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Abstract
Phishing attacks continue to be a major threat to internet users,
causing data breaches, financial losses, and identity theft. This
study provides an in-depth analysis of the lifespan and evolution
of phishing websites, focusing on their survival strategies and eva-
sion techniques. We analyze 286,237 unique phishing URLs over
five months using a custom web crawler based on Puppeteer and
Chromium. Our crawler runs on a 30-minute cycle, systematically
checking the operational status of phishing websites by collecting
their HTTP status codes, screenshots, HTML, and HTTP data. Tem-
poral and survival analyses, along with statistical tests, are used to
examine phishing website lifecycles, evolution, and evasion tactics.
Our findings show that the average lifespan of phishing websites is
54 hours (2.25 days) with a median of 5.46 hours, indicating rapid
takedown of many sites while a subset remains active longer. In-
terestingly, logistic-themed phishing websites (e.g., USPS) operate
within a compressed timeframe (1.76 hours) compared to other
brands (e.g., Facebook). We further analyze detection effectiveness
using Google Safe Browsing (GSB). We find that GSB detects only
18.4% of phishing websites, taking an average of 4.5 days. Notably,
83.93% of phishing sites are already taken down before GSB de-
tection, meaning GSB requires more prompt detection. Moreover,
16.07% of phishing sites persist beyond this point, surviving for an
additional 7.2 days on average, resulting in an average total lifespan
of approximately 12 days. We reveal that DNS resolution error is
the main cause (67%) of phishing website takedowns. Finally, we un-
cover that phishing sites with extensive visual changes (more than
100 times) exhibit a median lifespan of 17 days, compared to 1.93
hours for those with minimal modifications. These results highlight
the dynamic nature of phishing attacks, the challenges in detection
and prevention, and the need for more rapid and comprehensive
countermeasures against evolving phishing tactics.

1 Introduction
Phishing remains one of the most pervasive threats in the web
ecosystem, causing data breaches, financial losses, identity theft,
operational disruptions, and harm to reputation [1, 2]. A recent FBI
report [3] reveals that phishing-related financial damages surpassed
$10 billion in 2022—an increase of $4 billion from the previous year.

Phishing attacks use deceptive websites that closely mimic le-
gitimate platforms like financial institutions and social media sites
(e.g., PayPal and Facebook) to trick users into disclosing sensitive
information, such as login credentials and financial data. The lifecy-
cle of a phishing attack ranges from the launch of these fraudulent
sites to their detection (e.g., blocklisted by Google Safe Browsing
(GSB) [4]) or takedown by security authorities.

It seems that phishing websites may have shorter, more variable
lifecycles than benign sites, ranging from hours to several weeks.
Understanding these patterns and their causes is key to developing
better defense strategies. Insights can help identify intervention
points, anticipate new tactics, design targeted user awareness pro-
grams, and optimize detection and response resources.

Prior research has made attempts to analyze the lifecycle of
phishing attacks [5–8]. Notably, Oest et al. [5] observed that the
average lifespan of a phishing campaign spans approximately 21
hours from the first to the last victim visit. However, their dataset
for the study only contains PayPal-related phishing attacks (i.e.,
phishing websites load resources (e.g., logo images) from PayPal’s
servers, where the websites’ domains are not known to PayPal),
meaning that their findings might be biased for certain types of
phishing attacks. In particular, Lim et al. [9] discover that a majority
of phishing sites did not rely on targeting-brand hosted resources.
It motivates us to challenge the assumption that most phishing
attacks leverage targeting-brand hosted resources, suggesting the
need for a more comprehensive analysis of phishing lifespans. Fur-
thermore, McGrath [6] and Drury [7] analyzed temporal patterns of
phishing URLs and domains, examining registration timelines, URL
characteristics, and hosting infrastructure. However, their study did
not extensively analyze the content or structure of phishing pages,
find a cause of phishing websites’ takedown, or identify character-
istics of the phishing lifecycle after detection. It also motivates us
to focus on the actual content and structure of phishing websites.

Our research aims to address these gaps by conducting a com-
prehensive, data-driven analysis of the phishing ecosystem (partic-
ularly the lifespan of phishing attacks). We utilize a unique dataset
collected every 30 minutes from phishing websites identified by
the Anti-Phishing Working Group (APWG) [10], allowing us to ex-
amine a diverse range of phishing websites. Specifically, our study
employs a multifaceted methodology, integrating temporal analysis,
web traffic data, and screenshots to scrutinize phishing lifespans.
By examining diverse features such as DNS records, HTML content,
and visual elements, we offer a comprehensive understanding of
modern phishing lifecycles, infrastructure, and evasion tactics. This
approach allows us to delve deep into the mechanics of phishing
operations, addressing critical research questions that previous
studies have not fully explored.

We first examine the lifespan of phishing websites (RQ1: How
long do phishing websites remain active, and how does this
vary across different targeted brands?). This investigation un-
covers intriguing patterns in phishing operations, takedown efforts,
and the effectiveness of GSB detection, challenging conventional
assumptions about phishing lifespans and proposing new strate-
gies for improved detection and mitigation. Diving deeper into the
technical underpinnings of phishing websites, we explore the in-
frastructure changes throughout phishing websites’ lifetime (RQ2:
What factors cause phishing websites to be taken down?).
By analyzing DNS records, IP addresses, and hosting patterns, we
uncover sophisticated tactics employed by phishing attackers to
evade detection and extend the lifespan of their websites. Finally, we
explore the dynamic evolution of phishing websites (RQ3: What
technical measures do phishing websites employ to avoid de-
tection, and how do these change over a website’s lifetime?),
including an examination of DOM structure, third-party script us-
age, and various anti-detection techniques.
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By addressing these research questions, our study aims to provide
insights into the dynamics of phishing ecosystems. Specifically, this
paper aims to investigate a recent advancement of phishing threats
via large-scale fine-grained data collection to reveal the complex
lifecycle of phishing websites. Our contributions are as follows:
• We present a comprehensive analysis of phishing website life-
cycles using a unique, high-frequency dataset collected at 30-
minute intervals over five months. This reveals critical insights
into phishing website durations and detection timelines. (1) The
average lifespan of a phish is 2.25 days, indicating a significant
gap in real-time protection against phishing threats over three
days. (2) We observe that logistics-themed phishing attacks (e.g.,
USPS or DHL) tend to operate within shorter timeframes com-
pared to those targeting other sections (e.g., Facebook).

• We reveal that GSB takes an average of 4.5 days to detect phish-
ing sites, with only 18.41% of sites in our dataset being detected.
Moreover, we observe a vulnerability window where 83.93% of
phishing sites are taken down before GSB detection.

• We find that phishing sites with extensive visual changes (more
than 100 times) have a median lifespan of 17 days, compared to
just 1.93 hours for those with minimal modifications, demonstrat-
ing the effectiveness of visual alterations in prolonging phishing
operations.

• We have open-sourced our data collection framework to promote
transparency and reproducibility. The code will be made publicly
available upon acceptance.

2 Background
Phishing Attacks. Phishing attacks are social engineering tactics
employed by cybercriminals to trick individuals into disclosing
sensitive information, such as login credentials or credit card details.
The attacks typically involve the creation of fraudulent websites
designed to closely resemble legitimate platforms, such as online
banking services or social media sites (e.g., Facebook). The phishing
attack lifecycle begins with the launch of a deceptive website and
persists until the site is either taken down by attackers or removed
by security authorities. During this attack period, attackers can
collect sensitive information (e.g., credentials) from victims.
Detecting and Mitigating Phishing Attacks. The current anti-
phishing ecosystem (e.g., GSB) relies heavily on blocklist-based
approaches, which play a crucial role in mitigating the impact of
phishing sites by facilitating their quick identification and block-
ing [11]. Blocklist systems function by first collecting potential
phishing URLs, then verifying their legitimacy through analysis,
and finally adding confirmed phishing URLs to the blocklist to ac-
tively block user access and protect against malicious sites. GSB [12]
is a widely adopted blocklist, integrated into major browsers like
Google Chrome, Apple Safari, and Firefox.
Evasion Techniques. Phishing attackers develop sophisticated
evasion techniques to prolong the lifespans of their phishing at-
tacks [13]. This deception is implemented through client- or server-
side code, utilizing filters based on various attributes. Attackers
also adopt URL manipulation strategies to evade detection. Benign
URLs redirect victims to landing pages containing deceptive key-
words [14]. This technique undermines URL-based heuristic detec-
tion methods [15] and complicates the process of correlating URLs

within the same redirection chain [16]. Additionally, phishing at-
tackers can set DNSTTLs to facilitate fast-flux service networks [17]
as low as zero seconds, effectively disabling caching [18].

3 Motivation
Prior research [5–8], despite their valuable insights and observa-
tions, have limited dataset scope. In particular, [5] focused on vic-
tim traffic to phishing websites targeting a single organization.
Moreover, existing anti-phishing strategies often rely on static,
point-in-time analyses, leaving critical gaps in our understanding
of how these threats adapt and persist over time. We recognize the
need for a more dynamic, ecosystem-wide approach to studying
phishing campaigns. The importance of analyzing phishing site
lifespans becomes evident when considering recent attack patterns.
For instance, in a sophisticated phishing campaign targeting Insta-
gram, attackers evaded detection by changing redirected URLs nine
times within a 24-hour period (see Section 5.1). This rapid evolu-
tion starkly underscores the challenges faced by existing blocklist
systems. For blocklisting to be effective, it must detect and respond
to these sites before attackers can switch domains or URLs. This
task becomes increasingly difficult with such agile evasion tactics.

Our study provides crucial insights into the typical detection
times needed for blocklist systems to respond effectively against
rapidly evolving phishing threats. By employing a high-frequency
data collection methodology, we capture the dynamic nature of
phishing websites, offering unprecedented insights into their life-
cycles, adaptation strategies, and resilience mechanisms. This ap-
proach allows us to identify critical timeframes for anti-phishing
measures to operate effectively. By analyzing these timeframes, we
can develop practical solutions to reduce detection and response
times within critical windows significantly. This knowledge is es-
sential for blocking phishing sites before they can fully execute
their attack strategies and developing proactive, adaptive defense
mechanisms to keep pace with evolving threats.

4 Our Crawler Design for Data Collection
Phishing URL Source. To address our research questions, we
leverage the APWG eCX platform [10], one of the widely used
repositories in previous research [5, 9, 13, 19–24]. APWG eCX ag-
gregates phishing URLs reported from a wide range of sources,
including security vendors, financial institutions, and Internet Ser-
vice Providers (ISPs). It provides real-time updates on active and
reliable phishing websites. Note that since APWG eCX provides
only metadata (e.g., phishing URLs and target brands), we develop
a custom crawler that periodically monitors phishing websites and
assesses their operational status (e.g., take down or still alive).
Web Crawler Design. Figure 1 illustrates our data collection sys-
tem. At its core, it uses a Redis-based queueing system to manage
input URLs. Then, we implement a custom web crawler using Pup-
peteer [25] and Chromium, augmented with stealth plugins [26] to
bypass potential anti-bot measures employed in sophisticated phish-
ing websites. The system is capable of processing approximately
250 URLs per minute with 16 parallel browsing instances. It runs on
a 30-minute cycle, systematically checking the operational status
of phishing websites by collecting their HTTP status codes (e.g.,
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Figure 1: Overview of Data Collection.

HTTP 404 error). If a website returns an error code three consecutive
times or is confirmed offline, we stop visiting it in the next cycle.

Our crawler collects the following comprehensive data from each
visited site to facilitate in-depth analysis and tracking of phishing
infrastructure and techniques: (1) network information such as
IP addresses and WHOIS data, (2) full-page screenshots (with a
1280x960 viewport) and their color histogram, (3) the complete
HTML contents (including all dynamically generated elements), (4)
the HTTP data (including request headers, content policy, referrer
information, and HTTP version), and (5) all redirected links (the
entire URL chain from the original APWG link to the landing page).
Error Handling and Resilience. To ensure data integrity and
completeness, we carefully handle various errors. In case of failure,
each URL is given up to three attempts, and failures are categorized
using a comprehensive error classification system. Specifically, as
each attempt is made every 30 minutes, if three attempts fail in a
row (i.e., unable to connect for 90 minutes), the URL is excluded
from the data for the next visits.
URLs Blocklisted by Google Safe Browsing (GSB). GSB [12]
is one of the most popular blocklist-based anti-phishing systems,
integrated intomanymodernweb browsers such as Google Chrome,
Firefox, and Apple Safari [27–29].1 We leverage GSB Update APIs
v4 [31] to collect GSB’s blocked phishing URLs. GSB stores the
URLs into SHA-256 hashes rather than in plain text [31]. We collect
10,249,563 URLs from GSB during the same collection period of
phishing URLs.
Our Collected Dataset Overview. Our crawler processes 286,237
unique phishing URLs from the APWG feed system and a total
of 2,742,542 (2.7M+) visits. This indicates an average of 9.58 visits
per URL (𝜎 = 45.2), reflecting our multiple crawling attempts and
the dynamic nature of phishing sites. The substantial number of
feed URLs and the high volume of collected traffic underscores the
pervasive nature of phishing attempts during our study period. The
high average of URL traffic per site suggests that many phishing
websites remain active for extended periods (287.4 minutes or about
4.79 hours), with 38,911 sites (25% of the total) receiving more than
18 visits, indicating prolonged activity.

5 Lifespan of Phishing Sites (RQ1)
To answer our first research question “How long do phishing
websites remain alive even after detected, and how does this
vary across different targeted brands?”, we conduct a series
of analysis: (1) calculating the overall lifespan of phishing sites
across different brands, (2) determining the detection times by
GSB, (3) comparing the lifespans and detection times across various
1According to Google’s report, five billion users benefit from GSB’s warning [30].

Table 1: Lifespan of Top 10 Phishing Brands.
Brands # URL (%) Avg. Lifespan Med. Max. Std.

Facebook 77,525 (27.08) 56.57 h. (2.36 d.) 8.68 h. 33.31 d. 4.71 d.
USPS 32,089 (11.21) 44.08 h. (1.83 d.) 1.76 h. 31.15 d. 4.43 d.
AT&T 9,811 (3.42) 41.15 h. (1.71 d.) 9.37 h. 31.30 d. 3.70 d.
WhatsApp 7,261 (2.53) 41.47 h. (1.73 d.) 5.80 h. 31.38 d. 4.18 d.
Instagram 4,746 (1.66) 54.12 h. (2.55 d.) 12.62 h. 31.01 d. 4.43 d.
DHL 3,633 (1.27) 61.95 h. (2.58 d.) 1.89 h. 31.26 d. 5.82 d.
SwissPass 1,912 (0.67) 66.57 h. (2.77 d.) 5.89 h. 30.05 d. 5.17 d.
Evri 1,104 (0.39) 73.85 h. (3.08 d.) 1.71 h. 30.22 d. 6.33 d.
Rakuten 604 (0.21) 66.29 h. (2.76 d.) 4.73 h. 29.61 d. 4.67 d.
Google 582 (0.20) 49.26 h. (2.05 d.) 6.11 h. 26.95 d. 3.97 d.

Total 286,237 (100) 54.04 h. (2.25 d.) 5.46 h. 38.43 d. 4.81 d.

∗ Facebook includes Meta; Total are also included 1,654 brands.
† h. indicates ‘hours’; d. indicates ‘days.’

targeted brands, and (4) identifying patterns and factors influencing
phishing site longevity. From this analysis, we aim to obtain insights
regarding the persistence of phishing sites and the effectiveness of
detection mechanisms across different brand targets.

5.1 Overall Phishing Lifespan
Top Target Brands. In our dataset, Facebook (including Meta)
emerges as the most frequently targeted brand for phishing attacks,
representing 27.08% of the total URLs (77,525 out of 286,237), as
shown in Table 1. We also compare the top brands used in phishing
attacks measured in previous studies [9, 19, 21, 23] that utilized
an older dataset from the APWG eCX repository. Interestingly, we
find that USPS, which is ranked in the second position in Table 1,
was never ranked within the top 10 in previous studies, indicating
a shift in the phishing landscape. This change highlights the dy-
namic nature of phishing trends and the importance of continuous
monitoring and analysis.
Phishing Website Lifespan. As shown in Table 1, the overall
average lifespan of phishing websites in our dataset is 54.04 hours
(2.25 days), with a median of 5.46 hours. This significant difference
between the average and median lifespans reveals a highly skewed
distribution, as shown in Figure 2. Specifically, 50% of phishing sites
are swiftly taken down within 5.46 hours. However, a small subset
of sites remain active for longer periods, leading to a longer average
lifespan. For example, a Microsoft-themed phishing site lasts its
operation for 38.43 days. The persistence of some sites could be
attributed to various factors: they might be hosted in jurisdictions
where legal action is challenging, employ sophisticated evasion
techniques, or be overlooked due to their low profile or targeting
of smaller, less-resourced organizations.
Lifespan by Top Target Brand. Further analysis, categorized by
targeted brand, reveals that phishingwebsites’ lifespan varies across
impersonated companies. The average lifespan ranges from 41.15
hours (AT&T) to 73.85 hours (Evri). Interestingly, logistic companies
such as DHL, USPS, and Evri show distinct patterns in the lifespans
of their phishing sites. These brands tend to have shorter median
lifespans than other sectors (e.g., Facebook): USPS with 1.76 hours,
Evri with 1.71 hours, and DHL with 1.89 hours. In contrast, Face-
book’s lifespans are significantly longer, with amedian of 8.68 hours.
This pattern suggests that phishing attacks mimicking logistics com-
panies operate within a compressed timeframe, potentially indicat-
ing a more aggressive but shorter-lived approach to these attacks.
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To further analyze differences between brands, we conductMann-
Whitney U tests (all p-values < 0.001, post-Bonferroni correction).
The starkest contrast between USPS and Instagram indicates vastly
different phishing lifespan distributions. Facebook and Instagram,
despite longer median lifespans (8.68 and 12.62 hours, respectively),
display distinct patterns in their persistent sites, suggesting unique
endurance characteristics. Further statistics are available in Table 8.
Analysis of Outliers (Longer-lived Phishing). Our analysis of
the longer-lived phishing sites, defined as those lasting beyond
each brand’s median lifespan, reveals significant brand variations
(see Appendix A). Facebook emerges as the most prominent target,
with 23% of its attacks falling into this outlier category, followed
by USPS at 9.52%. While DHL-themed sites are less common, com-
prising only 1.08% of longer-lived incidents, they show remarkable
persistence, lasting an average of 122.45 hours (5.10 days) and reach-
ing a maximum duration of 750.26 hours (31.26 days) among top
brands. Although Instagram is related to 1.48% of longer-lived web-
sites, its persistent cases have a notably high median lifespan of
32.22 hours. AT&T presents an interesting contrast, with 2.90% of
sites in this category but the shortest average duration at 78.8 hours
among the longer-lasting group.

Takeaway 1: The average lifespan of phishing websites is
54.04 hours (2.25 days), with significant variations across
brands (41.15 to 73.85 hours). While most sites are taken down
quickly (median 5.46 hours), a concerning subset persists for
extended periods. Logistic companies tend to operate within
a compressed time frame than other sectors. Our analysis
identifies 49 unique brands with at least one phishing site
lasting 30 days or more. We find significant differences in
phishing lifetime across all brand pairs and variability in
blocking effectiveness across brands.

5.2 Effectiveness of Google Safe Browsing

We scrutinize phishing lifespan related to GSB [4] through the
following analyses (see Table 2): 1 the number of phishing attempts
detected and undetected by GSB, 2 GSB detection time differences
between typical and redirected phishing URLs, 3 point-in-time
cases detected by GSB (based on APWG data and phishing site
activity status), and 4 phishing attempts that exceeded the average
GSB detection time.
GSB Detection Rate.We find that GSB includes 18.41% (52,696)
of the total phishing URLs in our dataset. In other words, 81.59%
of the phishing URLs are not blocklisted by GSB, meaning users
are exposed to such phishing websites without GSB’s intervention.
We further analyze how effectively GSB detects phishing websites
with the redirection phishing evasion technique, which uses benign
URLs that eventually redirect to the final phishing website. Such
benign URLs can be easily changed during the phishing campaign,
hiding the final phishing websites on the back. Due to the volatility
of those redirection URLs, blocklisting them is often ineffective.

We find that 32,745 (11.44%) URLs are typical phishing URLs (i.e.,
no redirection), while 19,951 (6.97%) are redirected URLs, demon-
strating GSB’s limited capability against the redirection evasion
technique. Notably, GSB’s performance on redirected URLs sig-
nificantly outpaces seven other popular anti-phishing blocklists

Table 2: Phishing Site Lifespans and GSB Detection Time.

Category Average Median

1 Lifespan Analysis
GSB Detected (18.41%) 55.89h (2.33d) 7.86h (0.33d)
GSB Not Detected (81.59%) 35.96h (1.50d) 2.67h (0.11d)

2 GSB Detection Times
Typical URLs (11.44%) 68.27h (2.84d) 4.89h (0.20d)
Redirected URLs (6.97%) 130.89h (5.45d) 5.73h (0.24d)
Total URLs (18.41%) 108.73h (4.53d) 5.80h (0.24d)

3 Detection Scenarios
GSB detection before APWG 375.11h (15.63d) 28.62h (1.19d)
GSB detection after APWG 166.69h (6.95d) 0.81h (0.03d)
APWG & GSB detect active phishing 223.58h (9.32d) 20.51h (0.85d)
GSB detection after phishing is down 404.19h (16.84d) 23.45h (0.98d)

4 Long-tail Analysis (>4.5 days)
GSB Detected 274.93h (11.46d) 236.85h (9.87d)
GSB Undetected 273.58h (11.40d) 260.69h (10.86d)

(malware-filter [32], OpenPhish [33], Phishing Army [34], Phishing
Database [35], Phishunt [36], PhishStats [37], and PhishTank [38]),
as detailed in Appendix B.

We conduct an in-depth case study to examine GSB’s detection
capabilities against phishing campaigns with intensive redirection,
i.e., phishing attackers using multiple redirection URLs to a single
destination domain. We identify 1,994 groups of such cases, i.e., mul-
tiple redirection URLs toward the same destination, encompassing a
total of 9,581 unique source URLs. GSB detects 189 of these groups,
but only 29 of these detections included the redirected (destination)
URLs. This suggests that GSB’s effectiveness is limited in dealing
with complex redirection schemes used by phishing attackers.
Lifespan Analysis with GSB. Our 1 lifespan analysis reveals sig-
nificant differences between phishing sites detected by GSB and the
others not detected. GSB successfully detects 18.41% of the phish-
ing sites in our dataset, which have an average lifespan of 55.89
hours (2.33 days) and a median lifespan of 7.86 hours (0.33 days).
In contrast, the majority of phishing sites (81.59%) not detected by
GSB have shorter lifespans, averaging 35.96 hours (1.50 days) with
a median of 2.67 hours (0.11 days). This suggests that while GSB
detects only a small portion of phishing sites, the detected ones
tend to have longer lifespans than undetected ones.

We find that phishing websites without the redirection evasion
technique have shorter lifespans (mean of 4.5 days, median of 5.8
hours) than those using redirection (mean of 5.5 days, median of 5.7
hours). This may imply that the redirection technique is effective in
extending the operational duration of phishing sites. Our statistical
analysis also confirms significant differences in lifespans between
typical phishing websites and those employing evasion techniques.
Specifically, typical URLs have a significantly higher likelihood
(8.24 times higher probability) of being detected by GSB compared
to redirected URLs (𝑝 < 0.001, corrected by FET [39]). Such results
suggest that the redirection technique is potentially helping phish-
ing campaigns, which GSB (and the phishing protection technique
in general) may be worth paying attention to.

GSB-detected phishing sites show brand-specific lifespan varia-
tions. DHL-targeted sites persist the longest (61.98 hours), while
AT&T-focused sites average 41.29 hours. USPS-targeted sites anoma-
lously have a 1.76-hour median lifespan but a 30.5-hour GSB detec-
tion time, exemplifying skewed phishing site duration distribution.
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Figure 2: Lifespan CDF with Top 5 brands. Vertical bars indicate detection time by Google Safe Browsing.

GSB’s 108.73-hour average detection time lags behind 83.93% of
phishing sites’ takedowns across brands. The remaining 16.07% sur-
vive 172.81 hours post-detection on average, ranging from 142.35
hours for AT&T to 202.18 hours for DHL sites.
GSB Detection Time. Overall, the mean GSB detection time for
all URLs is 108.73 hours (4.53 days), with a median of 5.80 hours.
Compared to the average lifespans of phishing websites (54.04
hours), the GSB detection time is slower, often occurring after
phishing sites have already been taken down.

We further compare how promptly GSB can detect phishing at-
tacks with evasion techniques (e.g., redirection). We find that GSB
may fail to provide timely protection for phishing websites using
evasion techniques, as the average detection time for the phishing
sites in our dataset represents a considerable exposure period for
potential victims. Specifically, our analysis ( 2 GSB detection time)
reveals that typical URLs are detected in an average of 68.27 hours
(2.84 days), with a median detection time of 4.89 hours, while redi-
rected URLs show a longer average detection time of 130.89 hours
(5.45 days) with a median of 5.73 hours.
GSB Detection Time by Target Brand. As illustrated in Figure 2,
GSB has varying detection times between target brands. Specifically,
AT&T-themed phishing sites are detected fastest by GSB, with an
average detection time of 20.9 hours. In contrast, Facebook-themed
phishing sites take the longest to detect, with an average detection
time of 151 hours (about 6.3 days), despite Facebook being the most
common target brand in our dataset. Other brands fall between
these extremes, with USPS at 30.5 hours, DHL at 105 hours, and
Instagram at 143 hours. This means that GSB has different detection
times for different phishing target brands.
Detection Scenarios. Our analysis of 3 GSB detection scenario in
relation to APWG identification and site takedown reveals three dis-
tinct scenarios: (1) GSB detects before APWG, (2) GSB detects after
APWG, and (3) GSB detects after phishing site takedown. These sce-
narios show significant variations in phishing site lifespans. When
GSB detects before APWG, sites persist for an average of 375.11
hours (15.63 days). In cases where GSB detects after APWG, the
average lifespan decreases to 166.69 hours (6.95 days). The average
time between APWG and GSB detection is 223.58 hours (9.32 days).
Most concerning is when GSB detects after-site deactivation, with
an average lifespan of 404.19 hours (16.84 days). This scenario in-
dicates a significant real-time detection gap. Early GSB detection
does not always ensure shorter lifespans, possibly due to blocking
delays or sophisticated evasion techniques employed by phishers.
Long-tail Analysis of GSB Detection Time. The 4 long-tail
analysis shows an interesting pattern in the persistence of these
threats, focusing on phishing sites that remain active for more
than the GSB average detection time of 4.5 days. The 16.44% of
phishing sites detected by GSB have an average lifespan of 274.93

hours (11.46 days) and a median of 236.85 hours (9.87 days). In
comparison, the 11.01% of phishing sites not detected by GSB have
a similar average lifespan of 273.58 hours (11.40 days) but a slightly
higher median of 260.69 hours (10.86 days). These results indicate
that a significant number of phishing sites persist for long periods,
regardless of whether GSB detects them.

Takeaway 2: GSB’s phishing detection shows limitations,
identifying only 18.41% of sites in 4.5 days on average. 83.93%
are blocklisted after takedown, while others survive 7.2 more
days. Phishing sites using redirection evasion typically have
longer detection times. These findings suggest room for im-
provement in detection speed and coverage.

6 Take-down Causes of Phishing Attacks (RQ2)
To address our second research question “What factors cause
phishingwebsites to be taken down?”, we investigate the dataset
to identify potential factors that may cause the takedown of phish-
ing websites. In particular, we focus on HTTP response error codes
and DNS configurations by analyzing error logs generated during
accessing each phishing site. For DNS configuration, we use a com-
bination of the public suffix list [40] and reverse DNS to distinguish
between web hosting (e.g., wix.com) and self-hosted websites. From
the 90,356 phishing domains across the top ten major brands, we
find three primary error types: (1) DNS resolution errors, (2) page
not found errors, and (3) timeout errors. ‘DNS resolution failure’
error occurs when a domain name cannot be resolved to IP ad-
dresses. ‘Page not found’ error arises when requested resources do
not exist on servers, while ‘timeout’ errors result when servers take
too long to respond. Each of these presents unique patterns across
web hosting and self-hosted environments.

6.1 General Causes of Takedowns
Table 3 and Table 9 summarize our results of takedown causes. ‘DNS
resolution failures’ emerge as the predominant issue, accounting
for 67.23% of all errors (60,913 domains). The second most common
errors are ‘page not found’ errors, affecting 27.19% of domains
(24,573), while ‘timeout’ errors occurred in 5.39% of cases (4,870).

The distribution of these errors varies significantly across web-
hosting and self-hosted environments, as well as among different
targeted brands. ‘DNS resolution failure’ errors vary significantly
across phishing attack types. For web-hosting sites, these errors
range from 35.42% in Google-themed phishing to 82.95% in Rakuten-
themed phishing. Similarly, for self-hosted phishing sites, DNS
resolution failures range from 43.37% for DHL-themed phishing to
78.46% for Google-themed phishing. ‘Page not found’ errors also
show notable variability. In web-hosting sites, these errors range
from 9.09% in Rakuten-themed phishing to 53.09% in AT&T-themed
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Table 3: Phishing Site (Root Domain) Analysis by Error Type, Hosting Method, and Brands.

Error Type Hosting
Method

Top 10 Phishing Brand (% of errors)
All Brands

FB (Meta) USPS AT&T WhatsApp DHL Instagram SwissPass Evri Google Rakuten

DNS
Resolution

Web Hosting 12,025 (60.05%) 605 (73.33%) 1,577 (44.11%) 796 (64.35%) 411 (60.35%) 1,093 (62.71%) 719 (61.40%) 68 (69.39%) 17 (35.42%) 73 (82.95%) 26,765 (66.64%)
Self-Hosted 5,984 (75.39%) 8,071 (60.94%) 282 (61.84%) 1,516 (71.27%) 1,098 (43.37%) 205 (64.26%) 267 (66.75%) 613 (61.73%) 397 (78.46%) 285 (73.26%) 34,148 (67.81%)

Page
Not Found

Web Hosting 7,072 (35.32%) 168 (20.36%) 1,898 (53.09%) 274 (22.15%) 240 (35.35%) 555 (31.84%) 395 (33.73%) 25 (25.51%) 25 (52.08%) 8 (9.09%) 11,442 (28.34%)
Self-Hosted 2,566 (32.33%) 4,150 (31.33%) 155 (33.99%) 336 (15.79%) 1,363 (53.85%) 100 (31.35%) 98 (24.50%) 312 (31.42%) 36 (7.11%) 80 (20.57%) 13,131 (26.05%)

Timeout Web Hosting 881 (4.40%) 49 (5.94%) 89 (2.49%) 164 (13.26%) 28 (4.11%) 93 (5.33%) 51 (4.35%) 5 (5.10%) 6 (12.50%) 7 (7.95%) 2,148 (5.36%)
Self-Hosted 334 (4.21%) 991 (7.48%) 17 (3.73%) 273 (12.83%) 64 (2.53%) 8 (2.51%) 33 (8.25%) 67 (6.75%) 73 (14.43%) 22 (5.66%) 2,722 (5.40%)

Total 28,862 (31.85%) 14,034 (15.49%) 4,018 (4.43%) 3,359 (3.71%) 3,204 (3.54%) 2,054 (2.27%) 1,563 (1.73%) 1,090 (1.20%) 554 (0.61%) 475 (0.52%) 90,356 (99.73%)

phishing. For self-hosted sites, the range is from 7.11% in Google-
themed phishing to 53.85% in DHL-themed phishing.

6.2 Taxonomy of Takedown Cause
Our analysis reveals three primary categories of errors leading to
phishing site takedowns: DNS resolution failure, page not found er-
ror, and timeout errors. Each category shows distinct patterns across
web-hosting service and self-hosted environments and among dif-
ferent targeted brands.
DNS Resolution Failures. ‘DNS resolution failures’ dominate the
observed takedown causes, accounting for 67.23% of all errors. This
prevalence suggests that DNS configuration is notable in phishing
site lifecycles. The wide range of DNS resolution failure error rates
across brands and hosting types (from 35.42% to 82.95%) indicates
significant variability in DNS-related takedowns. For web-hosted
sites, Rakuten-themed phishing shows the highest DNS resolution
failure error rate (82.95%), while Google-themed phishing has the
lowest (35.42%). With websites using self-hosting services, Google-
themed phishing exhibits a high rate (78.46%), contrasting with
DHL-themed phishing at the lower end (43.37%). These variations
suggest that DNS-related takedowns differ substantially based on
the targeted brand and hosting method.
Page Not Found Errors. ‘Page not found’ errors are the sec-
ond most common takedown cause at 27.19%. The similarity in
error rates between web-hosting (28.34%) and self-hosting ser-
vice (26.05%) environments is noteworthy. Among sites using web-
hosting services, AT&T-themed phishing has the highest rate (53.09%),
while Rakuten-themed phishing shows the lowest (9.09%). For self-
hosted sites, DHL-themed phishing tops the list (53.85%), with
Google-themed phishing at the bottom (7.11%). These brand-specific
variations indicate that the ‘page not found’ errors are not uniformly
distributed across different phishing targets.
Timeout Errors. ‘Timeout’ errors, which are navigation and net-
work timeouts, while less frequent at 5.39%, show consistency be-
tween web-hosting (5.36%) and self-hosting service (5.40%) envi-
ronments. WhatsApp-themed phishing sites stand out with notably
higher timeout rates in both web-hosted (13.26%) and self-hosted
(12.83%) environments. In contrast, AT&T-themed sites have much
lower rates (2.49% web-hosting service, 3.73% self-hosted). These
differences indicate that certain brands may be associated with
higher rates of timeout errors in phishing attacks.

Takeaway 3: Phishing websites primarily cease operations
due to DNS resolution errors (67.23%), suggesting that DNS
modification plays a crucial role in phishing lifecycles. The

substantial presence of ‘page not found’ errors (27.19%) indi-
cates a mix of content removal, and a potentially significant
portion of takedowns may be phisher-initiated.

7 Phishing Volatility in the Lifespan (RQ3)

We answer the third research question, “What technical mea-
sures do phishing websites employ to avoid detection, and
how do these change over a website’s lifetime?”, by analyzing
screenshots, DNS Records, HTTP headers, and content of collected
phishing site resources to track the volatility of phishing websites.

7.1 Visual Component Changes (Screenshots)
We analyze how phishing sites’ visual representation changes over
their lifespan by clustering screenshots based on similarity. Screen-
shots are collected at each visit, and visual features are extracted to
capture the evolution of each site. This process helps us understand
how phishing attackers modify the appearance of phishing sites
to evade detection. Each screenshot is resized, normalized, and
processed to create a feature vector representing its visual content.
We detect stable periods and significant visual changes by calcu-
lating cosine similarity between screenshots. Screenshots with a
similarity score above 0.95 are clustered together. Hence, if more
than two clusters are found within each phishing campaign, it may
indicate that the phishing website’s appearance has changed during
the campaign.
Result. Figure 3 provides the statistics on the lifespan of phishing
sites that experience visual changes during their operation. The
data encompasses 71,665 phishing sites, categorized based on the
frequency of changes they experience. The analysis reveals that
phishing sites with more frequent visual changes tend to have
longer lifespans, as reflected in the median and average values. For
instance, phishing sites with fewer changes (1 time) have a median
lifespan of 1.93 hours and an average lifespan of 9.95 hours. In
contrast, sites that experience more changes (50-99 times) exhibit a
significantly longer median lifespan of 38.18 hours and an average
of 76.49 hours. The longest-living phishing sites, those with over
100 changes, have a median lifespan of 404.52 hours (about 17 days)
and an average of 358.35 hours, highlighting how frequent changes
help phishing sites evade detection for extended periods.

The quartile statistics (Q1 and Q3) further emphasize this trend.
Sites with fewer changes have lower quartile ranges, such as “1
time,” with a Q1 of 0.48 hours and a Q3 of 5.80 hours, indicating that
most of these sites are short-lived. However, for phishing sites with
over 100 changes, the Q1 jumps to 240.30 hours, and the Q3 reaches
480.75 hours, demonstrating that many of these sites persist for
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Figure 3: Phishing Visual Component Frequency of Changes.
The X-axis indicates the lifespan, and the Y-axis indicates
the number of appearance changes. It reveals that phishing
sites with more visual changes tend to have longer lifespans.
long durations before being detected or taken down. These findings
underscore the effectiveness of visual changes in prolonging the
operational lifespan of phishing sites (see Appendix F).

Takeaway 4: Phishing sites frequently changing their vi-
sual appearance tend to have significantly longer lifespans.
Sites with over 100 visual changes persist for a median of 17
days, compared to 1.93 hours for sites with only one change.
This demonstrates that visual modifications are effective for
evading detection and prolonging phishing campaigns.

7.2 DOM Changes from Discovery to Takedown
We analyze changes in website resources between the discovery and
takedown of 286,237 phishing sites, with 10.5% (30,069) showing
final changes. Our analysis reveals statistically significant changes
(𝑝 < 0.001, t-test) across various metrics, as shown in Table 4. These
changes indicate that phishing sites actively evolve their structure
and behavior over time, likely in an attempt to evade detection or
improve the sites.

The structural complexity of phishing sites is reduced between
discovery and takedown. The total number of DOM elements, maxi-
mum DOM depth, and third-party scripts decrease by 11.58%, 6.27%,
and 12.37%, respectively. This reduction in complexity suggests
that phishers may be simplifying their sites, possibly to improve
loading speeds or to appear less suspicious to detection systems. In
anti-detection techniques, Canvas fingerprinting shows the most
significant increase of 37.09%, while browser plugin detection and
screen resolution checks decrease by 23.08% and 26.92% respec-
tively. The increase in Canvas fingerprinting usage indicates a shift
towards more sophisticated visitor tracking methods, which could
potentially enhance phishers’ ability to identify victims.

We observe changes in dynamic content and obfuscation us-
age. The use of AJAX decreases by 27.53%, representing the largest
decline in this category. Conversely, the use of event listeners in-
creases by 6.11%. Other notable changes include a decrease in po-
tential Base64 usage (-6.69%) and an increase in potential Unicode
escapes (+6.03%). These shifts suggest a move away from server-
side dynamic content (AJAX) towards more client-side interactivity
(event listeners), which could make the sites harder to analyze us-
ing static methods. Obfuscation techniques demonstrated opposite
trends for JavaScript and CSS. JS obfuscation decreased by 9.30%,
while CSS obfuscation increased by 3.73%. This change in obfusca-
tion strategy might reflect an attempt to evade detection by moving

Table 4: Comprehensive Changes in Phishing Resources.

Metric Discovery Takedown Change

Site Complexity
Avg. Total Elements 211.06 186.62 -24.44 (-11.58%)
Avg. Max Depth 11.17 10.47 -0.70 (-6.27%)
Avg. Third-Party Scripts 2.91 2.55 -0.36 (-12.37%)

Anti-detection Techniques (%)
User Agent Checks 12.39 12.43 +0.04 (+0.32%)
Canvas Fingerprinting 4.53 6.21 +1.68 (+37.09%)
WebGL Fingerprinting 0.13 0.11 -0.02 (-15.38%)
Browser Plugin Detection 0.13 0.10 -0.03 (-23.08%)
Screen Resolution Checks 1.04 0.76 -0.28 (-26.92%)

Dynamic Content and Obfuscation (%)
Uses AJAX 10.79 7.82 -2.97 (-27.53%)
Dynamic DOM Manipulation 26.42 25.43 -0.99 (-3.75%)
Uses Event Listeners 27.19 28.85 +1.66 (+6.11%)
Potential Eval Usage 4.11 4.09 -0.02 (-0.49%)
Potential Base64 Usage 62.31 58.14 -4.17 (-6.69%)
Potential Hex Encoding 12.67 12.38 -0.29 (-2.29%)
Potential Unicode Escapes 14.09 14.94 +0.85 (+6.03%)

Obfuscation Techniques (%)
JS Obfuscation 5.16 4.68 -0.48 (-9.30%)
CSS Obfuscation 12.59 13.06 +0.47 (+3.73%)
∗ All changes are statistically significant (𝑝 < 0.001).
† Percentages in parentheses show relative change.
some obfuscation from JavaScript, which is often closely scrutinized,
to CSS, which may receive less attention from detectors.

These quantitative changes emphasize the dynamic nature of
phishing websites before they are discovered and blocked. Statis-
tically significant changes in multiple parameters indicate that a
phishing site undergoes significant modifications during its lifetime.

7.3 DNS Configuration Changes in Phishings
Our analysis of DNS configurations in phishing websites reveals
significant variations and changes between the discovery and take-
down phases. We examine DNS information associated with phish-
ing websites’ IP addresses, performing both forward and reverse
DNS lookups to understand how these configurations evolve. DNS
usage patterns vary considerably across different brands targeted
by phishing attacks. For instance, Facebook-themed phishing pre-
dominantly relies on 1e100.net (35.43% at discovery, increasing to
36.18% at takedown) and github.com (29.10% at discovery, decreas-
ing to 27.81% at takedown). In contrast, USPS-themed phishing
mainly utilizes cloudfront.net, with usage increasing slightly
from 48.76% at discovery to 49.46% at takedown. We observe flu-
idity in DNS services across phishing websites. 7.24% of the sites
exhibit changes in their DNS services during their lifetime, with
2.61% adding services, 2.73% removing services, and 1.90% switch-
ing services. This fluidity suggests active management of DNS
configurations by phishers.

We uncover significant modifications in DNS record configura-
tions, with a clear trend towards shorter time-to-live (TTL) dura-
tions. Our analysis reveals that 75.84% of phishing websites alter
their DNS settings between discovery and takedown. These values
span from 0 to 604,800 seconds, with an average of 1,559.87 sec-
onds and a median of 295 seconds. Notably, the majority of these
configurations are set to brief intervals: 81.44% at discovery and
81.89% at takedown are below 1800 seconds. Even more striking,
71.90% fall under 600 seconds, and 51.10% are less than 300 seconds.
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This tendency towards shorter durations intensifies over time, with
the mean value decreasing from 1,705.63 seconds at discovery to
1,383.54 seconds at takedown. In extreme cases, some are set to
0 seconds, effectively disabling caching. These short-lived DNS
configurations can enable fast-flux networks, a technique observed
in sophisticated phishing operations [18, 41]. Such changes, par-
ticularly using brief and decreasing durations, align with known
strategies for evading detection and complicating efforts to track
and block malicious infrastructure [42].

7.4 Phishing Server Transition
Weanalyze server information fromHTTP headers and track changes
in server configurations on phishing websites, focusing on the
widely used Apache and Nginx servers [43]. Our findings show
that 13 websites using Nginx change versions over time, with 12
upgrading to newer versions and one downgrading. Notably, 2 of
the upgraded websites switch to lower minor versions. Similarly,
four websites using Apache changed versions, with one downgrad-
ing to a lower patch version. Phishing websites often update their
server configurations, typically upgrading to newer versions, but
occasional downgrades to lower versions suggest potential security
weaknesses that could be exploited for detection and mitigation.

Takeaway 5: Our analysis reveals that 30,069 phishing sites
undergo final changes before takedown, demonstrating sig-
nificant volatility in their characteristics over time. Notably,
while most features decreased, canvas fingerprinting showed
a substantial increase of 37.09%, suggesting an evolution in
anti-detection techniques. The contrasting trends in obfusca-
tion methods, with JS obfuscation decreasing by 9.30% while
CSS obfuscation increasing by 3.73%, indicate a shift in how
phishing sites attempt to conceal their behavior.

8 Discussion
Limitation. Our study relies on APWG URLs, and there is a time
frame during which victims may visit phishing websites before
APWG detects the URLs. However, previous research [5] suggests
that this time frame is minimal. Thus, while this limitation exists, it
likely has a negligible impact on our conclusions regarding phishing
activity patterns.
Recommendations.
• Given that GSB cannot detect 81.59% of phishing URLs in our
dataset, there is a clear need for more robust detection methods.
We recommend developing advanced machine learning mod-
els incorporating various features, including visual elements,
domain characteristics, and content analysis. Continuous moni-
toring in real-time systems can help detect subtle changes inweb-
site behavior over time. Additionally, implementing automated
takedown processes would enable rapid removal of detected
phishing sites, reducing the exposure for potential victims.

• We find that 16.07% of phishing sites persist for an additional
7.2 days even after being flagged by GSB. Anti-phishing efforts
should focus on continuous detection and rapid response mecha-
nisms to address this issue. This approach involves implementing
systems that constantly monitor flagged sites for infrastructure,
content, or behavior changes. Continuous detection allows us

to identify attempts to evade blocking measures and adapt our
defenses accordingly.

Ethics. Our data collection process adheres to strict ethical guide-
lines. We block form submissions on phishing sites using cus-
tomized Puppeteer event listeners. All data is anonymized with
one-way hashing and securely stored behind robust firewalls and
access controls. Any inadvertently captured personal data is imme-
diately scrubbed using regularly updated regex patterns and entity
recognition models. Automated scripts enforce data retention poli-
cies, and access is restricted to authorized researchers only. We
disclose our findings to GSB.

9 Related Work
Previous research has largely neglected the analysis of the phishing
ecosystem, with earlier studies primarily concentrating on under-
standing phishing attacks with detection mechanisms.
Phishing Ecosystem. Previous research [5, 13, 20] has explored
phishing attacks through controlled experiments. Moreover, ad-
ditional studies [8, 44, 45] have investigated current mitigation
strategies by analyzing how existing detection mechanisms func-
tion. These works focus on understanding the overall structure
of phishing websites and their evasion tactics. In contrast, our re-
search aims to delve deeper into the ecosystem with a lifetime of
phishing attacks and a longitudinal understanding of the phishing
ecosystem evolution.
Phishing Lifecycle. Research has examined the period between
phishing domain registration and when these domains are even-
tually detected and blocklisted [6, 7], providing insights into how
attackers attempt to prolong the lifespan of their phishing web-
sites. Additionally, honeypots have been used to analyze phishing
campaigns, capturing phishing attempts in real-time and revealing
attacker tactics and strategies [8]. Another important area of study
explores victim traffic on phishing websites, particularly in finan-
cial organizations, to understand how users interact with these
fraudulent sites and how attackers exploit this traffic before de-
tection [5]. Compared to previous work, our study focuses on a
more comprehensive analysis of the phishing lifecycle, examining
the various factors that contribute to the duration and evolution of
phishing websites.

10 Conclusion
Phishing websites remain active for an average of 2.25 days, and
their short-lived nature reduces the effectiveness of blocklist-based
defenses. GSB takes an average of 4.5 days to detect these sites,
indicating many phishing operations terminate before detection.
Moreover, our analysis reveals that 16.07% of sites persist for an
additional 7.2 days post-detection. Widespread evasion techniques
significantly hinder traditional detection methods, including short
DNS TTL values and frequent visual changes. Phishing sites with
extensive visual changes (100+) exhibited a median lifespan of
17 days, while those with minimal modifications lasted only 1.93
hours. The heavy reliance on popular hosting services further com-
plicates mitigation efforts. These findings highlight the limitations
of blocklist-based approaches and emphasize the need for sophis-
ticated detection methods. To combat rapidly evolving phishing
attacks, real-time and adaptive defense mechanisms are essential.
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A Comparison of Loger-lived Phishing Brands.

Our analysis of longer-lived phishing sites, defined as those
lasting beyond each brand’s median lifespan, reveals significant
variations across targeted brands (Table 5). While less common,
DHL-themed sites show remarkable persistence, with the highest
mean duration of 122.45 hours (approximately 5.10 days) and a
maximum lifespan of 750.26 hours (about 31.26 days). Facebook-
themed sites, being more prevalent, exhibit a high mean lifespan of
109.77 hours (about 4.57 days) and the highest recorded maximum

9

https://www.cybsafe.com/blog/how-can-phishing-affect-a-business/
https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf
https://safebrowsing.google.com/
https://apwg.org/ecx/
https://safebrowsing.google.com/
https://pptr.dev/
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://web.archive.org/web/20210521014149/https://www.macworld.com/article/193605/safari-safe-browsing.html
https://web.archive.org/web/20210521014149/https://www.macworld.com/article/193605/safari-safe-browsing.html
https://web.archive.org/web/20210521014149/https://www.macworld.com/article/193605/safari-safe-browsing.html
https://www.phoronix.com/news/Epiphany-3.27.1-Released
https://www.phoronix.com/news/Epiphany-3.27.1-Released
https://support.mozilla.org/en-US/kb/how-does-phishing-and-malware-protection-work
https://support.mozilla.org/en-US/kb/how-does-phishing-and-malware-protection-work
https://transparencyreport.google.com/safe-browsing/overview?hl=en&warnings_displayed=dataset:users;start:1288508400000;end:1672560000000&lu=warnings_displayed
https://transparencyreport.google.com/safe-browsing/overview?hl=en&warnings_displayed=dataset:users;start:1288508400000;end:1672560000000&lu=warnings_displayed
https://transparencyreport.google.com/safe-browsing/overview?hl=en&warnings_displayed=dataset:users;start:1288508400000;end:1672560000000&lu=warnings_displayed
https://developers.google.com/safe-browsing/v4/urls-hashing
https://developers.google.com/safe-browsing/v4/urls-hashing
https://gitlab.com/malware-filter/phishing-filter
https://openphish.com/
https://phishing.army
https://github.com/mitchellkrogza/Phishing.Database
https://github.com/mitchellkrogza/Phishing.Database
https://phishunt.io/
https://phishstats.info/
https://phishtank.org/
https://publicsuffix.org/
https://w3techs.com/technologies/overview/web_server
https://www.cisa.gov/


Conference’17, July 2017, Washington, DC, USA Anon.

of 799.52 hours (approximately 33.31 days). Despite lower overall
phishing incidence, Instagram shows a notably highmedian lifespan
of 32.22 hours for its persistent cases. USPS-themed sites present
an interesting case. They have the lowest median lifespan (6.95
hours) among longer-lived sites but still maintain a substantial
mean duration of 86.72 hours, indicating a skewed distribution
with persistent outliers. AT&T exhibits the shortest mean lifespan
(78.83 hours) among the longer-lasting group.

Table 5: Comparison of Longer-lived Top 5 Phishing Brands.

Metric (hours) USPS DHL Facebook AT&T Instagram

Mean 86.72 122.45 109.77 78.83 102.67
Median 6.95 18.59 29.92 24.74 32.22
90th Percentile 319.62 351.28 304.11 250.06 295.65
95th Percentile 353.36 535.42 350.61 324.42 341.59
Max 747.57 750.26 799.52 751.09 744.15

B Result of Anti-phishing Blocklists
As discussed in Section 5.2, GSB detected 18.41% of the phishing
URLs in our dataset. However, our analysis of seven other popular
anti-phishing blocklists reveals significantly lower detection rates,
as shown in Table 6. These results underscore the challenges of
anti-phishing blocklists in keeping pace with the rapidly evolving
phishing landscape. The stark contrast between GSB’s performance
and other blocklists suggests that GSB may employ more sophisti-
cated detection methods or access a broader range of data sources.
The generally lower detection rates for redirect URLs across all
blocklists indicate that phishers use redirection techniques to evade
detection effectively. This aligns with our findings in Section 7
regarding the prevalence of redirection in phishing attacks.

Table 6: Comparison of 7 Blocklist Phishing URLs.

Blocklist Typical URL Redirected URL

Matches Percentage Matches Percentage

malware-filter [32] 3,600 1.26% 2,400 0.84%
OpenPhish [33] 9,525 3.33% 7,163 2.50%
Phishunt [36] 761 0.27% 576 0.20%
Phishing Army [34] 756 0.26% 424 0.15%
Phishing Database [35] 10 0.00% 9 0.00%
PhishStats [37] 1 0.00% 0 0.00%
PhishTank [38] 0 0.00% 0 0.00%

C Usage of ASNs and TLDs in Phishing Sites
Our analysis of the distribution of Autonomous System Numbers
(ASNs) and Top-Level Domains (TLDs) in phishing sites reveals
interesting patterns in the infrastructure used by attackers. As
shown in Table 7, Cloudflare emerges as the dominant ASN, hosting
53.68% of the phishing sites in our dataset. This is followed by a
significant number of sites (7.68%) with unknown ASNs and then
by major cloud providers such as Google (4.55%), Alibaba (4.18%),
and Amazon (3.85%). These findings suggest that phishers often
leverage popular cloud and CDN services to host their malicious
content, potentially benefiting from these platforms’ reliability and
ability to obfuscate the true origin of the attacks.

In terms of TLDs, while the traditional ‘.com’ domain remains the
most prevalent (28.11%), we observe a notable use of newer or less
common TLDs. The ‘.shop’ TLD, for instance, accounts for 24.87% of

the phishing sites, indicating its popularity among attackers. Other
frequently used TLDs include ‘.top’ (7.54%), ‘.dev’ (5.83%), and ‘.io’
(3.41%). This diversification in TLD usage may reflect attempts
by phishers to evade detection or to create more convincing fake
domains that align with their targeted brands or services.

Table 7: Distribution of ASNs and TLDs.

ASN Name Number (%) TLD Number (%)

13335 Cloudflare 153664 (53.68%) com 80455 (28.11%)
Unknown Unknown 21995 (7.68%) shop 71200 (24.87%)
15169 Google 13025 (4.55%) top 21568 (7.54%)
45102 Alibaba 11961 (4.18%) dev 16684 (5.83%)
16509 Amazon 11009 (3.85%) io 9754 (3.41%)
54113 Fastly 10520 (3.68%) org 7157 (2.50%)
132203 Tencent 8008 (2.80%) app 7104 (2.48%)
133199 SonderCloud 7618 (2.66%) cfd 6415 (2.24%)
27323 ServerStadium 4109 (1.44%) cn 5261 (1.84%)
14061 DigitalOcean 3626 (1.27%) me 4765 (1.67%)

D Statistical Results for Longer-lived Phishing

Table 8: Mann-Whitney U Test for Longer-lived Phishing.
Comparison U Statistic 𝑝-value Sample Sizes Significant

USPS vs DHL 8,889,555.5 2.20e-78 14733, 1674 Yes
USPS vs Facebook 148,623,111.5 0.00e+00 14733, 37454 Yes
USPS vs AT&T 20,392,662.0 2.51e-271 14733, 4278 Yes
USPS vs Instagram 9,014,440.0 1.40e-274 14733, 2270 Yes
DHL vs Facebook 22,780,213.0 4.33e-80 1674, 37454 Yes
DHL vs AT&T 3,052,938.5 8.43e-19 1674, 4278 Yes
DHL vs Instagram 1,344,337.5 1.09e-55 1674, 2270 Yes
Facebook vs AT&T 92,660,283.5 2.17e-63 37454, 4278 Yes
Facebook vs Instagram 38,870,796.0 6.88e-12 37454, 2270 Yes
AT&T vs Instagram 3,487,045.5 7.86e-79 4278, 2270 Yes

∗ All 𝑝-values are Bonferroni corrected; Significance level: 𝛼 = 0.05.

Mann-Whitney U tests [46] compare the lifespan distributions
of longer-lived phishing sites across different brands, as shown
in Table 8. The results reveal statistically significant differences (𝑝 <
0.05) between all brand pairs, even after applying the conservative
Bonferroni correction for multiple comparisons. This indicates that
the persistence patterns for phishing attacks vary substantially
depending on the targeted brand.

The most pronounced differences are observed between USPS
and Instagram (U = 9,014,440, 𝑝 = 1.40e-274) and USPS and AT&T
(U = 20,392,662, 𝑝 = 2.51e-271), suggesting markedly different at-
tack persistence strategies for these brands. Interestingly, while
Facebook has the largest sample size of a longer-lived span, its com-
parison with Instagram still shows a highly significant difference (𝑝
= 6.88e-12), with the highest p-value among all comparisons. This
suggests that while there are statistically significant differences
in phishing campaign characteristics between these social media
platforms, they may be more similar than to other brands in the
study. However, it’s important to note that all comparisons showed
extremely low p-values (𝑝 < 0.05), indicating significant differences
across all brand pairs in how long-lived phishing attacks persist.

E Error Causes
Our analysis of error causes in accessing phishing sites reveals
significant patterns across various brands, as shown in Table 9. The
most prevalent error by far is DNS resolution failure, accounting for

10



7 Days Later: Analyzing Phishing-Site Lifespan After Detected Conference’17, July 2017, Washington, DC, USA

Table 9: Summary of Error Causes and Their Frequency based on FQDN.

Brand DNS resolution fail Page not found Timeout Access forbidden Protocol error DNS refused Total

All brands 182,239 (63.67%) 79,626 (27.82%) 19,468 (6.80%) 3,767 (1.32%) 1,070 (0.37%) 47 (0.02%) 286,217 (100.00%)

Facebook 64,933 (83.76%) 9,375 (12.09%) 2,302 (2.97%) 809 (1.04%) 103 (0.13%) 1 (0.00%) 77,523 (100.00%)
USPS 19,374 (60.38%) 10,142 (31.61%) 2,089 (6.51%) 413 (1.29%) 54 (0.17%) 17 (0.05%) 32,089 (100.00%)
AT&T 6,464 (65.88%) 2,870 (29.25%) 333 (3.39%) 115 (1.17%) 28 (0.29%) 1 (0.01%) 9,811 (100.00%)
WhatsApp 5,265 (72.52%) 951 (13.10%) 934 (12.86%) 97 (1.34%) 13 (0.18%) 0 (0.00%) 7,260 (100.00%)
Instagram 3,360 (70.81%) 1,094 (23.06%) 245 (5.16%) 34 (0.72%) 12 (0.25%) 0 (0.00%) 4,745 (100.00%)

63.67% of all errors across brands. This suggests that most phishing
sites become inaccessible due to DNS-related issues, potentially
indicating rapid takedown efforts or attackers’ use of disposable do-
mains. The second most common error is “Page not found” (27.82%),
which could be attributed to content removal or site restructuring
by the attackers.

Interestingly, the distribution of errors varies across different
targeted brands. For instance, Facebook-related phishing sites show
a notably higher rate of DNS resolution failures (83.76%) than the
overall average. In contrast, USPS-targeted sites have a higher inci-
dence of “Page not found” errors (31.61%). Timeout errors, while less
frequent overall (6.80%), are particularly prominent in WhatsApp-
related phishing attempts (12.86%). These variations might reflect
differences in anti-phishing strategies employed by various brands
or unique characteristics of the phishing campaigns targeting them.
The relatively low occurrence of access forbidden errors (1.32%)
and protocol errors (0.37%) across all brands suggests that when
phishing sites are online, they generally remain accessible.

F Visual Component Changes

Table 10: Changed Phishing Lifespan Statistics (in hours).

Freq.∗ URLs (%) Q1 Med. Avg. Q3 Max Std.

1 6,014 (8.39%) 0.48 1.93 9.95 5.80 720 36.08
2 4,356 (6.08%) 0.97 2.42 9.84 7.25 624 32.54
3 3,817 (5.33%) 1.45 3.38 14.62 9.67 720 39.03
4 3,223 (4.50%) 1.93 3.87 12.53 10.63 576 34.86
5 2,918 (4.07%) 2.42 4.35 11.12 11.60 456 31.49
6 2,842 (3.97%) 2.90 4.83 15.43 12.08 672 43.47
7 4,756 (6.64%) 3.38 5.32 13.06 13.53 504 35.04
8 2,367 (3.30%) 3.87 6.28 12.83 13.05 384 31.46
9 2,162 (3.02%) 4.35 6.77 14.03 14.50 432 34.28
10 2,028 (2.83%) 4.83 7.25 13.07 14.98 333 26.89
11 1,995 (2.78%) 5.32 7.73 14.22 15.43 381 28.84
12 1,859 (2.59%) 5.80 8.22 14.15 15.92 360 27.45
13 1,762 (2.46%) 6.28 8.70 15.72 16.88 408 29.13
14 1,733 (2.42%) 6.77 9.18 16.11 17.37 384 29.30
15 1,713 (2.39%) 7.25 9.67 18.31 18.33 455 34.56
16 2,540 (3.54%) 7.73 10.15 17.41 18.80 408 30.13
17 1,545 (2.16%) 8.22 11.12 19.44 19.75 480 37.78
18 1,352 (1.89%) 8.70 11.60 19.79 20.23 456 36.26
19 1,256 (1.75%) 9.18 12.08 21.90 21.18 504 42.08

20-29 9,640 (13.45%) 10.63 14.65 21.76 23.57 624 33.60
30-49 7,637 (10.66%) 15.43 21.77 33.15 35.35 720 45.55
50-99 4,652 (6.49%) 28.03 38.18 76.49 84.82 893 91.61
100+ 2,498 (3.49%) 240.30 404.52 358.35 480.75 1440 199.69
Total 71,665 (100%) 3.38 14.65 30.62 28.03 1440 78.43
∗ Freq. is stands for the frequency that phishing sites have changed
their website layout or target brands.

The data in Table 10 provides insights into the lifespan character-
istics of phishing websites that undergo visual component changes.
These changes may include alterations to the website layout or
shifts in the targeted brands. The analysis covers 71,665 URLs, cate-
gorized by the frequency of visual changes they underwent during
their lifespan.

A notable trend emerges as the frequency of changes increases.
Websites with more frequent changes tend to have longer average
lifespans. For instance, URLs with only one change have an average
lifespan of 9.95 hours, while those with 15 changes survive an aver-
age of 18.31 hours. This trend continues, with URLs experiencing
50-99 changes lasting an average of 76.49 hours and those with
100+ changes persisting for an impressive 358.35 hours on average.
This positive correlation between change frequency and lifespan
suggests that frequent visual updates might be a strategy employed
by phishers to evade detection and prolong their operations.

However, it’s important to note the significant variability in
lifespans across all categories, as indicated by the large standard
deviations. For example, URLs with 100+ changes show a standard
deviation of 199.69 hours, highlighting the wide range of outcomes
even within this most persistent group. Interestingly, while only
3.49% of URLs fall into this 100+ changes category, they demon-
strate remarkably extended lifespans, with a median of 404.52 hours
(about 16.9 days). This suggests that a small proportion of highly
adaptive phishing sites contribute disproportionately to the overall
threat landscape by remaining active for extended periods.

G CDN Usage in Phishing Websites
Understanding CDN usage in phishing infrastructures is crucial
because these networks obscure the true origin of traffic, making it
significantly harder to trace and block malicious activity [47, 48].
For phishing websites, this widespread use of CDNs creates a layer
of obfuscation, making it difficult for traditional IP-based blocking
or detection mechanisms to identify and mitigate these threats
effectively [49].

Our analysis reveals significant insights into using Content De-
livery Networks (CDNs) in phishing infrastructures targeting major
brands. As shown in Table 11, we observed a 4.13% decrease in to-
tal IP addresses used for phishing, indicating a slight contraction
in the infrastructure footprint. CDN services are heavily utilized
across all examined phishing Websites, with 99.80% of IP addresses
associated with some form of CDN. This near-universal adoption
of CDNs by phishers presents significant challenges for traditional
IP-based blocking strategies. The breakdown of CDN types shows
a clear preference for Web Application Firewalls (WAF) at 53.45%,
followed by traditional CDN services at 33.57%, and cloud services
at 12.78%. Cloudflare dominates theWAF category among providers
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Table 11: CDN Changes and Top Providers based on IP.

Type Provider Typical Redirected Change (%)

CDN
Google 15,039,132 13,745,800 -1,293,332 (-8.60%)
Cloudfront 128,002 130,848 2,846 (+2.22%)
Fastly 42,311 48,535 6,224 (+14.71%)

Cloud
AWS 5,498,797 5,299,394 -199,403 (-3.63%)
Office365 276 194 -82 (-29.71%)
Oracle 39 25 -14 (-35.90%)

WAF Cloudflare 22,473,347 22,171,548 -301,799 (-1.34%)
Incapsula 24 25 1 (4.17%)

Total 43,181,928 41,396,369 -1,785,559 (-4.13%)

with 22,171,548 IP addresses, despite a 1.34% decrease. Google leads
in traditional CDN services with 13,745,800 IPs, showing an 8.60%
decrease. AWS is the primary cloud provider with 5,299,394 IPs,
experiencing a 3.63% reduction.

Table 12: CDN Usage Analysis for Top Phishing Brands.

Brand
Total IPs

Change
CDN Type Usage

Typical Redirected CDN Cloud WAF

Facebook 13,823,887 12,070,911 -12.68% 35.87% 13.93% 49.74%
USPS 6,317,945 6,357,207 +0.62% 2.52% 0.27% 96.99%
AT&T 7,849,403 7,798,646 -0.65% 94.99% 0.56% 4.36%
WhatsApp 616,768 770,939 +25.00% 11.90% 4.20% 83.44%
Instagram 977,337 851,690 -12.86% 36.95% 14.84% 47.49%
DHL 342,154 348,068 +1.73% 9.79% 3.48% 86.14%
SwissPass 153,368 185,328 +20.84% 42.95% 4.11% 52.38%
Microsoft 131,772 119,623 -9.22% 10.51% 5.37% 83.97%
Rakuten 66,022 82,142 +24.41% 3.33% 0.76% 95.63%

All Feeds 43,263,524 41,477,792 -4.13% 33.57% 12.78% 53.45%

As shown in Table 12, Examining brand-specific patterns re-
veals interesting trends. Social media and messaging platforms (e.g.,
Facebook, Instagram, and WhatsApp) show diverse CDN usage
patterns. Facebook and Instagram rely heavily on traditional CDN
and WAF services, while WhatsApp shows a strong preference for
WAF (83.44%) and experienced a 25% increase in total IPs. Delivery
services such as USPS and DHL show an overwhelming prefer-
ence for WAF services, with USPS having the highest WAF usage at
96.99%. Financial and e-commerce platforms exhibit varied patterns.
Meta shows a unique pattern with high cloud usage (40.33%) along-
side WAF (55.80%), while Rakuten heavily favors WAF (95.63%)
and saw a 24.41% increase in total IPs. Technology companies also
display distinct preferences, with Microsoft primarily using WAF
(83.97%) and AT&T standing out with 94.99% usage of traditional
CDN services, deviating significantly from the WAF-centric trend.

These patterns suggest that phishers adapt their infrastructure
choices based on the targeted brand, potentially to mimic legitimate
traffic patterns or exploit specific vulnerabilities in brand-associated
services. The pervasive use of CDNs, especially WAF services, in
phishing infrastructure poses significant challenges for detection
and mitigation.
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