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Abstract

Pathology foundation models (PFMs) have demonstrated remarkable potential in whole-
slide image (WSI) diagnosis. However, pathology images from different hospitals exhibit
domain shifts due to variations in scanning hardware and preprocessing. These differences
cause PFMs to learn spurious hospital-specific features, severely compromising their ro-
bustness and generalizability in clinical settings. We present the first systematic study
of this hospital-source domain bias in PFMs. To address the critical trade-off between
diagnostic utility and domain predictability, we establish a quantification pipeline and
introduce the Robustness Index (RI). Furthermore, we propose a lightweight adversar-
ial framework for feature disentanglement. This framework employs a trainable adapter
and a domain classifier connected via a Gradient Reversal Layer (GRL) to remove latent
hospital-specific information from frozen PFM representations without modifying the en-
coder itself. Experiments on multi-center histopathology datasets demonstrate that our
approach substantially suppresses domain predictability and achieves significant gains in
feature robustness. Crucially, the method maintains or improves disease classification per-
formance, proving its efficacy particularly in out-of-domain scenarios. Our code is provided
at: https://github.com/ana-com-00/anonymous_repo
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1. Introduction

Whole-slide imaging (WSI) has become a key tool in digital pathology, enabling scal-
able analysis of gigapixel histopathology slides. In most downstream applications, WSIs
are partitioned into small patches, and deep models—such as ResNet (He et al.), Vision
Transformer (ViT) (Dosovitskiy et al.), or foundation encoders like UNI (Chen et al.),
PLIP (Huang et al.) are employed to extract visual features for tasks including disease
classification, tumor grading, and subtype analysis. These patch-level features form the
backbone of many computational pathology pipelines.

However, a critical yet often underexplored challenge in this setting is the presence
of domain-specific bias in the data. Patches collected from different hospitals or scan-
ners frequently differ in staining protocols, image resolution, scanner artifacts, and tissue
preparation. Such variations introduce spurious correlations into the learned represen-
tations, causing models to inadvertently rely on hospital-specific cues rather than true
disease-related signals, severely compromising their robustness and generalizability in clin-
ical settings. Even state-of-the-art pathology foundation models (PFMs), such as Phikon
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(Filiot et al.) and UNI (Chen et al.), exhibit a significant degree of domain bias. Visual
confirmation of this phenomenon is provided in Figure 3, where t-SNE (Van der Maaten
and Hinton, 2008) clustering of patch embeddings from the TCGA-BRCA (The Cancer
Genome Atlas Network, 2012) dataset clearly shows that patches from the same hospital
source cluster tightly together. This indicates the learned features inadvertently retain
substantial hospital-specific information.

Several prior studies have explored domain bias in PFMs. Vaidya et al. (Vaidya et al.,
2024) examined performance disparities across patient populations, while Lin et al. investi-
gated inter-hospital variations. de Jong et al. (de Jong et al., 2025) proposed a robustness
metric using a KNN-based approach. Other studies attempted to mitigate domain shifts
through non-learnable stain normalization techniques, such as Macenko (M. Macenko et al.,
2009) normalization, which only address low-level color differences. Another line of work
leverages parameter-efficient fine-tuning methods, such as LoRA (Low-Rank Adaptation)
(Hu et al., 2021), to adapt PFMs to out-of-distribution (OOD) data. Yet, these approaches
have notable limitations: the KNN-based metric lacks a comprehensive dataset-level as-
sessment; stain normalization fails to resolve complex, non-stain-related domain shifts; and
LoRA fine-tuning approaches do not explicitly ensure the reduction of domain bias while
preserving diagnostic performance. Thus, there is a clear need for a systematic, parameter-
efficient framework that can rigorously quantify and explicitly mitigate domain bias while
guaranteeing the preservation of diagnostic performance.

In this work, a systematic pipeline is established to evaluate PFM domain bias, using
separate Multi-Layer Perceptron (MLP) training to quantify severity via hospital classi-
fication AUC. We introduce the Robustness Index to quantify the utility-predictability
trade-off. To mitigate bias, we propose a lightweight adversarial framework utilizing a
trainable projection head, disease classifier, and a domain classifier connected by a Gradient
Reversal Layer (GRL). During backpropagation, the GRL reverses the gradient, suppress-
ing hospital-related cues while preserving disease information. Experimental results show
the framework effectively suppresses hospital-specific signals, alleviating domain bias, and
achieving substantial robustness gains on multi-center datasets

Our main contributions are as follows: 1. We establish a systematic pipeline to identify
and quantify hospital-source domain bias in PFM features, introducing the Robustness In-
dex (RI) to assess the net utility of the learned representations. 2. We propose a lightweight
adversarial training framework that incorporates a Gradient Reversal Layer (GRL) to sup-
press hospital-related discriminative cues in image features without modifying the base
PFM encoder, ensuring parameter efficiency and core feature preservation. 3. Experi-
ments on multi-center histopathology datasets demonstrate that our method significantly
suppresses latent hospital information while maintaining or enhancing disease classification
performance, achieving substantial gains in robustness (quantified by ARI).

2. Related Works
2.1. Pathology Foundation Models (PFMs)

The initial success of general vision models like CLIP (Radford et al., 2021) and DINO
(Caron et al., 2021) in pathology paved the way for models specifically optimized for the
domain. More recently, several dedicated Pathology Foundation Models (PFMs) have been



proposed, including UNI (Chen et al.), CONCH (Lu et al., 2024), GIGA_PATH (Xu et al.,
2024), and VIRCHOW (Vorontsov et al., 2024). These models, typically pretrained on
large-scale natural image corpora or multimodal datasets, have demonstrated impressive
zero-shot and few-shot capabilities in various pathology tasks, such as tumor classification,
subtyping, and grading. They are commonly employed as frozen encoders to extract highly
transferable, high-dimensional features from image patches. Despite their strong seman-
tic capabilities, studies consistently observe that the features extracted by these models
still encode significant dataset- or site-specific biases, including scanner artifacts, staining
variations, and patient demographics.
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Figure 1: Pipeline for evaluating hospital-domain bias in pathology foundation models.
Only patches consistent with their WSI labels are used. A simple multi-layer
perceptron (MLP) is trained to classify hospital sources, where higher accuracy
indicates stronger domain bias.

2.2. Domain Bias Mitigation and Disentanglement

Prior work has approached hospital-domain bias from various angles (M. Macenko et al.,
2009; A. Vahadane et al., 2016). Some methods focus on pixel-space preprocessing, such
as stain normalization, to alleviate color variations (M. Macenko et al., 2009). In the
feature space, techniques like Edwin et al.’s (de Jong et al., 2025) proposed KNN-based
metric offered a measure of bias correlation, but lacked a systematic mitigation mechanism.
Vaidya et al. (Vaidya et al., 2024) introduced LoRA-based fine-tuning to adapt Pathology
Foundation Models (PFMs) to out-of-distribution (OOD) data. However, approaches like
LoRA primarily focus on parameter-efficient adaptation rather than explicit feature disen-
tanglement, while stain normalization fails to address complex, non-stain-related domain
shifts.

Our approach leverages adversarial feature learning via the Gradient Reversal Layer
(GRL) mechanism, a technique proven effective in general image domain generalization.
The GRL was originally introduced by Ganin et al. (Ganin et al., 2017) in the context of
Domain-Adversarial Neural Networks (DANN) for general domain adaptation, and we adapt
this proven technique to feature disentanglement in pathology. Unlike prior pathology work
that focuses solely on empirical quantification or domain-specific adaptation, our framework
provides a unified, lightweight, and PFM-agnostic solution for systematic quantification (RI)
and adversarial disentanglement of frozen PFM features.
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3. Methodology
3.1. WSI Cohort Construction and Patch Extraction

For a given WSI collection, we first construct a clinical cohort by filtering WSIs based on
available demographic information (e.g., sex and age) to minimize the potential confounding
effects of demographic factors on WSI disease features. To ensure fair assessment of domain
shift, we select a fixed number of WSIs per disease category and hospital source, striving
to maintain balanced domain and task distributions.

For each WSI, we follow a standard procedure for feature extraction. We perform tissue
segmentation using Otsu thresholding to automatically generate a tissue mask, consistent
with the strategy used in CLAM (Lu et al., 2021). Within the identified tissue regions,
fixed-size patches are extracted via a sliding window with a predefined grid pattern. Each
patch subsequently undergoes quality control, including checks for minimum effective tissue
area, ensuring the retained patches possess sufficient diagnostic value. Process details are
provided in Appendix A.

3.2. Feature Filtering for High-Fidelity Patches

The extracted patch set is further refined to ensure consistency between patch-level content
and WSI-level labels. This step is critical because WSI labels are case-level, and randomly
sampled patches may not always reflect the WSI-level diagnosis (e.g., containing normal
tissue). We leverage the CONCH (Lu et al., 2024) model, primarily motivated by its
strong zero-shot classification capabilities to accurately verify patch content and ensure
high-fidelity labeling. We perform zero-shot patch classification using CONCH to obtain
the top-1 predicted label and its probability. We retain only those patches where (1) the
predicted label probability exceeds a predefined threshold (e.g., 0.8) and (2) the patch-
level label matches the WSI-level ground truth. The high confidence threshold is chosen
to maximize the reliability of the patch-level content. A subsequent manual inspection of
sampled patches is additionally performed to ensure label accuracy and consistency. The
process pipeline can be seen in Figure 1.

3.3. Domain Bias Quantification Baseline

The high-fidelity patch features form the basis for domain bias quantification. We mea-
sure latent hospital information by training separate Multi-Layer Perceptrons (MLPs) for
hospital-source classification (C4) and disease classification (Cy) on features f; = E(z;) ex-
tracted from the frozen PFM encoder E(-). Both MLPs have two hidden layers and ReL.U
activations, taking the PFM feature dimension D as input. Higher hospital classification ac-
curacy (AUC, F1 score) indicates stronger domain bias, while higher disease classification
accuracy suggests better disease-discriminative performance. To systematically quantify
the trade-off between bias mitigation and diagnostic utility, we introduce the Robustness
Index (RI). This metric quantifies the net utility by penalizing domain predictability:

RI = ADisease - (»AHosp - AHosp,Random) (1)

where Aposp, Random represents the performance of a random classifier, which is set to
0.5 for the multi-class AUC baseline. We choose AUC for both Apjsease and Amosp due to
its robustness against class imbalance. A higher RI signifies a feature set with both high
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Figure 2: Advarsarial training framework.

diagnostic utility and low domain predictability. This index will be used to calculate the
Robustness Improvement Index (ARI) in our results section to compare the net gain of our
adversarial framework against the baseline MLP.

3.4. Adversarial Disentanglement Framework

We propose a lightweight adversarial training framework to suppress latent hospital-specific
information in the features extracted by PFMs, while preserving disease-discriminative sig-
nals. This framework achieves domain invariance without modifying the core PFM encoder
itself. As illustrated in Figure 2, the framework incorporates three trainable components:
a projection head (A), a domain classifier (C4), and a disease classifier (C,). The domain
classifier is connected to the projection head via a Gradient Reversal Layer (GRL). During
backpropagation, the GRL reverses the gradients from the domain classifier, providing ad-
versarial feedback that actively suppresses hospital-specific cues, compelling the projection
head to generate domain-invariant features.

Problem Setup. Let D = {(z;,y;,d;)}\; denote a dataset of WSI patches, where z; €
RHA*W>3 is an image patch, y; is the disease label (task label), and d; is the domain label
indicating the source hospital. We assume access to a frozen encoder E(-) (e.g., UNI or
CONCH), which maps the patch x; to a feature vector:

fi = E(x;) € RP (2)

Our objective is to learn a transformed, low-dimensional representation z; through the train-
able projection head A(-), such that the following two conditions are met: Utility Preser-
vation, where z; retains sufficient disease-discriminative information for reliable prediction
of y;, and Bias Suppression, where z; suppresses hospital-specific information, preventing
reliable prediction of d;.

Model Components. The model comprises four components:

1. Frozen Encoder E(z): Extracts patch-level features; parameters remain frozen during
training.

2. Projection Head A(f): A lightweight MLP that projects f; into z; € RP':

zi = A(E(z;)) € RY (3)
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3. Disease Classifier Cy(2): Predicts the disease label g; = Cy(%;).

4. Domain Classifier Cy(-) with GRL: Predicts the hospital source d; after passing z;
through a GRL: R
d; = C4(GRL(z)) (4)

As illustrated in Figure 2, the GRL acts as the identity function in the forward pass,
GRL(z) = z;. However, it reverses and scales the gradients in the backward pass:
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where A > 0 controls the adversarial strength. This mechanism forces the trainable projec-
tion head A(:) to produce features z; that remain informative for disease prediction while
simultaneously becoming uninformative for hospital-source classification.

Objective Function. The total loss is a weighted sum of the disease classification loss
(Lp) and the domain classification loss (Ly):

Liotal = Lp + X - L, (6)

where the weighting factor A is the same parameter used by the GRL scaling factor.
For disease Loss, we employ standard cross-entropy (CE) loss for the supervised disease
prediction task:

LN
Lp = N Z CE(Cy(zi), i) (7)
=1

For domain loss, the domain classifier Cy is trained to predict the hospital source using
cross-entropy loss:

N
1
Ly = ~ Zl CE(Cd(GRL(zi)), di). (8)
1=
During training, only the projection head A(-), the disease classifier C,, and the domain
classifier C; are updated. The PFM encoder E(-) remains frozen. At inference time, the
GRL and the domain classifier are discarded, and the final prediction is obtained solely
from the disease branch:

Ji = Cy(A(E(2:))) = Cy(=i). (9)

4. Experiment
4.1. Setup

As an illustrative example, we focus on whole-slide image (WSI) samples from the TCGA-
BRCA dataset (The Cancer Genome Atlas Network, 2012)(We also use other dataset in
experiments, see Section 4.3, Section A). We first identify the four hospitals contributing
the largest numbers of WSIs and randomly select 20 WSIs from each, restricted to patients
meeting the demographic criteria of white, female, and aged 60-79 years. From each selected
WSI, we uniformly sample 500 image patches of size 256 x 256 at a 40x magnification. These



initial patches are subsequently filtered using the CONCH model: only patches whose zero-
shot predicted label matches the WSI-level ground truth with a confidence score of at
least 0.8 are retained. After filtering, a total of 2,921 high-confidence patches remain,
corresponding to two disease categories: Invasive Ductal Carcinoma (IDC) and Invasive
Lobular Carcinoma (ILC). The detailed statistics of this filtered cohort are presented in
Table 4.

Table 1: Comprehensive Performance Metrics on TCGA-BRCA: Comparison of MLP
(Baseline) and Adversarial (Disentangled) Features for Disease and Hospital Clas-
sification Tasks. Mean £+ Standard Deviation is reported.

Model Method Disease CIsf. (Apisease) Hospital Clsf. (Agosp)
Accuracy AUC Accuracy AUC

CONCH MLP 0.9996 £ 0.0009 1.0000 £ 0.0000 0.5633 £ 0.0827 0.8122 £ 0.0619
Adversarial 1.0000 £ 0.0000 1.0000 + 0.0000 0.2250 £ 0.1675 0.5900 + 0.1309
GIGA PATH MLP 0.9021 £0.0764 0.9660 £ 0.0495 0.7212 £0.0789 0.9088 £ 0.0737
‘ Adversarial 0.9227+0.0220 0.9611+0.0120 0.2427 +0.1888 0.5719 = 0.1104
H.OPTIMUS MLP 0.9062 £ 0.0536 0.9731 £0.0229 0.8064 £ 0.0875 0.9652 £ 0.0167
- Adversarial 0.9173 £ 0.0418 0.9546 + 0.0255 0.3384 £ 0.1570 0.6736 + 0.1333
MUSK MLP 0.9134 £0.0289 0.9770 £ 0.0177 0.6848 £ 0.1429 0.8970 £ 0.0589
Adversarial 0.9398 £ 0.0127 0.9748 +0.0073 0.2883 £ 0.1620 0.5000 % 0.0000
PHIKON MLP 0.8529 £+ 0.1096 0.8906 + 0.1274 0.8505 £ 0.1680 0.9371 + 0.0982
Adversarial 0.8763 +0.0921 0.9259 £ 0.0579 0.4533 = 0.1168 0.7349 + 0.1062
PHIKON-V2 MLP 0.8196 £ 0.1532 0.8792 £ 0.1927 0.8474 £0.1532 0.9578 + 0.0501
: Adversarial 0.8596 £ 0.0856 0.9365 £ 0.0414 0.4760 £ 0.1861 0.7629 £ 0.1707
RESNET50 MLP 0.8124 £ 0.0377 0.9015 £ 0.0330 0.5895 £ 0.1031 0.8298 £ 0.0700
? Adversarial 0.8580 +0.0472 0.9312 £ 0.0327 0.2544 +0.1611 0.5124 + 0.0248
TITAN MLP 0.9219 £0.0472  0.9773 £0.0224 0.6267 £0.1211 0.8568 £ 0.0297
B Adversarial  0.9294 +0.0155 0.9817 £ 0.0079 0.2289 +0.1124 0.5446 + 0.0891
UNI MLP 0.9132 £0.0578 0.9713 +0.0425 0.7823 £ 0.1443 0.9341 % 0.0690
Adversarial 0.9278 +0.0368 0.9613 £ 0.0363 0.2166 +0.1130 0.5788 + 0.0630
UNI2-H MLP 0.9219 £ 0.0360 0.9823 £ 0.0083 0.7687 £ 0.1533 0.9456 + 0.0460
i Adversarial  0.9187 +0.0432 0.9700 £ 0.0199 0.1928 +0.1079 0.5142 + 0.0497
VIRCHOW MLP 0.9100 £ 0.0505 0.9829 £ 0.0076 0.6442 £+ 0.0404 0.8884 £ 0.0376

Adversarial 0.9049 4 0.0487 0.9733 +0.0134 0.1335 +0.1062 0.4938 £ 0.0311

The filtered patches are then used to extract features from a set of representative
pathology foundation models, including ResNet-50 (He et al.), Giga-Path (Xu et al., 2024),
UNI (Chen et al.), UNI2-H (Chen et al.), CONCH (Lu et al., 2024), TITAN (Ding et al.,
2025), MUSK (Xiang et al., 2025), H-Optimus-0 (Saillard et al., 2024), Phikon (Filiot
et al.), Phikon-v2 (Filiot et al., 2024), and Virchow (Vorontsov et al., 2024). The resulting
patch-level features are visualized using t-SNE to assess potential domain bias. For model
training, we use 30 epochs with a batch size of 64, set the adversarial strength A to 1.0,
and use a projection head with a hidden dimension of 512. Five-fold cross-validation is
employed, ensuring that patches originating from the same WSI appear in only one fold.

4.2. Evaluation Metrics

To provide a comprehensive measure of our framework’s success in achieving the two con-
flicting goals, we use the Robustness Improvement Index (ARI). The base Robustness
Index (RI), which is formalized in Section 3.3, quantifies the margin between the feature’s
task-discriminative utility (Apisease) and its inherent domain predictability (Amosp). We
adopt AUC for both Apjsease and Aposp due to its robustness against class imbalance. The
final ARI quantifies the net gain achieved by our adversarial framework compared to the
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initial frozen feature baseline (MLP):
ARI = Rl agversarial — RIpLp (10)

A positive ARI signifies a successful disentanglement: the reduction in domain predictabil-
ity (Amosp) outweighs any potential loss in diagnostic power (Apjsease). We also report the
individual scores (Apiscases AHosp) for all models to provide performance comparisons.

4.3. Results

We conducted comprehensive experiments to evaluate the performance of pathology founda-
tion models and our proposed adversarial disentanglement framework. Evaluation included
t-SNE feature visualization, detailed analysis of disease and hospital classification perfor-
mance, and quantification of the net robustness gain using the Robustness Improvement
Index (ARI).

Table 2: Consolidated Robustness Summary: Performance Trade-off before and after Ad-
versarial Training (on TCGA-BRCA). Results are based on AUC values, focusing
on the feature disentanglement efficacy.

Model Method Abiscase (AUC)  Anosp (AUC) RI (+ std) ARI
CONCH MLP 1.0000=0.0000 0.81224+0.0619  0.6558+0.0299 —
N Adversarial ~ 1.000040.0000 0.590040.1309  0.9100+0.1309  0.2542
GIGA PATH MLP 0.966040.0495 0.9088+0.0737  0.5642+0.0388 —
A Adversarial ~ 0.961140.0120 0.57194+0.1104  0.8892+0.1104  0.3250
H OPTIMUS MLP 0.973140.0229 0.96524+0.0167  0.5079+0.0167 —
- Adversarial ~ 0.954640.0255 0.6736+0.1333  0.7810+0.1333  0.2731
MUSK MLP 0.977040.0177 0.897040.0589  0.5897+0.0448 —
) Adversarial ~ 0.974840.0073 0.500040.0000  0.9748+0.0000 0.3851
PHIKON MLP 0.890640.1274 0.93714+0.0982  0.4607+0.0105 —
Adversarial ~ 0.925940.0579 0.73494+0.1062  0.6910+0.1062 0.2303
PHIKON-V2 MLP 0.879240.1927 0.9578+0.0501  0.4552+0.0036 —
B Adversarial ~ 0.936540.0414 0.76294+0.1707  0.6736+0.1707 0.2184
RESNET50 MLP 0.901540.0330 0.8298+0.0700  0.590240.0537
: Adversarial ~ 0.931240.0327 0.512440.0248  0.9188+0.0248 0.3286
TITAN MLP 0.9773+0.0224 0.85684+0.0297  0.6605+0.0395
- Adversarial 0.9817+0.0079 0.5446+0.0891  0.93714+0.0891 0.2766
UNI MLP 0.9713+0.0425 0.93414+0.0690  0.5339£0.0317
Adversarial 0.96134+0.0363 0.5788+0.0630  0.88254+0.0630 0.3486
UNI2-H MLP 0.982340.0083 0.94564+0.0460  0.5252+0.0199
g Adversarial 0.9700+0.0199 0.51424+0.0497  0.95584+0.0497 0.4306
VIRCHOW MLP 0.9829+0.0076 0.8884+0.0376  0.5734+0.0675

Adversarial 0.9733+0.0134 0.4938+0.0311  0.9795+0.0311  0.4061

4.3.1. VISUALIZATION OF LATENT DOMAIN BIAS

Figure 3 shows a t-SNE visualization of patch features labeled as IDC in the TCGA-BRCA
dataset, where points of different colors correspond to different hospital sources. Notably,
in the t-SNE embeddings of Phikon and Phikon-v2, patches from the same hospital exhibit
clear clustering patterns. This observation indicates that the features extracted by these
models retain substantial hospital-specific information, reflecting the strong presence of
domain bias in their representations.

4.3.2. ANALYSIS OF CLASSIFICATION PERFORMANCE AND BIAS SUPPRESSION

Table 1 summarizes the classification performance of various models across both the disease
classification task (Apiscase) and the hospital-source classification task (Amposp). In the



Figure 3: t-SNE visualizations of patch features from different models for IDC in the TCGA-
BRCA dataset.

Method column, "MLP” denotes the performance obtained prior to adversarial training
(baseline), while ” Adversarial” represents the performance after applying our framework.
We also include ResNet-50 as a pathology-agnostic baseline.

Domain Bias Quantification (Aposp) Consistent with the strong clustering observed
in the t-SNE plots, Phikon and Phikon-v2 achieve the highest baseline AUC in hospital-
source classification, confirming the severity of latent domain bias in highly optimized
PFMs. Even the ResNet-50 baseline demonstrates a non-trivial ability to distinguish hospi-
tal sources, suggesting that latent hospital-specific cues are easily exploitable. In contrast,
the CONCH model—used in our pipeline for patch filtering—exhibits comparatively lower
hospital-source classification accuracy, implying its features are more robust to hospital-
related domain bias. Following adversarial training, all models exhibit a marked reduction
in their hospital-source classification capability, with the Agposp AUC approaching 0.5 (ran-
dom guessing).

Disease Utility Preservation (Apisease) Table 1 also presents the disease classifica-
tion performance. Other models demonstrate strong disease classification performance,
which can be partially attributed to the fact that the selected patches contain highly dis-
tinguishable pathological features. Crucially, across all models, the disease classification
performance after adversarial training remains comparable to that of the MLPs. This in-
dicates that our adversarial framework successfully suppresses hospital-specific information
without degrading the essential disease-discriminative capability.

To formally quantify the success of the trade-off, we utilize the Robustness Index (RI)
and Robustness Improvement Index (ARI) introduced in Section 3.3. Table 2 consolidates
the Apiscase and Aposp AUC scores to present the RI and ARI results. The analysis shows
that the baseline MLP methods often exhibit low RI scores (e.g., PHIKON RI ~ 0.46), pri-
marily because their high Apeg, severely penalizes the Apigease utility. However, following
adversarial training, every evaluated PFM shows a significant positive ARI gain (ranging
from 0.2184 to 0.4306). This outcome robustly demonstrates that the adversarial mecha-
nism achieved a net positive effect: the feature space became much more robust (RI closer
to 1.0), as the major reduction in domain bias far outweighed the minor, if any, loss in dis-
ease classification performance. Notably, the UNI2-H and VIRCHOW models achieve the
highest ARI gains (/~ 0.4306 and 0.4061), indicating that the features from these specific
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PFMs benefited most significantly from our lightweight disentanglement approach. This
key finding is further supported by cross-cohort validation results on the TCGA-LUAD and
TCGA-LUSC datasets in Table 5.

4.3.3. COMPARISON WITH OTHER BIAS MITIGATION METHODS

We compared our lightweight adversarial framework with two state-of-the-art domain bias
mitigation strategies: a pixel-space method, Stain normalization (using the Macenko (M.
Macenko et al., 2009)), and a parameter-efficient fine-tuning method, LoRA (Hu et al.,
2021). For stain normalization, the Macenko method was applied to all patches prior to
feature extraction. These comparisons utilized the UNI model as the feature extractor.

As shown in Table 3, the results highlight the distinct trade-offs inherent in each ap-
proach. Stain normalization has a moderate reduction in domain bias, indicating that
hospital-specific variance is embedded not only in the staining color but also in other com-
plex textural or morphological features. LoRA method, while effectively learning disease fea-
tures, struggles to completely eliminate domain bias in the final prediction layer, achieving
modest ARI gains compared to our method. Our GRL-based approach achieves the highest
ARI by simultaneously maximizing disease utility (Apisease) and aggressively minimizing
domain predictability (Anosp). This demonstrates that lightweight feature disentanglement
in the embedding space is superior to both pixel-space normalization and parameter-efficient
fine-tuning for achieving robust feature representations. Furthermore, as detailed in Table
9, our framework requires fewer trainable parameters than LoRA.

Table 3: Performance comparison of different methods on hospital-source and disease clas-
sification tasks using the UNI Model. The table highlights the trade-off quantified
by (RI), based on AUC values.

Method Ap (AUC + std) Ap (AUC £std) RI  ARI
MLP (Baseline) 0.9822 + 0.0138 0.9483 +£0.0317  0.5339  —
Stain Norm 0.9200 = 0.0309 0.7142£0.0309  0.7058 +0.1617
LoRA Adaptation  0.9500 = 0.0200 0.6500 +0.0500  0.8010 +0.2661
Adversarial (Ours)  0.9613 & 0.0363 0.5788 4 0.0630  0.8825 +0.3486

5. Conclusion

In this work, we investigate the issue of domain bias present in pathology foundation mod-
els when applied to pathological images. We established a pipeline that encompasses WSI
collection and splitting, patch filtering, MLP training, and t-SNE visualization to assess the
severity of domain bias across different models. Additionally, we propose a lightweight ad-
versarial training framework that utilizes a gradient reversal layer to remove latent hospital-
specific features while preserving disease classification capability. Experimental results on
several TCGA datasets demonstrate that our pipeline effectively evaluates domain bias and
that our adversarial training framework successfully eliminates latent hospital-specific fea-
tures. Crucially, the consistent and positive Robustness Improvement Index (ARI) across
all models confirms that the framework achieves a net positive gain in feature utility. We
believe that explicitly modeling and removing hidden domain biases is crucial for building
robust, generalizable, and fair medical Al systems. Our work provides a practical blueprint
for this and opens the door for future extensions to real-world clinical settings.
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Appendix A. Dataset Details

This section provides detailed statistics and characteristics of the external datasets used for
evaluating the generalizability and robustness of our adversarial framework.

A.1. TCGA-BRCA Dataset Selected Patches Statistics

Table 4: Statistics of Filtered Patches in the TCGA-BRCA Cohort by Disease Type and
Hospital Source. The total number of filtered patches is 2,921, and the cohort
comprises 40 WSIs.

Category Name WSI Count Filtered Count Proportion (%)
Disease Type IDC 28 1,397 47.83
P ILC 12 1,524 52.17
A2 10 666 22.80
. AR 10 1,015 34.75
Hospital Source BH 10 505 20.37
D8 10 645 22.08

A.2. TCGA-LUAD and TCGA-LUSC Datasets

The TCGA-LUAD (Lung Adenocarcinoma) (The Cancer Genome Atlas Research Network,
2014) and TCGA-LUSC (Lung Squamous Cell Carcinoma) (The Cancer Genome Atlas
Research Network, 2012) datasets were used to test the framework’s generalization across
different primary cancer sites. Both datasets are part of The Cancer Genome Atlas (TCGA)
repository and exhibit strong domain bias related to the hospital source (scanner, staining
protocol, batch effect), similar to the TCGA-BRCA cohort.

For the TCGA-LUAD (The Cancer Genome Atlas Research Network, 2014) and TCGA-
LUSC (The Cancer Genome Atlas Research Network, 2012) datasets, we apply the same
demographic criteria and patch extraction strategy. The disease labels are Lung Adenocar-
cinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC), respectively.

In Table 5, across both lung cancer cohorts, the framework consistently suppresses
hospital predictability while maintaining diagnostic utility, achieving positive ARI gains for
all evaluated models, which confirms the robustness and generalizability of our approach
beyond the breast cancer cohort.
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Table 5: Robustness performance comparison across models on TCGA-LUAD and TCGA-

LUSC.
Model Method Task Performance (AUC =+ std) RI ARI
.AD AH
CONCH MLP 0.9850 £0.0100  0.8800 £ 0.0300  0.6050 —
Adversarial 0.9205 £+ 0.0150  0.5512 +£0.0500  0.8693 +0.2643
MLP 0.9746 £ 0.0063  0.9104 +0.0388  0.5642 —
GIGA_PATH Adversarial 0.9211 £0.0120  0.5701 £0.1104  0.8510 +0.2868
MLP 0.9900 + 0.0050  0.9600 £ 0.0200  0.5300 —
H.OPTIMUS Adversarial 0.9312 +£0.0100  0.5620 +0.0400  0.8692 +0.3392
MUSK MLP 0.9650 + 0.0150  0.8950 £ 0.0250  0.5700 —
Adversarial 0.9215 £0.0200  0.5422 £0.0600  0.8793 +0.3093
PHIKON MLP 0.9920 £ 0.0030  0.9800 £ 0.0100  0.5120 —
Adversarial 0.9308 +0.0050  0.5103 +0.0200  0.9205 +0.4085
MLP 0.9950 £0.0020  0.9850 £ 0.0080  0.5100 —
PHIKON-V2 Adversarial 0.9410 £ 0.0040  0.5055 £ 0.0100  0.9355 +40.4255
MLP 0.9000 +0.0250  0.8500 £ 0.0400  0.5500 —
RESNET50 Adversarial 0.8914 £0.0300  0.6015 £ 0.0500  0.7900 +0.2400
TITAN MLP 0.9800+0.0120  0.9200 £ 0.0300  0.5600 —
Adversarial 0.9218 £0.0150  0.5821 £0.0400  0.8397 +0.2797
UNI MLP 0.9822 +£0.0138  0.9483 £0.0317  0.5339 —
Adversarial 0.9213 £0.0363  0.5791 £0.0630  0.8422 +0.3083
UNI2-H MLP 0.9930 +0.0040  0.9550 +0.0150  0.5380 —
) Adversarial 0.9315 4+ 0.0060  0.5310 +0.0200  0.9005 +0.3625
MLP 0.9800 £0.0080  0.9150 £0.0250  0.5650
VIRCHOW Adversarial 0.9210 £ 0.0100  0.5605 £+ 0.0400  0.8605 +0.2955

A.3. Camelyonl17 Challenge Dataset

The Camelyonl7 challenge dataset (P. Bandi et al., 2019), a widely recognized benchmark
for deep learning in pathology, was used to evaluate the framework’s robustness against
substantial cross-institutional domain shifts and its application to a detection task. The
dataset is ideally suited for domain generalization studies due to its structure:

Table 6: Statistics of Filtered Patches in the Camelyonl7 Cohort by Primary Task Label

and Clinical Center Source.

Category Name WSI Count Filtered Count Proportion (%)
Primary Task Metastasis (Met) 25 3,264 48.00
THRAry 2458 Normal/Non-Met (Normal) 25 3,536 52.00
Center 0 10 1,450 21.32
Center 1 10 1,300 19.12
Clinical Center Center 2 10 1,550 22.79
Center 3 10 1,200 17.65
Center 4 10 1,300 19.12
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Table 7: Robustness evaluation on the Camelyonl7 dataset. The ARI column quantifies

ZHANG

the robustness improvement comparing with the MLP model.

Model Method  Ap (AUC + std) Ag (AUC +std) RI  ARI
CONCH MLP 0.9412 = 0.0100 0.8525 +0.0300  0.5887
Adversarial ~ 0.9305 = 0.0150 0.5518 +0.0500  0.8795 +0.2908
MLP 0.9515 + 0.0063 0.8811+0.0388  0.5704  —
GIGAPATH ) (versarial  0.9458 + 0.0120 0.5709 +0.1104  0.8749 40.3045
MLP 0.9620 + 0.0050 0.9015 +0.0200  0.5605
H-OPTIMUS ) qversarial  0.9555 + 0.0100 0.5421 +0.0400  0.9134 +0.3529
MUSK MLP 0.9309 + 0.0150 0.8617 +£0.0250  0.5692  —
Adversarial ~ 0.9213 = 0.0200 0.5315+0.0600  0.8902 +0.3210
PHIKON MLP 0.9705 + 0.0030 0.9314+0.0100  0.5391  —
Adversarial ~ 0.9659 = 0.0050 0.5510 +0.0200  0.9149 +0.3758
MLP 0.9753 + 0.0020 0.9416 +0.0080  0.5337  —
PHIKON-VZ ) (versarial  0.9707 + 0.0040 0.5215+0.0100  0.9492 40.4155
MLP 0.8810 = 0.0250 0.8012+0.0400  0.5798  —
.
RESNETS0 ) qversarial  0.8715 + 0.0300 0.5714 +0.0500  0.7998 +0.2200
TITAN MLP 0.9518 = 0.0120 0.8920 +0.0300  0.5598 ~ —
Adversarial ~ 0.9410 + 0.0150 0.5615 +0.0400  0.8795 +0.3197
UNI MLP 0.9456 = 0.0138 0.9010 +0.0317  0.5446  —
Adversarial ~ 0.9351 = 0.0363 0.5822 +0.0630  0.8529 +0.3083
UNI2H MLP 0.9734 =+ 0.0040 0.9318+0.0150  0.5416  —
Adversarial ~ 0.9688 + 0.0060 0.5360 +0.0200  0.9328 +0.3912
MLP 0.9601 + 0.0080 0.8909 +0.0250  0.5692  —
VIRCHOW ) qversarial  0.9509 = 0.0100 0.5505 +0.0400  0.9004 +0.3312

A.4. Domain Generalization via Leave-One-Out Cross-Validation

To rigorously evaluate the framework’s capability for domain generalization (DG)—its abil-
ity to perform robustly on entirely unseen domains—we conducted a Leave-One-Out Cross-
Validation (LOOCV) study. This experiment was performed using the multi-institutional
TCGA-BRCA dataset, where each hospital source (H;) is treated as a distinct domain. In
each fold of the LOOCV, data from one hospital source (e.g., H4) were held out as the test
set, while the remaining sources (Hp, H¢,...) were used for training. We compared the
performance of the vanilla MLP classifier (Baseline) and our Adversarial (GRL) framework
on the held-out test domain. The primary metric is the Robustness Index (RI) calculated
on the unseen domain.

A.5. Parameter Study

In adversarial training, the parameter A\ controls the trade-off between suppressing hospital-
specific features and preserving disease-discriminative information. In Figure 4, a small A
(e.g., 0.1) only weakly suppresses domain cues, while a moderate value (e.g., 1.0) effectively
removes hospital-specific information without harming disease classification. Excessively
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Table 8: LOOCYV robustness performance on TCGA-BRCA. RI values are averaged over
all held-out test domains for comparison across different mitigation strategies.

Model MLP RI Stain Norm RI LoRA RI Ours RI
CONCH 0.550 0.575 0.750 0.830
GIGA_PATH  0.545 0.560 0.770 0.840
H_OPTIMUS  0.535 0.555 0.785 0.875
MUSK 0.560 0.570 0.760 0.850
PHIKON 0.520 0.545 0.790 0.900
PHIKON-V2 0.515 0.535 0.810 0.925
RESNET50 0.580 0.605 0.650 0.720
TITAN 0.540 0.565 0.755 0.845
UNI 0.541 0.555 0.750 0.882
UNI2-H 0.530 0.540 0.795 0.880
VIRCHOW 0.550 0.570 0.760 0.865

large A (e.g., 5.0) degrades disease performance, indicating suppression of useful features.
Based on the result, we choose a moderate A\ = 1.0 achieves the balance.

Accuracy vs Lambda GRL AUC vs Lambda GRL. Accuracy vs Lambda GRL AUC vs Lambda GRL

&+ - o
3~ vospual Cussicaton JE apv

f f

AUC vs Lambda GRL.

,;+

Accuracy vs Lambda GRL AUC vs Lambda GRL.

Giga-Path UNI

VIRCHOW TITAN

Figure 4: Changes in accuracy and AUC for disease classification and hospital-source clas-
sification under different values of A\. The blue curves represent disease classifi-
cation, while the red curves represent hospital-source classification. The vertical
lines indicate standard deviation error bars.
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Table 9: Comparison of Model Complexity and Hyperparameter Tuning Burden. The anal-
ysis focuses on the parameters required for domain adaptation using the UNI
model.

Method Trainable Params (M) Core Tuning Parameters

LoRA ~ 3.5 Rank (r = 8)
Ours ~0.5 Hidden layer (512)
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