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1 Introduction

Declarative querying is one of the main features behind the popularity of database systems. How-
ever, SQL can be executed only on structured datasets, leaving out of immediate reach information
expressed as unstructured text. Several technologies have been deployed to extract structured data
from unstructured text and to model such data in relations or triples (Zhang et al., 2017; Chiticariu
et al., 2018). While these methods have been studied for more than 20 years, creating well-formed
structured data from text is still time consuming and error prone.

While declarative querying of text is a big challenge, there has recently been progress in question
answering (QA) over text (Rogers et al., 2023). In this setting, a question in natural language (NL)
is answered by gathering information from a corpus of text documents. Large Language Models
(LLMs) (Radford et al., 2018, 2019; Brown et al., 2020) can answer complex questions in a closed-
book fashion (Roberts et al., 2020) (example (2) in Figure 1). While it has been shown that such
models store high quality factual information (Petroni et al., 2019; Lewis et al., 2020), they are not
trained to answer complex SQL queries and may fail short with such input.

SELECT c.cityName, cm.birthDate
FROM city c, cityMayor cm
WHERE c.major = cm.name,

cm.electionYear = 2019

List names of the cities and
mayor birth date for the cities
where the current mayor has
been in charge since 2019.

Break it down into
simple sub-tasks LLM

- New York City: Bill de Blasio,
born May 8, 1961
- Chicago: Lori Lightfoot, born
August 4, 1962
[5 more lines]

Querying with SQL Question answering with NL

cityName birthDate
Chicago August 4 1962
Tampa December 7 1960

[5 more rows]

LLM

(1) (2)GALOIS

Figure 1: Querying a LLM with SQL is different from QA.
GALOIS executes the query, and obtains relations, by re-
trieving data from a LLM (1). The corresponding QA task
consumes and produces NL text (2).

We argue that query pre-trained LLMs
with SQL scripts is beneficial to over-
come the problem of information ex-
traction from text and enables data ap-
plications on top of LLMs. As de-
picted in example (1) in Figure 1, a
pre-trained LLM can act as the data
storage containing the information to
answer a declarative query. Our so-
lution preserves the characteristics of
SQL when executed over this new
source of data: (i) queries are written
in arbitrary SQL over a user defined
relational schema, enabling data appli-
cation to be executed on LLM’s fac-
tual data; (ii) answers are correct and
complete w.r.t. the information stored
in the LLM. This last point requires
the correct execution of the queries
and does not assume that LLMs always return perfect information. While LLMs still make fac-
tual mistakes, this work shows that it is already possible to collect tuples from them with promising
results. With the ongoing efforts in LLMs, there is evidence that their factuality and coverage is
improving (Elazar et al., 2021; Tam et al., 2022).

Being able to SQL query LLMs is appealing, but it is not clear on which architecture a solution
should pivot on. Looking at the architectures for LLMs and DBMSs, there are different paths to
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explore. One is LLM-first, where external information (including structured data) is accessed by
the LLM (Borgeaud et al., 2022; Peng et al., 2023). While this approach is gaining visibility with
Retrieval Augmented Generation, the limited context size in LLMs does not allow yet to execute
queries that require a large number of tuples as input, such as aggregate queries over thousands of
rows. The alternative path is DB-first, where LLMs are used as a component in a traditional DB
query processing architecture, as we do in this work. Our core idea is that the query plan is a natural
decomposition of the (possibly complex) process to obtain the result, in analogy with the approaches
in NLP showing that breaking a complex task in a chain of thoughts is key to get the best results (Wei
et al., 2022; Khattab et al., 2022). Our contributions are summarized in the following points:

(1) We introduce the problem of querying with SQL existing pre-trained LLMs. We introduce
GALOIS, a DB-first prototype that executes SPJA queries under assumptions that enable a large
class of data applications (code available at https://gitlab.eurecom.fr/saeedm1/galois).

(2) The logical query plan breaks down the complex task into simpler steps that can be handled
effectively by the LLM. Physical operators in the query plan are implemented as textual prompts for
LLMs. Such prompts are generated from the input schema and the logical operators.

(3) We show that GALOIS’s results for 46 queries on top of popular LLMs are (i) comparable to those
obtained by executing the same queries on DBMS and (ii) better than those obtained by manually
rewriting the queries (and parsing the results) in NL for QA over the same LLM.

Background. Our effort is different from the problem of semantic parsing, i.e., the task of trans-
lating NL questions into SQL (Yu et al., 2018; Katsogiannis-Meimarakis and Koutrika, 2021). Our
goal is also different from querying an existing relational database to answer a NL question (Herzig
et al., 2020; Papicchio et al., 2023). We retrieve data from the LLM with SQL queries, with the
traditional semantics and with the output expressed in the relational model, as if the query were ex-
ecuted on a DBMS. While some of these facts can be retrieved with QA, (i) the SQL query must be
rewritten as an equivalent question in NL, which is not practical for complex scripts, (ii) the textual
result must be parsed into a relation, (iii) current LLMs in some cases fail in answering complex
queries expressed as NL. Indeed, QA systems are optimized for answering questions with a text,
while SQL queries return results in the form of tuples, possibly with complex operations to combine
intermediate values, such as aggregates, where LLMs fail short (Ribeiro et al., 2020). To overcome
some of these limits, it has recently been shown that a series of intermediate reasoning steps (“chain
of thought” and question decomposition (Wolfson et al., 2020)) improve LLMs’ ability in complex
tasks (Wei et al., 2022).

2 Design Considerations

Our goal is to execute SQL query over the data stored into LLMs. When we look at these models
from a DB perspective, they have extensive coverage of facts from textual sources. However, LLMs
have their shortcomings. We delve into three issues that have impacted the design of GALOIS.

1. Tuples and Keys. LLMs do not have a concept of schema or tuple, but they model existing
relationships between entities (“Rome is located in Italy”) or between entities and their properties
(“Rome has 3M residents”). However, a query asking for city names may assume that a name
identifies a city, which is not the case in reality, e.g., a Rome city in Georgia, USA. This problem
is solved with keys defined with multiple attributes; a composite key defined over (name, state,
country) distinguishes the Rome in Italy from the one in Georgia. In GALOIS, we assume that every
relation in the query has a key and that the key is expressed with one attribute, e.g., its name.

2. Schema Ambiguity. Similarly to the issue with entities, words, including attribute labels, can
have multiple meanings. These alternatives are represented differently in the LLMs. In our setting,
a given attribute label in the query can be mapped to multiple “real world” attributes in the LLM,
e.g., size for a city can refer to population or urban area (Veltri et al., 2022). In this work, we assume
that meaningful labels for attributes and relations are used in the queries.

3. Factual Knowledge in LLMs. LLMs do not know what they know. The model returns the
next token in a stream. Such token may be based on either reliable acquired knowledge, or it may
be a guess. For this reason, a query result obtained LLMs is not 100% reliable. However, with
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GALOIS, we experimentally demonstrate that it is possible to extract factual information from LLMs
to answers SQL queries. Moreover, new models keep increasing the factuality of their answers.

3 Overview

The high-level architecture of GALOIS is presented in Figure 1. We assume that the schema (but
no instances) is provided together with the query. The system processes SQL queries over data
stored in a pre-trained LLM. This design enables developers to implement their data applications in
a conventional manner, as the complexities of using a LLM are encapsulated within GALOIS.

Figure 2: Logical plan for query q’. Base relations are accessed
by retrieving sets of tuples (C, P) with one key attribute (name)
from the LLM.

We use LLMs to implement a
set of specialized physical oper-
ators in a traditional query plan,
as in Figure 2. As tuples are
not directly available, we imple-
ment the access to the base re-
lations (leaf nodes) with the re-
trieval of the key attribute val-
ues. We then retrieve the other
attributes as we go across the
plan. For example, if the se-
lection operator is defined on at-
tribute A different from the key,
the corresponding implementa-
tion is a prompt that filters ev-
ery key attribute based on the se-
lection condition, e.g., ”Has city
c.name more than 1M popula-
tion?”, where c.name iterates over the set of key values. A prompt is obtained for each operator
by combining a set of operator-specific prompt templates with the labels/selection conditions in the
given SQL query. If a join or a projection involve an attribute that has not been collected for the
tuple, this is retrieved with a special node injected right before the operation. For example, if a
join involves an attribute “currentMayor”, the corresponding attribute values are retrieved with a
prompt that collects it for every key. Once the tuples are completed, regular operators, implemented
in Python in our prototype, are executed on those, e.g., joins and aggregates.

On one hand, the query plan acts as a chain of thought decomposition of the original task, i.e., the
plan spells outs intermediate steps. On the other hand, the operators that manipulate data fill up the
limitations of LLMs, e.g., in computing average values or comparing quantities (Lewkowycz et al.,
2022). Together, these two features make the LLM able to execute complex queries.

Two critical steps enable the practical use of GALOIS. First, as relations can be large, we iterate with
the a prompt until we stop getting new results. A second issue is the cleaning of the data from the
LLM. For example, numerical data can be retrieved in different formats. We normalize every string
expressing a numerical value (say, 1k) into a number (1000). The enforcing of type and domain
constraints is a simple but crucial step to limit the incorrect output.

4 Experiments

GALOIS is written in Python and all LLMs have been executed locally with the exception of Chat-
GPT, for which we used the API. Query plans are obtained from DuckDB.

Dataset. Spider is a Text2SQL dataset with 200 databases, each with a set of SQL queries (Yu et al.,
2018). For each query, it provides its paraphrase as a NL question. We focus on a subset of 46
queries for which we expect to obtain answers from an existing LLM. More precisely, we leave out
queries that are specific to the relational dataset provided by Spider and use in our evaluation only
queries about generic topics, such as world geography and airports.

Setup. We test four LLMs. Flan-T5-large (Flan): T5 fine-tuned on datasets described via instruc-
tions (783M parameters). TK-instruct-large (TK): T5 with instructions and few-shot with positive
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Flan TK GPT-3 ChatGPT
Difference as % of RD size -47.4 -43.7 +1.0 -19.5

Table 1: Average difference in the cardinality of GALOIS’s output relations (RM ) w.r.t. the ground
truth results |RD| for the 46 Spider queries. Closer to 0 is better.

All Selections Aggregates Joins
only

RM (SQL Queries) 50 80 29 0
TM (NL Questions) 44 71 20 8

Table 2: Cell value matches (%) between the result returned by a method and the same query exe-
cuted on the ground truth data (RD) for the 46 Spider queries. Averaged results for ChatGPT.

and negative examples (783M parameters). InstructGPT-3 (GPT-3): fine-tuned GPT-3 using in-
structions from humans (Ouyang et al., 2022) (175B parameters). GPT-3.5-turbo (ChatGPT): chat
model in the OpenAI API (175B parameters). We construct prompts appropriately for each model.
For a given LLM M and a SQL query q with its Spider relation D and the corresponding NL ques-
tion t, we collect three results: (a) relation RM from GALOIS executing q over M , (b) relation RD

by executing q over D, (c) text TM by asking t over M 1. Only (b) uses the relations from Spider,
(a) and (c) get the data from the LLM.

Evaluation. We analyze the results across two dimensions. (1) Cardinality. We measure to which
extent GALOIS returns correct results in terms of number of tuples. As NL questions always return
text paragraphs, we cannot include their results in this analysis. For GALOIS, all output relations
have the expected schema, i.e., every RM has the same schema as every RD. However, in terms of
number of tuples there are differences. We compute the ratio of the sizes as f = |2∗RD|

|RD+RM | , where
the interval for f is [0,2] and best result occurs when RD == RM (f=1). Table 1 reports the
difference as percentage (averaged over all queries with non-empty results) with the formula 1-f .
Results show that smaller models do worse and miss lots of result rows, up to 47.4% w.r.t. the size of
results from the SQL execution RD. For GPT models, almost all queries return a number of tuples
close to RD. Most differences are explainable with errors in the results of the prompts across the
query plan execution, as we discuss next.

(2) Content. Second, we measure the quality of the results by comparing the content of each cell
value after manually mapping tuples between RD on one side (ground truth) and (RM , TM ) on the
other. As TM contains NL text, we manually postprocess them to extract the values as records. We
consider a numerical value in (RM , TM ) as correct if the relative error w.r.t. RD is less than 5%. As
this analysis requires to manually verify every result, we conduct it only for one LLM. Results in
Table 2 show that GALOIS executes the queries on ChatGPT with a better average accuracy in the
results compared to the same queries expressed as questions in NL. We believe this is a promising
result, as one can think that the results coming from the NL QA task are the upper bound for what the
LLM knows. For the easiest subclass of queries, selection-only, the query approach returns correct
values in 80% of the cases. Joins are the most problematic, as the equality test fails due to different
formats of the same text, e.g., an attempt to join the country code “IT” with “ITA” for entity Italy.

5 Conclusion

This work shows how GALOIS integrates a LLM into a DBMS through SQL to create a novel
query execution environment. This approach could lead to new applications, by unlocking infor-
mation from unstructured text data, and foster collaboration between DB and NLP communities.
The research leaves open many questions on logical and physical query optimization. For logical
planning, future work can explore combining operators over the LLM to reduce the number of calls
to the model. In the physical optimization it would be valuable to explore the automatic generation
of more precise textual prompts, for example using data samples (Urban et al., 2023) or pre-defined
embeddings for attribute types (Saeed and Papotti, 2022).

1In the full paper (Saeed et al., 2024), we report also a baseline that uses chain-of-thought reasoning; its
results are better than simple prompting but lower than those from GALOIS.
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