SPPD: Self-training with Process Preference Learning Using Dynamic
Value Margin

Anonymous ACL submission

Abstract

Enhancing the numerical and logical reasoning
capabilities of Large Language Models (LLMs)
has become a prominent research focus. Ex-
isting approaches exhibit notable limitations:
inference-phase techniques, such as Chain of
Thought, depend on prompt engineering and
pretrained knowledge; sentence-level Super-
vised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO) struggle to ensure step-
wise mathematical correctness and often rely
on model distillation or human annotations;
Reinforcement Learning (RL) methods entail
high GPU memory consumption and training
instability. To overcome these challenges, we
propose Self-training with Process Preference
learning using Dynamic value margin (SPPD).
SPPD formulates reasoning as a process-based
Markov Decision Process (MDP), leveraging
the Bellman optimality equation to derive a dy-
namic value margin for step-level preference
optimization. It further incorporates tree-based
self-sampling of model responses, eliminating
the need for distillation. We theoretically es-
tablish that SPPD is equivalent to on-policy
policy gradient methods under constrained
reward functions. Experimental results on 7B-
scale models show consistent superiority across
both in-domain and out-of-domain mathemati-
cal benchmarks. Our code is publicly available
at https://anonymous.4open.science/r/SPPD-
DCDD.

1 Introduction

Recent advancements in O-series models (OpenAl,
2024) have significantly enhanced the mathemati-
cal reasoning capabilities of large language models
(LLMs), positioning numerical and logical reason-
ing as a focal point in current research (Chen et al.,
2023; Yu et al., 2023; Jimenez et al., 2023; Shao
et al.; Liao et al., 2024b; Lai et al., 2024; Guo et al.,
2025).

To enhance model reasoning during the infer-
ence phase, techniques such as Chain of Thoughts

(CoT) prompts (Wei et al., 2022), Tree of Thoughts
(ToT) (Yao et al., 2024), Best of N (BoN) (Zheng
et al., 2024a; Yuan et al., 2024), and Monte Carlo
Tree Search (MCTS) (Feng et al., 2023; Zhang
et al., 2024a) are employed. These methods rely
on prompt selection and pretrained knowledge but
do not involve policy model training. Supervised
Fine-Tuning (SFT) (Zhang et al., 2024a; Feng et al.,
2023) and Direct Preference Optimization (DPO)
(Rafailov et al., 2024b,a), which leverage human
annotations or Al feedback, improve sentence-level
reasoning but struggle to ensure stepwise correct-
ness in mathematical contexts. These approaches
often require manual selection or support from
stronger models like STILL-2 (Min et al., 2024)
and Skywork-o1l-open (Skywork, 2024b). Achiev-
ing further performance improvements without
distillation using the strongest available models
remains challenging. Although RL-based meth-
ods, such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017), Group Relative Policy Op-
timization (GRPO) (Shao et al.; Guo et al., 2025),
and Reinforcement Fine-Tuning (RFT) (Luong
et al., 2024), address some limitations, they are
resource-intensive.

To address these challenges, we introduce Self-
training with Process Preference learning using Dy-
namic value margin (SPPD). Unlike SFT and DPO,
SPPD optimizes preferences at the step level via dy-
namic value margins, eliminating the need for distil-
lation. Specifically, SPPD utilizes a process-based
Markov Decision Process (MDP) and the Bradley-
Terry (BT) Model (Bradley and Terry, 1952), em-
ploying the Bellman optimality equation (Barron
and Ishii, 1989) and an online RL objective mod-
eled with MDP (Rafailov et al., 2024a). This ap-
proach enables step-wise DPO without relying on
stronger models for data distillation. Instead, it
employs tree search methods that sample trajecto-
ries solely from the model’s responses and logits
scores. Additionally, a strategy combining SFT and

https://anonymous.4open.science/r/SSDPO-D-DCDD
https://anonymous.4open.science/r/SSDPO-D-DCDD
https://anonymous.4open.science/r/SSDPO-D-DCDD

DPO based on Process Reward Model(PRM) re-
jection sampling enhances training efficiency, pro-
gressively refining reasoning capabilities. Theo-
retically, our method is equivalent to an on-policy
policy gradient method under specific reward con-
straints.

Experimental results demonstrate that SPPD
achieves great improvements across various archi-
tectures and datasets, outperforming many open-
source and some closed-source models. Our contri-
butions include:

* We derive SPPD utilizing the Bellman opti-
mality equation and an online RL objective
modeled with MDP;

* We design a step-level self-sampling scheme
without stronger model distillation;

* We prove that SPPD is theoretically equiva-
lence to on-policy policy gradient optimiza-
tion .

2 Related Work

Enhance Reasoning Capability of LLMs. Re-
cent research has concentrated on enhancing the
reasoning capabilities of large language mod-
els (LLMs), categorized into inference and post-
training phases. During inference, methods such as
Chain of Thoughts (CoT) prompts (Wei et al., 2022;
Yao et al., 2024) stimulate inherent model reason-
ing, whereas strategies like self-consistency (Yuan
et al., 2024; Wang et al., 2022) and tree search
(Feng et al., 2023; Zhang et al., 2024a) guide more
accurate decoding without additional training. In
the post-training phase, SFT (Feng et al., 2023) and
DPO (Rafailov et al., 2024b,a) leverage human-
curated trajectories or distillation from stronger
models (Min et al., 2024), improving weaker mod-
els’ reasoning performance. RL paradigms, includ-
ing PPO (Schulman et al., 2017), GRPO (Guo et al.,
2025; Shao et al.), and ReFT (Luong et al., 2024),
address limitations but introduce GPU memory and
stability challenges.

Step-Level Direct Preference Optimization.
To optimize reasoning at the step level, CPO
(Zhang et al., 2024b) aligns CoT reasoning paths
with Tree of Thoughts (ToT) preferences, using
prompt-based control which may affect generation
quality. Step-DPO (Lai et al., 2024) optimizes in-
dividual reasoning steps, relying on GPT-4 for cor-
rectness evaluation, an expensive approach prone
to bias. TPO (Liao et al., 2024b) proposes learn-
ing from ranked preference lists with adaptive step

rewards, yet this can exacerbate catastrophic forget-
ting and reward value imbalance in the preference
tree.

3 Preliminaries

In this section, we first define the step-level MDP in
natural language processing. Subsequently, based
on this step-level MDP, we reformulate the origi-
nal Reinforcement Learning from Human feedback
(RLHF) objective and derive its optimal (fixed-
point) solution to the maximum causal entropy
problem.

Step-Level MDP in LLMs. We define the step-
level MDP in natural language processing as the
quintuple: M = (A, S, f,r, po), where A de-
notes the action space, consisting of reasoning
steps a¢; S denotes the state space, representing
the sequence of the problem and preceding actions:
st = sg|ai|az]| ... |as, where | represents string
concatenation and sq is the initial problem. The
selection of each action a; is conditioned on the cur-
rent state s;_1; f : SXA — S is the state transition
function, defined as f(s,a) = s|a;r: SxA =R
is the reward function, indicating the immediate re-
ward obtained by performing action « in state s; pg
denotes the distribution over initial problems.

RLHF Objective under the Step-Level MDP.
The original RLHF objective models trajectory-
based rewards as a bandit problem (Ouyang et al.,
2022; Zhao et al., 2024). However, such sparse
reward formulations are generally inadequate for
policy learning, particularly in complex domains
such as mathematical reasoning, where reward sig-
nals are often insufficient or ambiguous (Riedmiller
et al., 2018; Wilcox et al., 2022). To address this
limitation, we adopt a step-level MDP formula-
tion and adapt the RLHF objective accordingly
(Rafailov et al., 2024a):

T

H}I%XEMNWG(.‘S” ZT’(St,at) + Blog mret(ay | st)
t=0

KL penalty

+ BH(mg) | so ~ p(so) |, (1)

where g denotes the parameterized large language
policy model, 7y is the reference model, 3 con-
trols the degree of deviation from 7rf, and H(7g)
represents the entropy of my. This optimization
framework corresponds to the principle of Maxi-
mum Causal Entropy. Ziebart (2010) have shown

Tree-Based Self-Sampling

| ‘@)
B3 PRM score logit score (3, O | Policy
> PRV « Policy Policy |2 8
090 @ o1 |
©or@® | Qor®
a O
SPPD
Sentence-Level Step-Level Dynamic Value Margin:
_—
SFT & DPO o
|

Self-Traini q q
e ® Policy Learning

Figure 1: The framework of SPPD: unlike CoT and
MCTS, Tree-Based Self-Sampling generates step trajec-
tories with common prefixes and preserves the output
distribution of the policy. The former provides step pref-
erence signals for SPPD, while the latter theoretically
ensures consistency with on-policy gradient methods,
thereby enabling self-enhancement of the model’s rea-
soning capabilities.

that Equation (1) admits a fixed-point solution 7%,
given by:

™ (ar | s¢) =

Wref(at ’ St) exp (Q*(St, atl)B— V*(St)) 7 (2)

where V*(s;) serves as the normalization term
(i.e., partition function) for the distribution 7*, and
Q*(st, a) denotes the expected cumulative reward
starting from state-action pair (s¢, a;) under policy

™.

4 Method

In this section, we first introduce a tree-based self-
sampling method to generate step trajectories shar-
ing common prefixes without distillation. We fur-
ther incorporate sentence-level SFT and DPO us-
ing the PRM, aiming to enhance the smoothness
and effectiveness of model training. Finally, step
preference learning with dynamic value margins
is proposed and further refined based on reward
equivalence.

4.1 Tree-Based Self-Sampling on LL.Ms

Traditional reasoning algorithms based on token-
level decoding are generally unable to generate
reasoning trajectories with shared prefixes. To ad-
dress this limitation, we employ a tree-structured
reasoning approach, as illustrated in Figure 1. The
process consists of four stages: Selection, Expan-
sion, Collection, and Scoring.

During the selection phase, at each state s;, we
compute the average log probability score for each

child node a; as follows:

|a

s(ac | s1) = ol > " log minter(ari | st ar,<i),
al 5
where |a;| denotes the token length of the current
step, at,<; represents the first ¢ — 1 tokens of ay,
and g refers to the inference model’s output
distribution (i.e., the policy in RL). In practice, we
set Tinfer = Tref- Subsequently, we normalize the
scores across all child nodes and perform sampling
to select a path from the root node to a leaf node.
If a selected node is non-terminal and has no
children, we expand it by generating C' possible
reasoning steps. After repeating this process K
times, we traverse the constructed prefix tree and
collect all complete reasoning paths along with
their final answers. Finally, we apply the Policy
Reward Model (PRM) to evaluate each step in the
trajectory, yielding the final step-level dataset:

Dyiep = {(S(()i)a ng)a Uéi’j))
li€[N].j €Kl telr D]},

where N is the number of problems, and vt(i’j)
denotes the PRM score assigned to the state ng),
which is the ¢-th step in the j-th prefix sequence of

problem séi).

4.2 PRM-Enhanced SFT & DPO

We incorporate curriculum learning to streamline
the model’s training, initially focusing on sentence-
level strategies. This approach utilizes PRM feed-
back on sampled trajectories for rejection sampling,
enhancing the model through supervised and pref-
erence learning. Specifically, positive and negative
sample trajectories are defined as:

(4) st

7.’ = max min D

+ . i step?
JEIK] Ut(7)

79 = min min Dyiep-
JEIK] ,(19)

Here, D;[ep and Dy, denote trajectories ending in
correct and incorrect answers, respectively. In the
SFT phase, we minimize next-token prediction loss
on TJ(:). For DPO, positive samples from {TJ(:)}iJL

and negative samples from {TY) ij\il are selected

to construct preference samples for sentence-level
DPO. Notably, both SFT and DPO aim to prelimi-
narily enhance the model’s reasoning capabilities,
preparing it for subsequent fine-grained preference
learning at the step level.

4.3 Process Preference Learning with
Dynamic Value Margin

We derive process preference learning with a dy-
namic value margin based on the optimal Bellman
equation and reinterpret traditional step DPO (Lai
et al., 2024) from a novel theoretical perspective.
Lemma 4.1 (Optimal Step Reward Function). Un-
der the step MDP formulation defined in Section 3
and given the fixed solution to the maximum causal
entropy problem (Equation (2)), the optimal step
reward function is expressed as:

7 (ay|st)

r(s¢a¢) = Blo
(t t) ﬁ g Wref(a/tlst)

= (V7 (st11) =V7(s1)) -

Value Gain
Implicit Reward

3

The proof of Lemma 4.1 is provided in Ap-
pendix E.1. Equation (3) decomposes the imme-
diate reward into two components: the model’s
implicit reward, derived from the policy ratio rel-
ative to the reference policy, and the value gain,
representing the change in the optimal value func-
tion between consecutive states. Given step-level
preference pairs (s¢, al’, al), we define the optimal
preference distribution as:

P = a)) = o (r(sna) —r(sia)) . @)

where o(z) denotes the sigmoid function. This
formulation implies that action preferences depend
on the difference in their corresponding rewards.

Next, we derive the step DPO loss incorporating
a dynamic value margin.

Theorem 4.2 (Step DPO Loss with Dynamic
Value Margin). If the objective is to minimize the
Kullback—Leibler divergence between the empiri-
cal preference distribution pgu, (as defined in Sec-
tion 4.1) and the model’s current preference dis-
tribution pg (See Equation (12)), under sampling
from m, the resulting loss function is:

log U(ﬁhg(ai”, al)
— (V' (st) =V (sta))] s)

l
where hg(al’, al) = log T(@®lse) lo ;i/((zt;lz)).
Here, pyuq represents the dataset-induced pref-
erence distribution, which follows a condi-
tional point-mass distribution. For any instance
(s¢,al,al), it holds that: pgata(al = alls)) =
1, pdata(aé -~ aéu‘st) = 0.

mg(a}’|st)

The proof is detailed in Appendix E.2.

In conventional step DPO (Lai et al., 2024), the
value function prediction is assumed to be zero at
each time step. In contrast, our formulation incor-
porates the value gain from Equation (3), specifi-
cally the term V* (s, ;) — V*(sk, ;), which reflects
the difference in optimal value function estimates
for the preferred and dispreferred next states. This
introduces a dynamic value margin into the step
DPO loss, varying across state transitions rather
than being constant. In practice, we approximate
the optimal value function using a PRM score. A
more rigorous theoretical analysis will be presented
in Section 5.

Reward Equivalence. To enhance the controlla-
bility of the optimization process, we incorporate
the principle of reward equivalence into the deriva-
tion.

Lemma 4.3 (Reward Equivalence; Rafailov et al.
(2024a)). Two reward functions r and v’ are equiv-
alent if and only if there exists a potential function
® : S — R such that:

r(st,at) = 7' (st, at) + @(f(st,at)) — P(s¢).

In Equation (3), the potential function corre-
sponds to the optimal value function, i.e., ®(s) =
V*(s). Scaling this function via ®'(s) = y®(s)
preserves its validity as a potential function. Conse-
quently, we derive an equivalent reward expression:

77 (st ar) = 1(st,ar) + yP(f(st,a)) — 7P (1)

Revisiting the derivation in Section 4.3, the modi-
fied loss becomes:

E’Y

step-dpo —-E

ay’aj~mrer(-|st) [
log o (Bho(ai’, ay)
— AV (st) = V¥ (st10) |- ©

Remark. While Rafailov et al. (2024a) establishes
that all reward-equivalent models belong to the
same class—including the original step DPO when
v = 0, introducing vy allows greater control over
the optimization trajectory. Empirical validation
of this effect is provided in Section 6.3.

5 Theoretical Analysis

In this section, we establish the equivalence be-
tween offline step DPO and online policy gradient
under a specific reward formulation.

Lemma 5.1 (Online Policy Gradient on wg (see
Definition C.1); Lin and Zhou (2019)). For any
MDP, the expected long-term reward under 71'5 is
given by J(0) = Y _mh(1)r(r), where r(t) de-
notes the cumulative reward along trajectory T.
The corresponding policy gradient is:

T-1
VoJ(0) =B, ap |7(7) D Vologmh(af|st)
t=0
(7)

Theorem 5.2 (Equivalence Between Offline Step
DPO and Online Policy Gradient). Define the tra-
Jjectory reward in Equation (7) as:

" ﬁ Tr(asst)
r(t) = .

Pl 7y (at|st)
Let the offline every-step preference loss be defined
as.’

T-1
Levery-step = varﬁf [— Z log ﬂg(aﬂst)] . (8)
t=0

Then, the following identity holds:

VQJ(H) = —Veﬁevery-step-

The proof is provided in Appendix E.3.

Remark. It is evident that Lyery-siep (Equation (8))
corresponds t0 Lgep-apo (Equation (5)) when the
sampling tree has two branches (C' = 2) and pref-
erence comparisons are made at every step.

Theorem 5.2 establishes that, under the specified
reward definition, optimizing the gradient of the
offline preference loss is mathematically equiva-
lent to performing policy gradient updates on the
preference decoding model in an online setting.

Furthermore, under the defined reward r(T),
large values indicate low trajectory probabilities
under w). Consequently, during optimization,
greater emphasis will be placed on minimizing the
loss associated with such trajectories, effectively
guiding the model toward higher-confidence pref-
erence predictions.

6 Experiments

6.1 Setup

Datasets. We sample a total of 10,000 training
prompts from the GSM8K (Cobbe et al., 2021) and

MATH (Hendrycks et al., 2021) datasets, with pro-
portions of 40% and 60%, respectively. The base
models used are Qwen2.5-7B-Base (Yang et al.,
2024) and Llama3.1-8B-Instruct (Meta@AlI, 2024).
Step-level preference data Dgep is generated using
the method described in Section 4.1, with Skywork-
01-Open-PRM-Qwen-2.5-7B (Skywork, 2024a) as
the preference reward model (PRM). Further de-
tails on data format and PRM scoring distribution
are provided in Appendix A and Appendix B.
Evaluation. The maximum generation length
during inference is set to 2048. The test
set includes both in-domain and out-of-domain
subsets: GSMS8K, MATHS500 (in-domain), and
Gaokao2023 (Liao et al., 2024a), OCW Course
(OCW) (Lewkowycz et al., 2022), and OE-TO-
MATH-COMP from OlympiadBench (He et al.,
2024) (out-of-domain). The evaluation methods
are as follows:

1) Greedy-CoT: Inference using greedy decoding
with CoT prompting; performance measured by
pass@]1.

2) MAJ@N: Perform N independent inferences
using CoT prompting; final answer selected via
majority voting.

3) ORM_VOTE@N: Repeat inference /N times
with CoT prompting; use Skywork-o1-Open-PRM-
Qwen-2.5-7B as an output reward model (ORM) to
score each response. Aggregate scores across iden-
tical answers and select the highest-scoring one.
4) ORM_MAX®@N: Similar to ORM_VOTE@N,
but without aggregating scores for duplicate an-
swers; the highest-scoring individual response is
selected directly. Additional evaluation protocols
are detailed in Appendix D.

Implementation. During data generation, we
perform tree sampling with K = 64 rollouts per
question, where each node branches into C' = 2
candidate steps. For step-level preference pair se-
lection, only pairs with a PRM score difference
exceeding 0.5 are retained to reduce noise (PRM
scores range from O to 1). In the SFT phase, opti-
mization is conducted using the Adam optimizer
with a learning rate of 5 x 1075, whereas in both
DPO and dynamic margin step-DPO phases, the
SGD optimizer with a learning rate of 1 x 1077 is
employed. Learning rate decay follows a cosine
schedule in all cases. The temperature parameter
[is fixed at 0.1 for both DPO and step-DPO. The
scaling factor v in step-DPO is selected from the
set {0.1,0.5,1.0,2.0,5.0}. All experiments are
conducted on 8 Nvidia 80GB H800 GPUs.

Model

| Size | Open General | MATH500 GSM8k

Claude-3-Opus* - X 4 60.1 95.0
GPT4-1106 (Achiam et al., 2023)* - X v 64.3 91.4
GPT40-0513%* . X v 76.6 95.8
ol (OpenAl, 2024)* - X v 94.8 -

Qwen2-7B-Instruct-Step-DPO (Lai et al., 2024) 7B v X 55.0 85.4
DeepSeek-MATH-7B-Instruct (Shao et al.) 7B v X 44 .4 80.9
OpenMath2-Llama3.1-8B (Toshniwal et al., 2024) | 8B | ¢ X 65.4 90.1
Llama3.1-8B-Instruct (Meta@ALI, 2024) 8B | 4 47.0 82.6
Qwen2.5-7B-Instruct (Yang et al., 2024) B | vV 4 72.8 89.3
Qwen2.5-7B-Base B | vV %4 60.0 82.3
+SFT-PRM B | vV X 64.4 88.1
+SFT-PRM & DPO-PRM B | vV X 68.2 89.3
71.0 89.8

+SPPD |V x +28% +0.5%
+SPPD+MAJ @64 B | vV X 76.4 93.2
+SPPD+ORM_MAX @64 B | vV X 74.0 94.9
+SPPD+ORM_VOTE@64 B | vV X 79.0 94.7
72.2 90.3

+SPPD-Stage2 7B | V X 0% 410%
+SPPD-Stage2+MAJ @64 B | vV X 78.6 93.6
+SPPD-Stage2+ORM_MAX @64 B | vV X 78.0 95.0
80.4 94.6

+SPPD-Stage2+ORM_VOTE @64 B | vV X L1200 +53%

Table 1: Main Results. * denotes we use officially reported results. SFT-PRM refers to using the PRM to select
the correct sequence among 64 sampled responses, and then performing SFT. DPO-PRM refers to using the PRM
to select the positive sample and the negative sample, and then performing DPO (see Section 4.2). SPPD-Stage2
indicates that we iterate the SPPD method twice, noting that the second stage ignores SFT and DPO training.

6.2 Main Result

Compared to the Base Model. Our method
achieves substantial improvements without relying
on responses from stronger models for distillation,
as shown in Table 1. Using SFT-PRM, we
obtain performance gains of 4.4% and 5.8%
on the in-domain datasets MATH and GSMS8K,
respectively. With DPO-PRM, the improvements
are 3.8% and 1.2%, respectively. Building upon
this, SPPD further enhances reasoning capabilities
through step-level dynamic optimization guided
by PRM signals, yielding additional gains of 2.8%
and 0.5% on the same datasets. During inference,
increasing computational resources and applying
the ORM_VOTE aggregation strategy reveal the
model’s full potential, achieving accuracies of 79%
and 94.7% on MATH and GSM8K, respectively,
outperforming existing models of comparable size.

Compared to the other methods. We com-
pared the performance of SPPD with RL (PPO,
GRPO), preference learning (SimPO), and distil-
lation algorithms. All experiments were trained
on the same dataset (see Section 6.1). The results
are shown in Table 2. The experimental results
demonstrate that:

* Compared to online RL algorithms (GRPO
& PPO), SPPD achieves comparable perfor-
mance on ID (MATH500 & GSMSKk) tasks
while exhibiting better generalization on OOD
(GaoKao2023) tasks than GRPO and PPO,
highlighting its effectiveness and robustness.

* Compared to offline preference learning
(SimPO (Meng et al., 2024)) and distillation
methods, our approach proves more effective
and robust in both ID and ODD evaluations.

Continued Gains in the Second Stage. After
exhausting the training data generated by the base

model in the first stage, we follow the principles of
offline RL and update the policy model’s sampling
trajectories. Using the best-performing model from
the first stage as the new policy model, we reit-
erate the training process to obtain SPPD-Stage?.
Compared to SPPD, SPPD-Stage?2 achieves further
improvements of 1.2% and 0.5% on MATH and
GSMBK, respectively. These results confirm the
effectiveness of policy model updating and under-
score the robustness of the SPPD framework.

Methods MATHS00 GSMS8k GaoKao2023 Avg
Qwen2.5-7B-Base 60.0 82.3 48.0 63.4
+SPPD 72.2 90.4 56.8 73.1
+GRPO(Guo et al., 2025) 71.1 90.2 54.3 71.9
+PPO (Schulman et al., 2017) 71.9 89.8 55.2 723
+SimPO (Meng et al., 2024) 70.3 88.7 533 70.8
+Distillation* 69.5 88.0 53.1 70.2
Llama3.1-8B-Instruct 46.2 81.2 35.1 54.1
+SPPD 58.2 88.5 42.1 69.2
+GRPO(Guo et al., 2025) 58.4 88.1 41.5 62.7
+PPO (Schulman et al., 2017) 57.9 88.7 422 62.6
+SimPO (Meng et al., 2024) 56.9 87.5 41.1 61.8
+Distillation* 55.4 87.1 40.2 60.9

Table 2: Compare to other methods. *In the distilla-
tion experiments, we performed supervised fine-tuning
on the model using data generated by Qwen2.5-7B-
Instruct.

6.3 Ablation Study

Different Base Model. We assess the effectiveness
of the SPPD method across two distinct base
models: Llama3.1-8B-Instruct and Qwen2.5-
7B-Instruct. As Instruct models are already
optimized at the sentence level, we omit PRM-SFT
and PRM-DPO training and instead directly
employ model-generated trajectories for step-
level DPO training with dynamic value margin.
Results are summarized in Table 3, showing
that SPPD improves performance by 4.6% and
3.6% on MATH and GSMSK, respectively, for
Llama3.1-8B-Instruct, and by 2.2% and 0.8%,
respectively, for Qwen2.5-7B-Instruct. These
results demonstrate the robustness of SPPD across
different base models.

Effectiveness of Dynamic Value Margin. In
Section 4.3, we formulate the dynamic value mar-
gin within a Markov Decision Process (MDP)
framework, deriving a step-level DPO method with
mathematically grounded, dynamically adjusted
margins. To validate the efficacy of this approach,
we conduct ablation studies using Qwen2.5-7B-
Base and Llama3.1-8B-Instruct as base models,
followed by PRM-SFT and PRM-DPO training.

Model MATH500 GSMS8K

Llama3.1-8B-Instruct 46.6 81.2
51.2 84.8

+SPPD +4.6% +3.6%
+SPPD+MAJ @64 58.2 88.5
+SPPD+ORM_MAX @64 67.0 92.0
66.4 90.7

+SPPD+ORM_VOTE @64 +19.8% +9.5%
Qwen2.5-7B-Instruct 72.8 89.3
75.0 91.1

+SPPD 122% +0.8%
+SPPD+MAJ @64 80.6 934
+SPPD+ORM_MAX @64 77.0 95.2
82.2 94.6

+SPPD+ORM_VOTE @64 +9.4% +5.3%

Table 3: Result on Llama3.1-8B-Instruct and Qwen?2.5-
7B-Instruct.

We compare SPPD against two variants: no-margin
step DPO (v = 0) and fixed-margin step DPO.
Results are reported in Table 7.

The results show that fixed-margin step DPO
outperforms no-margin step DPO, demonstrating
that margin adjustment enhances step-level
preference learning. Moreover, on MATH and
GSMSK, SPPD surpasses fixed-margin step DPO,
achieving improvements of 0.9% and 0.31% for
Qwen2.5-7B-Base, respectively, 2.0% and 1.3%
for Llama3.1-8B-Instruct, respectively. Moreover,
when measured using the MAJ_VOTE @64, SPPD
also demonstrates better reasoning capabilities.
These gains arise from our modeling of value
model score differences between preference
pairs, enabling dynamic margin adaptation during
preference learning. This mechanism enhances
the reliability of step-level training and mitigates
overfitting risks.

Different PRMs. To examine the influence
of different Preference Reward Models (PRMs)
on the performance of SPPD, we selected sev-
eral PRMs: Skywork-ol-Open-PRM-Qwen-2.5-
7B (Skywork, 2024a), Skywork-ol-Open-PRM-
Owen-2.5-1.5B (Skywork, 2024a), and Qwen2.5-
Math-7B-PRM800K (Zheng et al., 2024b). Accord-
ing to Table 6 in Zheng et al. (2024b), Qwen2.5-
Math-7B-PRMS00K outperforms Skywork-ol-
Open-PRM-Qwen-2.5-7B in process evaluation on
MATH and GSMS8K, whereas Skywork-o1-Open-
PRM-Qwen-2.5-1.5B underperforms compared to
its 7B counterpart on the same benchmarks. The

PRM Methods MATHS00 GSM&8k
PRM-SFT 64.4 88.1
Skywork-PRM-7B PRM-SFT&PRM-DPO 68.2 89.3
SPPD 71.0 89.8
PRM-SFT 63.9 88.4
Qwen-PRM-7B PRM-SFT&PRM-DPO 68.6 89.6
SPPD 71.8 90.3
PRM-SFT 62.1 87.5
Skywork-PRM-1.5B PRM-SFT&PRM-DPO 68.1 88.9
SPPD 70.5 89.3

Table 4: SPPD on different PRMs scoring. Skywork-
PRM-7B means Skywrok-ol-Open-PRM-Qwen-2.5-
7B(Skywork, 2024a), Skywork-PRM-1.5B means
Skywrok-o1-Open-PRM-Qwen-2.5-1.5B(Skywork,
2024a) and Qwen-PRM means Qwen2.5-Math-7B-
PRM-800k(Zheng et al., 2024a) .

performance of SPPD using different PRMs is sum-
marized in Table 4.

We observe that with Qwen2.5-Math-7B-
PRMS800OK, SPPD generates higher quality
process supervision signals, leading to enhanced
generalization and robustness across reasoning
steps. Notably, even when using the less capable
Skywork-o1-Open-PRM-Qwen-2.5-1.5B, SPPD
achieves comparable reasoning performance,
demonstrating its robustness to variations in PRM
quality.

SPPD-Stage2 w/ or w/o PRM-SFT and PRM-
DPO. In our experiments, we omit the SFT-PRM

Methods
Qwen2.5-7B-Base

MATHS00 GSMS8k

SPPD-Stagel 71.0 89.8
SFT-PRM-Stage2 69.1 88.4
DPO-PRM-Stage?2 68.3 87.6
Llama-8B-Instruct

SPPD-Stagel 51.2 84.8
SFT-PRM-Stage2 49.8 84.1
DPO-PRM-Stage?2 49.5 83.9

Table 5: SPPD-Stage2 with PRM-SFT and PRM-DPO.
SFT-PRM-Stage2 means that it only runs SFT-PRM
after the first stage and SFT-PRM-Stage2 means that it
runs SFT-PRM & DPO-PRM after the first stage.

and DPO-PRM steps during the second stage. We
emphasize that SFT-PRM and DPO-PRM operate
at a coarse-grained level, primarily serving to ini-
tialize and strengthen the model’s reasoning abili-
ties for subsequent step-level preference learning.
Continuing these operations in the second stage
would risk overfitting, as confirmed by experimen-

tal results shown in Table 5. During this phase,
SFT-PRM and DPO-PRM training exhibited signs
of overfitting, whereas SPPD maintained strong
generalization performance, demonstrating its su-
perior robustness.

More Supplementary experiments is shown in
Appendix F.

Model GaoKao2023 OCW OlympaidBench*

Qwen2.5-7B-Base 48.0 6.3 20.5
+SFT-PRM 52.2 19.1 22.8
+SFT-PRM & DPO-PRM 55.0 16.1 23.7
56.8 20.0 26.1

+SPPD +18% +48% +2.4%
+SPPD+MAJ @64 62.6 29.4 433
+SPPD+ORM_MAX @64 634 28.3 41.4
64.4 30.9 45.4

+SPPD+ORM_VOTE @64 49.4% +14.8% 21.7%

Table 6: Result on out-of-domain test datasets. Olym-
paidBench* denotes we only use OlympaidBench-OE-
TO-Math-COMP test dataset.

Methods Margin MATHS500 GSMS8k
Qwen2.5-7B-Base

SPPD (ours) Dynamic 71.0 89.8

Step-DPO 0 69.6 89.40
Step-DPO-fix-margin y* 70.1 89.4
SPPD+MAJ @64 (ours) Dynamic 76.4 93.2
Step-DPO+MAJ @64 0 64.2 82.3
Step-DPO-fix-margin+tMAJ @64 y* 75.0 93.1

LLama3.1+8B-Instruct

SPPD (ours) Dynamic 51.2 84.8
Step-DPO 0 48.8 83.2
Step-DPO-fix-margin y* 49.2 83.5
SPPD+MAJ @64 (ours) Dynamic 58.2 88.5
Step-DPO+MAJ @64 0 553 86.4
Step-DPO-fix-margin+tMAJ @64 y* 56.9 87.2

Table 7: SPPD vs fixed margin step DPO on Qwen2.5-
7B-Base and Llama3.1-8B-Instruct. ~* represents
Y(V*(s¢1) — V*(si,,)) = 7* in Formula 6.

7 Conclusion

In this work, we propose SPPD, a self-training
with process preference learning using dynamic
value margin. SPPD utilizes the Bellman optimality
equation and the online RL objective modeled with
MDP and designs a step-level tree self-sampling
scheme without any distillation. Moreover, we
propose a SFT and DPO scheme using PRM for
rejection sampling, making the training of SPPD
smothor and more effective. Finally, we theoreti-
cally demonstrate that under specific reward con-
straints, our method is equivalent to on-policy pol-
icy gradient optimization.

Limitations

Several limitations remain in our current work.
Firstly, our work relies on the effectiveness of PRM,
and studies have shown that PRM’s performance
varies across different policy models and task sce-
narios; some PRMs may fail under specific tasks
(Zheng et al., 2024a). This work neglects the up-
dates of PRM. As policy is continuously iterated,
PRM faces the risk of becoming ineffective. Addi-
tionally, both PPO and GRPO are modeled based
on bandit, and how to integrate MDP modeling
with on-policy methods remains an important sub-
ject for future research.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

EN Barron and H Ishii. 1989. The bellman equation for
minimizing the maximum cost. NONLINEAR ANAL.
THEORY METHODS APPLIC., 13(9):1067-1090.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: 1. the method
of paired comparisons. Biometrika, 39(3/4):324—
345.

Xinyun Chen, Maxwell Lin, Nathanael Scharli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2023. Alphazero-like tree-search can guide large lan-
guage model decoding and training. arXiv preprint
arXiv:2309.17179.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
1Ims. arXiv preprint arXiv:2406.18629.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models, 2022. URL
https://arxiv. org/abs/2206.14858.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and
Kai Fan. 2024a. Mario: Math reasoning with code
interpreter output—a reproducible pipeline. arXiv
preprint arXiv:2401.08190.

Weibin Liao, Xu Chu, and Yasha Wang. 2024b. Tpo:
Aligning large language models with multi-branch
& multi-step preference trees. arXiv preprint
arXiv:2410.12854.

Kaixiang Lin and Jiayu Zhou. 2019. Ranking policy
gradient. arXiv preprint arXiv:1906.09674.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Rea-
soning with reinforced fine-tuning. arXiv preprint
arXiv:2401.08967.

Yu Meng, Mengzhou Xia, and Danqgi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Infor-
mation Processing Systems, 37:124198-124235.

Meta@Al 2024. Introducing llama 3.1: Our most capa-
ble models to date.

Yingqgian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen,
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Xi-
aoxue Cheng, Huatong Song, et al. 2024. Imitate,
explore, and self-improve: A reproduction report
on slow-thinking reasoning systems. arXiv preprint
arXiv:2412.09413.

OpenAl. 2024. Openai ol-mini.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea
Finn. 2024a. From r to ¢*: Your language model is
secretly a gq-function. arXiv e-prints, pages arXiv—
2404.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024b. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances
in Neural Information Processing Systems, 36.

Martin Riedmiller, Roland Hafner, Thomas Lampe,
Michael Neunert, Jonas Degrave, Tom Wiele, Vlad
Mnih, Nicolas Heess, and Jost Tobias Springenberg.
2018. Learning by playing solving sparse reward
tasks from scratch. In International conference on
machine learning, pages 4344-4353. PMLR.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath:
Pushing the limits of mathematical reasoning in
open language models, 2024. URL https://arxiv.
org/abs/2402.03300.

Skywork. 2024a.
qwen-2.5-7b.

Skywork/skywork-o1-open-prm-

Skywork. 2024b. Sskywork-ol-open.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
2024. Openmathinstruct-2: Accelerating ai for math
with massive open-source instruction data. arXiv
preprint arXiv:2410.01560.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Albert Wilcox, Ashwin Balakrishna, Jules Dedieu,
Wyame Benslimane, Daniel Brown, and Ken Gold-
berg. 2022. Monte carlo augmented actor-critic for
sparse reward deep reinforcement learning from sub-
optimal demonstrations. Advances in neural infor-
mation processing systems, 35:2254-2267.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

10

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.
arXiv preprint arXiv:2406.03816.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei
Gao, and Min Lin. 2024b. Chain of preference opti-
mization: Improving chain-of-thought reasoning in
Ilms. arXiv preprint arXiv:2406.09136.

Heyang Zhao, Chenlu Ye, Quanquan Gu, and Tong
Zhang. 2024. Sharp analysis for kl-regularized
contextual bandits and rlhf. arXiv preprint
arXiv:2411.04625.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024a. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024b. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Brian D Ziebart. 2010. Modeling purposeful adaptive
behavior with the principle of maximum causal en-
tropy. Carnegie Mellon University.

A Data Example

We demonstrate the preference trajectories sam-
pled from the tree using SPPD as shown below.
As previously mentioned, the chosen step and the
rejected step are selected based on their PRM score
difference exceeding 0.5.

Training data format.

[Question]

Evaluate: 642 — 362,

[Common Prefix]

Step 1: Recognize that the given expression
is of the form a? — b2, which can be

https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
https://huggingface.co/collections/Skywork/skywork-o1-open-67453df58e12f6c3934738d0

factorized using the difference of squares
method.

Step 2: Apply the difference of squares
formula, which is a® — b = (a+b)(a —b).
Step 3: Identify a and b in the given
expression. Here, a = 64 and b = 36.

Step 4: Evaluate the sum and difference of
aand b.

a+b=64+36

a-b=64-36

Step 5: Multiply the result from step 4 back
together.

[Chosen Step]

(64 + 36)(64 — 36)

Step 6: Perform the addition and subtrac-
tion operations.

The sum of 64 and 36 is 100. The difference
of 64 and 36 is 28.

[Chosen PRM Score]

0.934

[Rejected Step]

Step 6: (64 + 36) x (64 — 36)
(100) * (28) = 1400

[Rejected PRM Score]

0.258

B PRM score distribution

We use the Skywork-o1-Open-PRM-Qwen-2.5-
7B (Skywork, 2024a)model to score 545,990 rea-
soning trajectories obtained from Qwen2.5-7B-
Base (Yang et al., 2024) through Tree-Based Self-
Sampling. The score for the ¢-th step of the i-th
trajectory is denoted as vf@ .

First, we calculate three metrics (ORM score,
Mean PRM score, and Minium PRM score) on tra-
jectories that produce correct answers and those
that result in incorrect answers. If a metric exceeds
0.5, the PRM considers the sample to be a correct
trajectory; otherwise, it is deemed an incorrect tra-
jectory. We then compute the PRM accuracy rates
under these three metrics, see Table 8. The experi-
mental results demonstrate that Skywork-o1-Open-
PRM-Qwen-2.5-7B exhibits strong discriminative
ability for both correct and incorrect trajectories
under sampled trajectories. Specifically, the ORM
metric shows superior performance in identifying
correct trajectories, achieving over 90% accuracy.
In contrast, the minimum PRM score excels in
distinguishing incorrect trajectories, reaching an

11

accuracy of 92.5%. However, using the mean PRM
score, the discriminative ability for correct trajec-
tories is notably higher than for incorrect trajec-
tories. This is because Skywork-o1-Open-PRM-
Qwen-2.5-7B can effectively identify erroneous
steps, resulting in high scores (close to 1) before
these steps occur, which renders the mean PRM
score ineffective for judging incorrect trajectories.
Conversely, the minimum PRM score identifies the
lower bound of trajectory scoring, making it the
most suitable metric for evaluating incorrect trajec-
tories.

Metric | # | ORM Mean PRM Minium PRM
Correct | 281,983 | 0.908 0.920 0.705
Incorrect | 264,007 | 0.870 0.696 0.925

Table 8: Skywork-01-Open-PRM-Qwen-2.5-7B accu-
racy.

Meanwhile, we divide each trajectory into five
equal segments, calculate the average score for
each segment, and plot the score distribution in box
plots categorized by correct and wrong trajectories,
as shown in the Figure 2. The figure indicates
that for correct trajectories, PRM assigns relatively
high scores to all steps with smaller variance; for
wrong trajectories, the segment scores given by
PRM tend to decrease on average as they get closer
to the answer, with the variance also decreasing,
suggesting that PRM’s confidence in the wrong
trajectory leading to an incorrect answer increases.

.

EEm Correct Segment
Wrong Segment

Segment Mean Score Boxplot

1.04

0.8 1

©

0.6

o

Score

0.4 1

IS

0.2

N

0.0 A

T T T T T
Segmentl Segment2 Segment3 Segment4 Segment5
Segment

Figure 2: Skywork-01-Open-PRM-Qwen-2.5-7B distri-
bution.

C Definition

C.1 Preference Decoding Model

Definition C.1 (Preference Decoding Model Trg
Induced by 7wg). Assume that at state s = sy, the
available action space is Ay = {al’, al}. The pref-
erence decoding model v} is defined as the follow-
ing parameterized distribution:

ﬂg(a;”\st) = U(rgft - Tl&,t)a

where
WG(Q%UL%) * [W *
ry, = Blog ——~—%- — V*(s + V*(s¢),
0,t B gﬂ'ref(a;gw|5t) (si41) (st)
l
mo(ails N .
ré,t = plog Toldglst) Vv (Sf:+1) + V7 (st).

Trep(a]st)

Remark. The preference decoding model 7rg can
be interpreted as performing preference-based sam-
pling over a binary prefix tree. It is derived from
the probability outputs of the base language model
.

D Evaluation

D.1 Evaluation Prompts

For a fair evaluation, the same prompt and format
is applied to our trained models as well as other
open-source models:

Prompt used for evaluation.

[SYSTEM]

Please reason step by step and put your
answer in \ \boxed{ }.

[Question]

{question}.

\. J

E Proofs

E.1 Proof of Lemma (4.1)

Lemma E.1 (Optimal Step Reward Function). Un-
der the step MDP definition3 and fix solution for
the maximum casual entropy problem (Equation
(2)), the optimal step reward function can be calcu-
late as follow:

7 (ay]st)

Wref(atlst) _(V*(St—i-l) - V*(st)>

Value Gain

r(st, ar) = Blog

Implicit Reward

(©))

12

Proof. According to the Bellman optimality equa-
tion (Barron and Ishii, 1989) in step MDP, we have:

Q*(styar) = r(st,ar) + V*(f(st,ar)). (10)
Here, if s;4+1 = f(s¢,a;) is a terminal state, then

V*(f(st,ar)) = 0. Meanwhile, if we log-linearize
the Equation (2), we have:

T (ay|se)
Tref(at|st)

Q*(s¢,a) = Blog + V*(s). (A1)
Therefore, combine the Equation (10) & (11), we

have:

T (ay|st)

r(s¢,ar) = Blo
(st,a¢) = B gﬂref(at|8t)

= (V*(st11) = V7 (s1)) -

Value Gain
Implicit Reward

E.2 Proof of Theorem E.2

Theorem E.2 (Step DPO Loss Using Dynamic
Value Margin.). If we aim to minimize the Kullback-
Leibler(KL) divergence between the step-level pref-
erence distribution pgaa in Dyep and the model’s
current preference distribution py under the sam-
pling of m.cr, we can obtain the following loss
function:

Estep—dpo = _EQ%U 7ai ~Toref(+]5¢) [

log o(Bhg(ay’, aé)
— (V*(st%1) = V¥ (si3))));

7 (ay’|st) - We(aﬂst)
Tref(ai’|st) Trep(ag|se)”
Regarding pyaiq, it represents the preference dis-

tribution in the dataset Dy,p, which takes the form
of a conditional point-mass distribution. For in-
stance, given a data instance (s, a, al), we have:
p(a = alls;) = 1 and p(al = a¥|s;) = 0.

where hg(a¥,al) = log

Proof. According to the Equation (3) and Equation
(4), we have:

po(ay = ailsy)

= a(ﬁhg(a;”,a,lg) — (V*(sthq) — V*(Sfyrl)))
(12)

So the KL divergence between pg and pgqt, under

the sampling of 7. is:

Ea;",aiNﬂref('|st) [Dk 1.(Pdatal|Po)]
=E

af by Clso) |
Pdata(at’ > GHSt)
pola’ = atlst)
Pdata(al = a}’|s¢)
polal = af|st)
= Ko alomer(s) 108 Do (0 - at|se)],

pdata(a;ﬂ > CL“St) 1Og

+pdata(a1l§ > ai’|s¢) lo

which is the same as Equation (5).

E.3 Proof of Theorem 5.2

Theorem E.3 (Equivalence Between Offline Step

DPO and Online Policy Gradient). If we define the

HT 1 mrefatlst)
=0 7y (ae|st)’

and define the Offline every-step preference loss
as:

reward in Equation (7) as v(T) =

Levery—step =

[Zlogﬂg “se)] :

then the following equivalence holds:
VBJ(H) = _v9£every—step-

Proof.

VG Eevery—step

T-1
Z Vo log 7 (a;’|s¢))]
t=

(r) =
=]ETNT(G Vy log 779 |5t))]
) =
=E, |
T—1 Trp (a |S) T—1
ref Lot D/ w
— —_— Vo log mp (ai’|st))]
ZH) o (at|st) ; o
T—1
B, [r(r) 3 Vlogni(als,)]
t=
= —VyJ(0).

F Supplementary experiments

F.1 Computational cost and efficiency of the
SPPD

Compared to online reinforcement learning algo-
rithms such as PPO and GRPO, our method re-

13

Methods Time
SPPD-Generation & PRM Scoring 6.6h
SPPD-Train 1.6h

GRPO 7.3h

PPO 10.5h

Table 9: Computational cost and efficiency of the SPPD
and other methods. SPPD-Generation indicates the
model generating trajectories by itself. SPPD-Scoring
refers to PRM scoring. SPPD-Train represents the train-
ing of PRM-SFT, PRM-DPO, and step-DPO with the
dynamic margin.

quires self-generated paths and PRM scoring. Al-
though these steps are computationally intensive,
they only need to be performed once as training and
data generation are decoupled. This leads to higher
training efficiency for the model. In contrast, PPO
and GRPO require online trajectory sampling dur-
ing training, resulting in lower training efficiency.
For example, under the setup of 8 H800 GPUs and
10k data samples, with 8 sampling iterations per
question, the time consumption of each method is
shown in the Table 9.

F.2 Impact of 4.

.
> 505 >

MATH

Gsmsk 37 e i
;."\/\‘\ im/\\' Y4

Qwen2.5-7B-Base Llama3.1-8B-Instruct Qwen2.5-7B-Instruct

Figure 3: Impact of 7y in dynamic value margin.

To evaluate the impact of the hyperparam-
eter v on the SPPD method (Equation 6), we
selected three base models: Qwen2.5-7B-Base,
Llama3.1-8B-Instruct, and Qwen2.5-7B-Instruct.
We varied « within the set {0.1,0.5,1.0,2.0,5.0}
and assessed model performance on the MATH
and GSMS8K datasets. The results are illustrated
in Figure 3. Our findings indicate that an optimal
v selection benefits SPPD training. Specifically,
both excessively high and low values of v impair
the training of dynamic value margins, affecting
generalization. However, overall performance
remains stable, particularly on the GSMS8K dataset.

This highlights the importance of a balanced
~ for optimizing SPPD effectiveness across
different models. While extreme values of ~
may lead to subpar performance compared to
fixed-margin step-DPO, Figure 3 demonstrates
that v =~ 1 consistently outperforms fixed-
margin methods across all models. Consequently,
setting v = 1 represents a robust choice in practice.

14

	Introduction
	Related Work
	Preliminaries
	Method
	Tree-Based Self-Sampling on LLMs
	PRM-Enhanced SFT & DPO
	Process Preference Learning with Dynamic Value Margin

	Theoretical Analysis
	Experiments
	Setup
	Main Result
	Ablation Study

	Conclusion
	Data Example
	PRM score distribution
	Definition
	Preference Decoding Model

	Evaluation
	Evaluation Prompts

	Proofs
	Proof of Lemma (4.1)
	Proof of Theorem E.2
	Proof of Theorem 5.2

	Supplementary experiments
	Computational cost and efficiency of the SPPD
	Impact of .

