [26] is a directed graph dataset sourced from Wikipedia. It comprises nodes that represent
articles in the field of computer science, with edges corresponding to the hyperlinks interconnecting
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these articles. Each article is categorized into one of 10 associated subfields. The attributes of the
nodes are derived as the average of the text embeddings for the respective articles, making it the sole
dataset characterized by dense attributes.

Amazon-Computers and Amazon-Photo [25] are networks that map out the co-purchase rela-
tionships among products on the Amazon platform. In these networks, nodes represent products,
and edges are established between products that are frequently bought together. Products within
each network are categorized into 10 and 8 distinct classes respectively, according to their product
categories, and node features are represented using a bag-of-words model from the product reviews.

Coauthor-CS and Coauthor-Physics [27] represent two academic networks based on the Microsoft
Academic Graph, illustrating the co-authorship links among academics. In these networks, nodes
correspond to individual authors, while edges reflect collaborative authorship between them. Authors
in each network are categorized into 15 and 5 research fields respectively, with node features
encapsulated as a bag-of-words representation derived from the keywords of their publications.

B.3 Environment Configurations

All experiments were carried out on an NVIDIA GeForce GTX 3090 GPU, which comes equipped
with 24GB of memory. For model development, we utilized PyTorch version 1.13.1 [33], along with
PyTorch Geometric version 2.3.0 [34], which also served as the source for all the datasets used in our
study. The detailed hyperparameters for node classification and clustering are shown in Table 4

B.4 Implementation Details

Our method employs GCN[18] as the encoder. The encoding process can be described as follows:

H
(l)
k = GCN(l)(H

(l)
k−1,A), (8)

where H(l)
k represents the node embedding matrix at the l-th layer during the k-th epoch of encoding

and H
(l)
0 is initialized by graph feature matrix X,and A is the adjacency matrix without self-loops.

In addition, the encoder structure is defined as:

GCN(l)(H
(l)
k ,A) = σ(D̂−1/2ÂD̂−1/2H

(l)
k−1W

(l)
k−1), (9)

where Â = A+I is the adjacency matrix with self-loops, σ(·) is the PReLU activation function, D̂ is
the degree matrix of Â, and W(l) is the trainable weight matrix for the l-th layer. In our experiments,
we set l = 1.

C Detailed Discussion on Assumption 1

Assumption 1.(a) In assumption 1.(a), we define the normalized propagation matrix as Ã = D−1A.
When the encoder is GCN [18], assumption 1.(a) holds. Next, we will discuss whether assumption
1.(a) holds in Corollary 3 when the encoder is GAT [19]. The message-passing formula for GAT is
similar to that of GCN. For node vi, hi = GAT(A,X) =

∑
neighbor j αijxij ·W, but the method for

obtaining the propagation matrix is different:

αij =
exp(LeakyReLU(aT [Wxi∥Wxj ]))∑

k∈N (i) exp(LeakyReLU(aT [Wxi∥Wxk]))
, (10)

where a is the weight vector used to compute the attention scores, ∥ · ∥ denotes the concatenation
operation, W is the weight matrix, and LeakyReLU is the activation function. In the original
graph, node vi and its first-order neighbors follow a distribution with mean µi and variance σ2

i , i.e.,
∀j ∈ Ni, xj ∼ pi(µi, σ

2
i ). Subsequent to GAT aggregation, the representation of node vi, i.e., hi

follows a local semantic distribution with a mean given by E (
∑

αijxij) =
∑

αijµi and a variance
of σ2

i

∑
α2
ij . This is consistent with the conclusion in Section 3.1. In the perturbed graph, the method

for calculating the aggregated distribution differs from that of GCN. For GCN, the propagation matrix
αij = 1/di is independent of the distribution of node vi and its neighbors. In contrast, for GAT,
as shown in Eq. 10, αij reflects the correlation between node vi and its neighbor vj . Therefore, in
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the perturbed graph, there are two distributions present among node vi and its first-order neighbors:
the local semantic distribution pi and the original data distribution pdata. Let a =

∑
αik, where

xk ∼ pi(µi, σ
2
i ). Let b =

∑
αik′ , where xk′ ∼ pdata(µ, σ

2). After aggregation through GAT, the
mean of the distribution that node vi follows is a · µi + b · µ. In this case, minimizing the DGI loss is
equivalent to maximizing the local semantic distribution of node vi with a mean of a · µi + b · µ and
a variance of σ2

i

∑
α2
ik + σ2

∑
α2
ik′ .

In our problem, we aim to find a subspace Sk and a scattered center c to achieve representation
scattering, and this goal can be accomplished with either GCN or GAT. To this end, Corollary 3 also
holds when the encoder is GAT.

Assumption 1.(b) For assumption 1.(b), there are two ways to generate a corrupted graph in DGI
[7]: one is by randomly shuffling the feature matrix X, and the other is by keeping X unchanged
and shuffling the adjacency matrix A. Here, we discuss whether Theorem 1 still holds when the
assumption is the latter.

We have already demonstrated in Section 3.1 that, in the original graph G, the aggregated features
of node vi follow a distribution with mean µi and variance σ2

i

∑
j∈N (i) α

2
ij . In the corrupted graph

G̃, randomly shuffling the adjacency matrix A is equivalent to randomly re-wiring n nodes, where∑n
i=1

∑n
j=1 Aij =

∑n
i=1

∑n
j=1 Âij . The first-order neighbors of node vi still derive their features

from the original graph distribution, i.e., x̂ij ∼ pdata(µ, σ
2), and in the corrupted graph, the new

topology still satisfies
∑

(αij) = 1. Therefore, the aggregated representation follows a distribution
with mean µ and variance σ2

∑
j∈N (i) α

2
ij , which is consistent with the conclusion derived from

assumption (b).

Assumption 1.(c) In our theoretical analysis, we assume class balance, which is common in many
theoretical proofs [7]. When the classes are imbalanced, the conclusion is similar to what we
explained in assumption 1. (a): the scattered center changes from the mean to a · µi + b · µ, i.e., it
leans towards the classes with a larger number of instances. This often occurs in long-tail distribution
problems. We will further explore this aspect in our future work.

D Proof

D.1 Proof of Lemma 2

Proof. Here, we rewrite the proof from work [6] for ease of understanding Lemma 2. We replace the
summary vector s with an all-ones vector. By removing the weight parameters W in the discriminator
D , we obtain:

LDGI =
1

2N

(
N∑
i=1

logD(hi, s) + log(1−D(h̃i, s))

)

=
1

2N

(
N∑
i=1

log(hi · s) + log(1− h̃i · s)

)

=
1

2N

(
N∑
i=1

log(sum(hi)) + log(1− sum(h̃i))

)
,

(11)

where sum(·) is the summation function for every dimension in vector hi. As described by Eq.
11, minimizing DGI loss can be viewed as a binary classification problem distinguishing between
sum(hi) from the original graph and sum(h̃i) from the perturbed graph. Therefore, minimizing DGI
loss is equivalent to maximizing the JS divergence between the original and perturbed graphs.

D.2 Proof of Theorem 5

Proof. Consider the output of a single-layer Graph Neural Network (GNN) as H ∈ RN×K , where
N represents the batch size and K denotes the dimension of representations. Each column Hj of H
represents all samples for a particular feature, with mean µj and standard deviation σj .
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Batch Normalization (BN) processes each feature dimension j independently by calculating the mean
µj and variance σ2

j , and then applying the following transformation:

H′
j = BN(Hj) =

Hj − µj√
σ2
j + ϵ

, µj =
1

n

n∑
i=1

Hij , (12)

where ϵ is a small value to prevent division by zero. The initial representations H are distributed on
an arbitrary space characterized by a mean center µ = {µ1, . . . , µK}. After batch normalization,
the space of the transformed representations H′ is standardized to a space with zero mean and unit
variance. This transformation effectively constitutes a center-away displacement, i.e., each feature
vector is shifted away from the center of the original distribution. Moreover, Batch Normalization
ensures that each feature dimension exhibits a variance of unity, thereby facilitating a more uniform
distribution across the transformed representations. Although the primary objective of batch normal-
ization is not representation scattering, it can be inferred from the aforementioned analysis that BN’s
adjustment of data distribution indirectly facilitates a more uniform scattering of representations
across space.

D.3 Proof of Theorem 4

Proof. It is well-known that the InfoNCE loss (with ℓ2 norm) is enforcing the embeddings to be
uniformly distributed in a hypersphere. It is exactly representation scattering. We begin with analysing
the formula of the InfoNCE [14] loss:

LInfoNCE(hi) = −log(
eθ(hi,h

′
i)

eθ(hi,h′
i) +

∑n
k=1,k ̸=i(e

θ(hi,hk) + eθ(hi,h′
k))

), (13)

where hi denotes the representation of node vi, obtained from one augmented view of the original
graph, and h′

i represents the representation of the corresponding node v′i from the other augmented
view. Here, θ(hi,h

′
i) = Sim(hi,h

′
i)/τ , where Sim(·) denotes the cosine similarity between node

representations. Specifically, Sim(hi,h
′
i) is computed as the normalized dot product: Sim(hi,h

′
i) =

(h⊤
i h

′
i)/(∥hi∥∥h′

i∥). Eq. 13 states that minimizing the loss function requires the maximization of
similarity among positive samples and the simultaneous minimization of similarity among negative
samples.

To simplify the proof, we define θ(hi,h
′
i) as the cosine similarity between node pairs, omitting the

hyper-parameter τ . Furthermore, we replace the logarithm with the natural logarithm ln in Equation
(13), yielding the expression below:

LInfoNCE(hi) = −θ(hi,h
′
i) + ln

∑n
j=1

(
eθ(hi,hj) + eθ(hi,h

′
j)
)
. (14)

To facilitate a clearer analysis of Equation (14) and given the convex nature of the exponential
function, we simplify the expression using Jensen’s Inequality:

1

2n

∑2n
j=1eθj ≥ e

1
2n

∑2n
j=1 θj , (15)

where θj represents the cosine similarity between the anchor node vi and other nodes that form
negative pairs. According to Eq. (15), the sum of exponentials can be transformed into the exponential
of a sum, which can then cancel out with the logarithm, thereby simplifying the equation:

LInfoNCE(hi) ≥
1

2n

2n−1∑
j=1

θj + ln(2n). (16)

In Eq. (16), it is demonstrated that the InfoNCE loss associated with the anchor node vi serves as an
upper bound to the sum of cosine similarities between vi and all negative samples. To elucidate the
relationship between representation scattering and InfoNCE loss more clearly, the following lemma
is presented:

Lemma 6. Let vi be the anchor node, and let {v1, v2, v3, · · · , vn} be the set of nodes, excluding vi.
The average of the sum of cosine similarities between vi and all other nodes in the set is equivalent
to the cosine similarity between the ℓ2-normalized vector of vi and the ℓ2-normalized mean vector
obtained from all other nodes.
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The proof is provided in Appendix D.4. Lemma 6 demonstrates that the minimization of Eq. (13) for
the anchor node vi entails a concurrent reduction in the cosine similarity between the ℓ2-normalized
vector of vi and the ℓ2-normalized centroid of all other nodes. This process can be viewed as
transforming the set of nodes onto a hypersphere with a radius of 1 and distancing the anchor node
from the centroid of other nodes. We consider this hypersphere as subspace Sk, and the centroid as
the scattered center c, which aligns with our definition of representation scattering. Thus, minimizing
the InfoNCE loss effectively promotes representation scattering.

D.4 Proof of Lemma 6

Proof. Given two vectors vi and vj, their cosine similarity is defined as vivj

∥vi∥∥vj∥ , which is the cosine
of the angle between them

2n−1∑
j=1,j ̸=i

θij =

2n−1∑
j=1,j ̸=i

vivj

∥vi∥∥vj∥
. (17)

For ℓ2-normalized vectors v̂i =
vi

∥vi∥ , this is equivalent to their dot product: v̂i · v̂j:

2n−1∑
j=1,j ̸=i

vivj

∥vi∥∥vj∥
=

2n−1∑
j=1,j ̸=i

v̂i · v̂j. (18)

Since the dot product of vectors possesses the distributive property of multiplication:

2n−1∑
j=1,j ̸=i

v̂i · v̂j = v̂i ·
2n−1∑

j=1,j ̸=i

v̂j. (19)

Finally, we compute the mean of Eq. 19 :

1

2n

2n−1∑
j=1,j ̸=i

θij = v̂i ·
1

2n

2n−1∑
j=1,j ̸=i

v̂j = v̂i · Evj∈V,j ̸=i(v̂j). (20)

As a consequence, the mean of the sum of cosine similarity between the anchor node vi and all other
nodes can be regarded as the expected similarity of the ℓ2-normalized vi with all other ℓ2 normalized
points.

E Related Work

Graph Representation Learning (GRL) has attracted substantial attention in recent years due to the
broader application of graph data across various real-world scenarios [35]. The primary goal of GRL
is to embed graph data, which is inherently high-dimensional, sparse, and non-Euclidean, into a lower-
dimensional, dense, Euclidean space to facilitate easier processing in downstream tasks. Early GRL
works rely on Matrix Factorization [36] and Random Walk [37], failing to simultaneously utilize the
structural and attribute information of graphs [38]. In recent years, Graph Neural Networks (GNNs)
have achieved great success, such as GCN [18], GAT [19], GraphSAGE [39], which effectively extract
graph attribute and structural information simultaneously through message passing and aggregation
mechanisms. However, the training of GNNs requires a large amount of manually annotated labels,
which is expensive and labor-intensive [6]. To overcome this limitation, Graph Contrastive Learnings
(GCLs) have emerged as a promising and increasingly popular learning paradigm for handling
unlabeled graph data.

Currently, there are three mainstream graph contrastive frameworks, each inspired by methods from
visual contrastive learning. DGI [7], inspired by Deep InfoMax (DIM) [40], generates a noise
distribution through random shuffling and learns node representations by maximizing the Jensen-
Shannon (JS) divergence between the semantic distribution of the original graph and the noise
distribution. GRACE [8], a representative method based on InfoNCE loss and inspired by SimCLR
[41], generates two correlated graph views through augmentation techniques. This framework
employs the InfoNCE loss to enhance the similarity of identical nodes across the two views while
minimizing the similarity among different nodes. BGRL [10], inspired by BYOL [42], utilizes two
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distinct encoders: an online encoder and a target encoder. The online encoder is trained to predict the
output of the target encoder, while the target encoder is updated by Exponential Moving Average
(EMA).

Although the three mainstream graph contrastive learning frameworks: GRACE, DGI, and BGRL,
have achieved notable success in addressing the challenges of unlabeled graph data, the underlying
mechanisms driving their success have not been fully explored. Current research predominantly
focuses on the implementation and optimization of these frameworks [6, 9, 12, 13], with insufficient
understanding of their theoretical foundations and intrinsic principles. In visual contrastive learning,
studies have revealed that "uniformity", which refers to the uniform distribution of representations
in hypersphere, is a key factor contributing to improved generalization and discriminative power of
models [17]. However, due to the non-Euclidean structure of graphs and the complex dependencies
among nodes, this theory cannot be directly applied to graph contrastive learning. The unique char-
acteristics of graphs necessitate a reevaluation and adaptation of the uniformity concept to develop
a corresponding theoretical framework suitable for graphs. In this paper, we reanalyze the three
mainstream graph contrastive learning frameworks and propose a new mechanism: representation
scattering, which is prevalent and important in these frameworks. Furthermore, considering the inter-
connected nature of graphs, we design a constraint mechanism to achieve an adaptive representation
scattering.

F A Detailed Discussion on the Limitations

• Application of Heterogeneous Datasets. In this work, we focused exclusively on ho-
mogeneous datasets and achieved satisfactory results. Our experiments demonstrated the
effectiveness of the proposed topology-based constraint under the assumption of homogene-
ity. However, this constraint may face challenges when applied to heterogeneous datasets.
Heterogeneous datasets often exhibit varying structures and characteristics, which could
undermine the performance of our method. Consequently, addressing these challenges and
adapting our approach to handle heterogeneous datasets effectively is a crucial direction for
future research. We plan to investigate and refine our method to ensure its robustness and
applicability across diverse and complex datasets.

• The Methods of Balancing RSM and TCM. RSM aims for the representations of nodes to
be scattered from each other, while TCM prevents excessive scattering among nodes with
the same semantics. These two mechanisms inherently have an adversarial relationship.
We use EMA to balance this adversarial relationship, which is just one of many possible
methods.

G Broader Impacts of SGRL

As a preliminary exploration in the field of GCL, SGRL has the following impacts:

• Uncovering potential success factors in GCL: SGRL explores three different mainstream
graph contrastive methods and identifies their common underlying factors, providing a new
perspective for future GCL research.

• Applications in many fields: Compared to existing methods, SGRL offers higher accuracy
and can more efficiently process graph data. It can be widely applied in various fields such
as social networks, biological networks, and recommendation systems.

• Negative social impacts: There are no negative social impacts foreseen.

19



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction in this paper accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix F
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In this paper, all proofs of theorems are provided and all assumptions are
clearly stated or referenced in the statement of any theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the results in this paper can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, the paper provide sufficient information on the computer
resources needed to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited
and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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