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ABSTRACT

Diffusion reconstruction plays a critical role in various applications such as im-
age editing, restoration, and style transfer. In theory, the reconstruction should
be simple, as it just inverts and regenerates images by numerically solving the
Probability-Flow Ordinary Differential Equation (PF-ODE). Yet in practice, no-
ticeable reconstruction errors have been observed, which cannot be well explained
by numerical discretization error alone. In this work, we identify an intrinsic prop-
erty of the PF-ODE generation process, the instability, that can further amplify
the reconstruction errors. The root of this instability lies in the sparsity inherent
in the generation distribution: the probability mass is concentrated on scattered
small regions, while most of the space remains nearly empty. To demonstrate the
existence of instability and its amplification on reconstruction error, we conduct
experiments on both toy numerical examples and popular open-source diffusion
models. Furthermore, based on the characteristics of image data, we theoretically
prove that the probability of instability converges to one as the data dimension-
ality increases. Our findings clarify that instability, besides numerical errors, is
a fundamental cause of inaccurate diffusion reconstruction, and offer insights for
future improvements.

1 INTRODUCTION

Diffusion models have rapidly emerged as a pivotal class of generative models, demonstrating supe-
rior performance, particularly in image generation (Ho et al., 2020; Rombach et al., 2022; Saharia
et al., 2022; Ramesh et al., 2022; Balaji et al., 2023; Pernias et al., 2023; Peebles & Xie, 2023;
Podell et al., 2023; Kawar et al., 2023; Li et al., 2023; Esser et al., 2024; Liu et al., 2024). A fun-
damental technique within diffusion models is diffusion reconstruction, which comprises diffusion
inversion (Song et al., 2020; Ramesh et al., 2022; Chung et al., 2022b) and diffusion generation–
both executed through numerical solving the Probability Flow Ordinary Differential Equations (PF-
ODEs) (Song et al., 2021; Lu et al., 2022a). Diffusion inversion1 first converts an image into an
inverted noise, which is then used by diffusion generation process to reconstruct the original image.
Diffusion reconstruction is crucial due to its extensive applications in downstream tasks, including
image editing (Gal et al., 2022; Hertz et al., 2022), restoration (Xiao et al., 2024), and style trans-
fer (Su et al., 2022). In editing scenarios, the goal is not only to inject new information but also to
preserve existing features. This makes exact reconstruction a fundamental prerequisite for reliable
downstream use.

Diffusion reconstruction appears straightforward: one simply integrates the PF-ODE forward to
obtain the inverted noise and then integrates backward to regenerate the original image. Yet in prac-
tice, significant reconstruction errors can occasionally happen, as shown in Figure 1. While previous
works largely attribute these inaccuracies to numerical discretization of ODE solvers (Wallace et al.,
2023; Wang et al., 2024; Lin et al., 2024; Zhang et al., 2024), such explanations are insufficient to
account for the substantial discrepancies that are sometimes visually perceptible. This gap calls for
a different explanation.

In this work, we point out the existence of instability in the diffusion generation process, and demon-
strate its amplification effect on the reconstruction errors. Specifically, instability characterizes sce-

1We follow the convention that uses inversion indicating solving PF-ODE along the forward time (Mokady
et al., 2023; Wallace et al., 2023; Zhang et al., 2024).
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②
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Original and reconstructed images
Figure 1: Instability amplifies diffusion reconstruction errors. Given an initial point in the data
distribution, the reconstruction process first undergoes diffusion inversion to produce the actual
inverted noise. Numerical errors introduced by the inversion will cause the actual inverted noise to
deviate from the theoretically ideal inverted noise. When the generation process exhibits instability,
these numerical errors are amplified, resulting in significantly larger reconstruction errors. This
amplification makes accurate reconstruction challenging.
narios where the diffusion generation process is sensitive to the initial noise. Thus, any numerical
error in the inverted noise will be amplified during the regeneration phase. Figure 1 illustrates the
process by which reconstruction errors arise.

To further demonstrate the presence of instability from a theoretical perspective, we establish a
lower bound on the probability of instability. Note that we analyze the ideal diffusion recon-
struction process, free from numerical errors, to isolate properties of PF-ODE reconstruction that
do not depend on the choice of numerical solver. Here, inherent is meant in this solver-agnostic
sense—independence from discretization errors. Based on reasonable assumptions about the real
image distribution and the generation distribution of diffusion models, we demonstrate that when
the data dimensionality increases as infinity, the probability of instability in reconstruction tends to
one! Considering the high dimensionality of image data, such surprising asymptotic result provides
theoretical justification for the instability observed in image reconstruction within diffusion models.

Mechanisms of instability. For better understanding on the mechanism behind the instability in
diffusion reconstruction, we provide an intuitive illustration in Figure 2. Our analysis reveals that
the sparsity of the generation distribution plays a pivotal role in the emergence of instability. Here,
the sparsity means that the generation distribution is concentrated in scattered, small regions, while
the majority of regions possess low probability density. Recall that the PF-ODE-based genera-
tion process actually builds a push-forward mapping from the Gaussian distribution to generation
distribution. According to the push-forward formula, the generation mapping must preserve prob-
ability. Thus, suppose a region A in the Gaussian distribution is mapped to a significantly lower
density region B in the generation distribution, the area of region B will be extended to maintain
the probability. This expansion necessitates large gradients in the generation process, indicating the
emergence of instability, since local area enlargement directly corresponds to large Jacobian norms
and thus heightened sensitivity to perturbations. Meanwhile, during image reconstruction, the initial
image is sampled from some underlying real distribution. This real distribution is generally different
from the generation distribution. Such distribution discrepancy can lead to a non-negligible proba-
bility that the initial image resides in the low density region of the generation distribution, and thus
make the instability high probable.

Main organization. In Section 2, we will introduce preliminaries about PF-ODE and the definition
of instability. Subsequently in Section 3, we will provide experimental evidence that instability ac-
tually exists in diffusion generation, and then demonstrate its amplification on reconstruction error.
Finally in Section 4, we further provide theoretical evidence on instability. Based on the charac-
teristics of image distributions, we reveal that the sparsity of generation distribution can induce the
instability, and theoretically prove that the instability will almost surely occur during reconstruction
for infinite dimensional images.

2 PRELIMINARIES

2.1 DIFFUSION MODELS AND PROBABILITY FLOW ODE

Diffusion models can generate samples under desired distribution πgen from noise under standard
Gaussian distribution N (0, I) (Ho et al., 2020; Song et al., 2021). The generation process can be

2
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Generation Distribution: Gaussian:
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Figure 2: Intuitive illustration of instability occurrence during the generation process. For typi-
cal image data, the generation distribution is inherently sparse, meaning that most of the probability
mass is concentrated in scattered, small regions, while the majority of the space has low probability.
In contrast, the prior Gaussian distribution concentrates its probability within a bounded region and
is relatively uniformly distributed. According to the push-forward formula, the generation mapping
must preserve probability measures, ensuring that the image of a probability region A under the
generation mapping B satisfies πgen(B) = πprior(A). When B falls into a low-density region of the
generation distribution, significantly lower than the density at A, maintaining probability equality
requires that the area (or more rigorously, the Lebesgue measure) of B be much larger than that of
A. This amplification effect results in large gradients during the generation process, indicating the
emergence of instability. The probability of the instability is analyzed in Section 4 in detail.

achieved by numerically solving the PF-ODE (Anderson, 1982; Song et al., 2021; Liu et al., 2023):

dxt/dt = v(xt, t), where v(x, t) = E[Z −X|Xt = x], (1)

t ∈ [0, 1], v : Rn × [0, 1] → Rn is a time-dependent vector field defined by the conditional
expectation in Equation (1). In the expectation, the noise Z ∼ N (0, I) and the data X ∼ πgen are
independently sampled, Xt = (1− t)X + tZ is a linear interpolation between them.

Note that here we adopt the flow matching formulation to represent the PF-ODE (Liu et al., 2023;
Lipman et al., 2023), and the subsequent sections will consistently utilize this formulation. Here, we
adopt the flow matching formulation for two reasons: 1) the flow matching formulation is actually
equivalent to conventional PF-ODEs when one distribution is set to Gaussian (Song et al., 2021;
Liu et al., 2023; Albergo et al., 2023), and 2) this formulation is widely adopted in recent top-tier
text-to-image models (Esser et al., 2024; Black Forest Labs, 2024).

Diffusion generation and inversion. Both diffusion generation and inversion solve the PF-ODE in
Equation (1), but in opposite directions. Diffusion generation mapping can produce data samples
from initial noise, while diffusion inversion mapping yields an inverted noise from an initial data.
We formally define these two mappings as follows:
Definition 2.1 (Diffusion generation and inversion mappings). The diffusion generation mapping
G : Rn → supp(πgen) is defined as G(z) = x0, where x0 is the solution at t = 0 of the ODE
Equation (1) with the initial value x1 = z at t = 1. Meanwhile, the diffusion inversion mapping
can be denoted by G−1, the inverse function of the generation mapping.

2.2 DEFINITION OF INSTABILITY

For later analysis, we first provide the definition of Intrinsic instability for general mapping F .
Definition 2.2 (Intrinsic instability). Suppose F : Rn → Rn is a continuously differentiable map-
ping. For an input vector x ∈ Rn, if there exists another non-zero vector u ∈ Rn such that

EF (x,u):=∥JF (x)u∥/∥u∥ > 1, (2)

where JF (x) ∈ Rn×n denotes the Jacobian matrix of F evaluated at x, then we say that F exhibits
the intrinsic instability at x in the direction u. The scalar EF (x,u) is referred to as the intrinsic
instability coefficient of F at x along the direction u.

When the intrinsic instability coefficient exceeding one, it indeed indicates that the mapping F am-
plifies any infinitesimal perturbation along the specific direction u. The magnitude of EF (x,u)
quantitatively measures the sensitivity of F to changes in the input direction u. The following
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(a) Generation distribution (b) Intrinsic instability coefficient
along y-axis

(c) Instability coefficients
along nx and ny

Figure 3: Experimental evidence on the existence of instability for a two-dimensional gener-
ation distribution. (a) visualizes the density function of the generation distribution, which is a
mixture of Gaussians generated from a standard gaussian. The green region, after applying gen-
eration mapping, becomes a significantly larger red region. (b) visualizes the intrinsic instability
coefficient along the y-axis. It is observed that the intrinsic instability coefficient along the y-axis in
the central region significantly exceeds one, consistent with the position of the green region in (a).
For each point on the dashed line in (b), we compute the instability coefficient AG(x,n) of diffu-
sion generation mapping G under perturbation nx along x-axis and perturbation ny along y-axis,
respectively. The results are shown in (c). The dashed lines show the lower bounds of AG(x,n)
given in Proposition E.1.

proposition will better illustrate this error amplification phenomenon for non-negligible perturba-
tions, which we refer to as instability effect, when intrinsic instability occurs:

Proposition 2.1 (Instability effect). Suppose F : Rn → Rn is a continuously differentiable map-
ping. For any x,u ∈ Rn, and ∆ > 0, there exists a non-zero perturbation n ∈ Rn such that

AF (x,n):=
∥F (x+ n)− F (x)∥

∥n∥
≥ EF (x,u)

1 + ∆
, (3)

where AF (x,n) is referred to as the instability coefficient. Furthermore, if EF (x,u) > 1, we have
a n that satisfies AF (x,n) > 1, then we say F exhibits the instability at x under perturbation n.

3 INSTABILITY AND ITS AMPLIFICATION ON RECONSTRUCTION ERROR

In this section, we first empirically demonstrate the existence of instability in the diffusion genera-
tion mapping G in Section 3.1. Subsequently, we present experimental evidence corroborating the
positive correlation between instability and the reconstruction error in Section 3.2.

3.1 EMPIRICAL EVIDENCE ON THE EXISTENCE OF INSTABILITY

In Section 2.2, we have defined the intrinsic instability and introduced the instability effect. Here,
we will demonstrate that the instability can exist in the generation process of diffusion models.

Demonstration by a numerical case. We present a numerical example illustrated in Figure 3. The
density function of the diffusion generation distribution is depicted in Figure 3(a). The detailed
settings are provided in Section E.1.

In Figure 3(a), the red region is obtained by applying diffusion generation mapping G to the green
region. It is evident that G significantly expands the green region along the y-axis, indicating that G
is highly sensitive to perturbations along the y-axis within the green region. Figure 3(b) displays the
intrinsic instability coefficient of G along the y-axis. It can be observed that the intrinsic instability
coefficient along the y-axis exceeds one in the central region, indicating that the instability effect
can appear in this area. Moreover, this region coincides with the green region in Figure 3(a), demon-
strating the relationship between the intrinsic instability and the amplification effect.

We further analyze the instability coefficient AG(x,n) along the dashed line in Figure 3(b), as
well as the lower bound provided by Proposition 2.1. The curves of AG(x,n) vs. x are shown in
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(a) Generation distribution. (b) Reconstruction error
of the numerical example.

(c) Reconstruction error
of Stable Diffusion 3.5.

Figure 4: Positive correlation between the reconstruction error and instability coefficient in
a numerical case and Stable Diffusion 3.5 Esser et al. (2024). In numerical experiments, the
diffusion model’s generation distribution is a two-dimensional mixture of Gaussians. (a) shows
the probability density function. (b) displays the relationship between reconstruction error R(x)
and instability coefficient. (c) further illustrates the relationship between reconstruction error and
instability coefficient in the Stable Diffusion 3.5 model. More results are provided in Section B.1

Figure 3(c). We observe that in the central region, the instability coefficients along x and y axis, i.e.,
AG(x,nx) and AG(x,ny), are greater than one, further indicating the presence of instability.

3.2 INSTABILITY AMPLIFIES RECONSTRUCTION ERROR

This subsection demonstrates that instability in diffusion generation can amplify reconstruction er-
rors. We begin by formally defining the reconstruction error, and provide a theoretical support on the
possibility of large reconstruction error. Then we demonstrate the amplification effect by correlation
analyses using both numerical cases and practical diffusion models.

Reconstruction error. Diffusion reconstruction involves two primary steps for a given data x ∈ Rn:

1. The diffusion inversion process defined by Definition 2.1 is numerically solved from the given
data x, which yields an inverted noise ẑ = Ĝ−1(x); and then

2. the diffusion generation process defined by Equation (1) is numerically solved from ẑ, resulting
in a reconstructed data x̂ = Ĝ(ẑ),

where Ĝ denotes the approximated diffusion generation mapping by numerically solving PF-ODE
in Equation (1), and Ĝ−1 denotes the approximated diffusion inversion mapping, similarly.

The reconstruction error is quantified as the discrepancy between the original data x and the recon-
structed data x̂. It can be defined as:

R(x) = 1√
n
∥x− x̂∥2 =

1√
n
∥x− Ĝ(ẑ)∥2 =

1√
n
∥x− Ĝ(Ĝ−1(x))∥2. (4)

To analyze the causes of reconstruction error, it is essential to recognize two primary factors:

1. Discrepancy in inverted noise: The inverted noise ẑ = Ĝ−1(x) obtained during the diffusion
inversion process deviates from the ideal noise z ∼ N (0, I). This discrepancy arises due to
numerical discretization errors inherent in solving the PF-ODE Equation (1) and its inverse. As
a result, the numerically inverted noise does not perfectly match the ideal one, introducing an
initial error into the regeneration pipeline.

2. Amplification by instability: The presence of instability in the diffusion generation mapping
Ĝ can further exacerbate the above discrepancy in the inverted noise, leading to a substantial
reconstruction errorR(x).

The following proposition further demonstrates that both of the aforementioned two factors con-
tribute to the reconstruction error, even if the diffusion generation mapping G is ideal with infinite
numerical precision. A detailed proof is provided in Section D.2.
Proposition 3.1 (Risk of large reconstruction error). For any data sample x ∈ Rn, consider the
diffusion reconstruction process consisting of a numerically approximated diffusion inversion under
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Euler method and a precise diffusion generation process G. Let ẑ denote the numerically inverted
noise, z denote the ideal inverted noise, and x̂ denote the reconstructed data. Suppose EG(z, ẑ −
z) > C for some C > 0. Then, the upper bound U of reconstruction errorR(x) satisfies:

U ≥ hM2
(C − 1)

2 logC︸ ︷︷ ︸
Numerical error
in inverted noise

· C︸︷︷︸
Instability

amplification

, (5)

where h represents the step size in the numerical solution, and M2 is the estimated upper bound
term for the local truncation error of the Euler method.

A numerical case. To verify the amplification effect of instability on reconstruction error, we con-
duct numerical experiments on a diffusion model with a simple generation distribution. Then, we
analyze the correlation between the reconstruction error and the instability coefficient. The density
function of the generation distribution is illustrated in Figure 4(a). Detailed settings are provided in
Section E.2.

The experimental results are presented in Figure 4(b). We observe a significant correlation between
the reconstruction errorR(x) and the instability coefficient. As the instability coefficient increases,
the reconstruction error exhibits a noticeable upward trend. This positive correlation corroborates
our hypothesis that the instability amplifies reconstruction errors.

Verification on text-to-image diffusion models. In practical text-to-image diffusion models, sig-
nificant reconstruction errors can occasionally occur. To verify that these reconstruction errors are
still related to the instability coefficient, we performed a correlation analysis between the recon-
struction errorR(x) and the expansion coefficient E on the Stable Diffusion 3.5 model (Esser et al.,
2024). Detailed experimental settings are provided in Section E.2.

The experimental results are illustrated in Figure 4(c). It demonstrate that the reconstruction error
R(x) is significantly positively correlated with the instability coefficient E in Stable Diffusion 3.5.
This finding validates our hypothesis that instability contributes to reconstruction inaccuracies in
real-world diffusion models. In Section F, we provide more visual examples of reconstruction failure
cases.

4 PROBABILISTIC GUARANTEE ON THE OCCURRENCE OF INSTABILITY

In this section, provide theoretical evidence on instability during the ideal diffusion reconstruc-
tion process. First, we establish a general probability lower bound without specific assumptions in
Section 4.1. For further in-depth analysis, we then discuss the characteristics of the distributions
involved in diffusion reconstruction and propose corresponding assumptions in Section 4.2. Finally,
based on the distribution assumptions, we provide a theoretical analysis indicating the non-zero
probability of instability in Section 4.3.

4.1 PROBABILITY LOWER BOUND AS INTUITIVE EVIDENCE FOR INSTABILITY

Definition of additional instability metric. Before the formal analysis, we first define the geometric
average of intrinsic instability coefficient as an indicator of instability.
Definition 4.1 (Geometric average of intrinsic instability coefficient). Suppose F : Rn → Rn is a
continuously differentiable mapping. For any x ∈ Rn, we define the geometric average of intrinsic
instability coefficient as

ĒF (x):=

(
n∏

i=1

EF (x,ui)

) 1
n

, (6)

where u1, · · · ,un is a set of right singular vectors of the Jacobian matrix JF (x). Note that ĒF (x)
is also the geometric average of all singular values of F ’s Jacobian JF (x).

When ĒF (x) > 1, at least one of EF (x,ui) is greater than one, thereby indicating the instability.

Lower bound of instability’s probability. Applying the above instability metric to the diffusion
generation mapping G, we can now present the following theorem:

6
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Theorem 4.1 (Probability lower bound of instability). Suppose G is the ideal diffusion generation
mapping defined in Definition 2.1, whose generation distribution is denoted as πgen. Let G−1 denote
its inverse mapping, which represents the ideal diffusion inversion mapping. Further suppose we
sample the initial data x from some underlying real distribution πreal for reconstruction. Then, for
any M > 0, we have

PM :=πreal

(
{x : ĒG(G−1(x)) > M}

)
≥ 1− ϵ− δ, (7)

ϵ:=πreal

({
x : pgen(x) ≥

1

(2πM2)
n
2
e−

2n+3
√

2n
2

})
, (8)

δ:=πreal({x : ∥G−1(x)∥2 > 2n+ 3
√
2n}), (9)

where PM :=πreal

(
{x : ĒG(G−1(x)) > M}

)
represents the probability of instability in the ideal

diffusion reconstruction if M > 1, and pgen denotes the probability density function of πgen.

More specifically, PM describes the probability that the geometric average of intrinsic instability
coefficient ĒG(z) is greater than the threshold M on the inverted noise z = G−1(x), where x is
sampled from the underlying real distribution πreal.

Here, ϵ denotes the probability that the density function pgen(x) of πgen at a real data x greater than a

threshold 1

(2πM2)
n
2
e−

2n+3
√

2n
2 , while δ represents the probability that the inverted noise G−1(x) of

a real data significantly deviates from the center. When both ϵ and δ are small enough, and M > 1,
we can conclude that PM > 0, and the instability of the diffusion generation mapping is probable
to happen during the ideal reconstruction process.

In the next two subsections, we will first make reasonable assumptions based on the characteristics
of image data and practical considerations in Section 4.1, and then provide an asymptotic guarantee
for the occurrence of instability in Section 4.3.

4.2 SETTING DISCUSSIONS FOR IN-DEPTH ANALYSIS

To further analyze the probability PM of instability during the diffusion reconstruction process, we
first need to make reasonable assumptions about two probability distributions, πreal and πgen, in-
volved in Theorem 4.1. In the following sections, we will discuss these two distributions separately.

4.2.1 DISCUSSIONS ON THE PROPERTIES OF πreal .

The distribution πreal represents the distribution of images to be reconstructed and is not constrained
by the diffusion model itself. We can assume that any real-world image may be used for reconstruc-
tion, so we refer to πreal as the real distribution.

Based on this analysis and the inherent properties of image data, the real distribution πreal is char-
acterized by the following two features:

1. Support as a cube: The support of πreal is a hypercube in Rn. After normalization, it can
be assumed that supp(πreal) = [0, 1]n. This is because each pixel in an image has bounded
values, typically normalized to the interval [0, 1], ensuring that images in n-dimensional space
reside within the hypercube [0, 1]n.

2. Positive minimum density: The density function preal of πreal has a positive minimum value
across its support. This implies that every point within [0, 1]n corresponds to a possible im-
age, including those that may be uncommon or represent noise-like structures. Although such
images have extremely low probability density, they remain potential members of πreal.

Assumption 4.1 (πreal – Support as a cube). The support of πreal is the n-dimensional hypercube
[0, 1]n, i.e., supp(πreal) = [0, 1]n.
Assumption 4.2 (preal – Each pixel gets a chance). The density function preal of πreal is continuous
on supp(πreal), and preal further satisfies ∀x ∈ [0, 1]n, preal(x) ≥ C0 > 0.

4.2.2 DISCUSSIONS ON THE PROPERTIES OF πgen.

The generation distribution πgen refers to the distribution of samples generated by the diffusion
model when it starts from Gaussian noises. For complex and high-dimensional image data, πgen

7
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typically exhibits sparsity characteristics, meaning it contains several high-probability regions sur-
rounded by areas of lower probability. In theoretical analyses, the mixture of Gaussians is a common
choice for modeling such multi-modal distributions. However, in this work, to better differentiate
between high and low probability regions, we construct a more general distribution family named as
the mixture of Gaussian neighbors. The assumption on the density pgen of πgen is provided here:

Assumption 4.3 (pgen – Mixture of Gaussian neighbors). The density function pgen can be ex-
pressed as pgen =

∑m
i=1 aifi ∗ gwi

, where each fi is a probability density function supported on the
open set Oi, gwi

= N (0, w2
i I) is a Gaussian kernel with standard deviation wi, ∗ denotes convolu-

tion operator, m ∈ Z+, and the coefficients ai satisfy ai > 0 for all i = 1, . . . ,m and
∑m

i=1 ai = 1.

In this density function, each density function fi on open set Oi captures the high density region,
while the convolution with the Gaussian kernel gwi

ensures that the surrounding areas have smoothly
decreasing probabilities, and thus models the low density region. This approach allows for a flexible
representation of complex, multi-modal distributions commonly encountered in high-dimensional
image data. The following theorem further demonstrate the approximation capability of the mixture
of Gaussian neighbors.

Theorem 4.2 (Mixture of Gaussian neighbors are Universal Approximators). The set of density
functions {p : p =

∑m
i=1 aifi ∗ gwi

, fi is compactly supported continuous function} is a dense
subset of continuous density function in both L2 metric (Folland, 1999) and Lévy-Prokhorov met-
ric (Billingsley, 1999).

Sparsity assumption group. Combining the model’s actual training process, the meaning of the
mixture of Gaussian neighbors can be understood as follows: In high-dimensional space for image
data, the training samples are sparse and finite due to the limited capability to collect image. When
the model is sufficiently trained on the training set and possesses certain generalization capabilities,
it can generate a small neighborhood around each training sample with relatively high probability.
Thus, each Oi corresponds to the neighborhood that can be generated around each training sample,
and m represents the number of training samples. Considering the sparsity of high-dimensional
images and the model’s limited generalization capabilities, we make the following assumptions:

Assumption 4.4 (Sparsity assumption group).

1. (Finite training set) We assume that m has an upper bound as the dimension n increases. For
convenience, we directly assume that m is a constant.

2. (Sparse data in high-dimensional space) The neighborhoods Oi and Oj do not overlap for
any i ̸= j, and there exists a minimum positive distance dmin > 0 between any two distinct
neighborhoods Oi and Oj . For convenience, we define d̄min:=dmin/

√
n.

3. (Finite generalization capability) Each neighborhood Oi is included in a hypercube Bi of side
length bi ≪ 1.

4. (Low probability region) For each fi, the probability outside its corresponding Oi is upper
bounded by a constant 1− αi, i.e.,

∫
OC

i
fi ∗ gwi

(x)dx < 1− αi < 1.

These assumptions formalize the intuition that in high-dimensional spaces, training samples are
finite, sparse, and each training sample can generate a distinct, small neighborhood without overlap.
Additionally, the probability density outside these neighborhoods is uniformly bounded, ensuring
that low-density regions do not dominate the generation process.

4.3 ASYMPTOTIC PROOF OF ALMOST SURE INSTABILITY

Building upon the assumptions on the relevant distributions, in this subsection, we will present a
more in-depth asymptotic analysis onPM , demonstrating that instability occurs almost surely during
diffusion reconstruction when the dimensionality n tends to infinity. Regarding real-world high-
dimensional images, this asymptotic result implies that instability will occur with a non-negligible
probability within the reconstruction process.

Recall that in Theorem 4.1, we have proved that the instability probability PM ≥ 1− ϵ− δ, where
M is the threshold of an instability indicator ĒG defined in Definition 4.1. To prove a almost sure
instability as n → ∞, it is sufficient to prove that ϵ → 0 and δ → 0 when M > 1. Theorem 4.3
exactly supports this claim. The proof is provided in Section D.5.
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Theorem 4.3. Consider ϵ and δ defined in Equations (8) and (9) in Theorem 4.1. Suppose that
Assumptions 4.1 to 4.3 and Assumption 4.4–the sparsity assumption group–hold. When n → ∞, if
M satisfies M < M0, we have

ϵ:=πreal

({
x : pgen(x) ≥

1

(2πM2)
n
2
e−

2n+3
√

2n
2

})
→ 0, (10)

δ:=πreal({x : ∥G−1(x)∥2 > 2n+ 3
√
2n})→ 0, (11)

where M0:=min1≤i≤m exp
(

1
8
d̄2
min

wi
− ln 1

wi
+ 2 + 3

√
2
n

)
→ ∞. Thus, for any fixed M > 1, we

can conclude that the instability probability PM → 1 as n→∞.

The above theorem implies that, for a sufficiently large dimension n, such as the case of high-
dimensional image data, the instability probability can be high, significantly greater than zero.

Intuitive explanations. To better understand Theorem 4.3 and the mechanism underlying this
highly-probable instability, we revisit the roles of ϵ and δ in the lower bound of the instability prob-
ability PM . The term ϵ:=πreal

({
x : pgen(x) ≥ 1

(2πM2)
n
2
e−

2n+3
√

2n
2

})
quantifies the probability

that samples from πreal avoid low probability density regions of πgen. As discussed in Section 4.2,
the sparsity of πgen ensures that most regions exhibit negligible probability density, thereby driving
ϵ toward zero. Meanwhile, another term δ:=πreal({x : ∥G−1(x)∥2 > 2n+ 3

√
2n}) represents the

probability that the inverted noise G−1(x) deviates from the Gaussian’s center beyond a squared
threshold 2n + 3

√
2n — a bound that scales as infinity when dimensionality n increases. It is

known that high-dimensional Gaussian samples in Rn concentrate near a sphere with squared radius
n . This concentration indicates that significant deviations are of small probability, which implies
a small δ. Consequently, both two terms can be small, implying a positive instability probability
lower bound 1− ϵ− δ. A detailed derivation is provided in the Section D.5.

5 RELATED WORKS

The concepts of diffusion inversion and reconstruction were initially introduced by Song et al. (2020)
as an application of DDIM, and was then used in many image editing tasks (Hertz et al., 2022; Chung
et al., 2022a; Su et al., 2022; Tumanyan et al., 2023). However, many studies have identified limita-
tions in their effectiveness for text-to-image diffusion models, particularly in terms of reconstruction
quality (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Zhang et al., 2024; Mokady et al., 2023;
Wallace et al., 2023; Hong et al., 2024; Wang et al., 2025; Dai et al., 2024). To improve the recon-
struction accuracy, some tuning-based methods are proposed to align the re-generation trajectory to
the inversion trajectory(Mokady et al., 2023; Dong et al., 2023). As it is recognized that numeri-
cal discretization error is the direct cause of reconstruction inaccuracy, high-order ODE solvers for
diffusion models offer alternatives to mitigate this issue (Lu et al., 2022a;b; Karras et al., 2022).
Additionally, some works introduce auxiliary variables to ensure the numerical reversibility of the
diffusion inversion process (Wallace et al., 2023; Zhang et al., 2024; Wang et al., 2024). However, it
has been noted that such methods can be unstable, as small perturbations in the inverted noise may
lead to significant deviations in the reconstructed image (Ju et al., 2024). Meanwhile, there remains
a lack of comprehensive analysis on the underlying mechanism: why the reconstruction discrepancy
can be sufficiently significant. Different from previous works that proposes new methods, this work
attempts to dive into the mechanism and advance the understanding of diffusion models.

6 CONCLUSION

In this paper, we identify the instability phenomenon as an amplifier on the error observed in
diffusion-based image reconstruction. Through rigorous theoretical analysis and comprehensive
experimental validations, we demonstrate that instability leads to the amplification of numerical per-
turbations during the diffusion generation process, thus increasing the reconstruction error. More-
over, we investigate the underlying causes of instability in the diffusion ODE generation process,
demonstrating that the inherent sparsity in diffusion generation distribution can cause instability.
Meanwhile, we theoretically prove that the instability will almost surely occur during reconstruction
for infinite dimensional images. Our work elucidates a critical source of reconstruction inaccuracies.
Addressing instability will be essential for advancing the reliability of generative models.
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A PSEUDOCODE FOR DIFFUSION RECONSTRUCTION

Algorithm 1 Diffusion reconstruction

Input: Initial data x, PF-ODE vector field v, ODE solver ODESolver
Output: Reconstructed data x̂
# ODESolver gets four arguments as below
# ODESolver(initial value, derivative function, initial time, end time)

# Diffusion inversion from t = 0 to t = 1
1: ẑ ← ODESolver(x,v, 0, 1)

# Diffusion regeneration from t = 1 to t = 0
2: x̂← ODESolver(ẑ,v, 1, 0)

To further illustrate the PF-ODE-based diffusion reconstruction procedure, we provide the pseu-
docode in Algorithm 1. The pseudocode demonstrates the core logic of the reconstruction porcess,
utilizing an ODE solver that could be any numerical method.

B ADDITIONAL EXPERIMENTS

B.1 RECONSTRUCTION ERROR AMPLIFICATION VERIFIED BY SECOND-ORDER ODE SOLVER
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(a) Stable Diffusion 3.5 Medium (Esser et al.,
2024)
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(b) Stable Diffusion 3.5 Large (Esser et al., 2024)
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(c) FLUX (Black Forest Labs, 2024)

Figure A1: Positive correlation between the reconstruction error and instability coefficient ver-
ified by second-order Heun ODE solver. All of the three text-to-image diffusion models exhibit
such positive correlation. Experimental details can be found in Section E.

In Section 3.2, we have already demonstrated the positive correlation between the reconstruction
error and the instability coefficient of diffusion generation mapping. Both the numerical example

1
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and the results of Stable Diffusion 3.5 Medium (Esser et al., 2024) in Figure 4 imply that the oc-
currence of instability can amplify the reconstruction error. Note that the Euler solver is adopted
in Section 3.2.

Here we further emphasize that this positive correlation between the reconstruction error and
the instability coefficient is an inherent property of PF-ODE, and does not rely on specific
numerical method2. To support this, we provide more experimental evidence under the second-
order Heun ODE solver, rather than the first-order Euler solver in Section 3.2. The results are
illustrated in Figure A1. Here we choose three popular different text-to-image diffusion models–
Stable Diffusion 3.5 Medium / Large (Esser et al., 2024) and FLUX (Black Forest Labs, 2024).
It can be observed that the positive correlation between the reconstruction error and the instability
coefficient again appears in all of these three models.

C DISCUSSIONS

Implication of instability. Our findings reveal that diffusion generation process can exhibit insta-
bility when reconstructing a target data, such as image. Specifically, the reconstructed result may
vary dramatically under tiny perturbations on the inverted noise, indicating a high sensitivity that un-
dermines the ability to consistently reproduce the original sample. This behavior sheds light on an
important limitation of diffusion models’ generalization capability. While diffusion models are often
lauded for their strong performance in generating realistic samples, the observed instability implies
that they may not have fully learned the underlying structure of the data distribution.

From a theoretical perspective, as discussed in Section 4, such instability can be attributed to the
sparsity of the generation distribution: the generation distribution concentrates its probability mass
on scattered, small regions in the high-dimensional space, failing to provide robust coverage over
the broader data manifold. And this sparsity highlights the model’s limited capacity to generalize
beyond the concentrated regions. These insights underscore the need for further research into im-
proving how diffusion models capture the global data distribution, mitigate distributional sparsity,
and enhance the stability of their generation process.

Potential solutions One promising direction to mitigate instability is distribution regularization.
Since instability fundamentally stems from the sparsity of the learned generation distribution, reg-
ularization strategies that encourage more uniform coverage of the latent space may help. For in-
stance, in diffusion models with autoencoder-based latents, additional loss terms or architectural
constraints could be introduced to reduce sparsity in the latent distribution, thereby alleviating the
instability issue.

D DETAILED PROOFS

D.1 PROOF OF PROPOSITION 2.1

For convenience, we first repeat Proposition 2.1 to be proved here.

Proposition 2.1 (Instability effect). Suppose F : Rn → Rn is a continuously differentiable map-
ping. For any x,u ∈ Rn, and ∆ > 0, there exists a non-zero perturbation n ∈ Rn such that

AF (x,n):=
∥F (x+ n)− F (x)∥

∥n∥
≥ EF (x,u)

1 + ∆
, (3)

where AF (x,n) is referred to as the instability coefficient. Furthermore, if EF (x,u) > 1, we have
a n that satisfies AF (x,n) > 1, then we say F exhibits the instability at x under perturbation n.

Proof. Given that the operator norm of the Jacobian matrix JF (x) satisfies ∥JF (x)∥ =

supu′∈Rn
∥JF (x)u′∥

∥u′∥ ≥ EF (x,u) for any x,u ∈ Rn, there exists a unit vector h such that

∥JF (x)h∥ ≥ EF (x,u). (A1)

2Here “inherent” is with respect to the choice of numerical solver; the phenomenon still depends on the
learned generation distribution and its geometry.
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Let nt = th, we have
F (x+ nt)− F (x) = JF (x)nt +R(nt), (A2)

where R(nt) is the remainder. Then AF (x,nt) is bounded below by:

AF (x,nt):=
∥F (x+ nt)− F (x)∥

∥nt∥
(A3)

≥ ∥JF (x)nt∥ − ∥R(nt)∥
∥nt∥

(A4)

≥ tEF (x,u)− ∥R(nt)∥
∥nt∥

(A5)

= EF (x,u)−
∥R(nt)∥
∥nt∥

, (A6)

where the first ≥ is by triangle inequality, and the second ≥ is by Equation (A1).

Since F is differentiable, the remainder R(nt) satisfies limt→0
∥R(nt)∥
∥nt∥ = 0. Then for ϵ =

∆
1+∆EF (x,u), there exist δ > 0 and t ≤ δ such that ∥R(nt)∥

∥nt∥ ≤ ϵ, and this can lead to the con-
clusion

∥F (x+ nt)− F (x)∥
∥nt∥

≥ EF (x,u)−
∥R(nt)∥
∥nt∥

≥ EF (x,u)
1 + ∆

. (A7)

Furthermore, by the arbitrariness of ∆, when EF (x,u) > 1, there always exists a ∆ satisfies
EF (x,u) > 1 + ∆. Thus AF (x,nt) ≥ EF (x,u)

1+∆ > 1.

D.2 PROOF OF PROPOSITION 3.1

For convenience, we first repeat Proposition 3.1 to be proved here.

Proposition 3.1 (Risk of large reconstruction error). For any data sample x ∈ Rn, consider the
diffusion reconstruction process consisting of a numerically approximated diffusion inversion under
Euler method and a precise diffusion generation process G. Let ẑ denote the numerically inverted
noise, z denote the ideal inverted noise, and x̂ denote the reconstructed data. Suppose EG(z, ẑ −
z) > C for some C > 0. Then, the upper bound U of reconstruction errorR(x) satisfies:

U ≥ hM2
(C − 1)

2 logC︸ ︷︷ ︸
Numerical error
in inverted noise

· C︸︷︷︸
Instability

amplification

, (5)

where h represents the step size in the numerical solution, and M2 is the estimated upper bound
term for the local truncation error of the Euler method.

Proof. The reconstruction process involves two sequential steps. First, the probability flow ODE in
Equation (1) is integrated forward from t = 0 to t = 1 using the Euler method, yielding the noise
corresponding to the image. Then, the same ODE is integrated backward from t = 1 to t = 0,
starting from the noise, to recover the reconstructed image. We use the reconstruction process
to evaluate the Lipschitz constant of v(x, t) and to analyze the error between the inversion and
reconstruction procedures. The form of the probability flow ODE solved using the Euler method in
the inversion process is:

xtn+1
= xtn + (tn+1 − tn)v(xtn , tn). (A8)

The error analysis of Euler’s numerical solution involves the estimation of local truncation error
(LTE) and global truncation error (GTE), which together determine the method’s overall accuracy.

The local truncation error measures the error introduced in a single step of the Euler method. De-
noting the time step tn+1 − tn as h, by expanding the true solution x(t) at time tn+1 using a Taylor
series around tn, we obtain:

x(tn+1) = x(tn) + hx′(tn) +
h2

2
x′′(ξ), (A9)

3
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where ξ ∈ [tn, tn+1]. Since x′(tn) = v(xtn , tn), the local truncation error is given by assuming
xtn = x(tn):

LTE:=x(tn+1)− xtn+1 =
h2

2
x′′(ξ). (A10)

If the second derivative of x is bounded, that is, |x′′| ≤M2, then the error bound is

LTE ≤ 1

2
M2h

2. (A11)

The global truncation error measures the accumulated error over multiple steps, and the total error
can be estimated by summing up the contributions from each step. Let L denote the Lipschitz
constant of v, then the global truncation error En satisfies the following recurrence relation:

En+1:=∥xtn+1 − x(tn+1)∥ (A12)

=∥(xtn + hv(xtn , tn)− (x(tn) + hx′(tn) +
h2

2
x′′(ξ))∥ (A13)

≤∥xtn − x(tn)∥+ h∥v(xtn , tn)− v(x(tn), tn)∥+ LTE (A14)

≤En + hL · En +
1

2
M2h

2. (A15)

This yields

En ≤
hM2

2L

(
eL − 1

)
. (A16)

While considering the Gronwall inequality for the precise generation process, we can obtain that
for two PF-ODE solutions xt, yt with distinct initial conditions x1, y1 at time t = 1, the exact
solutions at time t = 0 satisfy the following property:

∥y0 − x0∥ ≤ ∥x1 − y1∥eL. (A17)

This equation will give a upper bound to the intrinsic instability coefficient EG(x,u):

sup
x,u
EG(x,u) ≤ eL. (A18)

From Equation (A18) and the assumption EG(z, ẑ − z) > C, we can infer that L ≥ logC. Substi-
tuting into our previous discussion on the global truncation error, we have:

U ≥ hM2

2L
(eL − 1) · C ≥ hM2

C − 1

2 logC
· C. (A19)

D.3 PROOF OF THEOREM 4.1

To prove Theorem 4.1, we first present two lemmas.
Lemma D.1. For any ODE with a unique solution:

dxt

dt
= v(xt, t), (A20)

its solution can be expressed as xt = ϕt(x0) for t ∈ [0, 1] with the initial condition x0 at t = 0.
Let pt(x) be a probability density function that satisfies

∫
ϕ−1
t (A)

p0(x)dx =
∫
A
pt(x)dx for any

measurable set A. Then the geometric average of intrinsic instability coefficient for mapping ϕ1,
i.e., Ēϕ1

(x) defined as Definition 4.1, satisfies:∣∣Ēϕ1
(x)
∣∣n ≥ exp(

∫ 1

0

∇ · v(xt, t)dt) =
p0(x)

p1(ϕ1(x))
,

Proof. For any t ∈ [0, 1] and x0, define J(t) = ∂xt

∂x0
, where xt is defined in Equation (A20). Then

J(0) = I , J(1) = Jϕ1
(x0), and

d

dt
J(t) =

d

dt

∂xt

∂x0
(A21)

4
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=
∂v(xt, t)

∂x0
(A22)

=
∂v(xt, t)

∂xt
◦ J(t). (A23)

Multiplying J−1(t) in both sides, we have

dJ(t)

dt
◦ J−1(t) =

∂v(xt, t)

∂xt
. (A24)

Denote the i-th eigenvalue of J(t) as λi(J(t)). With Equation (A24), we can obtain
d
dt log |

∏n
i=1 λi(J(t))| as follows

d

dt
log |

n∏
i=1

λi(J(t))| =
n∑

i=1

d

dt
log |λi(J(t))| (A25)

=

n∑
i=1

dλi(J(t))

dt
λi(J(t))

−1 (A26)

= tr
(
dJ(t)

dt
◦ J−1(t)

)
(A27)

= tr
(
∂v(xt, t)

∂xt

)
(A28)

= ∇ · v(xt, t). (A29)

Thus deduce that

log |
n∏

i=1

λi(J(t))| =
∫ 1

0

∇ · v(xt, t)dt. (A30)

On the other hand, for the probability density we can derive that:

d log pt(xt)

dt
= ∇ log pt(xt) ·

dxt

dt
+

∂

∂t
log pt(x,t) (A31)

= ∇ log pt(xt) · v(xt, t) +
∂

∂t
log pt(x,t) (A32)

=
∇pt(xt)

pt(xt)
· v(xt, t)−

∇ · (pt(xt)v(xt, t))

pt(xt)
(A33)

= −∇ · v(xt, t), (A34)

where Equation (A33) is a result from Fokker-Planck equation: ∂pt(xt)
∂t = −∇ · (pt(xt)v(xt, t)).

Thus we conclude that

log pt(xt) + log |
n∏

i=1

λi(J(t))| = log p0(x0) + log |
n∏

i=1

λi(J(0))|. (A35)

Note that J(0) is the identity matrix, hence we obtain∣∣Ēϕ1
(x)
∣∣n ≥ | n∏

i=1

λi(J(t))| =
p0(x0)

pt(xt)
, (A36)

where the first inequality holds because the product of the singular values of a matrix is greater than
the absolute value of the product of its eigenvalues.

Lemma D.2. Let γ be the standard Gaussian probability density function and G−1 be the inversion
function. For all x ∈ supp(πdata), and for all K > 0, k > 0, we have

πreal

({
x :

pdata(x)

γ(G−1(x))
< K

})
≥πreal ({x : pdata(x) < kK})

− πreal

({
x : γ(G−1(x)) ≤ k

})
.

(A37)

5
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Proof.

πreal

({
x :

pdata(x)

γ(G−1(x))
< K

})
=πreal

(
{x : pdata(x) < Kγ(G−1(x))} ∩ {x : γ(G−1(x)) > k}

)
(A38)

+ πreal

(
{x : pdata(x) < Kγ(G−1(x))} ∩ {x : γ(G−1(x)) ≤ k}

)
(A39)

≥πreal

(
{x : x : pdata(x) < Kγ(G−1(x))} ∩ {x : γ(G−1(x)) > k}

)
(A40)

≥πreal

(
{x : γ(G−1(x)) > k} ∩ {x : pdata(x) < kK}

)
(A41)

≥πreal ({x : pdata(x) < kK})− πreal

(
{x : γ(G−1(x)) ≤ k}

)
. (A42)

Now the conclusion of Theorem 4.1 is a direct corollary of the two lemmas above. For convenience,
we first repeat Theorem 4.1 to be proved here.
Theorem 4.1 (Probability lower bound of instability). Suppose G is the ideal diffusion generation
mapping defined in Definition 2.1, whose generation distribution is denoted as πgen. Let G−1 denote
its inverse mapping, which represents the ideal diffusion inversion mapping. Further suppose we
sample the initial data x from some underlying real distribution πreal for reconstruction. Then, for
any M > 0, we have

PM :=πreal

(
{x : ĒG(G−1(x)) > M}

)
≥ 1− ϵ− δ, (7)

ϵ:=πreal

({
x : pgen(x) ≥

1

(2πM2)
n
2
e−

2n+3
√

2n
2

})
, (8)

δ:=πreal({x : ∥G−1(x)∥2 > 2n+ 3
√
2n}), (9)

where PM :=πreal

(
{x : ĒG(G−1(x)) > M}

)
represents the probability of instability in the ideal

diffusion reconstruction if M > 1, and pgen denotes the probability density function of πgen.

More specifically, PM describes the probability that the geometric average of intrinsic instability
coefficient ĒG(z) is greater than the threshold M on the inverted noise z = G−1(x), where x is
sampled from the underlying real distribution πreal.

Proof. From Lemma D.1 and Lemma D.2, we have

PM =πreal

(
{x : ĒG(G−1(x)) > M}

)
(A43)

≥πreal

({
x :

pgen(x)

γ(G−1(x))
< M−n

})
(A44)

≥πreal

({
x : pgen(x) <

1

(2πM2)
n
2
e−

2n+3
√

2n
2

})
− πreal

({
x : γ(G−1(x)) <

1

(2π)
n
2
e−

2n+3
√

2n
2

})
, (A45)

where the first inequality Equation (A44) follows from Lemma D.1 if we take p0 as the Gaussian
density function γ and pt as the density of generated distribution pgen during the generation process,

the second inequality Equation (A45) follows from Lemma D.2 with k = 1

(2π)
n
2
e−

2n+3
√

2n
2 .

D.4 PROOF OF THEOREM 4.2

Before the formal proof of Theorem 4.2, we first provide the definition of Lévy-Prokhorov met-
ric (Billingsley, 1999).

D.4.1 DEFINITION OF LÉVY-PROKHOROV METRIC

Definition D.1 (Lévy-Prokhorov metric). For a subset A ⊂ Rn, define the ϵ- neighborhood of A by

Aϵ := {p ∈ Rn : ∃q ∈ A, d(p, q) < ϵ} =
⋃
p∈A

Bϵ(p). (A46)

6
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where Bϵ(p) is the open ball of radius ϵ centered at p. Let P(Rn) denotes the collection of all
probability measures on Rn The Lévy-Prokhorov metric π : P(Rn)2 → [0,+∞)is defined as
follows:

π(µ, ν) := inf{ϵ > 0 : µ(A) ≤ ν(Aϵ) + ϵ and ν(A) ≤ µ(Aϵ) + ϵ}. (A47)
This metric is equivalent to weak convergence of measures (Billingsley, 1999).

D.4.2 PROOF OF THEOREM 4.2

For convenience, we first repeat Theorem 4.2 to be proved here.
Theorem 4.2 (Mixture of Gaussian neighbors are Universal Approximators). The set of density
functions {p : p =

∑m
i=1 aifi ∗ gwi

, fi is compactly supported continuous function} is a dense
subset of continuous density function in both L2 metric (Folland, 1999) and Lévy-Prokhorov met-
ric (Billingsley, 1999).

Proof. n-dimensional Hermite functions form a complete orthogonal basis of L2(Rn) space (Stein
& Shakarchi, 2003). Hermite functions can be expressed as:

ϕα(x) = Hα(x)e
−∥x∥2

. (A48)

Here α is a multi-index, an ordered n-tuple of nonnegative integers. Hα(x) is a polynomial of α
order called Hermite polynomials. By Plancherel theorem, the Fourier transform is a isomorphism
on L2(Rn). (Folland, 2013) It is sufficient to prove the Fourier transform of {p(x) =

∑m
i=1 aifi ∗

gwi
(x)} can converge to Hermite functions in L2. We denote the Fourier transform of any function

h as ĥ, with the wide hat notation ·̂. Thus
m∑
i=1

̂aifi ∗ gwi
(x) =

m∑
i=1

aif̂i · e−
1
2w

2
i ∥x∥

2

. (A49)

Since the continuous compact support function Cc(Rn) is dense in L2(Rn) (Folland, 2013), by the
isomorphism, {aif̂i} is also dense in L2(Rn). Hα(x)e

− 1
2∥x∥

2

is a L2 function. Then we derive that
∀ϕα, ∀δ > 0, ∃af and take wi = 1,

∥âf ∗ g1(x)− ϕα(x)∥L2 = ∥(Hα(x)e
− 1

2∥x∥
2

− af̂)e−
1
2∥x∥

2

∥L2 (A50)

≤ ∥(Hα(wix)e
− 1

2∥x∥
2

− af̂)∥L2∥e− 1
2∥x∥

2

∥L∞ (A51)
≤ δ. (A52)

The first inequality is Hölder’s inequality, and the second inequality follows from the density of af
in the L2 space. ∀ϵ > 0, h(x) ∈ L2(Rn), there exists a finite set of multi-index {αk, k ≤ N} and
sequence {θαk

} such that
∥
∑
k≤N

θαk
ϕαk

(x)− ĥ(x)∥L2 ≤ ϵ

2
, (A53)

then for each ϕαk
choose a aαk

fαk
∗ gwαk

such that ∥aαk
fαk
∗ gwαk

(x) − θαk
ϕαk

(x)∥L2 ≤ ϵ
2N ,

we obtain that

∥
∑
k≤N

aαk
fαk
∗ gwαk

(x)− ĥ(x)∥L2 (A54)

≤∥
∑
k≤N

aαk
fαk
∗ gwαk

(x)−
∑
k≤N

θαk
ϕαk

(x)∥L2 + ∥
∑
k≤N

θαk
ϕαk

(x)− ĥ(x)∥L2 (A55)

≤ϵ, (A56)

which shows the density of
∑

k≤N aifi ∗ gwi
in L2(R). Now we prove the density in Lévy-

Prokhorov metric, ∀f is a density function of Rn, ∀ϵ > 0, we can construct an ϵ-decomposition
as follow: Since f is integrable, there is a compact set Kf in R with

∫
Kc

f
f(x)dx < ϵ and∫

∂Kf
f(x)dx = 0. The interior of K is an open set O and by the structure theorem of open sets,

there exists a decomposition O =
⋃

i Oi, {Oi} are disjoint open sets and to make the index set finite,
the distance between Oi is no less than some d > 0. Then we have O =

⋃
i≤N ′ Oi

7



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Then we define ai:=
∫
Oi

f(x)dx and fi(x):=
1
ai
f(x)IOi

, ∀A′ ⊂
⋃

i≤N ′ Oi, denote A′ ∩Oj as A′
j∫

A′
|f −

∑
i

aifi ∗ gwi |dx (A57)

=
∑
j

∫
A′

j

|f −
∑
i

aifi ∗ gwi |dx (A58)

≤
∑
j

∫
A′

j

|f − ajfj ∗ gwj
|dx+

∑
j

∫
A′

j

|ajfj ∗ gwj
−
∑
i

aifi ∗ gwi
|dx. (A59)

gwj is an approximate identity about wj and when wj is sufficiently small,
∫
A′

j
|f−ajfj ∗gwj |dx ≤

∥f − ajfj ∗ gwj
∥L1 ≤ ϵ

2N ′ and∫
A′

i

|ajfj ∗ gwj
−
∑
i

aifi ∗ gwi
|dx =

∑
i̸=j

∫
A′

i

|aifi ∗ gwi
|dx ≤

∑
i̸=j

1

2πwi
exp(− d2

2w2
i

), (A60)

when wi is sufficiently small,
∑

i̸=j
1

2πwi
exp(− d2

2w2
i
) ≤ ϵ

2N ′ . From this we conclude that ∀A′ ⊂⋃
i≤N ′ Oi, we have ∫

A′
f(x)dx ≤

∫
A′

∑
i

aifi ∗ gwi
(x)dx+ ϵ, (A61)∫

A′

∑
i

aifi ∗ gwi
(x)dx ≤

∫
A′

f(x)dx+ ϵ. (A62)

And ∀A′ ⊂ Oc,
∫
A′ f(x)dx ≤ ϵ, then it is sufficient to prove∫

A′

∑
i

aifi ∗ gwi
(x)dx ≤

∫
A′ϵ

f(x)dx+ ϵ (A63)

and this could also be obtained by the L1 convergence property of approximate identity:∫
A′

∑
i aifi ∗ gwi(x)dx < ϵ with appropriate wi.

In summary, ∀A′ ⊂ Rn,∫
A′

f(x)dx =

∫
A′∩O

f(x)dx+

∫
A′∩Oc

f(x)dx (A64)

≤
∫
(A′∩O)ϵ

∑
i

aifi ∗ gwi
(x)dx+ ϵ+ ϵ (A65)

≤
∫
(A′)2ϵ

∑
i

aifi ∗ gwi(x)dx+ 2ϵ, (A66)∫
A′

∑
i

aifi ∗ gwi
(x)dx =

∫
A′∩O

∑
i

aifi ∗ gwi
(x)dx+

∫
A′∩Oc

∑
i

aifi ∗ gwi
(x)dx (A67)

≤
∫
(A′∩O)ϵ

f(x)dx+ ϵ+ ϵ (A68)

≤
∫
(A′)2ϵ

f(x)dx+ 2ϵ. (A69)

By the arbitrariness of ϵ, we conclude that the set of distributions with probability density function
{
∑

i aifi ∗ gwi
} is dense.

D.5 PROOF OF THEOREM 4.3

For convenience, we first repeat Theorem 4.3 to be proved here.

8
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Theorem 4.3. Consider ϵ and δ defined in Equations (8) and (9) in Theorem 4.1. Suppose that
Assumptions 4.1 to 4.3 and Assumption 4.4–the sparsity assumption group–hold. When n → ∞, if
M satisfies M < M0, we have

ϵ:=πreal

({
x : pgen(x) ≥

1

(2πM2)
n
2
e−

2n+3
√

2n
2

})
→ 0, (10)

δ:=πreal({x : ∥G−1(x)∥2 > 2n+ 3
√
2n})→ 0, (11)

where M0:=min1≤i≤m exp
(

1
8
d̄2
min

wi
− ln 1

wi
+ 2 + 3

√
2
n

)
→ ∞. Thus, for any fixed M > 1, we

can conclude that the instability probability PM → 1 as n→∞.

Proof. The overall idea of the proof is to find a value M related to wi such that as n→∞, we have
wi → 0, thereby implying that both ϵ and δ tend to 0 and M →∞. From Assumption 4.3

pgen(x) =

m∑
i=1

∫
Rn

aifi(y)gwi
(x− y)dy (A70)

=

m∑
i=1

∫
⋃

i≤m

Oi

aifi(y)
1

(2πw2
i )

n
2
e
− ∥x−y∥2

2w2
i dy (A71)

≤
m∑
i=1

∫
⋃

i≤m

Oi

aifi(y)
1

(2πw2
i )

n
2
e
−

mini≤md(x,Oi)
2

2w2
i dy (A72)

=

m∑
i=1

ai
1

(2πw2
i )

n
2
e
−

mini≤md(x,Oi)
2

2w2
i (A73)

≤ maxi≤m

{
1

(2πw2
i )

n
2
e
−

mini≤md(x,Oi)
2

2w2
i

}
. (A74)

We define a dominating function

hw1,...,wm
(x):=maxi≤m

{
1

(2πw2
i )

n
2
e
−

mini≤md(x,Oi)
2

2w2
i

}
, (A75)

which is monotonically decreasing about mini≤md(x, Oi) and can be written as hw1,...,wm(x) =

h′
w1,...,wm

(mini≤md(x, Oi)), where h′
w1,...,wm

(x):=maxi≤m

{
1

(2πw2
i )

n
2
e
− x2

2w2
i

}
. From the above

inequality we obtain: {
x : pgen(x) ≥

1

(2πM2)
n
2
e−

2n+3
√

2n
2

}
(A76)

⊂
{
x : hwi,...,wm

(x) ≥ 1

(2πM2)
n
2
e−

2n+3
√

2n
2

}
(A77)

= {x : mini≤md(x, Oi) ≤ rM} , (A78)

where

rM :=∥h′−1
wi,...,wm

(
1

(2πM2)
n
2
e−

2n+3
√

2n
2

)
∥. (A79)

Based on this, taking M ≤ M0:=min1≤i≤m exp
(

1
8
d̄2
min

wi
− ln 1

wi
+ 2 + 3

√
2
n

)
, we observe that

M0 → ∞ as wi → 0, and in the following part we will proof wi → 0 as n → ∞. Here d̄min is the
minimum of distance between Bi.

Since h′
w1,...,wm

is radial, once M is fixed, rM is well defined. Thus there exists a unique wj in
Equation (A75) such that for any x satisfying mini≤md(x, Oi) = rM , we have

hw1,...,wm
(x) =

1

(2πw2
j )

n
2
e
−

mini≤md(x,Oi)
2

2w2
j . (A80)
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Then from Equation (A78) we deduce that{
x : pgen(x) ≥

1

(2πM2)
n
2
e−

2n+3
√

2n
2

}
(A81)

⊂
{
mini≤md(x, Oi) ≤

1

2

√
nwj d̄min

}
=
⋃
i≤m

{
d(x, Oi) ≤

1

2

√
nwj d̄min

}
, (A82)

where d̄min is the dimension-normalized dmin, as defined in Assumption 4.4. As we discussed
previously in the third of Assumption 4.4, all Oi is contained by a cube Bi, consequently{
d(x, Oi) ≤ 1

2

√
nwj d̄min

}
⊂
{
d(x, Bi) ≤ 1

2

√
nwj d̄min

}
and to calculate the Lebesgue measure

of the geometric body obtained by expanding an n-dimensional cube Bi outward by a distance
1
2

√
nwj d̄min, we can utilize the Steiner formula (Schneider, 1993), which expresses the volume as

the sum of the expansion volumes of different-dimensional faces of the original cube, with each
expanded volume contribution being the product of the corresponding ball volume.

For each k ≤ n, the number of k-dimensional faces is
(
n
k

)
· 2n−k and each has a expansion volume

contribution bki · ωn−k(
1
2

√
nwj d̄min)

n−k( 12 )
n−k. Based on this, we conclude that

m

{
d(x, Bi) ≤

1

2

√
nwj d̄min

}
=

n∑
k=0

(
n

k

)
bki · ωn−k(

1

2

√
nwj d̄min)

n−k. (A83)

Comparing with the support of πreal, which contain some disjoint cubes centered at xi and the edge
length is no less than

√
3πebi, we can make the following analysis:

m
{
d(x, Oi) ≤ 1

2

√
nwj d̄min

}
(
√
3πebi)n

≤
π

n
2 (bi
√
n+ 1

2

√
nwj d̄min)

n

Γ(n2 + 1)(
√
3πebi)n

(A84)

∼ π
n
2

√
πn( n

2e )
n
2

(bi
√
n+ 1

2

√
nwj d̄min)

n

(
√
3πebi)n

(Stirling formula).

(A85)

With the low probability region assumption in Assumption 4.4, we have∫
Oi

fi ∗ gwi(x)dx (A86)

≤
∫
Bi

fi ∗ gwi
(x)dx (A87)

=

∫
Bi

∫
fi(y)gwi

(x− y)dydx (A88)

=

∫
fi(y)

∫
Bi

gwi
(x− y)dxdy (A89)

≤
∫

fi(y)

∫
Bi

gwi
(x− xi)dxdy (A90)

=

∫
Bi

gwi
(x− xi)dx (A91)

≤

(∫ bi

−bi

1

2πw2
i

e
− x2

2w2
i dx

)n

. (A92)

As mentioned previously we obtain that
∫
Oi

fi ∗ gwi(x)dx > αi leads to wi converging to zero
when n → ∞, which means M0 → ∞. Substituting this result into Equation (A85), we obtain:
m{d(x,Oi)≤ 1

2

√
nwj d̄min}

(
√
3πebi)n

converge to 0 as n→∞. Thus we can deduce that

lim
n→∞

m
{⋃

i≤m

{
d(x, Oi) ≤ 1

2

√
nwj d̄min

}}
m {supp(πreal)}

= 0. (A93)
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See πreal on Rn as taking finite pixels from a continuous function f ∈ C(S) representing a infinitely
precise real image. S is a compact subset of R2. The pixels form a finite ϵ-dense set Sn of the sepa-
rable space S. And S∞ =

⋃∞
n=1 Sn is a countable dense set of S. And all the continuous function on

S∞ is C(S).
⋃

n B(Rn) forms a semialgebra with a premeasure that generates B(C(S)). With the
Kolmogorov extension theorem (Tao, 2021), there is a unique distribution πreal

′ on B(C(S)) gener-
ated by all πreal

(n) on Rn. Additionally, considering that step functions could uniformly converge to
any f ∈ C(S). The finite n-pixel image space can also be seen as step functions on S: S =

⋃
i≤n Ui

is a decomposition of disjoint set, each Ui represent a pixel and m(Ui) =
m(S)
n . For any C(S) value

random variable X, there is a step function value random variable Xn =
∑

i≤n xiIUi
as X’s n-

dimensional projection and Xn converges to X almost surely in the function space equipped with
the uniform norm:

P (ω : ∥Xn(ω)−X(ω)∥ → 0) = 1. (A94)
From this, we derive the convergence of probability law :

PXn
w−→ PX , (A95)

which means πreal
(n) converge to πreal

′ in the Banach space of continuous and step functions on S
with uniform norm (Ikeda & Watanabe, 2014).

Since πreal
(n) is absolutely continuous about πgen till the infinite-dimensional case, δ′ =

πgen

(
G(z) : ∥z∥2 ≥ 2n+ 3

√
2n
)

= 1 − F (2n + 3
√
2n;n), where F (·;n) is the cumula-

tive distribution function of chi-square distribution χ2
n and 1 − F (2n + 3

√
2n;n) converges to

0. And the set Bn = {∥ z∥2 ≥ 2n + 3
√
2n} when placed in the function space means

∥fz∥L2 ≥ m(S)(2 + 3
√

2
n ), fz is the step function associated with z, as a result we obtain

Bn ⊂ Bn+1, so B∞ = limn→∞ Bn =
⋃∞

n=1 Bn and limn→∞ πreal
(n)(Bn) = πreal

′(B∞).
While π′

gen(B∞) = limn→∞ πgen

(
G(z) : ∥z∥2 ≥ 2n+ 3

√
2n
)
= 0, we derive that limn→∞ δ =

limn→∞ πreal

(
G(z) : ∥z∥2 ≥ 2n+ 3

√
2n
)
= limn→∞ πreal

(n)(Bn) = 0.

Using the same analytical approach, we can obtain the ratio of maximum and minimum preal on⋃
i≤m

{
d(x, Oi) ≤ 1

2

√
nwj d̄min

}
: C

C0
has some limit value. Combining with Equation (A93), we

arrive at the conclusion that

lim
n→∞

ϵ = lim
n→∞

πreal

⋃
i≤m

{
x : d(x, Oi) ≤

1

2

√
nwj d̄min

} (A96)

= lim
n→∞

πreal

(⋃
i≤m

{
x : d(x, Oi) ≤ 1

2

√
nwj d̄min

})
πreal(supp(πreal))

= 0. (A97)

E EXPERIMENTAL SETTINGS

E.1 EXPERIMENTS ON NUMERICAL CASES

Settings for experiments in Section 3.1 To verify that instability indeed exists in diffusion gen-
eration, we conduct experiments on a two-dimensional diffusion model with a mixture of Gaussians
as the generation distribution, consisting of three Gaussian components. To compute the intrinsic
instability coefficient and obtain the results shown in Figure 3(b), we utilize the finite difference to
estimate the intrinsic instability coefficient. The specific steps are as follows:

1. Uniformly sample initial points as on a 201×201 uniform grid of the area [−1, 1]× [−1, 1].
Denote each initial point as x[i, j], where i denotes the index along x-axis, and j denotes
the index along y-axis. Thus, x[i, j] = (−1 + i

100 ,−1 +
j

100 ) for i, j = 0, 1, . . . , 200.
2. Numerically solve the PF-ODE in Equation (1) using the RK45 solver from t = 1 to t = 0.

Each solution at t = 1, i.e., the generated sample, can be denoted as Ĝ(x[i, j]) for each
initial point x[i, j].

11
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3. Estimate the intrinsic instability coefficient as EG(x[i, j],ny) ≈ ∥Ĝ(x[i, j + 1]) −
Ĝ(x[i, j])∥/∥x[i, j + 1]− x[i, j]∥.

For the instability coefficient AF (x,n):=
∥F (x+n)−F (x)∥

∥n∥ in Figure 3(c), we use two points with
larger input difference. As for its lower bound, we estimate it by leveraging the minimum intrinsic
instability coefficient along the line segment connecting x and x + n. The specific steps are as
follows:

1. Sampling points along the perturbation path. We uniformly sample 10 points along the line
segment connecting x and x+n. Each point is represented as x+ a ·n, where a ∈ [0, 1].
We chose 10 points to balance computational efficiency with accuracy for the estimation.

2. Estimating intrinsic instability at sampled points. At each of these 10 sampled points,
we estimate the intrinsic instability coefficient EG(x + a · n,n) using a finite difference
approximation with a step size of 1

10∥n∥.
3. Calculating the lower bound. Let minEG denote the minimum value of EG(x + a · n,n)

obtained from these 10 points. Then, the estimated lower bound for AG is given by
2
√
2

π minEG.

It is important to note that this estimation method requires that the inner product of the Jacobian-
vector products, ⟨JF (x1)n, JF (x2)n⟩, remains non-negative for any two points x1,x2 along the
line segment connecting x and x+n. In our actual calculations for Figure Figure 3, we verified this
condition using the finite difference estimations of the Jacobian-vector products at the 10 sampled
points. Given the simplicity and smoothness of the Jacobian in the Figure 3 case, it was possible to
choose a sufficiently small n to satisfy this condition.

The aforementioned calculation steps are supported by the following proposition:
Proposition E.1. Suppose F : Rn → Rn is a continuously differentiable mapping. For x ∈ Rn, and
a non-zero perturbation n ∈ Rn, if ⟨JF (x+ an)n, JF (x+ bn)n⟩ ≥ 0 holds for any a, b ∈ [0, 1],
then we have

AF (x,n) ≥
2
√
2

π
minaEF (x+ an,n), (A98)

where A(·, ·) is defined in Equation (3), EF (·, ·) is defined in Equation (2).

This proposition essentially states that if the Jacobian-vector products along the perturbation path
maintain a consistent directional relationship (non-negative inner product), then the overall am-
plification (instability coefficient) is lower-bounded by the minimum local amplification (intrinsic
instability coefficient) along that path, scaled by a constant.

Settings for experiments in Section 3.2 Similarly, we adopt the two-dimensional mixture of
Gaussians as the generation distribution for these experiments. To obtain the correlation between
reconstruction error and instability coefficient as shown in Figure 4(b), we follow the experimental
procedure as below:

1. Uniformly sample initial data from [−1, 1]× [−1, 1].
2. Compute the reconstructed samples using the diffusion reconstruction process: first obtain

the inverted noise ẑ = Ĝ−1(x) for each initial data x, and then regenerate the data as
x̂ = Ĝ(ẑ).

3. Calculate the reconstruction errorR(x) for each sample.
4. Estimate the intrinsic instability coefficient by 1) applying a small perturbation noise n

to each inverted noise ẑ, and then 2) regenerating the data under perturbation as x̃ =

Ĝ(ẑ + n), and 3) finally resulting in the estimation of intrinsic instability coefficient as
EG(ẑ, n

∥n∥ ) ≈ ∥x̃− x̂∥/∥n∥.

5. Statistically analyze the correlation betweenR(x) and the intrinsic instability coefficient.

This procedure allows us to empirically assess the relationship between instability coefficients and
reconstruction inaccuracies, thereby validating the theoretical insights discussed in Section 3.

12
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E.2 EXPERIMENTS ON TEXT-TO-IMAGE DIFFUSION MODELS

Model and inference settings. Models used in our experiments include Stable Diffusion 3.5
Medium / Large (Esser et al., 2024) and FLUX.1-dev (Black Forest Labs, 2024), accessed via the
diffusers library (Dhariwal & Nichol, 2021) under the PyTorch framework. The inference is
conducted on NVIDIA A800 GPUs.

During inference, most of the default scheduler configuration parameters are adopted for the numer-
ical solution of the PF ODE. As for the ODE solver, we adopt Euler method following the default
setting, except for experiments in Section B.1 that the Heun ODE solver is used. Besides, the num-
ber of inference steps is adjusted to 500 steps for both diffusion inversion and re-generation. The
procedure to obtain the reconstruction error and the intrinsic instability coefficient is similar to that
in the numerical experiments. The adopted image dataset is introduced below.

Datasets. The experiments primarily utilize the MSCOCO2014 dataset (Lin et al., 2014). For
the experiments presented in Figure 4, we randomly select 100 images from the validation set of
MSCOCO2014 for diffusion reconstruction. As for experiments in Section B.1, we adopt the same
sampled images as in Figure 4.

F ADDITIONAL RECONSTRUCTED IMAGES

To visually demonstrate that images are often difficult to be accurately reconstructed, we present
failure cases of reconstruction by Stable Diffusion 3.5 (Esser et al., 2024). These images are selected
from Kodak24 dataset (Franzen, R, 1999) in Figure A2 and MS-COCO 2014 (Lin et al., 2014) in
Figure A3. For the reconstruction that includes both diffusion inversion and regeneration processes,
we follow the default scheduler setting in diffusers (von Platen et al., 2022) with null text prompt
and 100 inference steps for both inversion and regeneration.

G LICENSES OF USED DATASETS

We list all the licenses of used datasets, code and models in Table A1.

Table A1: Licenses of datasets, code and models used in the paper.

Name License

Datasets

MS-COCO2014 (Lin et al., 2014) Creative Commons Attribution 4.0 License
Kodak24 (Franzen, R, 1999) Free

Code

Diffusers (von Platen et al., 2022) Apache License 2.0

Models

Stable Diffusion 3.5 Medium (Esser et al., 2024) Stability AI Community License
Stable Diffusion 3.5 Large (Esser et al., 2024) Stability AI Community License
FLUX.1-Dev (Black Forest Labs, 2024) FLUX.1 [dev] Non-Commercial License

H THE USE OF LARGE LANGUAGE MODELS

In this paper, LLM was used solely to refine text, syntax, and enhance readability. It did not con-
tribute to anything related to the core ideas or scientific content (ideas, methods, theories, deriva-
tions, charts, results, and so on). In addition, all LLM-refined texts are manually double-checked for
hallucinations and misunderstanding.
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Figure A2: More failure cases of reconstruction on real images from Kodak24 dataset (Franzen, R,
1999) by Stable Diffusion 3.5 (Esser et al., 2024). In each row, the first and the third images are
original real images, another two images are reconstructed ones.
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Figure A3: More failure cases of reconstruction on real images from MS-COCO 2014 datadset (Lin
et al., 2014) by Stable Diffusion 3.5 (Esser et al., 2024). In each row, the first and the third images
are original real images, another two images are reconstructed ones.
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