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Abstract001

Enhancing the numerical and logical reasoning002
capabilities of Large Language Models (LLMs)003
has become a prominent research focus. Ex-004
isting approaches exhibit notable limitations:005
inference-phase techniques, such as Chain of006
Thought, depend on prompt engineering and007
pretrained knowledge; sentence-level Super-008
vised Fine-Tuning (SFT) and Direct Preference009
Optimization (DPO) struggle to ensure step-010
wise mathematical correctness and often rely011
on model distillation or human annotations;012
Reinforcement Learning (RL) methods entail013
high GPU memory consumption and training014
instability. To overcome these challenges, we015
propose Self-training with Process Preference016
learning using Dynamic value margin (SPPD).017
SPPD formulates reasoning as a process-based018
Markov Decision Process (MDP), leveraging019
the Bellman optimality equation to derive a dy-020
namic value margin for step-level preference021
optimization. It further incorporates tree-based022
self-sampling of model responses, eliminating023
the need for distillation. We theoretically es-024
tablish that SPPD is equivalent to on-policy025
policy gradient methods under constrained026
reward functions. Experimental results on 7B-027
scale models show consistent superiority across028
both in-domain and out-of-domain mathemati-029
cal benchmarks. Our code is publicly available030
at https://anonymous.4open.science/r/SPPD-031
DCDD.032

1 Introduction033

Recent advancements in O-series models (OpenAI,034

2024) have significantly enhanced the mathemati-035

cal reasoning capabilities of large language models036

(LLMs), positioning numerical and logical reason-037

ing as a focal point in current research (Chen et al.,038

2023; Yu et al., 2023; Jimenez et al., 2023; Shao039

et al.; Liao et al., 2024b; Lai et al., 2024; Guo et al.,040

2025).041

To enhance model reasoning during the infer-042

ence phase, techniques such as Chain of Thoughts043

(CoT) prompts (Wei et al., 2022), Tree of Thoughts 044

(ToT) (Yao et al., 2024), Best of N (BoN) (Zheng 045

et al., 2024a; Yuan et al., 2024), and Monte Carlo 046

Tree Search (MCTS) (Feng et al., 2023; Zhang 047

et al., 2024a) are employed. These methods rely 048

on prompt selection and pretrained knowledge but 049

do not involve policy model training. Supervised 050

Fine-Tuning (SFT) (Zhang et al., 2024a; Feng et al., 051

2023) and Direct Preference Optimization (DPO) 052

(Rafailov et al., 2024b,a), which leverage human 053

annotations or AI feedback, improve sentence-level 054

reasoning but struggle to ensure stepwise correct- 055

ness in mathematical contexts. These approaches 056

often require manual selection or support from 057

stronger models like STILL-2 (Min et al., 2024) 058

and Skywork-o1-open (Skywork, 2024b). Achiev- 059

ing further performance improvements without 060

distillation using the strongest available models 061

remains challenging. Although RL-based meth- 062

ods, such as Proximal Policy Optimization (PPO) 063

(Schulman et al., 2017), Group Relative Policy Op- 064

timization (GRPO) (Shao et al.; Guo et al., 2025), 065

and Reinforcement Fine-Tuning (RFT) (Luong 066

et al., 2024), address some limitations, they are 067

resource-intensive. 068

To address these challenges, we introduce Self- 069

training with Process Preference learning using Dy- 070

namic value margin (SPPD). Unlike SFT and DPO, 071

SPPD optimizes preferences at the step level via dy- 072

namic value margins, eliminating the need for distil- 073

lation. Specifically, SPPD utilizes a process-based 074

Markov Decision Process (MDP) and the Bradley- 075

Terry (BT) Model (Bradley and Terry, 1952), em- 076

ploying the Bellman optimality equation (Barron 077

and Ishii, 1989) and an online RL objective mod- 078

eled with MDP (Rafailov et al., 2024a). This ap- 079

proach enables step-wise DPO without relying on 080

stronger models for data distillation. Instead, it 081

employs tree search methods that sample trajecto- 082

ries solely from the model’s responses and logits 083

scores. Additionally, a strategy combining SFT and 084
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DPO based on Process Reward Model(PRM) re-085

jection sampling enhances training efficiency, pro-086

gressively refining reasoning capabilities. Theo-087

retically, our method is equivalent to an on-policy088

policy gradient method under specific reward con-089

straints.090

Experimental results demonstrate that SPPD091

achieves great improvements across various archi-092

tectures and datasets, outperforming many open-093

source and some closed-source models. Our contri-094

butions include:095

• We derive SPPD utilizing the Bellman opti-096

mality equation and an online RL objective097

modeled with MDP;098

• We design a step-level self-sampling scheme099

without stronger model distillation;100

• We prove that SPPD is theoretically equiva-101

lence to on-policy policy gradient optimiza-102

tion .103

2 Related Work104

Enhance Reasoning Capability of LLMs. Re-105

cent research has concentrated on enhancing the106

reasoning capabilities of large language mod-107

els (LLMs), categorized into inference and post-108

training phases. During inference, methods such as109

Chain of Thoughts (CoT) prompts (Wei et al., 2022;110

Yao et al., 2024) stimulate inherent model reason-111

ing, whereas strategies like self-consistency (Yuan112

et al., 2024; Wang et al., 2022) and tree search113

(Feng et al., 2023; Zhang et al., 2024a) guide more114

accurate decoding without additional training. In115

the post-training phase, SFT (Feng et al., 2023) and116

DPO (Rafailov et al., 2024b,a) leverage human-117

curated trajectories or distillation from stronger118

models (Min et al., 2024), improving weaker mod-119

els’ reasoning performance. RL paradigms, includ-120

ing PPO (Schulman et al., 2017), GRPO (Guo et al.,121

2025; Shao et al.), and ReFT (Luong et al., 2024),122

address limitations but introduce GPU memory and123

stability challenges.124

Step-Level Direct Preference Optimization.125

To optimize reasoning at the step level, CPO126

(Zhang et al., 2024b) aligns CoT reasoning paths127

with Tree of Thoughts (ToT) preferences, using128

prompt-based control which may affect generation129

quality. Step-DPO (Lai et al., 2024) optimizes in-130

dividual reasoning steps, relying on GPT-4 for cor-131

rectness evaluation, an expensive approach prone132

to bias. TPO (Liao et al., 2024b) proposes learn-133

ing from ranked preference lists with adaptive step134

rewards, yet this can exacerbate catastrophic forget- 135

ting and reward value imbalance in the preference 136

tree. 137

3 Preliminaries 138

In this section, we first define the step-level MDP in 139

natural language processing. Subsequently, based 140

on this step-level MDP, we reformulate the origi- 141

nal Reinforcement Learning from Human feedback 142

(RLHF) objective and derive its optimal (fixed- 143

point) solution to the maximum causal entropy 144

problem. 145

Step-Level MDP in LLMs. We define the step- 146

level MDP in natural language processing as the 147

quintuple: M = (A,S, f, r, ρ0), where A de- 148

notes the action space, consisting of reasoning 149

steps at; S denotes the state space, representing 150

the sequence of the problem and preceding actions: 151

st = s0 | a1 | a2 | . . . | at, where | represents string 152

concatenation and s0 is the initial problem. The 153

selection of each action at is conditioned on the cur- 154

rent state st−1; f : S×A → S is the state transition 155

function, defined as f(s, a) = s | a; r : S×A → R 156

is the reward function, indicating the immediate re- 157

ward obtained by performing action a in state s; ρ0 158

denotes the distribution over initial problems. 159

RLHF Objective under the Step-Level MDP. 160

The original RLHF objective models trajectory- 161

based rewards as a bandit problem (Ouyang et al., 162

2022; Zhao et al., 2024). However, such sparse 163

reward formulations are generally inadequate for 164

policy learning, particularly in complex domains 165

such as mathematical reasoning, where reward sig- 166

nals are often insufficient or ambiguous (Riedmiller 167

et al., 2018; Wilcox et al., 2022). To address this 168

limitation, we adopt a step-level MDP formula- 169

tion and adapt the RLHF objective accordingly 170

(Rafailov et al., 2024a): 171

max
πθ

Eat∼πθ(·|st)

[
T∑
t=0

r(st,at) + β log πref(at | st)︸ ︷︷ ︸
KL penalty

172

+ βH(πθ) | s0 ∼ ρ(s0)

]
, (1) 173

where πθ denotes the parameterized large language 174

policy model, πref is the reference model, β con- 175

trols the degree of deviation from πref, and H(πθ) 176

represents the entropy of πθ. This optimization 177

framework corresponds to the principle of Maxi- 178

mum Causal Entropy. Ziebart (2010) have shown 179
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Figure 1: The framework of SPPD: unlike CoT and
MCTS, Tree-Based Self-Sampling generates step trajec-
tories with common prefixes and preserves the output
distribution of the policy. The former provides step pref-
erence signals for SPPD, while the latter theoretically
ensures consistency with on-policy gradient methods,
thereby enabling self-enhancement of the model’s rea-
soning capabilities.

that Equation (1) admits a fixed-point solution π∗,180

given by:181

π∗(at | st) =182

πref(at | st) exp
(
Q∗(st, at)− V ∗(st)

β

)
, (2)183

where V ∗(st) serves as the normalization term184

(i.e., partition function) for the distribution π∗, and185

Q∗(st, at) denotes the expected cumulative reward186

starting from state-action pair (st, at) under policy187

π∗.188

4 Method189

In this section, we first introduce a tree-based self-190

sampling method to generate step trajectories shar-191

ing common prefixes without distillation. We fur-192

ther incorporate sentence-level SFT and DPO us-193

ing the PRM, aiming to enhance the smoothness194

and effectiveness of model training. Finally, step195

preference learning with dynamic value margins196

is proposed and further refined based on reward197

equivalence.198

4.1 Tree-Based Self-Sampling on LLMs199

Traditional reasoning algorithms based on token-200

level decoding are generally unable to generate201

reasoning trajectories with shared prefixes. To ad-202

dress this limitation, we employ a tree-structured203

reasoning approach, as illustrated in Figure 1. The204

process consists of four stages: Selection, Expan-205

sion, Collection, and Scoring.206

During the selection phase, at each state st, we207

compute the average log probability score for each208

child node at as follows: 209

s(at | st) =
1

|at|

|at|∑
i=0

log πinfer(at,i | st, at,<i), 210

where |at| denotes the token length of the current 211

step, at,<i represents the first i − 1 tokens of at, 212

and πinfer refers to the inference model’s output 213

distribution (i.e., the policy in RL). In practice, we 214

set πinfer = πref. Subsequently, we normalize the 215

scores across all child nodes and perform sampling 216

to select a path from the root node to a leaf node. 217

If a selected node is non-terminal and has no 218

children, we expand it by generating C possible 219

reasoning steps. After repeating this process K 220

times, we traverse the constructed prefix tree and 221

collect all complete reasoning paths along with 222

their final answers. Finally, we apply the Policy 223

Reward Model (PRM) to evaluate each step in the 224

trajectory, yielding the final step-level dataset: 225

Dstep =
{
(s

(i)
0 , s

(i,j)
t , v

(i,j)
t ) 226

| i ∈ [N ], j ∈ [K], t ∈ |τ (i,j)|
}
, 227

where N is the number of problems, and v
(i,j)
t 228

denotes the PRM score assigned to the state s
(i,j)
t , 229

which is the t-th step in the j-th prefix sequence of 230

problem s
(i)
0 . 231

4.2 PRM-Enhanced SFT & DPO 232

We incorporate curriculum learning to streamline 233

the model’s training, initially focusing on sentence- 234

level strategies. This approach utilizes PRM feed- 235

back on sampled trajectories for rejection sampling, 236

enhancing the model through supervised and pref- 237

erence learning. Specifically, positive and negative 238

sample trajectories are defined as: 239

τ
(i)
+ = max

j∈[K]
min
v
(i,j)
t

D+
step, 240

τ
(i)
− = min

j∈[K]
min
v
(i,j)
t

D−
step. 241

Here, D+
step and D−

step denote trajectories ending in 242

correct and incorrect answers, respectively. In the 243

SFT phase, we minimize next-token prediction loss 244

on τ
(i)
+ . For DPO, positive samples from {τ (i)+ }Ni=1 245

and negative samples from {τ (i)− }Ni=1 are selected 246

to construct preference samples for sentence-level 247

DPO. Notably, both SFT and DPO aim to prelimi- 248

narily enhance the model’s reasoning capabilities, 249

preparing it for subsequent fine-grained preference 250

learning at the step level. 251
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4.3 Process Preference Learning with252

Dynamic Value Margin253

We derive process preference learning with a dy-254

namic value margin based on the optimal Bellman255

equation and reinterpret traditional step DPO (Lai256

et al., 2024) from a novel theoretical perspective.257

Lemma 4.1 (Optimal Step Reward Function). Un-258

der the step MDP formulation defined in Section 3259

and given the fixed solution to the maximum causal260

entropy problem (Equation (2)), the optimal step261

reward function is expressed as:262

r(st, at) = β log
π∗(at|st)
πref(at|st)︸ ︷︷ ︸

Implicit Reward

− (V ∗(st+1)− V ∗(st))︸ ︷︷ ︸
Value Gain

.

(3)

263

The proof of Lemma 4.1 is provided in Ap-264

pendix E.1. Equation (3) decomposes the imme-265

diate reward into two components: the model’s266

implicit reward, derived from the policy ratio rel-267

ative to the reference policy, and the value gain,268

representing the change in the optimal value func-269

tion between consecutive states. Given step-level270

preference pairs (st, awt , a
l
t), we define the optimal271

preference distribution as:272

p∗(awt ≻ alt) = σ
(
r(st, a

w
t )− r(st, a

l
t)
)
, (4)273

where σ(x) denotes the sigmoid function. This274

formulation implies that action preferences depend275

on the difference in their corresponding rewards.276

Next, we derive the step DPO loss incorporating277

a dynamic value margin.278

Theorem 4.2 (Step DPO Loss with Dynamic279

Value Margin). If the objective is to minimize the280

Kullback–Leibler divergence between the empiri-281

cal preference distribution pdata (as defined in Sec-282

tion 4.1) and the model’s current preference dis-283

tribution pθ (See Equation (12)), under sampling284

from πref, the resulting loss function is:285

Lstep-dpo = −Eawt ,alt∼πref(·|st)

[
286

log σ
(
βhθ(a

w
t , a

l
t)287

− (V ∗(swt+1)− V ∗(slt+1))
)]
, (5)288

where hθ(a
w
t , a

l
t) = log

πθ(a
w
t |st)

πref(a
w
t |st) − log

πθ(a
l
t|st)

πref(a
l
t|st)

.289

Here, pdata represents the dataset-induced pref-290

erence distribution, which follows a condi-291

tional point-mass distribution. For any instance292

(st, a
w
t , a

l
t), it holds that: pdata(a

w
t ≻ alt|st) =293

1, pdata(a
l
t ≻ awt |st) = 0.294

The proof is detailed in Appendix E.2. 295

In conventional step DPO (Lai et al., 2024), the 296

value function prediction is assumed to be zero at 297

each time step. In contrast, our formulation incor- 298

porates the value gain from Equation (3), specifi- 299

cally the term V ∗(swt+1)−V ∗(slt+1), which reflects 300

the difference in optimal value function estimates 301

for the preferred and dispreferred next states. This 302

introduces a dynamic value margin into the step 303

DPO loss, varying across state transitions rather 304

than being constant. In practice, we approximate 305

the optimal value function using a PRM score. A 306

more rigorous theoretical analysis will be presented 307

in Section 5. 308

Reward Equivalence. To enhance the controlla- 309

bility of the optimization process, we incorporate 310

the principle of reward equivalence into the deriva- 311

tion. 312

Lemma 4.3 (Reward Equivalence; Rafailov et al. 313

(2024a)). Two reward functions r and r′ are equiv- 314

alent if and only if there exists a potential function 315

Φ : S → R such that: 316

r(st, at) = r′(st, at) + Φ(f(st, at))− Φ(st). 317

In Equation (3), the potential function corre- 318

sponds to the optimal value function, i.e., Φ(s) = 319

V ∗(s). Scaling this function via Φ′(s) = γΦ(s) 320

preserves its validity as a potential function. Conse- 321

quently, we derive an equivalent reward expression: 322

rγ(st, at) = r(st, at) + γΦ(f(st, at))− γΦ(st). 323

Revisiting the derivation in Section 4.3, the modi- 324

fied loss becomes: 325

Lγ
step-dpo = −Eawt ,alt∼πref(·|st)

[
326

log σ
(
βhθ(a

w
t , a

l
t) 327

− γ(V ∗(swt+1)− V ∗(slt+1))
)]
. (6) 328

Remark. While Rafailov et al. (2024a) establishes 329

that all reward-equivalent models belong to the 330

same class—including the original step DPO when 331

γ = 0, introducing γ allows greater control over 332

the optimization trajectory. Empirical validation 333

of this effect is provided in Section 6.3. 334

5 Theoretical Analysis 335

In this section, we establish the equivalence be- 336

tween offline step DPO and online policy gradient 337

under a specific reward formulation. 338
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Lemma 5.1 (Online Policy Gradient on πp
θ (see339

Definition C.1); Lin and Zhou (2019)). For any340

MDP, the expected long-term reward under πp
θ is341

given by J(θ) =
∑

τ π
p
θ(τ)r(τ), where r(τ) de-342

notes the cumulative reward along trajectory τ .343

The corresponding policy gradient is:344

∇θJ(θ) = Eτ∼πp
θ

[
r(τ)

T−1∑
t=0

∇θ log π
p
θ(a

w
t |st)

]
.

(7)

345

Theorem 5.2 (Equivalence Between Offline Step
DPO and Online Policy Gradient). Define the tra-
jectory reward in Equation (7) as:

r(τ) =
t+1∏
i=0

πref(at|st)
πp
θ(at|st)

.

Let the offline every-step preference loss be defined346

as:347

Levery-step = Eτ∼πp
ref

[
−

T−1∑
t=0

log πp
θ(a

w
t |st)

]
. (8)348

Then, the following identity holds:349

∇θJ(θ) = −∇θLevery-step.350

351

The proof is provided in Appendix E.3.352

Remark. It is evident that Levery-step (Equation (8))353

corresponds to Lstep-dpo (Equation (5)) when the354

sampling tree has two branches (C = 2) and pref-355

erence comparisons are made at every step.356

Theorem 5.2 establishes that, under the specified357

reward definition, optimizing the gradient of the358

offline preference loss is mathematically equiva-359

lent to performing policy gradient updates on the360

preference decoding model in an online setting.361

Furthermore, under the defined reward r(τ),362

large values indicate low trajectory probabilities363

under πp
θ . Consequently, during optimization,364

greater emphasis will be placed on minimizing the365

loss associated with such trajectories, effectively366

guiding the model toward higher-confidence pref-367

erence predictions.368

6 Experiments369

6.1 Setup370

Datasets. We sample a total of 10,000 training371

prompts from the GSM8K (Cobbe et al., 2021) and372

MATH (Hendrycks et al., 2021) datasets, with pro- 373

portions of 40% and 60%, respectively. The base 374

models used are Qwen2.5-7B-Base (Yang et al., 375

2024) and Llama3.1-8B-Instruct (Meta@AI, 2024). 376

Step-level preference data Dstep is generated using 377

the method described in Section 4.1, with Skywork- 378

o1-Open-PRM-Qwen-2.5-7B (Skywork, 2024a) as 379

the preference reward model (PRM). Further de- 380

tails on data format and PRM scoring distribution 381

are provided in Appendix A and Appendix B. 382

Evaluation. The maximum generation length 383

during inference is set to 2048. The test 384

set includes both in-domain and out-of-domain 385

subsets: GSM8K, MATH500 (in-domain), and 386

Gaokao2023 (Liao et al., 2024a), OCW Course 387

(OCW) (Lewkowycz et al., 2022), and OE-TO- 388

MATH-COMP from OlympiadBench (He et al., 389

2024) (out-of-domain). The evaluation methods 390

are as follows: 391

1) Greedy-CoT: Inference using greedy decoding 392

with CoT prompting; performance measured by 393

pass@1. 394

2) MAJ@N: Perform N independent inferences 395

using CoT prompting; final answer selected via 396

majority voting. 397

3) ORM_VOTE@N: Repeat inference N times 398

with CoT prompting; use Skywork-o1-Open-PRM- 399

Qwen-2.5-7B as an output reward model (ORM) to 400

score each response. Aggregate scores across iden- 401

tical answers and select the highest-scoring one. 402

4) ORM_MAX@N: Similar to ORM_VOTE@N, 403

but without aggregating scores for duplicate an- 404

swers; the highest-scoring individual response is 405

selected directly. Additional evaluation protocols 406

are detailed in Appendix D. 407

Implementation. During data generation, we 408

perform tree sampling with K = 64 rollouts per 409

question, where each node branches into C = 2 410

candidate steps. For step-level preference pair se- 411

lection, only pairs with a PRM score difference 412

exceeding 0.5 are retained to reduce noise (PRM 413

scores range from 0 to 1). In the SFT phase, opti- 414

mization is conducted using the Adam optimizer 415

with a learning rate of 5× 10−6, whereas in both 416

DPO and dynamic margin step-DPO phases, the 417

SGD optimizer with a learning rate of 1× 10−5 is 418

employed. Learning rate decay follows a cosine 419

schedule in all cases. The temperature parameter 420

β is fixed at 0.1 for both DPO and step-DPO. The 421

scaling factor γ in step-DPO is selected from the 422

set {0.1, 0.5, 1.0, 2.0, 5.0}. All experiments are 423

conducted on 8 Nvidia 80GB H800 GPUs. 424
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Model Size Open General MATH500 GSM8k

Claude-3-Opus* - % " 60.1 95.0
GPT4-1106 (Achiam et al., 2023)* - % " 64.3 91.4

GPT4o-0513* - % " 76.6 95.8
o1 (OpenAI, 2024)* - % " 94.8 -

Qwen2-7B-Instruct-Step-DPO (Lai et al., 2024) 7B " % 55.0 85.4
DeepSeek-MATH-7B-Instruct (Shao et al.) 7B " % 44.4 80.9

OpenMath2-Llama3.1-8B (Toshniwal et al., 2024) 8B " % 65.4 90.1
Llama3.1-8B-Instruct (Meta@AI, 2024) 8B " " 47.0 82.6
Qwen2.5-7B-Instruct (Yang et al., 2024) 7B " " 72.8 89.3

Qwen2.5-7B-Base 7B " " 60.0 82.3
+SFT-PRM 7B " % 64.4 88.1

+SFT-PRM & DPO-PRM 7B " % 68.2 89.3

+SPPD 7B " %
71.0

+2.8%
89.8

+0.5%
+SPPD+MAJ@64 7B " % 76.4 93.2

+SPPD+ORM_MAX@64 7B " % 74.0 94.9
+SPPD+ORM_VOTE@64 7B " % 79.0 94.7

+SPPD-Stage2 7B " %
72.2

+4.0%
90.3

+1.0%
+SPPD-Stage2+MAJ@64 7B " % 78.6 93.6

+SPPD-Stage2+ORM_MAX@64 7B " % 78.0 95.0

+SPPD-Stage2+ORM_VOTE@64 7B " %
80.4

+12.2%
94.6

+5.3%

Table 1: Main Results. * denotes we use officially reported results. SFT-PRM refers to using the PRM to select
the correct sequence among 64 sampled responses, and then performing SFT. DPO-PRM refers to using the PRM
to select the positive sample and the negative sample, and then performing DPO (see Section 4.2). SPPD-Stage2
indicates that we iterate the SPPD method twice, noting that the second stage ignores SFT and DPO training.

6.2 Main Result425

Compared to the Base Model. Our method426

achieves substantial improvements without relying427

on responses from stronger models for distillation,428

as shown in Table 1. Using SFT-PRM, we429

obtain performance gains of 4.4% and 5.8%430

on the in-domain datasets MATH and GSM8K,431

respectively. With DPO-PRM, the improvements432

are 3.8% and 1.2%, respectively. Building upon433

this, SPPD further enhances reasoning capabilities434

through step-level dynamic optimization guided435

by PRM signals, yielding additional gains of 2.8%436

and 0.5% on the same datasets. During inference,437

increasing computational resources and applying438

the ORM_VOTE aggregation strategy reveal the439

model’s full potential, achieving accuracies of 79%440

and 94.7% on MATH and GSM8K, respectively,441

outperforming existing models of comparable size.442

443

Compared to the other methods. We com- 444

pared the performance of SPPD with RL (PPO, 445

GRPO), preference learning (SimPO), and distil- 446

lation algorithms. All experiments were trained 447

on the same dataset (see Section 6.1). The results 448

are shown in Table 2. The experimental results 449

demonstrate that: 450

• Compared to online RL algorithms (GRPO 451

& PPO), SPPD achieves comparable perfor- 452

mance on ID (MATH500 & GSM8k) tasks 453

while exhibiting better generalization on OOD 454

(GaoKao2023) tasks than GRPO and PPO, 455

highlighting its effectiveness and robustness. 456

• Compared to offline preference learning 457

(SimPO (Meng et al., 2024)) and distillation 458

methods, our approach proves more effective 459

and robust in both ID and ODD evaluations. 460

Continued Gains in the Second Stage. After 461

exhausting the training data generated by the base 462
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model in the first stage, we follow the principles of463

offline RL and update the policy model’s sampling464

trajectories. Using the best-performing model from465

the first stage as the new policy model, we reit-466

erate the training process to obtain SPPD-Stage2.467

Compared to SPPD, SPPD-Stage2 achieves further468

improvements of 1.2% and 0.5% on MATH and469

GSM8K, respectively. These results confirm the470

effectiveness of policy model updating and under-471

score the robustness of the SPPD framework.472

Methods MATH500 GSM8k GaoKao2023 Avg

Qwen2.5-7B-Base 60.0 82.3 48.0 63.4
+SPPD 72.2 90.4 56.8 73.1

+GRPO(Guo et al., 2025) 71.1 90.2 54.3 71.9
+PPO (Schulman et al., 2017) 71.9 89.8 55.2 72.3
+SimPO (Meng et al., 2024) 70.3 88.7 53.3 70.8

+Distillation* 69.5 88.0 53.1 70.2

Llama3.1-8B-Instruct 46.2 81.2 35.1 54.1
+SPPD 58.2 88.5 42.1 69.2

+GRPO(Guo et al., 2025) 58.4 88.1 41.5 62.7
+PPO (Schulman et al., 2017) 57.9 88.7 42.2 62.6
+SimPO (Meng et al., 2024) 56.9 87.5 41.1 61.8

+Distillation* 55.4 87.1 40.2 60.9

Table 2: Compare to other methods. *In the distilla-
tion experiments, we performed supervised fine-tuning
on the model using data generated by Qwen2.5-7B-
Instruct.

6.3 Ablation Study473

Different Base Model. We assess the effectiveness474

of the SPPD method across two distinct base475

models: Llama3.1-8B-Instruct and Qwen2.5-476

7B-Instruct. As Instruct models are already477

optimized at the sentence level, we omit PRM-SFT478

and PRM-DPO training and instead directly479

employ model-generated trajectories for step-480

level DPO training with dynamic value margin.481

Results are summarized in Table 3, showing482

that SPPD improves performance by 4.6% and483

3.6% on MATH and GSM8K, respectively, for484

Llama3.1-8B-Instruct, and by 2.2% and 0.8%,485

respectively, for Qwen2.5-7B-Instruct. These486

results demonstrate the robustness of SPPD across487

different base models.488

489

Effectiveness of Dynamic Value Margin. In490

Section 4.3, we formulate the dynamic value mar-491

gin within a Markov Decision Process (MDP)492

framework, deriving a step-level DPO method with493

mathematically grounded, dynamically adjusted494

margins. To validate the efficacy of this approach,495

we conduct ablation studies using Qwen2.5-7B-496

Base and Llama3.1-8B-Instruct as base models,497

followed by PRM-SFT and PRM-DPO training.498

Model MATH500 GSM8K

Llama3.1-8B-Instruct 46.6 81.2

+SPPD
51.2

+4.6%
84.8

+3.6%
+SPPD+MAJ@64 58.2 88.5

+SPPD+ORM_MAX@64 67.0 92.0

+SPPD+ORM_VOTE@64
66.4

+19.8%
90.7

+9.5%
Qwen2.5-7B-Instruct 72.8 89.3

+SPPD
75.0

+2.2%
91.1

+0.8%
+SPPD+MAJ@64 80.6 93.4

+SPPD+ORM_MAX@64 77.0 95.2

+SPPD+ORM_VOTE@64
82.2

+9.4%
94.6

+5.3%

Table 3: Result on Llama3.1-8B-Instruct and Qwen2.5-
7B-Instruct.

We compare SPPD against two variants: no-margin 499

step DPO (γ = 0) and fixed-margin step DPO. 500

Results are reported in Table 7. 501

The results show that fixed-margin step DPO 502

outperforms no-margin step DPO, demonstrating 503

that margin adjustment enhances step-level 504

preference learning. Moreover, on MATH and 505

GSM8K, SPPD surpasses fixed-margin step DPO, 506

achieving improvements of 0.9% and 0.31% for 507

Qwen2.5-7B-Base, respectively, 2.0% and 1.3% 508

for Llama3.1-8B-Instruct, respectively. Moreover, 509

when measured using the MAJ_VOTE@64, SPPD 510

also demonstrates better reasoning capabilities. 511

These gains arise from our modeling of value 512

model score differences between preference 513

pairs, enabling dynamic margin adaptation during 514

preference learning. This mechanism enhances 515

the reliability of step-level training and mitigates 516

overfitting risks. 517

518

Different PRMs. To examine the influence 519

of different Preference Reward Models (PRMs) 520

on the performance of SPPD, we selected sev- 521

eral PRMs: Skywork-o1-Open-PRM-Qwen-2.5- 522

7B (Skywork, 2024a), Skywork-o1-Open-PRM- 523

Qwen-2.5-1.5B (Skywork, 2024a), and Qwen2.5- 524

Math-7B-PRM800K (Zheng et al., 2024b). Accord- 525

ing to Table 6 in Zheng et al. (2024b), Qwen2.5- 526

Math-7B-PRM800K outperforms Skywork-o1- 527

Open-PRM-Qwen-2.5-7B in process evaluation on 528

MATH and GSM8K, whereas Skywork-o1-Open- 529

PRM-Qwen-2.5-1.5B underperforms compared to 530

its 7B counterpart on the same benchmarks. The 531
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PRM Methods MATH500 GSM8k

Skywork-PRM-7B
PRM-SFT 64.4 88.1

PRM-SFT&PRM-DPO 68.2 89.3
SPPD 71.0 89.8

Qwen-PRM-7B
PRM-SFT 63.9 88.4

PRM-SFT&PRM-DPO 68.6 89.6
SPPD 71.8 90.3

Skywork-PRM-1.5B
PRM-SFT 62.1 87.5

PRM-SFT&PRM-DPO 68.1 88.9
SPPD 70.5 89.3

Table 4: SPPD on different PRMs scoring. Skywork-
PRM-7B means Skywrok-o1-Open-PRM-Qwen-2.5-
7B(Skywork, 2024a), Skywork-PRM-1.5B means
Skywrok-o1-Open-PRM-Qwen-2.5-1.5B(Skywork,
2024a) and Qwen-PRM means Qwen2.5-Math-7B-
PRM-800k(Zheng et al., 2024a) .

performance of SPPD using different PRMs is sum-532

marized in Table 4.533

We observe that with Qwen2.5-Math-7B-534

PRM800K, SPPD generates higher quality535

process supervision signals, leading to enhanced536

generalization and robustness across reasoning537

steps. Notably, even when using the less capable538

Skywork-o1-Open-PRM-Qwen-2.5-1.5B, SPPD539

achieves comparable reasoning performance,540

demonstrating its robustness to variations in PRM541

quality.542

543

SPPD-Stage2 w/ or w/o PRM-SFT and PRM-544

DPO. In our experiments, we omit the SFT-PRM

Methods MATH500 GSM8k

Qwen2.5-7B-Base
SPPD-Stage1 71.0 89.8

SFT-PRM-Stage2 69.1 88.4
DPO-PRM-Stage2 68.3 87.6
Llama-8B-Instruct

SPPD-Stage1 51.2 84.8
SFT-PRM-Stage2 49.8 84.1
DPO-PRM-Stage2 49.5 83.9

Table 5: SPPD-Stage2 with PRM-SFT and PRM-DPO.
SFT-PRM-Stage2 means that it only runs SFT-PRM
after the first stage and SFT-PRM-Stage2 means that it
runs SFT-PRM & DPO-PRM after the first stage.

545
and DPO-PRM steps during the second stage. We546

emphasize that SFT-PRM and DPO-PRM operate547

at a coarse-grained level, primarily serving to ini-548

tialize and strengthen the model’s reasoning abili-549

ties for subsequent step-level preference learning.550

Continuing these operations in the second stage551

would risk overfitting, as confirmed by experimen-552

tal results shown in Table 5. During this phase, 553

SFT-PRM and DPO-PRM training exhibited signs 554

of overfitting, whereas SPPD maintained strong 555

generalization performance, demonstrating its su- 556

perior robustness. 557

More Supplementary experiments is shown in 558

Appendix F. 559

Model GaoKao2023 OCW OlympaidBench*

Qwen2.5-7B-Base 48.0 6.3 20.5
+SFT-PRM 52.2 19.1 22.8

+SFT-PRM & DPO-PRM 55.0 16.1 23.7

+SPPD
56.8

+1.8%
20.0

+4.8%
26.1

+2.4%
+SPPD+MAJ@64 62.6 29.4 43.3

+SPPD+ORM_MAX@64 63.4 28.3 41.4

+SPPD+ORM_VOTE@64
64.4

+9.4%
30.9

+14.8%
45.4

+21.7%

Table 6: Result on out-of-domain test datasets. Olym-
paidBench* denotes we only use OlympaidBench-OE-
TO-Math-COMP test dataset.

Methods Margin MATH500 GSM8k

Qwen2.5-7B-Base
SPPD (ours) Dynamic 71.0 89.8
Step-DPO 0 69.6 89.40

Step-DPO-fix-margin γ∗ 70.1 89.4
SPPD+MAJ@64 (ours) Dynamic 76.4 93.2
Step-DPO+MAJ@64 0 64.2 82.3

Step-DPO-fix-margin+MAJ@64 γ∗ 75.0 93.1
LLama3.1+8B-Instruct

SPPD (ours) Dynamic 51.2 84.8
Step-DPO 0 48.8 83.2

Step-DPO-fix-margin γ∗ 49.2 83.5
SPPD+MAJ@64 (ours) Dynamic 58.2 88.5
Step-DPO+MAJ@64 0 55.3 86.4

Step-DPO-fix-margin+MAJ@64 γ∗ 56.9 87.2

Table 7: SPPD vs fixed margin step DPO on Qwen2.5-
7B-Base and Llama3.1-8B-Instruct. γ∗ represents
γ(V ∗(swt+1)− V ∗(slt+1)) = γ∗ in Formula 6.

7 Conclusion 560

In this work, we propose SPPD, a self-training 561

with process preference learning using dynamic 562

value margin. SPPD utilizes the Bellman optimality 563

equation and the online RL objective modeled with 564

MDP and designs a step-level tree self-sampling 565

scheme without any distillation. Moreover, we 566

propose a SFT and DPO scheme using PRM for 567

rejection sampling, making the training of SPPD 568

smothor and more effective. Finally, we theoreti- 569

cally demonstrate that under specific reward con- 570

straints, our method is equivalent to on-policy pol- 571

icy gradient optimization. 572
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Limitations573

Several limitations remain in our current work.574

Firstly, our work relies on the effectiveness of PRM,575

and studies have shown that PRM’s performance576

varies across different policy models and task sce-577

narios; some PRMs may fail under specific tasks578

(Zheng et al., 2024a). This work neglects the up-579

dates of PRM. As policy is continuously iterated,580

PRM faces the risk of becoming ineffective. Addi-581

tionally, both PPO and GRPO are modeled based582

on bandit, and how to integrate MDP modeling583

with on-policy methods remains an important sub-584

ject for future research.585

References586

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama587
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,588
Diogo Almeida, Janko Altenschmidt, Sam Altman,589
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.590
arXiv preprint arXiv:2303.08774.591

EN Barron and H Ishii. 1989. The bellman equation for592
minimizing the maximum cost. NONLINEAR ANAL.593
THEORY METHODS APPLIC., 13(9):1067–1090.594

Ralph Allan Bradley and Milton E Terry. 1952. Rank595
analysis of incomplete block designs: I. the method596
of paired comparisons. Biometrika, 39(3/4):324–597
345.598

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and599
Denny Zhou. 2023. Teaching large language models600
to self-debug. arXiv preprint arXiv:2304.05128.601

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,602
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias603
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro604
Nakano, et al. 2021. Training verifiers to solve math605
word problems. arXiv preprint arXiv:2110.14168.606

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus607
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.608
2023. Alphazero-like tree-search can guide large lan-609
guage model decoding and training. arXiv preprint610
arXiv:2309.17179.611

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,612
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,613
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-614
centivizing reasoning capability in llms via reinforce-615
ment learning. arXiv preprint arXiv:2501.12948.616

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,617
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,618
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-619
bench: A challenging benchmark for promoting agi620
with olympiad-level bilingual multimodal scientific621
problems. arXiv preprint arXiv:2402.14008.622

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 623
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 624
cob Steinhardt. 2021. Measuring mathematical prob- 625
lem solving with the math dataset. arXiv preprint 626
arXiv:2103.03874. 627

Carlos E Jimenez, John Yang, Alexander Wettig, 628
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik 629
Narasimhan. 2023. Swe-bench: Can language mod- 630
els resolve real-world github issues? arXiv preprint 631
arXiv:2310.06770. 632

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi- 633
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise 634
preference optimization for long-chain reasoning of 635
llms. arXiv preprint arXiv:2406.18629. 636

Aitor Lewkowycz, Anders Andreassen, David Dohan, 637
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 638
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 639
Gutman-Solo, et al. 2022. Solving quantitative rea- 640
soning problems with language models, 2022. URL 641
https://arxiv. org/abs/2206.14858. 642

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and 643
Kai Fan. 2024a. Mario: Math reasoning with code 644
interpreter output–a reproducible pipeline. arXiv 645
preprint arXiv:2401.08190. 646

Weibin Liao, Xu Chu, and Yasha Wang. 2024b. Tpo: 647
Aligning large language models with multi-branch 648
& multi-step preference trees. arXiv preprint 649
arXiv:2410.12854. 650

Kaixiang Lin and Jiayu Zhou. 2019. Ranking policy 651
gradient. arXiv preprint arXiv:1906.09674. 652

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng 653
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Rea- 654
soning with reinforced fine-tuning. arXiv preprint 655
arXiv:2401.08967. 656

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024. 657
Simpo: Simple preference optimization with a 658
reference-free reward. Advances in Neural Infor- 659
mation Processing Systems, 37:124198–124235. 660

Meta@AI. 2024. Introducing llama 3.1: Our most capa- 661
ble models to date. 662

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, 663
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Xi- 664
aoxue Cheng, Huatong Song, et al. 2024. Imitate, 665
explore, and self-improve: A reproduction report 666
on slow-thinking reasoning systems. arXiv preprint 667
arXiv:2412.09413. 668

OpenAI. 2024. Openai o1-mini. 669

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 670
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 671
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 672
2022. Training language models to follow instruc- 673
tions with human feedback. Advances in neural in- 674
formation processing systems, 35:27730–27744. 675

9

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/


Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea676
Finn. 2024a. From r to q∗: Your language model is677
secretly a q-function. arXiv e-prints, pages arXiv–678
2404.679

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-680
pher D Manning, Stefano Ermon, and Chelsea Finn.681
2024b. Direct preference optimization: Your lan-682
guage model is secretly a reward model. Advances683
in Neural Information Processing Systems, 36.684

Martin Riedmiller, Roland Hafner, Thomas Lampe,685
Michael Neunert, Jonas Degrave, Tom Wiele, Vlad686
Mnih, Nicolas Heess, and Jost Tobias Springenberg.687
2018. Learning by playing solving sparse reward688
tasks from scratch. In International conference on689
machine learning, pages 4344–4353. PMLR.690

John Schulman, Filip Wolski, Prafulla Dhariwal,691
Alec Radford, and Oleg Klimov. 2017. Proxi-692
mal policy optimization algorithms. arXiv preprint693
arXiv:1707.06347.694

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,695
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan696
Zhang, YK Li, Y Wu, et al. Deepseekmath:697
Pushing the limits of mathematical reasoning in698
open language models, 2024. URL https://arxiv.699
org/abs/2402.03300.700

Skywork. 2024a. Skywork/skywork-o1-open-prm-701
qwen-2.5-7b.702

Skywork. 2024b. Sskywork-o1-open.703

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav704
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.705
2024. Openmathinstruct-2: Accelerating ai for math706
with massive open-source instruction data. arXiv707
preprint arXiv:2410.01560.708

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,709
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and710
Denny Zhou. 2022. Self-consistency improves chain711
of thought reasoning in language models. arXiv712
preprint arXiv:2203.11171.713

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten714
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,715
et al. 2022. Chain-of-thought prompting elicits rea-716
soning in large language models. Advances in neural717
information processing systems, 35:24824–24837.718

Albert Wilcox, Ashwin Balakrishna, Jules Dedieu,719
Wyame Benslimane, Daniel Brown, and Ken Gold-720
berg. 2022. Monte carlo augmented actor-critic for721
sparse reward deep reinforcement learning from sub-722
optimal demonstrations. Advances in neural infor-723
mation processing systems, 35:2254–2267.724

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,725
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,726
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-727
nical report. arXiv preprint arXiv:2412.15115.728

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 729
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 730
2024. Tree of thoughts: Deliberate problem solving 731
with large language models. Advances in Neural 732
Information Processing Systems, 36. 733

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 734
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 735
guo Li, Adrian Weller, and Weiyang Liu. 2023. 736
Metamath: Bootstrap your own mathematical ques- 737
tions for large language models. arXiv preprint 738
arXiv:2309.12284. 739

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, 740
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston. 741
2024. Self-rewarding language models. arXiv 742
preprint arXiv:2401.10020. 743

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, 744
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm 745
self-training via process reward guided tree search. 746
arXiv preprint arXiv:2406.03816. 747

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei 748
Gao, and Min Lin. 2024b. Chain of preference opti- 749
mization: Improving chain-of-thought reasoning in 750
llms. arXiv preprint arXiv:2406.09136. 751

Heyang Zhao, Chenlu Ye, Quanquan Gu, and Tong 752
Zhang. 2024. Sharp analysis for kl-regularized 753
contextual bandits and rlhf. arXiv preprint 754
arXiv:2411.04625. 755

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji 756
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin- 757
gren Zhou, and Junyang Lin. 2024a. Processbench: 758
Identifying process errors in mathematical reasoning. 759
arXiv preprint arXiv:2412.06559. 760

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji 761
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin- 762
gren Zhou, and Junyang Lin. 2024b. Processbench: 763
Identifying process errors in mathematical reasoning. 764
arXiv preprint arXiv:2412.06559. 765

Brian D Ziebart. 2010. Modeling purposeful adaptive 766
behavior with the principle of maximum causal en- 767
tropy. Carnegie Mellon University. 768

A Data Example 769

We demonstrate the preference trajectories sam- 770

pled from the tree using SPPD as shown below. 771

As previously mentioned, the chosen step and the 772

rejected step are selected based on their PRM score 773

difference exceeding 0.5. 774

Training data format.

[Question]
Evaluate: 642 − 362.
[Common Prefix]
Step 1: Recognize that the given expression
is of the form a2 − b2, which can be

775
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factorized using the difference of squares
method.
Step 2: Apply the difference of squares
formula, which is a2− b2 = (a+ b)(a− b).
Step 3: Identify a and b in the given
expression. Here, a = 64 and b = 36.
Step 4: Evaluate the sum and difference of
a and b.
a + b = 64 + 36
a - b = 64 - 36
Step 5: Multiply the result from step 4 back
together.
[Chosen Step]
(64 + 36)(64− 36)
Step 6: Perform the addition and subtrac-
tion operations.
The sum of 64 and 36 is 100. The difference
of 64 and 36 is 28.
[Chosen PRM Score]
0.934
[Rejected Step]
Step 6: (64 + 36) ∗ (64 − 36) =
(100) ∗ (28) = 1400
[Rejected PRM Score]
0.258

776

B PRM score distribution777

We use the Skywork-o1-Open-PRM-Qwen-2.5-778

7B (Skywork, 2024a)model to score 545,990 rea-779

soning trajectories obtained from Qwen2.5-7B-780

Base (Yang et al., 2024) through Tree-Based Self-781

Sampling. The score for the t-th step of the i-th782

trajectory is denoted as v(i)t .783

First, we calculate three metrics (ORM score,784

Mean PRM score, and Minium PRM score) on tra-785

jectories that produce correct answers and those786

that result in incorrect answers. If a metric exceeds787

0.5, the PRM considers the sample to be a correct788

trajectory; otherwise, it is deemed an incorrect tra-789

jectory. We then compute the PRM accuracy rates790

under these three metrics, see Table 8. The experi-791

mental results demonstrate that Skywork-o1-Open-792

PRM-Qwen-2.5-7B exhibits strong discriminative793

ability for both correct and incorrect trajectories794

under sampled trajectories. Specifically, the ORM795

metric shows superior performance in identifying796

correct trajectories, achieving over 90% accuracy.797

In contrast, the minimum PRM score excels in798

distinguishing incorrect trajectories, reaching an799

accuracy of 92.5%. However, using the mean PRM 800

score, the discriminative ability for correct trajec- 801

tories is notably higher than for incorrect trajec- 802

tories. This is because Skywork-o1-Open-PRM- 803

Qwen-2.5-7B can effectively identify erroneous 804

steps, resulting in high scores (close to 1) before 805

these steps occur, which renders the mean PRM 806

score ineffective for judging incorrect trajectories. 807

Conversely, the minimum PRM score identifies the 808

lower bound of trajectory scoring, making it the 809

most suitable metric for evaluating incorrect trajec- 810

tories. 811

Metric # ORM Mean PRM Minium PRM

Correct 281,983 0.908 0.920 0.705
Incorrect 264,007 0.870 0.696 0.925

Table 8: Skywork-o1-Open-PRM-Qwen-2.5-7B accu-
racy.

Meanwhile, we divide each trajectory into five 812

equal segments, calculate the average score for 813

each segment, and plot the score distribution in box 814

plots categorized by correct and wrong trajectories, 815

as shown in the Figure 2. The figure indicates 816

that for correct trajectories, PRM assigns relatively 817

high scores to all steps with smaller variance; for 818

wrong trajectories, the segment scores given by 819

PRM tend to decrease on average as they get closer 820

to the answer, with the variance also decreasing, 821

suggesting that PRM’s confidence in the wrong 822

trajectory leading to an incorrect answer increases. 823

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5
Segment

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Segment Mean Score Boxplot

Correct Segment
Wrong Segment

Figure 2: Skywork-o1-Open-PRM-Qwen-2.5-7B distri-
bution.

824
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C Definition825

C.1 Preference Decoding Model826

Definition C.1 (Preference Decoding Model πp
θ827

Induced by πθ). Assume that at state s = st, the828

available action space is At = {awt , alt}. The pref-829

erence decoding model πp
θ is defined as the follow-830

ing parameterized distribution:831

πp
θ(a

w
t |st) = σ(rwθ,t − rlθ,t),832

where833

rwθ,t = β log
πθ(a

w
t |st)

πref(awt |st)
− V ∗(swt+1) + V ∗(st),834

rlθ,t = β log
πθ(a

l
t|st)

πref(alt|st)
− V ∗(slt+1) + V ∗(st).835

Remark. The preference decoding model πp
θ can836

be interpreted as performing preference-based sam-837

pling over a binary prefix tree. It is derived from838

the probability outputs of the base language model839

πθ.840

D Evaluation841

D.1 Evaluation Prompts842

For a fair evaluation, the same prompt and format843

is applied to our trained models as well as other844

open-source models:845

Prompt used for evaluation.

[SYSTEM]
Please reason step by step and put your
answer in \\boxed{}.
[Question]
{question}.

846

E Proofs847

E.1 Proof of Lemma (4.1)848

Lemma E.1 (Optimal Step Reward Function). Un-849

der the step MDP definition3 and fix solution for850

the maximum casual entropy problem (Equation851

(2)), the optimal step reward function can be calcu-852

late as follow:853

r(st, at) = β log
π∗(at|st)
πref(at|st)︸ ︷︷ ︸

Implicit Reward

−(V ∗(st+1)− V ∗(st)︸ ︷︷ ︸
Value Gain

).

(9)

854

Proof. According to the Bellman optimality equa- 855

tion (Barron and Ishii, 1989) in step MDP, we have: 856

Q∗(st, at) = r(st, at) + V ∗(f(st, at)). (10) 857

Here, if st+1 = f(st, at) is a terminal state, then 858

V ∗(f(st, at)) = 0. Meanwhile, if we log-linearize 859

the Equation (2), we have: 860

Q∗(st, at) = β log
π∗(at|st)
πref(at|st)

+ V ∗(st). (11) 861

Therefore, combine the Equation (10) & (11), we 862

have: 863

r(st, at) = β log
π∗(at|st)
πref(at|st)︸ ︷︷ ︸

Implicit Reward

− (V ∗(st+1)− V ∗(st))︸ ︷︷ ︸
Value Gain

. 864

865

E.2 Proof of Theorem E.2 866

Theorem E.2 (Step DPO Loss Using Dynamic 867

Value Margin.). If we aim to minimize the Kullback- 868

Leibler(KL) divergence between the step-level pref- 869

erence distribution pdata in Dstep and the model’s 870

current preference distribution pθ under the sam- 871

pling of πref , we can obtain the following loss 872

function: 873

Lstep-dpo = −Eawt ,alt∼πref(·|st)[ 874

log σ(βhθ(a
w
t , a

l
t) 875

− (V ∗(swt+1)− V ∗(slt+1)))], 876

where hθ(a
w
t , a

l
t) = log

πθ(a
w
t |st)

πref(a
w
t |st) − log

πθ(a
l
t|st)

πref(a
l
t|st)

. 877

Regarding pdata, it represents the preference dis- 878

tribution in the dataset Dstep, which takes the form 879

of a conditional point-mass distribution. For in- 880

stance, given a data instance (st, a
w
t , a

l
t), we have: 881

p(awt ≻ alt|st) = 1 and p(alt ≻ awt |st) = 0. 882

Proof. According to the Equation (3) and Equation 883

(4), we have: 884

pθ(a
w
t ≻ alt|st) 885

= σ(βhθ(a
w
t , a

l
t)− (V ∗(swt+1)− V ∗(slt+1)))

(12)
886

So the KL divergence between pθ and pdata under 887

12



the sampling of πref is:888

Eawt ,alt∼πref (·|st)[DKL(pdata||pθ)]889

= Eawt ,alt∼πref (·|st)[890

pdata(a
w
t ≻ alt|st) log

pdata(a
w
t ≻ alt|st)

pθ(a
w
t ≻ alt|st)

891

+ pdata(a
l
t ≻ awt |st) log

pdata(a
l
t ≻ awt |st)

pθ(a
l
t ≻ awt |st)

]892

= −Eawt ,alt∼πref(·|st)[log pθ(a
w
t ≻ alt|st)],893

which is the same as Equation (5).894

895

E.3 Proof of Theorem 5.2896

Theorem E.3 (Equivalence Between Offline Step897

DPO and Online Policy Gradient). If we define the898

reward in Equation (7) as r(τ) =
∏T−1

i=0
πref(at|st)
πp
θ (at|st)

,899

and define the Offline every-step preference loss900

as:901

Levery-step =902

Eτ∼πp
ref

[
−

T−1∑
t=0

log πp
θ(a

w
t |st)

]
,903

then the following equivalence holds:904

∇θJ(θ) = −∇θLevery-step.905

Proof.

∇θLevery−step906

= Eτ∼πp
ref

[−
T−1∑
t=0

∇θ log π
p
θ(a

w
t |st))]907

= Eτ∼πp
θ
[−

πp
ref (τ)

πp
θ(τ)

T−1∑
t=0

∇θ log π
p
θ(a

w
t |st))]908

= Eτ∼πp
θ
[909

−
T−1∏
i=0

πp
ref (at|st)
πp
θ(at|st)

T−1∑
t=0

∇θ log π
p
θ(a

w
t |st))]910

= Eτ∼πp
θ
[−r(τ)

T−1∑
t=0

∇θ log π
p
θ(a

w
t |st))]911

= −∇θJ(θ).912

913

F Supplementary experiments914

F.1 Computational cost and efficiency of the915

SPPD916

Compared to online reinforcement learning algo-917

rithms such as PPO and GRPO, our method re-918

Methods Time

SPPD-Generation & PRM Scoring 6.6h
SPPD-Train 1.6h

GRPO 7.3h
PPO 10.5h

Table 9: Computational cost and efficiency of the SPPD
and other methods. SPPD-Generation indicates the
model generating trajectories by itself. SPPD-Scoring
refers to PRM scoring. SPPD-Train represents the train-
ing of PRM-SFT, PRM-DPO, and step-DPO with the
dynamic margin.

quires self-generated paths and PRM scoring. Al- 919

though these steps are computationally intensive, 920

they only need to be performed once as training and 921

data generation are decoupled. This leads to higher 922

training efficiency for the model. In contrast, PPO 923

and GRPO require online trajectory sampling dur- 924

ing training, resulting in lower training efficiency. 925

For example, under the setup of 8 H800 GPUs and 926

10k data samples, with 8 sampling iterations per 927

question, the time consumption of each method is 928

shown in the Table 9. 929

F.2 Impact of γ. 930

MATH

GSM8k

Llama3.1-8B-Instruct Qwen2.5-7B-InstructQwen2.5-7B-Base

Figure 3: Impact of γ in dynamic value margin.

To evaluate the impact of the hyperparam- 931

eter γ on the SPPD method (Equation 6), we 932

selected three base models: Qwen2.5-7B-Base, 933

Llama3.1-8B-Instruct, and Qwen2.5-7B-Instruct. 934

We varied γ within the set {0.1, 0.5, 1.0, 2.0, 5.0} 935

and assessed model performance on the MATH 936

and GSM8K datasets. The results are illustrated 937

in Figure 3. Our findings indicate that an optimal 938

γ selection benefits SPPD training. Specifically, 939

both excessively high and low values of γ impair 940

the training of dynamic value margins, affecting 941

generalization. However, overall performance 942

remains stable, particularly on the GSM8K dataset. 943

13



This highlights the importance of a balanced944

γ for optimizing SPPD effectiveness across945

different models. While extreme values of γ946

may lead to subpar performance compared to947

fixed-margin step-DPO, Figure 3 demonstrates948

that γ ≈ 1 consistently outperforms fixed-949

margin methods across all models. Consequently,950

setting γ = 1 represents a robust choice in practice.951

952
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