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Abstract

How might reinforcement-learning based covert social influence

operations (CSIOs) be run, given that the CSIO agent wants to

maximize influence and minimize discoverability of malicious ac-

counts? And how successful can they be, given that both social

platform bot detectors and humans might report them to the social

platform? To answer these questions, we propose RL_CSIO, an
RL-based methodology for running CSIOs and run 4 CSIOs with

IRB-approval over a period of 5 days using a panel of 225 human

subjects. We explore 8 research questions based on the data col-

lected. The results show that RL_CSIO agents successfully trade

off influence and discoverability — but in ways that are nuanced

and unexpected.

CCS Concepts

• Information systems→ Social networks; •Human-centered

computing → User studies.

Keywords

Influence Operations; Human-Bot Interaction; Social Media

1 Introduction

According to [49], 53 covert social influence operations (CSIOs) tar-

geting 24 countries were identified between 2013 and 2018. Notable

operations include efforts by Russia’s Internet Research Agency

to manipulate the 2016 US election, for which it was indicted in

the U.S.
1
In addition, social networks have been also exploited by

terrorist groups for disseminating propaganda and counterintelli-

gence [48], e.g., by ISIS in 2016 [29]. Most social media platforms

periodically report CSIOs activity in their environment, including

Facebook [6, 23, 24], Reddit [2, 58], YouTube [16, 38], TikTok [66],

and Twitter [17, 34, 50].

A Covert Social Influence Operation (CSIO) is a strategic social

media campaign run by a CSIO agent with two goals: (G1) maxi-

mizing the spread of sentiment on a given topic (e.g., immigration

to the US) with a given polarity (positive, neutral or negative),

and (G2) minimizing detection of malicious social media accounts

(which we call bots) controlled by the CSIO agent. Other (non-bot)

accounts are human accounts or just humans. Though much work

has been done on influence in social networks [41, 74] and influence

operations [35, 53, 54], far less work exists on campaigns that try

to achieve both objectives simultaneously. Our paper makes the

following contributions:

• We propose a reinforcement-learning (RL) based method,

namely RL_CSIO, to implement a CSIO-agent that balances

1
https://www.justice.gov/ira-indictment

WWW, ,
. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

goals G1 and G2. The CSIO agent learns to adapt dynami-

cally the behavior of its controlled accounts while observing

which bots are blocked.
2

• We run an IRB-approved 5-day experiment using 225 hu-

man subjects and 4 influence campaigns on different con-

troversial topics. As in the real world where multiple in-

dependent CSIOs may occur in parallel, these 4 CSIOs run

concurrently and the bots can change their behavior auto-

matically during the experiment in accordance with what

their controlling CSIO agent tells them.
3

• Based on the data collected, we investigate the following

research questions.

H1 Will bots become top influencers or not?

H2 Should bots accounts be more active or less active in gath-

ering influence?

H3 Does a bot have to be influential to change a human ac-

count’s stance? Unlike past work that measures influence

by looking at stance change alone, our IRB-approved exper-

iment distinguishes between the two. We survey human

subjects daily to ask them which accounts influenced them.

And our surveys capture stance change (changing from

having positive opinions to going negative or vice-versa)

separately.

H4 Is there a relationship between the number of interac-

tions between bots and humans who change their stance

compared to those who do not?

H5 Do bots behave consistently throughout a CSIO cam-

paign? Or do they change behavior?

H6 How successful are human users at detecting bots?

H7 How do human perceptions about whether an account is a

bot or not affect the account’s ability to influence humans?

H8 How does the age of an account (i.e. reported time on the

platform) affect its ability to influence humans?

Our experiments shed light on these questions. We invite the

reader to answer these questions for themselves now, and then see

what the paper says later.

2 Related Work

Influence Operations on Social Media. Academic works on

CSIOs discuss their impact on public opinion [7, 69], strategic coor-

dination [3, 9], and the real-world effect of online disinformation

[19, 72, 73]. Case studies on Russian influence in the US reveal how

strategically positioned trolls within networks amplify disinforma-

tion to specific audiences [4, 5]. Strategic inter-state cooperation

2
We do not claim to develop new RL algorithms. RL_CSIO uses off the shelf RLmethods

to implement CSIO agents which, to our knowledge, is the first method to balance

goals G1 and G2.

3
To avoid violating social platform policies, we used a virtual platform called DartPost

which can mimic many social platforms (e.g. X, Facebook)[43] that was generously

provided to us.

1

https://www.justice.gov/opa/pr/grand-jury-indicts-thirteen-russian-individuals-and-three-russian-companies-scheme-interfere
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has been documented in campaigns originating in Russia, Iran, and

Venezuela [68].

Detection of CSIOs. CSIO detection includes methods to iden-

tify both automated accounts [15, 18] and state-backed human

operators [27, 50]. Depending of the information they leverage to

perform detection, these methods fall into five bins: content-based

[1, 2, 52], behavior-based [39, 45, 61], sequence-based [22], and

network-based [44, 46] or hybrid [36, 63]. These techniques, while

effective, must continuously adapt to the evolving tactics employed

by CSIO agents.
4

Our work differs from the above efforts in 3 ways. (i) Most prior

studies analyse historical data about CSIO accounts. In contrast, we

design RL_CSIO, a RL-based method to run CSIO automatically, and

conduct an IRB-approved human subjects’ study which allows us

to observe bot, human, and platform behavior in real time. (ii) Past

studies primarily use statistical/ML models to estimate the impact

of CSIO accounts on humans (e.g. identifying user characteristics

linked to susceptibility to influence). Though insightful, these ap-

proaches have limitations. In our study, we explicitly asked human

users who influenced them, something that is not available to those

who infer influence via likes/shares and without ground truth. (iii)

We also investigate humans’ ability to identify bots compared to a

recent bot detector [28]. This human-centered approach provides a

more comprehensive understanding of bot detection efficacy and

CSIO capabilities in real-world scenarios.

Social Influence Maximization. Social Influence Maximization

(SIM) finds a set of seed accounts that maximizes the spread of an

opinion with applications to marketing [13, 37, 65], social recom-

mendation [64, 71], and countering fake news [59, 67]. SIM typically

assumes an underlying spread model (e.g. Independent Cascade

[31], Linear Threshold[33]). Extensions to the basic definition in-

clude methods to scale[42], topic-aware SIM [10, 12], community-

based SIM [14, 55] and time-variant SIM [11, 20, 26, 51]. Other

efforts try to minimize the initial seed set while maximizing the

achieved influence[47, 56], ensure fairness across different commu-

nities [32, 57] and diverse population demographics [30].

In contrast, we propose RL_CSIO, an RL-based method for imple-

menting CSIO agents that can dynamically evolve their behavior.

Unlike past works, CSIO agents maximize influence spread and

minimize the risk of detection of their bots by humans or automatic

bot detectors.

3 Methodology

This section defines our RL-based method for building CSIO agents.

We again emphasize that we are not developing new RL algorithms,
but using them for the problem of building adaptive CSIO agents.

3.1 The RL_CSIO Framework

Environment & CSIO Agents. A social network is a directed attrib-

uted graph G = (V, E). V is the set of accounts {𝑢1, 𝑢2, · · · , 𝑢𝑛},
and E = {(𝑢𝑖 , 𝑢 𝑗 ,𝑤𝑖 𝑗 ) |𝑢𝑖 ∈ V, 𝑢 𝑗 ∈ V,𝑤𝑖 𝑗 ∈ R} denotes the

weighted follower-followee relationships.𝑤𝑖 𝑗 could be the number

of interactions (e.g., likes, re-shares) between 𝑢𝑖 and 𝑢 𝑗 .

A CSIO agent controls a set V𝑐𝑠𝑖𝑜 = 𝑢𝑐𝑠𝑖𝑜
1

, 𝑢𝑐𝑠𝑖𝑜
2

, . . . , 𝑢𝑐𝑠𝑖𝑜𝑚 ⊆
V of accounts in order to spread a target polarity, 𝑝𝑜𝑙𝑐𝑠𝑖𝑜 (either

4
We emphasize that bot detection is NOT a goal of this paper.

positive or negative) on a topic 𝑠𝑢𝑏𝑐𝑠𝑖𝑜 .Without loss of generality, we
assume the target polarity 𝑝𝑜𝑙𝑐𝑠𝑖𝑜 to be pushed is positive. Multiple

CSIO agents may be running operators on G in parallel.

We assume the platform’s moderation team has a bot detector

that periodically screens all accounts 𝑢 ∈ V and suspends accounts

identified as bots.
5 ¯V𝑐𝑠𝑖𝑜 ⊆ V𝑐𝑠𝑖𝑜

is the set of unblocked CSIO-

controlled accounts, which changes with time.

Each account 𝑢 ∈ V has the following attributes: (i) role — CSIO-

controlled or not, (ii) centrality using PageRank [70], (iii) polarity —

the account’s stance toward 𝑠𝑢𝑏𝑐𝑠𝑖𝑜 which can change with time,

(iv) blocked — whether the account is blocked which can change

with time, and (v) active — whether an account (human or bot) is

actively participating or "silent"
6
. We denote the 𝑝-th attribute of

account𝑢𝑖 as𝑢
𝑝

𝑖
, and 𝑛𝑒𝑖𝑔ℎ(𝑢𝑖 , 𝑡) refers to the immediate neighbors

of 𝑢𝑖 , i.e., 𝑢𝑖 ’s followers and followees, at time 𝑡 .

Actions. Unblocked accounts can perform the following actions:

• 𝑓 𝑜𝑙𝑙𝑜𝑤 (𝑢,𝑢′): Account 𝑢 follows account 𝑢′.
• 𝑝𝑜𝑠𝑡 (𝑢, 𝑠𝑢𝑏, 𝑝𝑜𝑙): Account 𝑢 posts content on subject 𝑠𝑢𝑏

with polarity 𝑝𝑜𝑙 (positive, negative, or neutral).7

• 𝑙𝑖𝑘𝑒 (𝑢,𝑢′): Account 𝑢 likes a post created by account 𝑢′.
• 𝑛𝑜𝑝 (𝑢): Account𝑢 takes no action during the current timestep.

The CSIO agent controls 𝑘 < 𝑚 active accounts and must decide,

at each time, which actions to assign to these accounts.
8
The CSIO

agent has one more action:

• 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (𝑢): Activates an unused account 𝑢𝑐𝑠𝑖𝑜 ∈ ¯V𝑐𝑠𝑖𝑜
.

This action replicates real-world scenarios where automated influ-

ence campaigns use "silent" accounts or create new accounts (e.g.

by hacking existing accounts) as needed. Hence, the action set is:

A = {𝑓 𝑜𝑙𝑙𝑜𝑤 (𝑢,𝑢′), 𝑝𝑜𝑠𝑡 (𝑢, 𝑠𝑢𝑏, 𝑝𝑜𝑙), 𝑙𝑖𝑘𝑒 (𝑢,𝑢′), 𝑛𝑜𝑡ℎ𝑖𝑛𝑔(𝑢), 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (𝑢)}

Finally, the social platform’s bot detector can perform the fol-

lowing action:

• 𝑏𝑙𝑜𝑐𝑘 (𝑢, 𝜏): Suspends user𝑢 if 𝑃 (𝑢 is a bot) > 𝜏 , preventing
further actions by 𝑢 on the platform.

Bot detector screens all users periodically. For simplicity, we set

𝜏 = 0.5 during our experiments. This captures the real world dy-

namics where social media platforms combat automated influence

campaigns while the CSIO agent needs to adapt its strategies to

control its accounts. We remark that the bot detector is a black-box

system to the CSIO agent.

State. The state 𝑠𝑡 at time 𝑡 captures both the topology of the

social graph G and the attributes of its nodes. Formally, we define

the state spaceS as the set of states 𝑠𝑡 = (J𝑡 , F𝑡 ), where J𝑡 ∈ R𝑛×𝑛

is G’s adjacency matrix , and F𝑡 ∈ R𝑛×5
is the feature matrix

representing the attributes of each account, including role, influence,

5
Consistent with reality, we assume the bot detector is a black box whose details are

not known to the CSIO agent.

6
A silent CSIO-controlled account is one that is being held in reserve, i.e. not being

currently used, by the CSIO agent.

7
As with human users, the posted subject 𝑠𝑢𝑏 and polarity 𝑝𝑜𝑙 may differ from the

CSIO’s target subject 𝑠𝑢𝑏𝑐𝑠𝑖𝑜 and polarity 𝑝𝑜𝑙𝑐𝑠𝑖𝑜 . This enables CSIO accounts to

camouflage malicious activity within benign actions.

8
As this multiplies the CSIO agent’s action space by 𝑘 , which makes the problem

computationally intractable, we assume that follow and like actions target the highest
Pagerank account that is not yet followed or liked by the active CSIO account.

2
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polarity, blocked status, and activity level. Hence, we define the

state space as:

S = {𝑠𝑡 = (J𝑡 , F𝑡 ) |J𝑡 ∈ R𝑛×𝑛, F𝑡 ∈ R𝑛×5}

Reward. The immediate reward function for the CSIO agent is

the cumulative reward earned by all the bots it controls at each time.

For 𝑢𝑖,𝑡 , the 𝑖-th bot at time 𝑡 , the reward has four components:

• Activation Reward: This component incentivizes interac-

tions of bots with humans (e.g., through likes or follows).

It measures the change in the number of human accounts

connected to 𝑢𝑖 between consecutive timesteps:

𝑟1

𝑖,𝑡 =
∑︁

𝑢 𝑗 ∈𝑛𝑒𝑖𝑔ℎ (𝑢𝑖 ,𝑡 )
I(𝑢𝑟𝑜𝑙𝑒𝑗 = 1) −

∑︁
𝑢 𝑗 ∈𝑛𝑒𝑖𝑔ℎ (𝑢𝑖 ,𝑡−1)

I(𝑢𝑟𝑜𝑙𝑒𝑗 = 1)

• Termination Reward: This component rewards the CSIO

agent if all human accounts
9
have adopted a positive polar-

ity towards the target topic:

𝑟2

𝑖,𝑡 =

{
𝐻,

∑
𝑢 𝑗 ∈V I(𝑢𝑝𝑜𝑙

𝑗
= 1) = |V|

0, 𝑒𝑙𝑠𝑒

where 𝐻 ∈ R is a hyper-parameter representing the reward

for full success.

• Infection Reward: This component rewards 𝑢𝑖 for influenc-

ing its neighbors.

𝑟3

𝑖,𝑡 =
∑︁

𝑢 𝑗 ∈𝑛𝑒𝑖𝑔ℎ (𝑢𝑖 ,𝑡 )
𝑢
𝑖𝑛𝑓

𝑖,𝑡
·𝜔 (𝑢𝑖,𝑡 , 𝑢 𝑗 )−

∑︁
𝑢 𝑗 ∈𝑛𝑒𝑖𝑔ℎ (𝑢𝑖 ,𝑡−1)

𝑢
𝑖𝑛𝑓

𝑖,𝑡−1
·𝜔 (𝑢𝑖,𝑡−1, 𝑢 𝑗 )

where 𝜔 (𝑢𝑖 , 𝑢 𝑗 ) is the normalised version of 𝑤𝑖 𝑗 with re-

spect to 𝑢𝑖 ’s in-degree.

• Block Penalty: This component penalizes the CSIO agent

for bots blocked by the bot detector:

𝑟4

𝑖,𝑡 = −𝐾 · I(𝑢𝑏𝑙𝑜𝑐𝑘𝑖,𝑡 = 1)

where𝐾 ∈ R is a hyper-parameter representing the penalty

for the CSIO agent when one of its accounts if blocked.

The total reward for 𝑢𝑖,𝑡 is the weighted sum of these components:

𝑅𝑖,𝑡 =
∑︁

𝑞∈{1,2,3,4}
𝜅𝑞𝑟

𝑞

𝑖,𝑡

where

∑
𝑞 𝜅

𝑞 = 1. 𝜅𝑞 are hyper-parameters that adjust the im-

portance of each reward component. As a result, the immediate

reward of the CSIO agent is the cumulative reward earned by all

its accounts: R =
∑𝑚
𝑖=1

𝑅𝑖,𝑡 .

MDP Definition. We assume the CSIO agent can track interac-

tions (e.g., follows, likes, and posts) of both its bots and the followers

and followees of those bots. We also assume that it can leverage

external tools to estimate users’ polarity towards its target subject,

𝑠𝑢𝑏𝑐𝑠𝑖𝑜 . The CSIO agent can also monitor whether its bots have

been blocked by the bot detector
10
.

Wemodel the CSIO agent’s decision-making process via aMarkov

Decision Process (MDP) (S,A,P,R, 𝛾). We have already defined

9
The polarity of bots is positive by definition.

10
These assumptions are consistent with most social media platforms, where users can

monitor the activity of their followers and followees and use off-the-shelf sentiment

analysis programs

the state space S of the MDP as a graph structure and the individ-

ual attributes of each user. The action space A consists of the set

of all possible actions the CSIO agent can assign to its controlled

accounts. The reward function R : S × A → R quantifies the

immediate payoff for the CSIO agent after taking an action in a

given state, as described previously. The discount factor 𝛾 ∈ [0, 1)
introduces a trade-off between immediate and future rewards by

assigning less importance to rewards received in the future.

The transition probability function P : S × A × S → [0, 1]
determines the likelihood of transitioning from state 𝑠𝑡 to state

𝑠𝑡+1 given an action 𝑎𝑡 . This function captures the environment’s

dynamics, including the agent’s actions, the behavior of other users,

and any responses from the platform’s bot detection algorithm.

The CSIO agent’s objective is to discover an optimal policy 𝜋∗

that maximizes its expected cumulative discounted reward over

time. The policy 𝜋 is a mapping from the current state 𝑠𝑡 to a

probability distribution over possible actions 𝑎𝑡 . The optimal policy

can be formally expressed as:

𝜋∗ = arg max

𝜋
E

[ ∞∑︁
𝑡=1

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) | 𝑠0

]
Here, the expectation E is over all possible trajectories of states

and actions, starting from an initial state 𝑠0. The term 𝛾𝑡 discounts

future rewards, balancing immediate and long-term gains.

3.2 Our RL_CSIO Framework

Figure 1 depicts the actor-critic reinforcement learning architec-

ture. Again, we do not claim that our RL framework is novel. The
contributions are in the use of RL to run a covert social influence
operation, and the results related to the 8 research questions posed in
the Introduction.

We first encode the state of the MDP using a Graph Convolution

Network (GCN). At each time 𝑡 , the GCN processes both the graph

structure (cf. the adjacency matrix A𝑡 ), and the feature matrix F𝑡 ,
which represents account attributes. The output of the GCN is a set

of account embeddings {𝑈1,𝑈2, . . . ,𝑈𝑛 | 𝑈𝑖 ∈ R𝑙 }, where 𝑙 denotes
the dimensionality of the latent space. These embeddings capture

the topological relationships between accounts and their individual

attribute profiles.

Next, the actor network selects the action for each bot𝑢𝑖 ∈ ¯V𝑐𝑠𝑖𝑜
.

It outputs the policy 𝜋𝜃 (𝑎𝑖 | 𝑈 𝑗 ), which represents the conditional

probability distribution over the action space A for the 𝑗-th bot

controlled by its CSIO agent. The actor network is a fully-connected

neural network with three hidden layers, each using the ReLU

activation function. The final layer applies a softmax activation to

output the probability distribution over the actions’ set.

The critic network evaluates the quality of the actions taken by

the CSIO agent by estimating the value function. The input to the

critic network is the concatenation of all account embeddings, i.e.,

𝑈1 ⊕ 𝑈2 ⊕ · · · ⊕ 𝑈𝑛 , where ⊕ is the concatenation operator. The

output is the expected reward for the CSIO agent in the current state.

The architecture of the critic network mirrors the actor network,

except for the output layer, which produces a real number.

The actor network is invoked multiple times during each itera-

tion — once per bot. In contrast, the critic network is invoked only

3
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once per iteration, taking as input, the embeddings of all users,

including both normal and CSIO-controlled accounts.

The above description applies to one CSIO. The same process

applies to different CSIOs that may be running concurrently.

3.2.1 Training Process. We train the CSIO agent in an environment

where agents simulate humans who take actions, e.g., posting con-

tent
11

(with positive, negative, or neutral polarity), following other

users, liking posts, remaining inactive) in accordance with distribu-

tions. Thus, training did not involve human subjects. Based on recent

findings that the average U.S. user spends nearly three hours daily

on social media platforms [62], we assumed an 80% probability that

a user would do nothing at a given time. The probability of per-

forming other actions is uniformly distributed across the action set.

This setup mimics the real-world where users are not always active.

The inactivity of normal users slows down the training process,

as actions by bots may not immediately impact the environment

or reward the agent. However, this structure helps the CSIO agent

learn the long-term effects of its actions, as they may yield rewards

when previously inactive followers become active. During training,

we assume that all accounts post original content about the target

subject 𝑠𝑢𝑏𝑐𝑠𝑖𝑜 . Each human’s polarity, denoted 𝑢
𝑝𝑜𝑙

𝑖
, is initialized

randomly and updated over time using an exponentially weighted

moving average of their actions. The polarity at time step 𝑡 , 𝑢
𝑝𝑜𝑙

𝑖
(𝑡),

is updated using the formula:

𝑢
𝑝𝑜𝑙

𝑖
(𝑡) = 𝜂 · 𝑝𝑜𝑙𝑎𝑡 + (1 − 𝜂) · 𝑢𝑝𝑜𝑙

𝑖
(𝑡 − 1)

where 𝑝𝑜𝑙𝑎𝑡 is the polarity associated with the most recent action,

𝑢
𝑝𝑜𝑙

𝑖
(𝑡−1) is𝑢𝑖 ’s polarity at the previous step, and 𝜂 is a weight that

controls how much influence recent actions have on an account’s

current polarity compared to past behavior. For the post action, the
polarity is derived directly from the sentiment of the post. For like
and follow actions, the polarity is determined by the account whose

post is liked or followed, reflecting alignment with that account’s

stance. This provides a dynamic update mechanism that adapts to

new actions while preserving the continuity of prior behavior.

For training, the social network G is initialized by connecting

users randomly, following a long-tailed distribution of followers.

Appendix A has further details.

We use a synchronized version of the Proximal Policy Optimiza-

tion (PPO) algorithm [60] to learn the CSIO agent’s policy. Each

episode is capped at 200 steps, but can terminate early if either

all normal users acquire the target polarity 𝑝𝑜𝑙𝑐𝑠𝑖𝑜 or if all CSIO-

controlled accounts are blocked. In line with the original implemen-

tation [60], we set the discount factor to 𝛾 = 0.99, with a learning

rate of 𝑙𝑟 = 0.0005. Appendix B describes the full hyper-parameter

configuration.

4 Experiments

To evaluate the effectiveness of our RL_CSIO approach, we used

a separately designed micro-blogging social media platform, Dart-

Post [43], which replicates key features of social media platforms

like X (formerly Twitter) and Facebook. Unlike commercial plat-

forms, DartPost allows for controlled, IRB-approved experiments,

capturing comprehensive user behavior data while maintaining

11
We used GPT3.5 for generating posts.

CSIO

Critic

Actor
GCN

Action

Value

Normal User

Legend

Figure 1: Our Framework: The social network graph G is en-

coded via several GCN layers to obtain account embeddings

𝑈1,𝑈2, · · · ,𝑈𝑛 . The actor network predicts the next action to

be taken by each bot 𝑢𝑖 ∈ ¯V𝑐𝑠𝑖𝑜
. The critic network estimates

the reward of the state using the concatenated account em-

beddings as input.

anonymity and adhering to ethical standards (e.g. by not violating

terms of use of real-world social platforms). Users can post short

messages, links, and images, with functionalities for posting, liking,

tagging, and searching.All experimental protocols were approved

by the lead authors’ university Institutional Review Board (IRB)
12
.

Informed consent was obtained from all participants. To safeguard

privacy, no sensitive or personal information was collected, en-

suring participant anonymity and confidentiality throughout the

study. Only anonymous IDs were used for data analysis. This data

and the RL_CSIO code will be made available for research

purposes when this paper is published.

4.1 Experimental Design

We recruited 225 U.S.-based participants via Amazon Mechanical

Turk for a 5-day experiment. Participants were required to engage

with DartPost for at least 30 minutes per day. During recruitment,

users completed a demographic survey and comprehension check

to ensure they understood the experiment. Those who passed all

checks were recruited. Daily reminders encouraged continued par-

ticipation, and completion of daily tasks was incentivized with

rewards. At the end of each day, participants completed surveys

to assess changes in opinion, influence perceptions, and bot de-

tection efforts. In total, 86 participants engaged with DartPost. 32

Turkers participated daily, while the remaining 54 exhibited spo-

radic engagement patterns, missing some days but re-engaging

subsequently. This behavior reflects real social media usage, where

consistent daily activity is not guaranteed.
13

4.2 Experimental Setup

We ran 4 concurrent CSIO campaigns using RL_CSIO on 4 contro-

versial propositions: (i) the U.S. government did enough to combat
COVID-19, (ii) A 2% wealth tax on people with more than 50 million
dollars in assets should be approved, (iii) “Medicare for all who want

12
IRB Study Number STU00217922

13
Appendix A has further details about the DartPost platform and the recruitment

process.
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it” is a good thing, (iv) Food containing genetically modified ingredi-
ents are safe and healthy to eat. We call these the COVID-19, Wealth

Tax, Medicare, and GMO propositions.

Each campaign was managed by a CSIO agent controlling 20

bots, with actions such as liking, following, and posting. Starting

from five active accounts, a new account was introduced when an

active CSIO account was suspended. This strategy replicates real-

world scenarios where automated influence campaigns maintain

"silent" accounts or create new accounts as needed.

We implemented the bot detector using a random forest classifier

trained on the features defined in Fonseca Abreu et al. [28] (e.g.,

follower count and post frequency) because this study is a relatively

recent paper with good reported performance and the proposed

feature set is general and can be extracted from almost any social

media platform.

We instantiated the social network graph with 305 nodes (225 for

human subjects, 80 for CSIOs) and randomly connected these nodes

in the follower-following graph. We replicated real-world social

media dynamics where the distribution of the number of followers

is long-tailed: most users had between three and six followers,

with an average of five followers. To ensure unbiased initialisation,

the accounts for each CSIO agent were sampled from the follower

distribution in a stratified manner. In addition, each account also

had an associated realistic profile with real posts selected from a

previous Dartpost experiment [43]. Appendix B contains further

details about the bot detector and graph initialization.

4.3 Data Characterization

By the end of the experiment, we had 511 original posts, 1538 like

actions, 394 follow actions. There was a rise in activity over the

first three days, followed by stabilization on days 4–5. In line with

typical social media usage, follows actions and likes were more fre-

quent than active content creation. Appendix C shows the day-wise

summary of these statistics. In addition, humans and bots exhibit

similar patterns in performing likes, but humans posted less original

content and followed more users than bots
14
. This behavior likely

stems from their differing objectives: humans are interested in ex-

ploring the platform and following other users, whereas RL_CSIO
bots want to influence opinions. To achieve this, the CSIO agent

(i.e., RL_CSIO model) makes them publish original and persuasive

content, as merely liking or following other users may be insuf-

ficient. We also analyzed the interaction patterns enacted by the

humans and bots. We found that 63.7% of the posts liked by humans

originated from other humans. The remaining 36.3% of likes were

equally distributed among posts generated by CSIOs across the 4

different campaigns. Appendix C contains further details.

4.4 Results

In accordance with the objectives outlined for the CSIO campaign,

we present the results of the MTurk experiment along three key

dimensions:

• Influence: We assess how successful CSIO agents were at

influencing normal users based on users’ explicit reports

14
Figure 8 in Appendix C shows the distributions of original posts, likes and follows

performed by humans and bots.
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Figure 2: Influence analysis: (a) distribution of number of

influential reports received for humans and bots; (b) number

of influential reports as a function of the number of actions

performed by humans and bots.

about who influenced them — something not done in prior

studies.

• Stance: We examine user stances change towards the topics

of the influence campaigns and evaluate the effectiveness

of the CSIO agent in driving opinion toward their goal.

• Discoverability:We assess the detection rate of CSIO-operated

accounts by the bot detector, as well as their identification

by regular users.

4.4.1 Influence. We found that 52% (30 out of 53) of humans who

answered the daily survey explicitly reported being influenced by

another account during the experiment. Most humans reported

being influenced on more than one topic, with seven humans indi-

cating influence across all topics. A similar pattern was observed

across all topics: 19, 21, 21 and 22 humans reported being influenced

in the covid-19, medicare, tax and GMO campaigns, respectively.

Hypothesis 1. Bots influence humans but they do not become
top-tier influencers.

We asked human users to report which accounts influenced them

(“influence reports”) and then compared the number of influential

reports received by humans and bots — see Figure 2a. While sharing

the same median (three reports), we observe that the distribution

for humans is more heavily long-tailed than the distribution for

CSIOs, i.e., some human accounts influenced more than ten users,

while no bot was reported to be influential more than eight times.

The Brown-Forsythe test [8] confirms different variances between

the groups (𝑝-value= 0.003).

This result suggests that while bots can influence other users,

they rarely become top-tier influencers. Instead, they influence a

small number of users. This may be because our RL_CSIO algo-

rithm tries to prevent bots from standing out as that might increase

detection to unacceptable levels. To further validate this finding,

we determined the page rank, degree centrality, and betwenness

centrality for humans and bots. For all centrality metrics, we find

that the distributions of humans and bots share similar means but

different variances, with bots never achieving the highest value of

centrality. Figure 10 in Appendix D has further details.

Hypothesis 2. Increasing the level of activity on a social media
enhances the likelihood of becoming influential, regardless of whether
the account is human or bot.
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Figure 3: Stance Change: (a) percentage of accounts that in-

crease, decrease and do not change stance for each topic; (b)

the distributions of influence ratio for accounts that increase

stance to be more positive and all others.

We analyze the relationship between the number of influential

reports received by accounts and their activity levels (number of

actions performed during the experiment). The Spearman correla-

tion coefficient is 0.506 for humans, indicating a moderate positive

correlation, but just 0.219 for CSIO accounts, suggesting a weaker

relationship.

We also modeled the number of influential reports received by

an account as a function of the number of actions performed during

the experiment. Figure 2b presents the linear regressionmodel fitted

to the data for both humans and bots. For humans, we observe a

statistically significant positive trend, with 𝑅2 = 0.413 and a 𝑝-value

of 3.17 × 10
−7
, indicating that increased activity correlates with a

greater likelihood of an account being recognized as influential. But

for bots, the regression analysis is inconclusive, with 𝑅2 = 0.034 and

a 𝑝-value of 0.116, indicating no significant relationship between

activity levels and number of reports of being influential. Table 6

in Appendix D.1 has the full regression statistics.

Overall, this analysis partially supports our hypothesis: while a

positive correlation exists between increased activity and influence

for humans, this is not the case with bots. This might be because

our RL_CSIO bots do not want be too active as that might lead to

being more easily detected.

Findings & Remarks. While both humans and bots influence

other users, the influence of bots is more complex than humans. In

contrast to humans, bots never become top-tier influencers and an

increased activity does imply more influence. This may be because,

as wewill show later, increased activity by a bot increases likelihood

of being reported as a bot by humans.

4.4.2 Stance. To what extent did human subjects change their

stance towards the four CSIO campaigns in our experiment? We

consider the stance towards each topic reported during the recruit-

ment and the daily survey. A positive stance indicates support for

the topic, a negative stance reflects opposition, and a neutral stance

shows indifference or no clear opinion. We define a human stance
change towards a topic if, at any point during the experiment, a hu-

man account reported a different stance than his/her stance during

recruitment. We say the human increased his/her stance towards

a topic if s/he changed their stance in the direction of being more

positive (as all 4 CSIO agents are pushing opinion in the positive

direction). For example, if during recruitment the human reported

disagreeing with the narrative pushed by the Covid-19 campaign

(i.e., the US government has done enough to combat the pandemic),

that human has increased its stance towards this topic if during the

experiment s/he agreed with the CSIO campaign goal. Figure 3a

shows the percentage of users that change, increase and decrease

stance towards each topic. We found that 40%, 60%, 56%, and 50%

users increased their stance towards covid-19, medicare, tax, GMO,
respectively.

Hypothesis 3. Being influenced is a necessary condition for a
human to change its stance on a topic.

To assess the relationship between influence and stance change

for each topic, we examine the correlation between two binary

variables: (1) whether the human reported being influenced on

that topic, and (2) whether the same human subsequently changed

their stance on that topic. The Spearman correlation coefficients

obtained for the GMO, tax, medicare, and covid-19 topics are 0.305,
0.374, 0.229, and 0.321, respectively. These moderate correlation

levels indicate that while influence may inform stance change, it is

not the only factor in play.

To quantitatively explore this, we calculated the probability

𝑃𝑢 (stance change) of a human changing his stance as the ratio of

humans who changed their stance to the total number of humans.

Additionally, we compute the conditional probability 𝑃𝑢 (stance

change | influenced) for humans who reported being influenced.

The results indicate that 𝑃𝑢 (stance change) is 0.245, 0.226, 0.283,
and 0.245 for the covid-19, medicare, tax, and GMO topics, respec-

tively. But 𝑃𝑢 (stance change | influenced) yields probabilities of

0.421, 0.444, 0.421, and 0.409 for the same topics, respectively, which

are all significantly larger.

These findings confirm that being influenced is not a necessary

condition for stance change, thus refuting our hypothesis. However,

the probability of changing stance increases significantly — close

to doubling — when a human reports being influenced by another

account (bot or not).

Hypothesis 4. Higher interaction with bots correlates with an
increased likelihood of stance change among humans.

We define the influence ratio for human 𝑢 as the ratio between

the number of bots reported as being influential by 𝑢 and the total

number of accounts reported as being influential by 𝑢. The higher

the influence ratio, the stronger the influence of bots on𝑢. Figure 3b

shows the distributions of influence ratio for humans who increased

their stance towards a topic and all other humans. We observe that

humans that increase stance have, on average, a larger influence

ratio. This suggests that bots can effectively drive humans towards

the ideas or narratives that they are pushing, thus confirming our

hypothesis.

Findings & Remarks. While being influenced is not a necessary

condition for stance change, it significantly increases the probability

of such change. Participants who reported being influenced were

nearly twice as likely to shift their stance compared to the overall

population. Moreover, we found that greater interaction with bots

correlates with a higher likelihood of stance change. These results

suggest that CSIO accounts can effectively influence human users,

driving them towards the narratives promoted by the campaigns.
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4.4.3 Discoverability. Besides influencing humans, a CSIO agent

needs to avoid detection. We investigate this by looking at the

performance of the bot detector and the performance of humans

in detecting CSIO accounts. Note that the bot detector is fixed [28],
so this analysis also evaluates how well the RL_CSIO method evades
detection.

Hypothesis 5. Bots dynamically adapt their strategies through-
out an influence campaign to minimize detection by bot detectors.

Figure 4a shows the number of suspended bot accounts for each

day and topic. We observe a decreasing trend (dashed line) for all

topics, meaning that CSIO agents dynamically adapt to the bot

detector and progressively learn to avoid detection during the ex-

periment. Moreover, none of our 4 CSIO agents used all 20 available

accounts: at the end of the experiment, 13, 15, 15, 16 accounts (out of

20) were suspended for GMO, tax,medicare and covid-19 campaigns,

respectively, as indicated by the solid line in Figure 4a. Finally, the

bot detector achieved 0.449 precision, 0.662 recall, 0.535 F1-score

on the bot class. Overall, these results prove our hypothesis and

show that RL_CSIO-based CSIO agents can optimise their cam-

paign without just focusing on influence but also trying to avoid

detection.

Hypothesis 6. Human users can effectively detect bots within
social platforms.

We evaluated this hypothesis by analyzing human subjects’ per-

formance in identifying CSIO accounts. In total, human subjects

reported 126 accounts as CSIO accounts, with an average of four

distinct accounts per user. Figure 4b shows the distributions of pre-

cision, recall and F1-score achieved by humans in detecting CSIO

accounts. Humans exhibit poor performance, with precision lower

than 0.5, on average. This indicates the presence of many false

positive reports. Moreover, recall is bimodal: either 0 or 1 for most

humans. Specifically, humans who achieved recall of 1 typically

reported a large number of accounts (eight accounts, on average)

as bots. This behavior suggests an opportunistic strategy, possibly

driven by the incentive to maximize bonus payments for discov-

ering CSIO accounts. Conversely, humans with higher precision

reported fewer accounts (three per human, on average), indicating

a conservative approach to detection.

We also investigate the relationship between human subjects’

performance in detecting bots and humans’ exposure ratio which is

the ratio between the number of exposures
15

human 𝑢 had to posts

made by bots and the total number of exposures to posts for that

human. Figure 4c shows precision, recall and F1-score as functions

of the exposure ratio. In all cases, we find a significant positive

trend, i.e., 𝑅2 = 0.555 and 𝑝−value= 4.77 × 10
−10

for precision,

𝑅2 = 0.432 and 𝑝−value= 1.60 × 10
−7

for recall and 𝑅2 = 0.548 and

𝑝−value= 5.48 × 10
−10

for F1-score. Table 7 in Appendix E shows

full regression statistics. This indicates that the greater the exposure

ratio, the better humans detect bots. Overall, these results challenge

our initial hypothesis: while human detection of bots is not great,

human performance improves significantlywith increased exposure

to posts made by bots.

15
A user is exposed to a post when it is loaded on their home screen.

Findings & Remarks. Our findings reveal that CSIO agents im-

plemented by RL_CSIO adaptively refine their strategies to evade

detection, resulting in fewer suspensions over time. While bot de-

tection achieved moderate success, CSIO agents optimized their

tactics effectively. Human detection was poor, though performance

improved significantly with greater exposure to bot posts. Together

with the previous finding that a bot never reaches the status of a

top-influencer, this result suggests that our RL_CSIO method finds

the risk of highly visible accounts being detected sufficiently large

to avoid this from happening. This result is consistent with findings

in [19].

4.4.4 Influence and Discoverability Trade-off. We now study the

trade-off between influence and the likelihood of being discovered

by other users.

Hypothesis 7. Being perceived as a bot does not hinder an ac-
count’s ability to influence other users.

We first investigate how being perceived as a bot impacts the

chance for that account to be influential. Figure 5a shows the num-

ber of reports that an account is influential (y-axis) as a function of

the number of reports that the same account is a bot (x-axis). We

marginalise this analysis for real bot accounts being reported as

such and human accounts (i.e., human users reported to be bots).

Interestingly, we find a positive trend in both cases, meaning that

being perceived as a bot does not necessarily diminish the chance

to influence other accounts. In fact, we find that 20% (11 out of 53)

of humans reported being influenced by at least one account they

thought was a bot. This result empirically proves the potential of

CSIO campaigns to influence humans.

To further explore the strength of this influence, we investigated

whether the perception of being a bot affects humans’ stances to-

wards a topic. Specifically, we compare two groups: humans who

increased their stance toward 𝑠𝑢𝑏𝑐𝑠𝑖𝑜 and those who did not. We

analyze their performance in detecting bots by measuring their

F1-scores. Figure 5b shows the distribution of the F1-score achieved

by humans in detecting bots for the above-mentioned groups. We

observe that humans who increased their stance in the direction of

CSIO campaigns also exhibit substantially better F1-score perfor-

mance (in detecting bots) than all other humans, i.e., 0.685 vs 0.384,

on average. This counterintuitive result indicates that RL_CSIO-
based CSIO agents can successfully shift users’ opinions, regardless

of whether the accounts they control are perceived as bots.

Hypothesis 8. The longer a human is active on the platform,
the higher their likelihood of influencing others.

To verify this hypothesis, we investigate the relationship be-

tween the time an account is active on the platform and the likeli-

hood of influencing others. We define an account’s lifespan as the

time difference (in hours) between its last and first actions during

the experiment. Figure 5c shows the number of influential reports

that humans and bots received as a function of the account’s lifes-

pan. For humans, we find a significant positive trend, i.e., 𝑅2 = 0.116

and 𝑝−value= 0.003, but the same does not hold for bots. This result

confirms our previous finding that the more active an account is (in

terms of number of actions taken, see Figure 2b), the more likely it

is to be influential. In contrast, bots never become top-influencers
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Figure 4: Bot Detection: (a) the number of CSIOs suspended per day; (b) the distributions of precision, recall and F1-score for

humans at detecting CSIOs; (c) precision, recall and F1-score as a function of the exposure ratio.
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Figure 5: Influence vs Discoverability Trade-off: (a) the number of influential reports as a function of the number of CSIO

reports that an account receives; (b) the distributions of CSIO detection performance (F1-score) for humans that increase stance

and all others; (c) the number of influential reports an account receives as a function of his lifespan during the experiment.

regardless of how much time they "survive" on the platform, per-

haps because the RL_CSIO algorithm doesn’t want its bots to be

highly noticeable, thus also exposing them to greater scrutiny both

by human accounts and by the platform’s bot detector.

Findings & Remarks. Our findings indicate that being per-

ceived as a bot does not hinder an account’s ability to influence

others, with 20% of humans reporting they were influenced by sus-

pected bot. Moreover, humans whose stance shifted toward the

target CSIO polarity also exhibited improved ability to detect bots.

Finally, while the number of influence reports on human accounts

increased with platform activity (and lifespan), bots did not achieve

top-influencer status, regardless of their lifespan and account. These

results suggest that the RL_CSIO method tries to ensure that CSIO

agents influence humans without significantly increasing the visi-

bility or likelihood of detection of the bots they control.

5 Conclusions

In this paper, we presented RL_CSIO, a reinforcement-learning

based method to run covert social influence operations. RL_CSIO
is the basis for CSIO agents to successfully operate sets of bot

accounts, simultaneously trading off influence vs. discoverability

of the bots. We ran an IRB-approved 5-day experiment with 225

human subjects using a virtual social media platfom and 4 RL_CSIO-
driven influence campaigns. With the collected data, we explored

8 research questions related to RL_CSIO-based bots. Our results

showed that while both humans and bots influence others, bots’

influence exhibit more complex dynamics. Specifically, bots never

become top influencers, and increased activity does not correlate

with more influence. Although being influenced is not necessary

for normal users to change stance towards a topic, it nearly doubles

the likelihood. Humans interacting more with bots had a higher

probability of stance change but also achieved better bot detection

performance. This indicates that being perceived as a bot does

not compromise the probability for an account to influence others.

Finally, we found that CSIO agents adaptively refine their strategies

to evade detection, resulting in fewer suspensions over time.

Overall, this work highlights the complex trade-offs that CSIO

agents face between maximizing influence and minimizing de-

tectability. RL_CSIO offers a robust framework for navigating these

challenges, revealing nuanced patterns of bot-driven influence.
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Table 1: Performance of bot detection algorithm

Dataset Precision Recall F1-score

Social Honeypot [40] 0.898 0.903 0.901

Twibot-2020 [25] 0.722 0.828 0.772

Figure 6: Workflow of the recruitment process

A Experimental Design

In this study, we recruited 225 users from Amazon Mechanical

Turk crowdsourcing service to participate in a 5 day long study.

Only US citizen over the age of 18 and familiar with social network

platforms were included. Amazon Turk workers (hereafter, Turkers)

were invited to participate in a study on social influence dynamics
and asked to use the DartPost platform for at least 30 minutes per

day. Figure 6 depicts the enrollment process during which Turkers

filled an initial survey with (i) their demographic information (e.g.,

gender, age range, education, social media usage), (ii) some basic

questions to validate their comprehension of the experiment we

were conducting (e.g., its length, the name of the platform to be

used), and (iii) their unique identifier, needed for processing their

rewards during the experiment. In order to maintain high quality

for the study, we decided to accept the recruitment of only users

who showed to have fully understood the experiment, i.e., those

who answered correctly all questions about the experiment.

Each day, Turkers received email notifications reminding them

to complete their daily tasks. At the end of each day, participants

were also asked to complete a survey summarizing their stances on

the topics under analysis according to a 5-point Likert scale, iden-

tifying the users who most influenced their ideas, and identifying

users they believed to be automated accounts. Rewards were given

only to Turkers who completed their daily tasks, although other

participants were allowed to engage in subsequent days. Two final

rewards were given to the user that participated the most to the

experiment, in terms of the number of actions, and the user that

obtained the best F1-score at detecting automated accounts.

Figure 7 shows the participation heatmap, and reveals that 86

out of 225 users participated in the experiment for at least one day.

We attribute the high drop-off rate to participants attempting to

complete the initial recruitment task quickly without recognizing

the potential future earnings. In total, 32 Turkers participated daily,

while the remaining 54 exhibited sporadic engagement patterns,

missing some days but re-engaging subsequently. This behavior

reflects real social media usage, where consistent daily activity

is not guaranteed. It is worth to note that we did not access any

Turkers’ private data as we leveraged Amazon Turk API to contact

and reward workers via their public identifiers instead of their

personal emails. All users were instructed to not share offensive or

discriminatory content, penalty their exclusion from the study.

B Implementation Details

We employed a simple, yet effective, bot detection algorithm, which

included a random forest classifier trained using features defined in

[28], including the number of followers, the number of followings

and the number of posts. Table 1 shows the classification perfor-

mance on the bot class for two benchmark datasets: Social Hon-

eypot [40] and Twibot-2020 [25]. We highlight that the proposed

feature set is highly general and can be extracted from any social

media platform. In addition, this work does not aim to develop a

novel bot detection algorithm but rather to understand the feasi-

bility of running an influence campaign in an operational setting

where an adversarial entity (the bot detection algorithm) suspends

illegitimate users.

We instantiated the social network graph with 305 nodes: 225

accounts were reserved for Turkers, and 80 accounts were allocated

to the four CSIO agents (20 accounts per campaign). We randomly

connected these nodes in the follower-following graph 𝐺 . Specif-

ically, we replicated real-world social media dynamics where the

distribution of the number of followers is right-skewed, i.e., most

users have a limited number of followers, while a few more influen-

tial accounts have a larger number of followers. In our experiment,

most users had between three and six followers, with an average

of five followers. Only 25 accounts had more than 10 followers. To

ensure that the analysis was unbiased, the accounts controlled by

each CSIO agent were sampled randomly from this distribution in

a stratified manner.

To ensure full repeatability of our results, we report in Table 2

the values of each hyper-parameter of the proposed system.

C Data Characterization

C.1 Activity

Table 3 presents the number of accounts that logged in Dartpost as

well as the number of posts, follows, and likes performed by normal

users during the experiment. We observed an initial increase in

the number of participating Turkers during the first three days,

followed by stabilization during the fourth and fifth days. Overall,

the patterns of user actions align with typical behavior on social

media platforms, where passive actions (e.g., follows and likes) are

more common than active actions (e.g., posting original content).

Interestingly, the number of users who completed the daily survey

(after performing their task on DartPost) did not increase in propor-

tion to the number of users participating in the experiment each

day. Figure 8 shows the distributions of original posts, likes and

follows performed by normal accounts and CSIOs.

C.2 Interests

Table 4 reports the most distinctive hashtags, extracted using SAGE

[21], shared by the two groups for each topic under analysis. Overall,
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Figure 7: Turkers Participation: Heatmap showing measure completion by day for each participant in the study. Each vertical

line represents a single worker’s progress through the study.

Table 2: Hyper-parameters.

Category Parameter Value

MDP Formulation

Reward for full success (𝐻 ) 200

Penalty for account suspension (𝐾 ) 10

Weight of the Activation Reward (𝜅1) 0.25

Weight of the Termination Reward (𝜅2) 0.25

Weight of the Infection Reward (𝜅3) 0.25

Weight of the Block Penalty (𝜅4) 0.25

GCN

No. Hidden Layers 3

No. Hidden Channels (per layer) (64, 128,256)

Embedding Size 256

Activation Function ReLu

Actor/Critic Network

No. Hidden Layers 3

No. Channels (Actor) (256, 64, 7)

No. Channels (Critic) (256, 64, 1)

Activation Function ReLu

Training

Polarity Update (𝜂) 0.999

Discount Factor (𝛾 ) 0.99

No. Episodes 200

No. Epochs 4

Learning Rate (𝑙𝑟 ) 0.0005

Batch Size 32

Optimiser Adam

Gradient Clip 0.2

Entropy Coefficient 0.01

Maximum Gradient Norm 0.5

the keywords extracted for CSIOs align with those extracted for

normal accounts, suggesting a consistent discussion between the

users in both groups. This alignment is crucial for allowing CSIOs

to effectively influence normal users.

For the COVID-19 topic, the extracted keywords suggest an op-

timistic reaction to the pandemic but do not convey an explicit

stance on whether the U.S. government had done enough to com-

bat it. Conversely, keywords related to the Medicare topic reveal

a generally positive stance, with both users and CSIOs support-

ing the "Medicare for All" act, as evidenced by hashtags such as

#healthequity, #universalhealthcare, and #medicalaid. In contrast,

for the GMO topic, we observe a slight misalignment between the

keywords of CSIOs and normal accounts. CSIOs promote GMOs

as a significant scientific achievement (e.g., #seralinistudy, #sci-

encewins) with benefits for the environment and healthcare (e.g.,
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Table 3: The distributions of original posts, likes and follows performed by users on Dartpost.

Day No. Accounts No. Posts No. Follows No. Likes No. Surveys

Day-1 48 51 9 143 36

Day-2 54 72 54 167 44

Day-3 70 74 52 217 41

Day-4 61 64 28 208 39

Day-5 60 65 22 236 39

Total 86 326 165 971 53

#sustainableagriculture, #healthyliving), while normal accounts are

more conservative and question the safety and quality of GMO

foods (e.g., #foodsafety, #foodquality). Regarding the Wealth Tax

topic, an interesting pattern emerges: normal users clearly support

the adoption of the wealth tax, while CSIOs exhibit a more skeptical

stance despite being instructed to advocate for it. This behavior

may result from the need for influence campaigns to push less ob-

vious or contradictory content to stimulate discussion or to avoid

detection.

C.3 Interaction Patterns

We analyze the interaction patterns enacted by normal accounts

and CSIOs by examining the intra- and intergroup re-shares ex-

changed by these users. Due to the differing number of users in

the two groups, we cannot directly compare the absolute numbers

of intra- and intergroup re-shares. Therefore, we normalize the

number of interactions by source (i.e., the total number of re-shares

that each group performs, see Figure 9). It is important to note that

we only consider the re-shares performed and received by normal

accounts, as we did not allow CSIO accounts within the same in-

fluence campaign to interact with each other by design. Thus, all

interaction activities of CSIOs were directed towards normal users.

We observe that normal accounts primarily retweet each other

and receive retweets from other normal accounts. This is due to

the fact that there are significantly more normal users compared

to those operated by CSIO agents. Figure 9 illustrates that normal

accounts engage similarly with CSIO accounts from different in-

fluence campaigns, except for the GMO campaign, which received

relatively fewer re-shares.

D Influence Analysis

We analyze the follower-following network and measure well-

known centrality metrics for both CSIOs and normal users. Figure

10a shows the (Spearman) correlation matrix of the number of in-

fluential reports received by the accounts and different centrality

metrics, including PageRank, degree centrality, and betweness cen-

trality. For all pairs, we observe moderate correlation but the num-

ber of influential reports appears to be less correlated to the other

centrality metrics. Figures 10b, 10c and 10d show the distributions

of PageRank, degree, and betweneness centrality metrics for nor-

mal users and CSIOs. As for the number of influential reports (see

Figure 2a in the main paper), we find that these distributions share

similar mean but comes from populations with different variances.

Specifically, the 𝑝-values determined according the Brown-Forsythe

test are 0.0333, 0.0008, and 0.0074 for page rank, degree centrality

and betweneness centrality, respectively.

D.1 Influence & Activity level

We examine the number of influential reports received by an ac-

count as a function of the number of actions that she performed

during the experiment. Table 6 reports summary statistics of the

regression model fitting the data related to normal users and CSIOs.

E Discoverability

We define the user’s exposure ratio as the ratio between the number

of exposure that 𝑢 had to CSIOs and the total number of exposure.

We examine the performance of normal users in detecting CSIOs as

a function of their exposure ratio. Table 7 reports summary statistics

of the regression model fitting users’ precision, recall and F1-score

as a function of their exposure ratio.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
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Figure 8: Users activity: The distribution of original posts, likes, follows for normal accounts and CSIOs

Table 4: Most shared hashtags by normal accounts and CSIOs

Influence

Campaign

Covid-19 Medicare Wealth Tax GMO

CSIOs

#covidresponse #healthcareforall #economicpolicy #foodsafety

#progress #healthcarereform #taxdebate #healthyliving

#togetherwecan #thinktwice #fairness #informedchoices

#governmentresponse #doctorssupport #nowealthtax #gmoadvocate

#inthistogether #affordable #wealthtaxvoices #gmoheroes

#home #politics #thinksmart #sciencewins

#recovery #healthyfuture #supportinnovation #seralinistudy

#hopeful #financialfreedom #fiscalpolicy #science

#staysafe #balancedreform #badpolicy #gmobenefits

#gratitude #fairsociety #debating #sustainableagriculture

Normal

#usagovt #medicareforall #economicjustice #safety

#publichealth #healthequity #economicequality #foodsafety

#pandemic #universalhealthcare #people #research

#futureleaders #selfcare #inclusivegrowth #foodquality

#educationforall #insurance #socialgood #trasparency

#pandemicresponse #wellness #taxfairness #foodsecurity

#safety #inclusivehealthcare #taxreform #nutrition

#innovation #government #publicfunding #futurefood

#virus #medicalaid #prosperityforall #sustainability

Figure 9: Interaction patterns enacted by normal accounts

and CSIOs: proportion of interactions between normal ac-

counts and CSIOs normalized by the source of the re-share

Table 6: Regression analysis’ results: number of influential

reports received by normal users and CSIOs as a function of

their activity level.

Normal Users CSIOs

𝑅2
0.413 0.034

adj-𝑅2
0.401 0.020

𝐹 -statistic 34.46 2.526

𝑃 (𝐹 -statistic) 3.71e-7 0.116

no. actions (coef.) 0.128 0.024

no. actions (CI) [0.084, 0.171] [-0.006,0.056]

no. actions (𝑝-value) < 0.0001 0.116
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Figure 10: Influence analysis: (a) Spearman correlation matrix between the number of influential reports received by a user

and his page rank score, his degree centrality and his betweness centrality; (b), (c) and (d) distributions of page rank, degree

centrality and betweness centrality, respectively, for normal users and CSIOs.

Table 7: Regression analysis’ results: precision, recall and F1-score as a function of the exposure ratio.

Precision Recall F1-score

𝑅2
0.550 0.432 0.548

adj-𝑅2
0.541 0.421 0.538

𝐹 -statistic 59.92 37.29 59.31

𝑃 (𝐹 -statistic) 4.77e-10 1.60e-7 5.48e-10

exp. ratio (coef.) 1.056 1.525 1.254

exp. ratio (CI) [0.782, 1.331] [1.023, 2.027] [0.927,1.582]

exp. ratio (𝑝-value) < 0.0001 < 0.0001 < 0.0001
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