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Abstract. Mixed-integer nonlinear programming (MINLP) is a model-
ing paradigm that combines discrete and continuous variables to model
and solve a wide range of optimization problems. Its flexibility is espe-
cially useful for many real-world decision problems in engineering, opera-
tions, and finance, as these problems often involve discrete decisions and
nonlinear system behaviors [24]. Despite the ease of modeling, MINLP
problems are challenging to solve as monolithic problems due to the com-
binatorial complexity of discrete variables and nonlinearities; however,
they can be made manageable by adopting a decomposition strategy. Ad-
ditionally, recent advances in computational hardware create opportuni-
ties for addressing different parts of the problem more efficiently. Discrete
subproblems can benefit from potentially quantum Ising solvers, while
simulators and nonlinear solvers offer powerful tools for handling nonlin-
earities [33]. To fully exploit these emerging computational capabilities,
we propose an integrated approach that decomposes MINLP problems
into discrete and continuous components and solves each subproblem us-
ing the most suitable computational method [36]. In this work, two case
studies are presented: an illustrative example involving the selection of
an ionic liquid and its process design, and a more complex problem of
drug substance manufacturing process optimization. The discrete sub-
problem in each case is formulated as an integer programming problem
and solved using a commercial classical optimization solver, Gurobi. For
comparative analysis, the same problem is reformulated as a quadratic
unconstrained binary optimization and solved with simulated annealing,
quantum annealing (QA), and entropy quantum computing (EQC). For
the quantum methods, two different computing systems are used: D-
Wave’s specialized quantum annealer for QA, and Quantum Computing
Incorporated (QCI)’s Dirac-1 quantum computer for EQC. The continu-
ous subproblem is solved using Gurobi and a simulator-based optimiza-
tion approach, respectively. In both examples, in terms of computational
efficiency, Gurobi achieved the shortest runtime, whereas EQC took the
longest, followed by QA and SA, in reaching feasible and optimal so-
lutions. The heuristic methods demonstrated advantages in solution di-
versity compared to Gurobi’s global search approach, identifying all or
most of the feasible solutions in a single run and better capturing a broad
solution space in a single run, while Gurobi provides global optimality
guarantee and speed. This comparative analysis highlights the distinct
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strengths of each method and underscores the potential of this heteroge-
neous computing approach, which enables the use of different methods
to address practical optimization problems.

Keywords: process design - optimization - heterogeneous computing -
quantum computing - quantum annealing

1 Introduction

Mixed-Integer Nonlinear Programming (MINLP) is an optimization framework
that combines both discrete (integer or binary) and continuous decision vari-
ables, incorporating nonlinear relationships in the objective function and/or
constraints, thereby enabling the modeling and solution of complex, real-world
problems. Many applications, such as process design, operations research, and
finance, involve decision-making problems that can be effectively modeled as
MINLP problems [424]. One of the main challenges is that MINLP problems
are complex to solve. In fact, the complexity of many practical problems are
non-deterministic polynomial-time (NP) hard, and finding a good or even feasi-
ble solution can be challenging [28]. Various practical methods have been derived
and solvers have advanced to address this complexity, but the problems and their
scales that can be solved are still limited and smaller than what can be modeled
[24]. One of the most common approaches to solving MINLP problems is to de-
compose the problem into smaller subproblems, commonly composed of discrete
and continuous parts. The discrete subproblem can be solved to find candidate
values for the integer variables, which can then be fixed, and the remaining
problem can be solved as a nonlinear program (NLP) or passed to a simulator
for evaluation. This approach allows for the use of specialized solvers that are
designed to handle discrete variables and nonlinearities separately, thus making
the overall problem more tractable. However, solving combinatorial optimization
problems remains a challenge, as many of them are NP hard problems [12].

Ising solvers are being discussed as a potential candidate to address these
problems, as these combinatorial problems can be modeled as Ising models and
be solved with polynomial overhead [30]. Ising models, first developed to describe
magnetism, can be used to describe the energy of physical systems through a
Hamiltonian function:

H = Z h102+ Z JijUin (1)

1€V (G) (ij)eEE(G)

where o; € {—1,41} are binary spin variables, indexed by the vertices V(G)
of graph G, and the pairwise interactions are defined by the edges E(G) of the
graph, where h; and J;; are the corresponding coefficients [56]. Ising solvers are
specialized hardware that minimize this energy function to find or approximate
the ground states of the system [33].

Quadratic Unconstrained Binary Optimization (QUBO) is a mathematical
formulation that can represent a wide range of combinatorial optimization prob-
lems. The Ising model can easily be mapped into a quadratic unconstrained
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binary optimization (QUBO) and vice versa with a linear transformation of the
spin variables ¢ into binary variables x.

min x'Qx st. x€{0,1}" (2)

where Q is an n-by-n square, symmetric matrix of coefficients, and x is a set of
binary variables. The Ising Hamiltonian can be expressed in the QUBO form with
a simple change of variables o; = 2z; — 1. QUBOs are particularly useful because
many constrained integer programming (IP) problems can be reformulated into
QUBOs. This is done by incorporating the constraints into the objective function
as quadratic penalty terms to penalize infeasibility rather than imposing the
constraints directly. This reformulation allows for the use of Ising solvers that
are designed to solve Ising or QUBO problems [30/42].

A branch-and-bound (B&B) method is a classical deterministic approach to
solving discrete optimization problems, which systematically explores the solu-
tion space by following a search tree and eliminating infeasible branches. Al-
though B&B solver is not specifically designed for Ising or QUBO problems, it
can also be used to solve Ising problems to global optimality [39]. In contrast
to the classical solvers that strive to find the global optimum deterministically,
Ising solvers are heuristic and probabilistic in nature. They report success prob-
ability, or likelihood of finding the optimal solution in a single run, without the
global optimality guarantee Simulated annealing (SA) is a classical method that
has traditionally been used to solve Ising or QUBO problems. In recent years,
quantum methods such as quantum annealing (QA) and entropy quantum com-
puting (EQC) have emerged as promising alternatives. The annealing techniques
emulate the annealing process of metal thermal processing to attain the lowest
lattice energy state; the analogy is that the optimal solution in a minimization
optimization is found through a specific algorithmic treatment [22]. Simulated
annealing (SA) uses random sampling to search the solution space for the op-
timal solution. It makes probabilistic decisions with the aim of escaping local
minima and finding the global minimum energy [19]. Quantum annealing (QA)
leverages quantum effects and quantum adiabatic evolution [I6] to aim at finding
the ground state of an optimization problem encoded in a Hamiltonian function
[38]. Another quantum method is entropy quantum computing (EQC), which ex-
ploits the inherent noise and loss of quantum systems to promote the evolution of
the lower-energy states of the Hamiltonian while suppressing the higher-energy
states [37]. Emergence of these solvers and other alternative computing hardware
offers new opportunities to tackle combinatorial problems, and recent advances
in these hardware have made enough progress to warrant exploration of their
potential in practical applications.

The main discussion in this work pertains to process superstructure optimiza-
tion, yet the proposed framework and approach are not limited to this domain
and generalizable to other mixed-integer programming (MIP) problems with de-
composable structure. In process design and optimization, Ising solvers can be
particularly useful for addressing the combinatorial aspects of design problems,
such as equipment selection, process configuration, and operational scheduling.
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A process synthesis optimization problem can be written as a MIP with an ob-
jective function subject to equality and inequality constraints, as shown below
[32/41).

min f(z,y) st. h(z,y) =0, g(z,y)<0, zeR"CX, yeZ"CY (3)
@y

where x represents continuous variables (e.g., flow rate), y represents integer
variables (e.g., unit selection). f represents the objective function, which is the
performance metric of the optimization problem (e.g., cost). The model equa-
tions h describe the interaction of state variables with system physics (e.g.,
mass balances), and the inequalities g describe specifications and operational
or safety constraints (e.g., critical quality attribute requirements). In the case
of maximization, the negative value of the corresponding subject of interest
can be minimized (e.g., the negative value of the production mass). The set of
constraints define the feasible space of the problem, which is represented alge-
braically by h and g. In cases where derivation of such algebraic expressions is
difficult, simulation tools can be used to represent the process in a black-box
optimization approach [9].

Using a MINLP for end-to-end optimization (E2EQO) has been actively ex-
plored in relatively well-behaved system applications such as steady-state pro-
cesses observed in the chemical industry [8I34/13]. However, in systems that
require high modeling fidelity and exhibit complex behaviors, such as pharma-
ceutical processes, the mathematical programming approach to optimization has
been limited in its applicability. The derivation of equation-oriented optimization
models for these systems is complex, and simulation-based optimization requires
an iterative process that can result in a non-trivial computational burden [3].
However, efforts have been made to integrate process synthesis optimization with
overall process dynamics optimization. In Reference [3], the authors propose a
rule-based and optimization-driven decision framework for optimizing flowsheets
in a DS manufacturing process. The methodology leverages heuristic rules, such
as regulatory considerations and knowledge-based rules, as well as scenario anal-
ysis, to generate a smaller search space. This framework efficiently narrows down
the search space, thus evaluating alternative configurations more effectively over-
all. However, the derivation of these rules is susceptible to user bias and lacks
a quantitative evaluation of the alternative configurations. In other words, this
framework does not directly optimize the configuration selection itself.

To address the complexity of discreteness and desire for high fidelity in pro-
cess design problems, we explore a heterogeneous computing approach that lever-
ages the advantages of Ising form and use of involved optimization algorithms
like black-box optimization. Though decomposition, we can isolate the discrete
part of the problem to the Ising part of the formulation, offloading a source
of hardness and better capturing the combinatorial part of the problem. Fur-
thermore, we can still maintain high fidelity and solve the nonlinear part of the
problem using black-box optimization approach. In this work, we investigate
this approach and the application of the Ising solvers through both classical and
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quantum algorithms to solve combinatorial problems, with a focus on process
synthesis and practical decision-making.

1.1 Contributions of this work
The contributions of this work are as follows:

— propose a framework for integrating Ising solvers to solution algorithm of
complex MINLP problems,

— application case studies of using Ising solvers, such as simulated annealing
(SA), quantum annealing (QA), and entropy quantum computing (EQC), to
solve discrete subproblems in process design problems,

— exploration of the use of quantum computing methods, such as quantum
annealing (QA) and entropy quantum computing (EQC), in process design
problems,

— provide open-source code for the case studies to facilitate reproducibility and
further research in this aredf]

2 Methods

This section describes the methods used, including the formulation of discrete
subproblems and the solution approaches employed. The continuous subprob-
lems are not discussed in detail, as they are not the focus of this work, but
they are solved using a black-box optimization approach with a simulator or an
optimization solver. Two case studies are explored in this work: an illustrative
example of ionic liquid selection and process configuration and a more complex
drug substance manufacturing process optimization problem. B&B, SA; QA, and
EQC are used to solve the discrete subproblem in both case studies.

2.1 Discrete Subproblem Formulation and Solution Methods

As many discrete variables in decision-making MINLP problems are binary (e.g.,
unit selection), the discrete subproblem is formulated as an integer programming
(IP) problem with binary variables in this work. The formulation is implemented
using JuMP|29] in Julia or using Pyomo[7] in Python programming language
and solved with Gurobi[I8]. To find all feasible solutions, an iterative process is
implemented by adding a "no-good cut" to eliminate the current solution. In each
iteration n, a "no-good cut" constraint is added to eliminate previous solution as
infeasible as -, |, (1—y)+ >, ,—oy=1 forn={12... ,nna — 1}
with 7., = N or the number of possible alternatives. Each iteration in this
approach represents solving of the combinatorial part of the MINLP, fixing of
the discrete variables, and solving the resulting NLP subproblem for evaluation.

For other Ising solvers, the IP subproblem is reformulated into a QUBO
problem through an open-source Julia package, QUBO. j1 [42], and solved using

! Thttps://github.com /SECQUOIA /pd_ising
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simulated annealing, quantum annealing, and entropy quantum computing. The
simulated annealing (SA) method was implemented using the dwave-neal pack-
age [15] with default parameters, consisting of 1000 reads and 1000 sweeps. For
quantum annealing (QA), the D-Wave Advantage 4.1 quantum processing unit
(QPU) [14] was used with the default annealing schedule and a sample anneal
time of 20 ps, with 1000 reads [6]. For entropy quantum computing (EQC), the
QCI Dirac-1 device was used with 100 samples per run, which was the maximum
number allowed [25126].

For comparison in computation time, a performance metric called time-to-
target (TTT) is introduced.

log(1 — s)

TTT, =7 —
IOg(l - ptarget)

(4)

where TTT, is the time required to achieve success with probability s (typically
0.99) in reaching the target. 7 is the execution time of the algorithm. piarges is
the probability of reaching the target solution. If pyarget = 1, which applies for
deterministic solvers, then TTT; = 7 [3I]. Time to optimality and finding all
feasible solutions are considered as targets in this work. Targeting optimality
serves as a benchmark for the performance of the methods, while targeting all
feasible solutions provides a measure of the solution diversity and completeness
of the search space. From a decision-making perspective, finding all feasible
solutions is relevant, if not crucial, as it allows for a comprehensive understanding
of the alternatives and enables better-informed decisions.

The computational setup used in this work runs on a Linux Ubuntu 22.04
operating system and features an Intel® i7-1365U processor with a base fre-
quency of 1.80 GHz and 32.0 GB of RAM. The environment supports both
Python 3.10.12 and Julia 1.11. Quantum computing resources include the D-
Wave Advantage 4.1 quantum annealer and the QCI Dirac-1 entropy-based quan-
tum computer. Optimization and modeling tasks were performed using the fol-
lowing packages: JuMP v1.26.0, Pyomo v6.7.3, ToQUBO. j1 v0.1.10, PharmaPy v0.4.0,
and pyNOMAD v4.4.0. Solver and hardware interfaces include Gurobi (v11.0, v12.0.2),
dwave-neal v0.6.0, and qci_client v4.5.0.

2.2 Quadratic Unconstrained Binary Optimization (QUBO)
Reformulation

A constrained IP problem with binary variables y can be represented as Eq. (5);
inequality constraints (e.g., g in Eq. ) can be written into Ay = b form by
adding slack variables to the expressions [17].

min ¢’y st. Ay=b ye{0,1}" (5)
y

where c is the cost vector, A is the constraint matrix, and b is the right-hand
side vector.
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These problems can be reformulated into a QUBO model by including quadratic
infeasibility penalties in the objective function. The constraints Ay = b are
moved into the objective function with a penalty cost (p) as:

min 'y +p(Ay —b)" (Ay —b) (6)

The penalty terms are: p(Ay —b)? (Ay—b) = p(yT(ATA)y—2(ATb)y+bThb).
Taking advantage of y? = y for y € {0, 1}, the linear terms (¢, ATb) appear on
the diagonal of the matrix @ [I7].
The general form of a QUBO problem can be written as described in the
following:
mzin z'Qz st. zc{0,1}" (7)

where z is a set of binary variables; Q matrix is an n-by-n square, symmetric
matrix of coefficients [23].

2.3 Illustrative example: discrete subproblem formulation

The original problem is (P8) in Reference [20]; its formulation is included in
the Supplementary section for completeness. This case study presents an opti-
mization problem involving the synthesis of a reactor-separator network with
two reactors and three separator options while simultaneously selecting an ionic
pair from a list of two cations and two anions for the process. There are a to-
tal of 84 possible combinations of the discrete choices. When formulated as a
single monolithic problem, it is a MINLP with a nonlinear objective function
and binary and continuous variables. This problem was decomposed into two
subproblems: 1) the discrete network synthesis and ion pair selection problem,
and 2) the continuous flow optimization at fixed discrete variables. The discrete
subproblem was formulated as an integer program (IP) with the objective func-
tion to minimize the total cost and binary variables for cation (z.) and anion
(2a) selection, flow (f; ;) and unit selection (y,/,) as follows:

. fixed oper oper
min W +2 > P yran +23 0 > > Py Bec,aWe,a (8)
ke TER s€ESceCacA
st fore,r = Yr Vr e R 9)
fs,sink = Ys Vs €S (10)
S Furer — Forern ooy = 1 an
TER
S e 21 (12)
sES
fr,s . fsrc,r = fr,sa fr,s . fs,sink = fr,s vr € Rv seS (13)
(1_fsrc.7‘)+zf7‘,s >1 vreR (14)
sES
(1= fosm) + D frs =1  Vs€S (15)
rTER
ZZC:L Zza:l (16)
ceC a€A

We,a = Z¢ * Za Vee C,ae A (17)
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where R is the set of reactors, S is the set of separators, and R,S C K are the
sets of units in the overall process. C is the set of cations, and A is the set of

anions. Additionally, cf*¢d is the fixed cost of unit k, ci?:r is the operating cost

of reactor or separator r/s, «, is the conversion factor of reactor r, and S, is
the separation factor of separator s for cation ¢ and anion a. Constraints for the
subproblem are formulated with domain knowledge and logic-based statements;
for example, flow conservation such as if there is flow into a reactor, there
must be flow into at least one of the separators is enforced through a constraint,
(1= foresr)+ Y. frs > 1, as shown in Eq. . Eqs. @D and ensure that the
flow from the source to the reactor and from the separator to the sink is equal
to the binary variable of unit selection, y, and ys, respectively. Constraints
and ensure that there is at least one flow from the source to the reactor and
from the separator to the sink, and constraints — ensure that the flow
conservation is satisfied at each unit. Lastly, a cation and an anion are selected
using Eq. , and the product of the two selections is represented by a binary
variable w. , in Eq. .

2.4 Simulation-based optimization problem example: discrete
subproblem formulation

This case study presents a simulation-based optimization problem of a drug sub-
stance (DS) manufacturing process and serves as a case study of a more complex
problem than the illustrative example. The original problem is adopted from [11]
and describes a process of synthesis of a general drug substance, consisting of
reaction, crystallization, and separation steps with multiple operating options
for each step. The process configuration features two reactors, an evaporator for
the solvent switch step in preparation for the crystallization step, and a filtration
step to separate the solid active pharmaceutical ingredient (API). Three reac-
tor types are considered for each reaction unit: a plug-flow reactor (PFR), and
two continuously stirred tank reactors (CSTR) with different operating modes
(continuous and batch). For evaporation, only the batch process is considered.
Four options are considered for the crystallization step: one option is a batch
crystallizer, and the other three options are continuous mixed suspension mixed
product removal units (MSMPR) in series, ranging from one to three units. For
each step, only one option is selected.

The problem is decomposed into two subproblems: a discrete configuration
selection problem and a simulation-based operational optimization problem. A
superstructure of the process is shown in Figure [I] In total, there are 36 alter-
native configurations.

The objective function of the configuration design subproblem is to minimize
the total capital expense, and the objective function for the simulation-based
subproblem is to maximize the production rate and crystal size. The simulation-
based optimization framework has been adopted from the literature [2J3127], and
is not discussed in detail; the primary focus of this work is the discrete problem
and the application of the heterogeneous computing framework.
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Fig. 1. A superstructure of a drug substance manufacturing process (top) and a repre-
sentative flow diagram for the main problem (bottom); dotted and solid lines indicate
batch and continuous feed, respectively.

Similarly to the illustrative example, the discrete problem is formulated as an
integer program and as a QUBO problem, and solved using Gurobi v.11.00 and
the aforementioned heuristic methods (SA, QA, EQC) and the corresponding
parameters, respectively. For the continuous subproblem, the configuration is
fixed based on the solution of the discrete subproblem, and an open-package
simulator, PharmaPy[10], is used to simulate the process and optimize the flow
rates of the process, using pyNOMAD[I] as a black-box optimizer. The objective of
the simulation-based framework is to maximize the production rate and crystal
size.

Two sets of variables are defined for optimization of the process configura-
tion: F = {foo, fo1,---, f18}, representing the binary flow variables, and L =
{Yfors Yfoss - Y17 ;> Lepresenting the binary variables associated with the unit
operation through which the corresponding flows pass, as illustrated in Figure [}
For a system with parallel units or flows at disjunctions, these two variables (f
and y) may need to be treated separately. In this case study, each disjunction
represents a discrete choice of operating mode rather than a flow split; there-
fore, a single binary variable, f, is used to represent both flow and unit selection
in this case. The objective function of the subproblem is to minimize the total
capital expense, C. The unit capital cost (¢;) can be estimated in various ways,
such as using previously calculated data. In cases where data are unavailable,
theory-based calculations or approximations suffice; methods such as the bare



10 Y. Park and D. Bernal Neira

module method can be used to estimate the associated expense [40]. For flows
that do not activate any unit, the associated cost is set to zero.
The formulation of the discrete subproblem is as follows:

min C = ¢ fi 18

i ; f (18)

s.t. Z fi= Z fr V1 (for all units) (19)
j inflow to unit { k outflow to unit !

g(f) <0 fi€{0,1} Vi (for all flows) (20)

Three types of constraints are declared: flow conservation at each node ,
single-unit selection at each disjunction, and logic-based constraints. At each dis-
junction, only one selection of unit or flow rule is enforced through an inequality
constraint such as (fo1 + fo2 + fos < 1). Logic-based constraints, such as when
a continuous unit is followed by a batch process, a holding tank must be placed
in between these two units, are incorporated into the optimization framework as
inequality constraints (g(f) < 0). For example, (1 — fo1) + (1 — f10) + fos > 1,
this equation indicates that if the first reactor is PFR (fp; = 1) and the second
reactor is a batch reactor (fip = 1), then the holding tank must be installed
(fos = 1). The full formulation of the discrete subproblem is included in the
Supplementary section (Section ??) for completeness.

3 Results

3.1 Illustrative example: Ionic Liquid Selection and Configuration
of Reactor-Separator Network (IL)

The results of the discrete subproblems are presented in this section, and the
detailed formulation and approach are described in Section [2.3

The bar graph results presented in Figure [2| show the energy or probability of
solutions found in a single run of the heuristic methods in the y-axis, ranked by
the discrete problem’s objective function value on the x-axis. The plot illustrates
that out of 84 possible configurations identified by Gurobi, SA was able to find all
84 feasible solutions in a single run, while QA and EQC found 66 and 30 feasible
solutions, respectively. All methods were able to find the optimal solution.

The algorithm execution time values along with the calculated time-to-target
(TTT) metrics are summarized in Table[3.1] Overall, Gurobi achieved the fastest
computation time for both finding the optimal solution and identifying all fea-
sible solutions, followed by SA, QA, and EQC.

These results highlight the differences among these methods. The heuristic
methods can explore all feasible solutions in a single run, but require longer
times to do so. In contrast, IP quickly solves for optimality, albeit with multiple
iterations corresponding to the problem size, to discover all feasible solutions.

The optimal discrete choices from the original MINLP were found in the 72nd
iteration solution of Gurobi for the discrete subproblem. This occurred from the
misalignment of the objective functions in the two problems. Although the ob-
jective function of the discrete subproblem was formulated to approximate that
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of the original problem, it could not account for the complexities involved with
the continuous variables in the original problem. As a result, the subproblem
solutions did not replicate the exact ranking of solutions in the iterations. Nev-
ertheless, the integer program formulation of the discrete subproblem allowed
the use of the discrete solvers and other optimization techniques.

--- Gurobi
simulated Annealing
101 Quantum Annealing
W= Entropy Quantum Computing

1072
103 ‘ | ‘ ‘ ‘ | ‘ ‘ ‘ ‘ ‘
s
B

ARDA
Discrete Problem Objective Function

Probability

19.08

Fig. 2. A plot of energy or probability of solutions found through various methods in IL
case study. The vertical line indicates the optimal solution of the discrete subproblem
found by Gurobi. Infeasible solutions are not shown in this plot.

Table 1. Summary table of time to target (Opt: optimality, Feas: all feasible solutions)
results of SA; QA (DWave Advantage), and EQC (QCI Dirac 1) for discrete subproblem
of the illustrative problem. All times are in seconds. The subscript "quantum" indicates
the time required for the quantum processing unit only, while "total" includes both
communication overhead and the time for the quantum processing unit. The subscript
"device" indicates the computing time inclusive of quantum and processing time[21].

Execution Time Time to Target (177To9)
Solution Method T TTOptgg TTFeasgg
IP (Gurobi) 0.003 0.003 (=71) 0.477
SA 0.34 221.7 0.53
QAquantum 0.13 620.5 -
QA otal 1.59 7313.9 -

EQCagevice 37 1223.5 -
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3.2 Simulation-based optimization problem example: Drug
Substance Manufacturing Process Optimization

All results of the discrete subproblem are plotted in Figure [3} the simulation
objective values at each iteration of IP are plotted along with the best objective
value found with the iterations in Figure [d] The TTT metrics are presented in
Table

Similar trends were observed in this case study as the illustrative example. All
methods were able to find the optimal solution. With a single run, SA identified
all 36 feasible solutions, while QA and EQC found 28 and 6 feasible solutions, re-
spectively. IP achieved the fastest computation time for both finding the optimal
solution and identifying all feasible solutions, while entropy quantum computing
exhibited the slowest computation time.

The best simulation objective value matched the 34th iteration in the IP
method. The result of the discrete subproblem did not necessarily improve the
value of the objective function of the simulations with each iteration, due to
the misalignment of the objective functions in the two frameworks. Although
multi-objective optimization can simultaneously optimize the overall system for
several purposes (e.g., minimizing capital cost while maximizing product purity
and production rate), the misalignment prevents efficient convergence of the
two problems. An alignment of objectives between the two frameworks could
accelerate the finding of the optimal solution.

=== Gurobi
Simulated Annealing
Quantum Annealing

s Entropy Quantum Computing

Probability

14.46
14.47
14.55
14.56
14.57
14.65
14.99
15.00
15.08
16.57

£~ 16.59
16.69

o 17.11
18.07

= 18.08
18.09
18.18
18.51
18.52
18.61
19.37
19.39
19.47 4
21.49
21.50
22.90
22.91
22.99

=

11.71
11.81
12.24

<17.98

£17.99

®17.12 4
®

2 16.63 -
< 16.68 -
8
B
3
2

a
3
A
=3
2

Fig. 3. A plot of energy or probability of feasible solutions found through annealing
methods. The vertical line indicates the optimal solution of the discrete subproblem,
indicated by the first result of Gurobi. Infeasible solutions are not shown in this plot.
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Fig. 4. Simulation objective function values ranked according to discrete subproblem
solution by IP iterations (x-axis). Red dots indicate the objective function value of the
corresponding simulation, and the blue line shows the best objective function value
found with each iteration.

Table 2. Summary table of time to target (Opt: optimality, Feas: all feasible solutions)
results of SA; QA (DWave Advantage), and EQC (QCI Dirac 1) for discrete subproblem
of the drug substance manufacturing problem. All times are in seconds. The subscript
"quantum" indicates the time for the quantum processing unit only, while "total"
includes communication overhead. The subscript "device" indicates the computing time
inclusive of quantum and processing time[21].

Execution Time Time to Target (177To9)
Solution Method T TTOptgg TTFeasgg
IP (Gurobi) 0.0009 0.0009 (=T1) 0.0790
SA 0.606 197.8 1.1
QAquantum 0.136 311.9 -
QAtotal 0410 9427 -

EQCdevice 35.0 295.9 -




14 Y. Park and D. Bernal Neira

4 Discussion

In general performance, the heuristic methods (SA, QA, EQC) are slower than
Gurobi in finding the optimal solution, but they are able to find all feasible
solutions in a single run, whereas Gurobi requires multiple iterations to find all
feasible solutions. This effort grows exponentially with the size of the problem. In
other words, heuristic methods can explore the solution space more broadly and
provide diverse solutions within a single run, whereas the deterministic method,
such as Gurobi, can offer a global optimality guarantee and speed. Still, it re-
quires additional implementations, such as cuts, to thoroughly explore the solu-
tion space. Among the quantum methods, EQC showed the slower computation
time and identified fewer solutions compared to QA. Although QA solutions
were more broadly distributed across the solution space, EQC solutions were
more clustered near the optimal solution. This indicates that EQC is able to
find the best solutions first, but it may not explore the solution space as much
as the other methods.

A clear understanding of these methodological differences can ensure that
they are better leveraged in practical applications. The solution diversity of the
heuristic methods may be particularly useful in realistic applications where the
solution space is large and complex, and finding a feasible solution or alternatives
is more critical than ensuring global optimality. For practical decision-making
processes, the size of the optimization problem is often large, and exploring all
combinatorial solutions is intractable and inefficient. In cases like this, heuristic
methods can be employed to explore the solution space and identify feasible dis-
crete solutions quickly. Several decisions can be made based on the heuristics and
practical constraints such as cost, time, and resources, and then the remaining
continuous problem can be solved to complete the optimization process. For in-
stance, in a process design problem, the configuration decision can be made with
the heuristics and impractical process choices can be eliminated in the first step,
then the selected few configurations may proceed with simulations in parallel to
fully understand the process implications/impact.

Choosing the proper computing method for the correct optimization prob-
lems can influence the computational effort required to solve these problems. In
the IL case study, several degenerate solutions were observed in the subproblem,
where multiple distinct feasible solutions resulted in the same objective function
value. This illustrates one of the key differences between heuristic methods and
deterministic solvers like Gurobi. In cases of degeneracy, deterministic solvers
cannot prune any branches with the same objective value, and in the worst-case
scenario, would have to evaluate all combinations of the discrete choices, which
can increase exponentially with the problem size. Even worse, if cuts based on
the objective value were imposed instead of an integer cut, there is a risk of
eliminating alternative feasible, even optimal, solutions to the original problem.
Additionally, for a simple problem such as the IL selection, current classical
solvers, such as Gurobi v.12.0, can solve the original MINLP without modifi-
cations to the nonlinear objective function. Further processing of the problem
into a QUBO problem actually introduces additional slack variables and con-
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straints, unnecessarily increasing the problem size and complexity. In contrast,
complex problems such as drug substance manufacturing process optimization,
characterized by differential-algebraic equations (DAE), nonlinearities, and dis-
crete decisions, are intractable when approached as a single monolithic MINLP.
By applying a decomposition strategy, we can systematically integrate discrete
configuration decisions into large-scale problems, such as these, and find practical
solutions.

Lastly, it is essential to note that since these are different methods, differ-
ent parameters were used, and their performance results may not be directly
comparable. For heuristic methods, the parameters were set to their default val-
ues, and a limit of 100 samples was imposed for EQC. There is a potential for
performance improvement through parameter tuning and by implementing an
iterative process of adding cuts similar to that used in the IP method [35].

5 Conclusion

This work proposes a heterogeneous computing approach to solving MINLPs
through a decomposition strategy with Ising solvers and other NLP solution
methods. Various Ising solvers were explored and compared for computational
performance and solution quality in one simple and one complex case studies of
process design optimization. The integer programming (IP) formulation was first
used to represent the discrete subproblem for B&B, and the QUBO reformulation
was applied to express the discrete problem in a form suitable for Ising solvers.

The differences in the algorithm execution along with optimality guarantee
and solution diversity of their results were discussed. IP method allowed us to
find the global optimal solution to the subproblem, and it required iterations
to find additional feasible solutions for practical decision-making. Other meth-
ods provided a probability distribution of solutions with a single execution of
the algorithms, but not all methods were able to find the entire set of feasible
solutions. Simulated annealing (SA) was able to find all feasible solutions while
quantum methods (QA and EQC) did not find all feasible solutions in a single
run. These results highlight that a better understanding of the differences in the
solution methods can help in better leveraging these methods and hardware in
practice.
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